Magnetosonic waves in a quantum plasma with arbitrary electron degeneracy
dc.contributor.author | Haas, Fernando | pt_BR |
dc.contributor.author | Mahmood, Shahzad | pt_BR |
dc.date.accessioned | 2018-08-18T03:01:08Z | pt_BR |
dc.date.issued | 2018 | pt_BR |
dc.identifier.issn | 1539-3755 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/181104 | pt_BR |
dc.description.abstract | Using a two-species quantum hydrodynamic model, we derive the quantum counterpart of magnetosonic waves, in a plasma with arbitrary degree of degeneracy and taking into account quantum diffraction effects due to the matter-wave character of the charge carriers. The weakly nonlinear aspects of the associated quantum magnetosonic wave are accessed by means of perturbation theory, with the derivation of a nonlinear evolution equation admitting solitons, namely, the Korteweg–de Vries equation. The degeneracy and quantum diffraction effects on soliton propagation are determined. A qualitative change on weakly nonlinear magnetosonic waves appears when quantum diffraction matches certain conditions, producing shock solutions instead of solitons, within the approximation level. We also include explicit numeric estimates and a discussion on the coupling (nonideality) parameter for quantum plasmas with intermediate degeneracy degree. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics. Melville. Vol. 97, no. 6 (June 2018), 063206, 8 p. | pt_BR |
dc.rights | Open Access | en |
dc.subject | Magneto-hidrodinâmica de plasmas | pt_BR |
dc.subject | Ondas de plasma | pt_BR |
dc.subject | Propagação de ondas | pt_BR |
dc.title | Magnetosonic waves in a quantum plasma with arbitrary electron degeneracy | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 001070399 | pt_BR |
dc.type.origin | Estrangeiro | pt_BR |
Este item está licenciado na Creative Commons License
-
Artigos de Periódicos (39534)Ciências Exatas e da Terra (6036)