Dynamical cluster size heterogeneity
dc.contributor.author | Lopes, Amanda de Azevedo | pt_BR |
dc.contributor.author | Rocha, André Rodrigues de la | pt_BR |
dc.contributor.author | Oliveira, Paulo Murilo Castro de | pt_BR |
dc.contributor.author | Arenzon, Jeferson Jacob | pt_BR |
dc.date.accessioned | 2020-03-05T04:14:52Z | pt_BR |
dc.date.issued | 2020 | pt_BR |
dc.identifier.issn | 1539-3755 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/206439 | pt_BR |
dc.description.abstract | Only recently has the essential role of the percolation critical point been considered on the dynamical properties of connected regions of aligned spins (domains) after a sudden temperature quench. In equilibrium, it is possible to resolve the contribution to criticality by the thermal and percolative effects (on finite lattices, while inthethermodynamiclimittheymergeatasinglecriticaltemperature)bystudyingtheclustersizeheterogeneity, Heq(T), a measure of how different the domains are in size. We extend this equilibrium measure here and study its temporal evolution, H(t), after driving the system out of equilibrium by a sudden quench in temperature. We show that this single parameter is able to detect and well-separate the different time regimes, related to the two timescales in the problem, namely the short percolative and the long coarsening one. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics. Melville. Vol. 101, no. 1 (Jan. 2020), 012108, 7 p. | pt_BR |
dc.rights | Open Access | en |
dc.subject | Modelo de ising | pt_BR |
dc.subject | Percolação | pt_BR |
dc.subject | Transformações de fase | pt_BR |
dc.title | Dynamical cluster size heterogeneity | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 001111753 | pt_BR |
dc.type.origin | Estrangeiro | pt_BR |
Este item está licenciado na Creative Commons License
-
Artigos de Periódicos (40917)Ciências Exatas e da Terra (6197)