Mostrar registro simples

dc.contributor.authorRosa, Gabriela Oliveira dapt_BR
dc.contributor.authorKepler, Souza Oliveirapt_BR
dc.contributor.authorCórsico, Alejandro Hugopt_BR
dc.contributor.authorCosta, Jose Eduardo da Silveirapt_BR
dc.contributor.authorHermes, James J.pt_BR
dc.contributor.authorKawaler, Steven D.pt_BR
dc.contributor.authorBell, Keatonpt_BR
dc.contributor.authorMontgomery, Michael Houstonpt_BR
dc.contributor.authorProvencal, Judith L.pt_BR
dc.contributor.authorWinget, Donald Earlpt_BR
dc.contributor.authorHandler, Geraldpt_BR
dc.contributor.authorDunlap, Bartpt_BR
dc.contributor.authorClemens, J. Christopherpt_BR
dc.contributor.authorUzundag, Muratpt_BR
dc.date.accessioned2022-12-24T05:05:09Zpt_BR
dc.date.issued2022pt_BR
dc.identifier.issn0004-637Xpt_BR
dc.identifier.urihttp://hdl.handle.net/10183/253154pt_BR
dc.description.abstractPG 1159-035 is the prototype of the PG 1159 hot (pre-)white dwarf pulsators. This important object was observed during the Kepler satellite K2 mission for 69 days in 59 s cadence mode and by the TESS satellite for 25 days in 20 s cadence mode. We present a detailed asteroseismic analysis of those data. We identify a total of 107 frequencies representing 32 ℓ = 1 modes, 27 frequencies representing 12 ℓ = 2 modes, and eight combination frequencies. The combination frequencies and the modes with very high k values represent new detections. The multiplet structure reveals an average splitting of 4.0 ± 0.4 μHz for ℓ = 1 and 6.8 ± 0.2 μHz for ℓ = 2, indicating a rotation period of 1.4 ± 0.1 days in the region of period formation. In the Fourier transform of the light curve, we find a significant peak at 8.904 ± 0.003 μHz suggesting a surface rotation period of 1.299 ± 0.002 days. We also present evidence that the observed periods change on timescales shorter than those predicted by current evolutionary models. Our asteroseismic analysis finds an average period spacing for ℓ = 1 of 21.28 ± 0.02 s. The ℓ = 2 modes have a mean spacing of 12.97 ± 0.4 s. We performed a detailed asteroseismic fit by comparing the observed periods with those of evolutionary models. The best-fit model has Teff = 129, 600 ± 11 100 K, M* = 0.565 ± 0.024M⊙, and $\mathrm{log}g={7.41}_{-0.54}^{+0.38}$, within the uncertainties of the spectroscopic determinations. We argue for future improvements in the current models, e.g., on the overshooting in the He-burning stage, as the best-fit model does not predict excitation for all of the pulsations detected in PG 1159-035.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofThe astrophysical journal. Bristol. Vol. 936, no. 2 (Sept. 2022), 187, 21 p.pt_BR
dc.rightsOpen Accessen
dc.subjectPulsating variable starsen
dc.subjectEstrelas variaveispt_BR
dc.subjectAnãs brancaspt_BR
dc.subjectWhite dwarf starsen
dc.subjectAsterosismologiapt_BR
dc.subjectAsteroseismologyen
dc.titleKepler and TESS observations of PG 1159-035pt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001157597pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples