Mostrar el registro sencillo del ítem

dc.contributor.authorBayer, Fábio Marianopt_BR
dc.contributor.authorPumi, Guilhermept_BR
dc.contributor.authorPereira, Tarciana Liberalpt_BR
dc.contributor.authorSouza, Tatiene Correia dept_BR
dc.date.accessioned2024-03-09T05:02:05Zpt_BR
dc.date.issued2023pt_BR
dc.identifier.issn1807-0302pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/273169pt_BR
dc.description.abstractIn this paper, we introduce the inflated beta autoregressive moving average (IβARMA) models for modeling and forecasting time series data that assume values in the intervals (0,1], [0,1) or [0,1]. The proposed model considers a set of regressors, an autoregressive moving average structure and a link function to model the conditional mean of inflated beta conditionally distributed variable observed over the time. We develop partial likelihood estimation and derive closed-form expressions for the score vector and the cumulative partial information matrix. Hypotheses testing, confidence interval, some diagnostic tools and forecasting are also proposed. We evaluate the finite sample performances of partial maximum likelihood estimators and confidence interval using Monte Carlo simulations. Two empirical applications related to forecasting hydro-environmental data are presented and discussed.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofComputational and Applied Mathematics. São Carlos. Vol. 42 (May 2023), art. 183, 24 p.pt_BR
dc.rightsOpen Accessen
dc.subjectInflated beta distributionen
dc.subjectModelagem de dadospt_BR
dc.subjectForecastsen
dc.subjectDistribuicaopt_BR
dc.subjectPrevisõespt_BR
dc.subjectRates and proportionsen
dc.subjectSéries temporaispt_BR
dc.subjectTime seriesen
dc.titleInflated beta autoregressive moving average modelspt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001174090pt_BR
dc.type.originNacionalpt_BR


Ficheros en el ítem

Thumbnail
   

Este ítem está licenciado en la Creative Commons License

Mostrar el registro sencillo del ítem