Show simple item record

dc.contributor.authorLopes, Amanda de Azevedopt_BR
dc.contributor.authorAlmeida, Renan A. L.pt_BR
dc.contributor.authorOliveira, Paulo Murilo Castro dept_BR
dc.contributor.authorArenzon, Jeferson Jacobpt_BR
dc.date.accessioned2022-12-24T05:04:20Zpt_BR
dc.date.issued2022pt_BR
dc.identifier.issn1539-3755pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/253119pt_BR
dc.description.abstractAfter a sudden quench from the disordered high-temperature T0 → ∞ phase to a final temperature well below the critical point TF Tc, the nonconserved order parameter dynamics of the two-dimensional ferromagnetic Ising model on a square lattice initially approaches the critical percolation state before entering the coarsening regime. This approach involves two timescales associated with the first appearance (at time tp1 > 0) and stabilization (at time tp > tp1 ) of a giant percolation cluster, as previously reported. However, the microscopic mechanisms that control such timescales are not yet fully understood. In this paper, to study their role on each time regime after the quench (TF = 0), we distinguish between spin flips that decrease the total energy of the system from those that keep it constant, the latter being parametrized by the probability p. We show that observables such as the cluster size heterogeneity H(t, p) and the typical domain size (t, p) have no dependence on p in the first time regime up to tp1 . Furthermore, when energy-decreasing flips are forbidden while allowing constant-energy flips, the kinetics is essentially frozen after the quench and there is no percolation event whatsoever. Taken together, these results indicate that the emergence of the first percolating cluster at tp1 is completely driven by energy decreasing flips. However, the time for stabilizing a percolating cluster is controlled by the acceptance probability of constant-energy flips: tp(p) ∼ p−1 for p 1 (at p = 0, the dynamics gets stuck in a metastable state). These flips are also the relevant ones in the later coarsening regime where dynamical scaling takes place. Because the phenomenology on the approach to the percolation point seems to be shared by many 2D systems with a nonconserved order parameter dynamics (and certain cases of conserved ones as well), our results may suggest a simple and eff Because the phenomenology on the approach to the percolation point seems to be shared by many 2D systems with a nonconserved order parameter dynamics (and certain cases of conserved ones as well), our results may suggest a simple and effective way to set, through the dynamics itself, tp1 and tp in such systems.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofPhysical review. E, Statistical, nonlinear, and soft matter physics. Melville. Vol. 106, no. 4 (Oct. 2022), 044105, 6 p.pt_BR
dc.rightsOpen Accessen
dc.subjectModelo de isingpt_BR
dc.subjectPercolaçãopt_BR
dc.subjectDinâmica de spinpt_BR
dc.titleEnergy-lowering and constant-energy spin flips : emergence of the percolating cluster in the kinetic Ising modelpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001157814pt_BR
dc.type.originEstrangeiropt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record