Muon identification using multivariate techniques in the CMS experiment in proton-proton collisions at sqrt(s) = 13 TeV
| dc.contributor.author | Hayrapetyan, Aram | pt_BR |
| dc.contributor.author | Silveira, Gustavo Gil da | pt_BR |
| dc.contributor.author | Bernardes, César Augusto | pt_BR |
| dc.contributor.author | CMS Collaboration | pt_BR |
| dc.date.accessioned | 2024-10-19T06:15:56Z | pt_BR |
| dc.date.issued | 2024 | pt_BR |
| dc.identifier.issn | 1748-0221 | pt_BR |
| dc.identifier.uri | http://hdl.handle.net/10183/280217 | pt_BR |
| dc.description.abstract | The identification of prompt and isolated muons, as well as muons from heavy-flavour hadron decays, is an important task. We developed two multivariate techniques to provide highly efficient identification for muons with transverse momentum greater than 10 GeV. One provides a continuous variable as an alternative to a cut-based identification selection and offers a better discrimination power against misidentified muons. The other one selects prompt and isolated muons by using isolation requirements to reduce the contamination from nonprompt muons arising in heavy-flavour hadron decays. Both algorithms are developed using 59.7 fb−1 of proton-proton collisions data at a centre-of-mass energy of √ 𝑠 = 13 TeV collected in 2018 with the CMS experiment at the CERN LHC. | en |
| dc.format.mimetype | application/pdf | pt_BR |
| dc.language.iso | eng | pt_BR |
| dc.relation.ispartof | Journal of Instrumentation. Bristol. Vol. 19, no. 2 (Feb. 2024), P02031, 42 p. | pt_BR |
| dc.rights | Open Access | en |
| dc.subject | Muon spectrometers | en |
| dc.subject | Aceleradores de partículas | pt_BR |
| dc.subject | Particle identification methods | en |
| dc.subject | Colisões proton-proton | pt_BR |
| dc.subject | Muons | pt_BR |
| dc.subject | Particle tracking detectors | en |
| dc.title | Muon identification using multivariate techniques in the CMS experiment in proton-proton collisions at sqrt(s) = 13 TeV | pt_BR |
| dc.type | Artigo de periódico | pt_BR |
| dc.identifier.nrb | 001206158 | pt_BR |
| dc.type.origin | Estrangeiro | pt_BR |
Este item está licenciado na Creative Commons License
-
Artigos de Periódicos (44386)Ciências Exatas e da Terra (6548)

