Mostrar registro simples

dc.contributor.advisorPeigney, Alainpt_BR
dc.contributor.advisorEstournès, Claudept_BR
dc.contributor.advisorBergmann, Carlos Perezpt_BR
dc.contributor.authorAndrade, Mônica Jung dept_BR
dc.date.accessioned2011-05-03T05:59:59Zpt_BR
dc.date.issued2010pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/28778pt_BR
dc.description.abstractRedes bi- e tridimensionais de nanotubos de carbono (2D e 3D-RNTCs) foram preparadas sobre substratos de vidro de sílica e em matriz de sílica, respectivamente. Vários tipos de nanotubos de carbono (nanotubos de carbono de paredes simples, dupla e multicamadas, NTCPSs, NTPDs e NTPMs respectivamente) foram caracterizados por microscopia eletrônica de transmissão, espectroscopia Raman e análise de carbono, enquanto que as suas aptidões para formar uma rede de percolação foram comparadas através da medição da suas condutividades elétricas em suspensões dinâmicas em clorofórmio. A condutividade das suspensões de NTCPSs e NTCPDs seguiram a lei de potência da teoria de percolação, com expoente próximo ao valor teórico de uma rede 3D. As suspensões de NTCPSs apresentaram 3.08 S.cm2/g), enquanto que as suspensões de NTCPDs apresentaram o menor teor crítico para percolação (0.002-0.06% vol.) o que levou a escolher NTCPSs para a preparação de 2D-RNTCs e NTCPDs para a preparação de nanocompósitos CNT-sílica (3D-RNTCs). Para produzir em 2D-RNTCs, suspensões aquosas de NTCPSs contendo dodecil sulfato de sódio foram depositadas sobre substratos de sílica amorfa utilizando quatro diferentes técnicas: dip-coating, filtração, deposição por spray e deposição eletroforética. A maioria das 2DRNTCs formaram uma rede de percolação cuja condutividade elétrica também seguiu a lei de potência, com expoente em torno de 1.29, que está de acordo com as previsões teóricas. Dipcoating e deposição eletroforética resultaram nas mais suaves RNTCs sendo uma opção interessante para aplicações em células solares. As características obtidas de condutância de superfície e de transparência no UV também demonstraram suas possíveis aplicações em displays, telas de toque, blindagem em tubos catódicos e dissipação eletrostática. Nanocompósitos de NTCs em matriz de sílica (3D-RNTCs) foram preparados pela rota sol-gel, utilizando NTCPDs que foram previamente submetidos a uma funcionalização branda e sua dispersão foi realizada com ultrassom de ponta. Os materiais foram totalmente densificados por spark-plasma sintering. O estado de dispersão dos nanotubos de carbono foi avaliado por microscopia eletrônica de varredura por emissão de campo e correlacionados com as propriedades elétricas. A comparação das duas variações na rota de preparação (ou seja: os NTCPDs foram secos ou não após a sua funcionalização) levou a uma boa correlação entre os estados dispersões (presença e tamanho dos agregados de NTCs) e os pontos críticos de percolação. Para a rota "seca", a percolação opera em apenas 0.35 vol. % de NTCPDs, que é inferior aos valores reportados para nanocompósitos de sílica contendo NTCs. Para a rota "úmida", o material mais condutor apresenta uma condutividade elétrica (1.56 S/cm) maior do que o relatado por materiais similares. Apesar de que a dispersão de NTCs poderia ser ainda melhor, as condutividades elétricas obtidas destes nanocompósitos já são altas o suficiente para seu uso em elementos de aquecimento ou antieletrostáticos.pt_BR
dc.description.abstractDes réseaux de nanotubes de carbone (CNTs) en deux ou trois dimensions (2D- et 3DCNTNs) ont été préparés respectivement sur substrat de silice amorphe et dans une matrice silice. Plusieurs types de CNTs (mono-, double- et multi-parois, respectivement SWCNTs, DWCNTs et MWCNTs) ont été caractérisés par microscopie électronique à transmission, spectroscopie Raman et analyse élémentaire du carbone, et leurs aptitudes à former un réseau percolant ont été comparées par mesure de la conductivité électrique de suspensions dynamiques de ces CNTs dans le chloroforme. La conductivité des suspensions de SWCNTs et de DWCNTs obéit à la loi de puissance de la théorie de percolation, avec un exposant proche de la valeur théorique d'un réseau 3D. Celle des suspensions de SWCNTs présentent une conductivité normalisée maximale (3.08 S.cm2/g) tandis que celle des suspensions de DWCNTs présente le plus faible seuil de percolation (0.002-0.06 vol.