Mostrar registro simples

dc.contributor.authorIglesia, Manuel Domínguez de lapt_BR
dc.contributor.authorRodrigues, Carlos Felipe Lardizabalpt_BR
dc.date.accessioned2024-11-07T06:51:23Zpt_BR
dc.date.issued2024pt_BR
dc.identifier.issn1751-8121pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/280892pt_BR
dc.description.abstractQuantum Markov chains (QMCs) are positive maps on a trace-class space describing open quantum dynamics on graphs. Such objects have a statistical resemblance with classical random walks, while at the same time they allow for internal (quantum) degrees of freedom. In this work we study continuous-time QMCs on the integer line, half-line and finite segments, so that we are able to obtain exact probability calculations in terms of the associated matrix-valued orthogonal polynomials and measures. The methods employed here are applicable to a wide range of settings, but we will restrict ourselves to classes of examples for which the Lindblad generators are induced by a single positive map, and such that the Stieltjes transforms of the measures and their inverses can be calculated explicitly.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofJournal of Physics A: Mathematical and Theoretical. Bristol. Vol. 57, n. 29 (2024), Art. 295301pt_BR
dc.rightsOpen Accessen
dc.subjectQuantum walksen
dc.subjectCaminhada quânticapt_BR
dc.subjectPositive mapsen
dc.subjectMapa positivopt_BR
dc.subjectQuantum channelsen
dc.subjectCanal quânticopt_BR
dc.subjectPolinomios ortogonaispt_BR
dc.subjectMatrix-valued orthogonal polynomialsen
dc.subjectStieltjes transformen
dc.subjectTransformada de Stieltjespt_BR
dc.subjectFuncoes de besselpt_BR
dc.subjectBessel functionsen
dc.titleOne-dimensional continuous-time quantum Markov chains : qubit probabilities and measurespt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001206927pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples