Mostrar registro simples

dc.contributor.advisorOliveira Neto, Manuel Menezes dept_BR
dc.contributor.authorDick, João Atzpt_BR
dc.date.accessioned2024-08-15T06:30:21Zpt_BR
dc.date.issued2022pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/277344pt_BR
dc.description.abstractStyleGAN models are a new paradigm in artificial image generation. Initially proposed to generate fake facial images, these deep generative models can be used to edit real photographs with the aid of GAN Inversion and Latent Manipulation algorithms. GAN Inversion techniques embed real images into StyleGAN’s latent space, yielding a latent point used to generate an artificial image as close as possible to the original one. Latent Manipulation operations work on top of the resulting latent point to do semantic-oriented edits, aiming to preserve the remaining image’s characteristics. Recent research initiatives attempt to better understand and model the rich latent space from StyleGANs, focusing on how to invert and edit real images with minimum distortion and maximum editing efficiency. Although significant advances have been made in the past few years, GAN In version and Latent Manipulation methods still face difficulties when trying to disentangle semantic features in latent spaces. A better understanding of basic latent-space arith metic is needed to assess the entanglement of StyleGAN’s semantic features. This under graduate thesis describes the state-of-the-art in this field, defines basic latent arithmetic operations, and performs a variety of latent arithmetic experiments. The experimental results are used to develop a better understanding of StyleGAN’s latent space, setting a theoretical basis for future research directions in GAN Inversion and Latent Manipulation.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.rightsOpen Accessen
dc.subjectStyleGANen
dc.subjectImagempt_BR
dc.subjectImage generationen
dc.subjectFotografiapt_BR
dc.subjectLatent spaceen
dc.subjectGAN inversionen
dc.subjectLatent manipulationen
dc.titleLatent space representation and manipulation of StyleGANspt_BR
dc.typeTrabalho de conclusão de graduaçãopt_BR
dc.identifier.nrb001162398pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Informáticapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2022pt_BR
dc.degree.graduationCiência da Computação: Ênfase em Ciência da Computação: Bachareladopt_BR
dc.degree.levelgraduaçãopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples