Mostrar registro simples

dc.contributor.authorBraga, Rodrigo Orsinipt_BR
dc.contributor.authorVeloso, Bruno Scarattipt_BR
dc.date.accessioned2024-11-07T06:51:10Zpt_BR
dc.date.issued2024pt_BR
dc.identifier.issn2300-7451pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/280888pt_BR
dc.description.abstractIn this article, we study the Laplacian index of tadpole graphs, which are unicyclic graphs formed by adding an edge between a cycle Ck and a path Pn. Using two different approaches, we show that their Laplacian index converges to = − Δ Δ 1 9 2 2 as n, k → ∞, where Δ = 3 is the maximum degree of the graph. This limit is known as the Hoffman’s limit for the Laplacian matrix. The first technique is a linear time algorithm presented in [R. Braga, V. Rodrigues, and R. Silva, Locating eigenvalues of a symmetric matrix whose graph is unicyclic, Trends in Comput. Appl. Math. 22 (2021), no. 4, 659–674] that diagonalizes the matrix preserving its inertia. Here, we adapt this algorithm to the Laplacian index of a tadpole graph. The second method is to apply a formula presented in [V. Trevisan and E. R. Oliveira, Applications of rational difference equations to spectra graph theory, J. Difference Equ. Appl. 27 (2021), 1024–1051] for solving rational difference equations that appear when applying the diagonalization algorithm in some cases.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofSpecial Matrices. Warsaw. Vol. 12, n. 1 (July 2024), Art. 20240019pt_BR
dc.rightsOpen Accessen
dc.subjectMatriz laplacianapt_BR
dc.subjectLaplacian matrixen
dc.subjectEquação de diferença racionalpt_BR
dc.subjectTadpole graphen
dc.subjectGráfico de girinopt_BR
dc.subjectRational difference equationen
dc.titleOn the Laplacian index of tadpole graphspt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001206904pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples