Mostrar el registro sencillo del ítem
Isothermal binodal curves near a critical endpoint
dc.contributor.author | Kim, Young C. | pt_BR |
dc.contributor.author | Fisher, Michael E. | pt_BR |
dc.contributor.author | Barbosa, Marcia Cristina Bernardes | pt_BR |
dc.date.accessioned | 2020-01-28T04:12:07Z | pt_BR |
dc.date.issued | 2001 | pt_BR |
dc.identifier.issn | 0021-9606 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/204998 | pt_BR |
dc.description.abstract | Thermodynamics in the vicinity of a critical endpoint with nonclassical exponents α, β, γ, δ, … , is analyzed in terms of density variables (mole fractions, magnetizations, etc.). The shapes of the isothermal binodals or two-phase coexistence curves are found at and near the endpoint for symmetric and nonsymmetric situations. The spectator- (or noncritical-) phase binodal at T=Te is characterized by an exponent (δ+1)/δ (≃1.21) with leading corrections of relative order 1/δ (≃0.21), θ4/βδ (≃0.34) and 1−(βδ)−1 (≃0.36); in contrast to classical (van der Waals, mean field, etc.) theory, the critical endpoint binodal is singular with a leading exponent (1−α)/β (≃2.73) and corrections which are elucidated; the remaining, λ-line binodals also display the “renormalized exponent,” (1−α)/β but with more singular corrections. [The numerical values quoted here pertain to (d=3)-dimensional-fluid or Ising-type systems.] | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | The journal of chemical physics. New York. Vol. 115, no. 2 (July 2001), p. 933-950 | pt_BR |
dc.rights | Open Access | en |
dc.subject | Termodinâmica | pt_BR |
dc.title | Isothermal binodal curves near a critical endpoint | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 000300524 | pt_BR |
dc.type.origin | Estrangeiro | pt_BR |
Ficheros en el ítem
Este ítem está licenciado en la Creative Commons License
-
Artículos de Periódicos (40175)Ciencias Exactas y Naturales (6132)