%) ce qui a conduit à choisir les SWCNTs pour la préparation des 2D-CNTNs et les DWCNTs pour la préparation des nanocomposites CNT-silice (3D CNTNs). Les 2D-CNTNs ont été préparés par dépôt de suspensions aqueuses de SWCNTs contenant du dodecyl sulfate de sodium sur de la silice amorphe, par quatre techniques différentes: trempage, filtration, spray et dépôt électrophorétique. Les 2D-CNTNs forment un réseau percolant dont la conductivité électrique obéit à la loi de puissance, avec un exposant d'environ 1.29, ce qui en en bon accord avec les prédictions théoriques. Les dépôts effectués par trempage et les dépôts électrophorétiques conduisent aux films les plus lisses et peuvent constituer une option intéressante pour des applications dans les cellules solaires. La conductance de surface et la transparence obtenues dans l'UV laissent espérer des applications possibles dans les écrans d'affichage, les écrans tactiles, les tubes cathodiques et les films destinés à dissiper les charges électrostatiques. Les nanocomposites CNT-silice (3D-CNTNs) ont été préparés par sol-gel, en utilisant des DWCNTs qui furent d'abord soumis à un traitement doux de fonctionnalisation, leur dispersion étant réalisée par sonication avec une sonde. Les matériaux ont été ensuite complétement densifiés par "spark-plasma sintering". Les états de dispersion des CNTs ont été évalués par microscopie électronique à balayage à émission de champ et corrélé aux propriétés lectriques. La comparaison de deux variantes de la méthode de préparation (i.e.: DWCNT séchés ou non séchés après leur functionnalisation) a conduit à une bonne corrélation entre les états de dispersion (présence et taille des aggregats de CNTs) et les seuils de percolation. Pour la voie sèche, la percolation intervient pour seulement 0.35 vol.% DWCNT, ce qui est plus faible que les valeurs publiés pour les nanocomposites CNT-silice. Pour la voie humide, le matériau le plus conducteur présente une conductivité électrique (1.56 S/cm) plus élevée que celles publiés pour des matériaux similaires. Bien que l'état de dispersion des CNTs puisse encore être amélioré, la conductivité électrique obtenue pour ces nanocomposites est déjà suffisamment élevée pour leur utilisation pour évacuer les charges électrostatiques ou comme éléments chauffants.fr
dc.description.abstractTwo and three dimensional carbon nanotube networks (2D- and 3D-CNTNs) were prepared over silica glass substrate and in silica matrix, respectively. Several types of CNTs (single-, double- and multi-walled carbon nanotubes, SWCNTs, DWCNTs and MWCNTs, respectively) were characterized by transmission electron microscopy, Raman spectroscopy and carbon analysis, while their aptitudes to form a percolating network were compared by measurement of their electrical conductivity in dynamic suspensions in chloroform. The conductivity of SWCNTs and DWCNTs suspensions well follow the power law of the percolation theory, with an exponent close to the theoretical value of a 3D network. The SWCNTs suspensions present the higher maximum normalized conductivity (3.08 S.cm2/g) whereas the DWCNTs suspensions present the lower percolation thresholds (0.002-0.06 vol.%) which led to choose SWCNTs for the preparation of 2D-CNTNs and DWCNTs for the preparation of CNT-silica nanocomposites (3D-CNTNs). To produce 2D-CNTNs, SWCNTs aqueous suspensions containing sodium dodecyl sulphate were deposited over amorphous silica substrates using four different techniques : dipcoating, filtration, spray-coating and electrophoretic deposition. Most of the 2D-CNTNs formed a percolating network whose electrical conductivity well followed the power law, with an exponent around 1.29, which is in agreement with theoretical predictions. Dip-coating and electrophoretic deposition provided the smoothest CNTNs and might be an interesting option for solar cell applications. The obtained characteristics of surface conductance and transparency in the UV also demonstrated their possible applications in displays, touch screens, shielding in cathode tubes and electrostatic dissipation. CNT-silica matrix nanocomposites (3D-CNTNs) were prepared by the sol-gel route, using DWCNTs which were previously submitted to a mild functionalization, their dispersion being carried out by probe sonication. The materials were fully densified by spark-plasma sintering. The dispersion state of CNTs was evaluated by field emission scanning electron microscopy and correlated with the electrical properties. The comparison of two variations in the preparation route (ie: the DWCNT were dried or not after their functionnalization) led to a good correlation between the dispersions states (presence and size of CNTs aggregates) and the percolation thresholds. For the “Dry” route, the percolation operates at only 0.35 vol.% DWCNT, which is lower that the values reported for CNT-silica nanocomposites. For the “Wet” one, the more conductive material shows an electrical conductivity (1.56 S/cm) higher than the values reported for similar materials. In spite that the dispersion of CNTS could be still improved, the achieved electrical conductivity of these nanocomposites is still high enough for their use in antielectrostatic or heating applications.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.rightsOpen Accessen
dc.subjectNanocompósitospt_BR
dc.subjectNanotubos de carbonopt_BR
dc.subjectCondutividade elétricapt_BR
dc.titleStudy of electrical properties of 2- and 3- dimensional carbon nanotubes networkspt_BR
dc.typeTesept_BR
dc.identifier.nrb000771107pt_BR
dc.degree.grantorUniversité Toulouse III - Paul Sabatierpt_BR
dc.degree.departmentEcole Doctorale Sciences de la Matièrept_BR
dc.degree.localToulouse, FRpt_BR
dc.degree.date2010pt_BR
dc.degree.leveldoutoradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples