Introdução à análise casual de mediação utilizando modelos estruturais marginais por meio de um algoritmo G-Computation
Fecha
2018Autor
Tutor
Nivel académico
Grado
Tipo
Materia
Resumo
O interesse pelos conceitos de causa e o estudo da causalidade remontam ao século IV AC, por Aristóteles e seus predecessores. Na era moderna foi retomado por diversos filósofos, tais como Locke, Hume, Mill e Suppes, na perspectiva da construção de uma teoria de inferência causal. Recebeu valiosas contribuições de estatísticos como Wright e Neyman a partir da década de 1920 e Hill e Rubin nas décadas de 1960 e 1970. Na Epidemiologia, métodos e aplicações da inferência causal têm sido desenvolvi ...
O interesse pelos conceitos de causa e o estudo da causalidade remontam ao século IV AC, por Aristóteles e seus predecessores. Na era moderna foi retomado por diversos filósofos, tais como Locke, Hume, Mill e Suppes, na perspectiva da construção de uma teoria de inferência causal. Recebeu valiosas contribuições de estatísticos como Wright e Neyman a partir da década de 1920 e Hill e Rubin nas décadas de 1960 e 1970. Na Epidemiologia, métodos e aplicações da inferência causal têm sido desenvolvidos principalmente a partir da década de 1980, com crescimento exponencial a partir do início deste século. Recentemente, a análise causal de mediação é, possivelmente, a principal área de estudos teóricos e aplicados em pesquisa clínica e epidemiológica. O objetivo deste trabalho é apresentar uma breve introdução aos conceitos de causalidade, de inferência causal e de análise causal de mediação, com foco na utilização de modelos estruturais marginais (MSMs) e no algoritmo chamado de G-Computation. São apresentadas definições dos MSMs e de um algoritmo G-Computation, exemplificando com uma aplicação para estimar efeitos causais de mediação por meio da decomposição do efeito total da escolaridade materna na ocorrência de baixo peso ao nascer, mediado pela prematuridade. Os dados foram obtidos no Sistema de Informação de Nascidos Vivos (SINASC) do DATASUS. No exemplo, as estimativas do efeito indireto total (EIT) e do efeito indireto puro (EIP) foram, respectivamente, RC=0,83 (IC 95%:0,74–0,93) e RC=0,82 (IC 95%:0,72–0,93). Como se trata de um exemplo ilustrativo, é importante ressaltar que a plausibilidade biológica destes resultados e respectivas interpretações causais devem ser investigadas e discutidas com profundidade. ...
Abstract
The interest about concepts of cause and the study of causality goes back to the fourth century BC, by Aristotle and his predecessors. In the modern era it was taken up by several philosophers, such as Locke, Hume, Mill and Suppes, in the perspective of the construction of a theory of causal inference. The field received valuable contributions from statisticians such as Wright and Neyman around the 1920s and Hill and Rubin in the 1960s and 1970s. In Epidemiology, methods and applications of cau ...
The interest about concepts of cause and the study of causality goes back to the fourth century BC, by Aristotle and his predecessors. In the modern era it was taken up by several philosophers, such as Locke, Hume, Mill and Suppes, in the perspective of the construction of a theory of causal inference. The field received valuable contributions from statisticians such as Wright and Neyman around the 1920s and Hill and Rubin in the 1960s and 1970s. In Epidemiology, methods and applications of causal inference have been developed primarily since the 1980s, with exponential growth since the beginning of this century. Recently the causal mediation analysis possibly is the main area of theoretical and applied studies in both clinical and epidemiological research. The aim of this work is to present a brief introduction to the main concepts of causality, causal inference and causal mediation analysis, focusing on marginal structural models (MSMs) and the G-Computation algorithm. Definitions of MSMs and a G-Computation algorithm are presented, exemplifying with an application to estimate causal mediation effects through the decomposition of the total effect of maternal education level on the occurrence of low birth weight, mediated by prematurity. Data were obtained from the Sistema de Informação de Nascidos Vivos (SINASC) of DATASUS. In this example, estimates of total indirect effect (EIT) and pure indirect effect (EIP) were, respectively, OR=0.83 (95% CI: 0.74-0.93) and OR=0.82 (CI 95%: 0.72-0.93). Since it is an example, it is important to emphasize that the biological plausibility of these results and their causal interpretations should be investigated and discussed in more details. ...
Institución
Universidade Federal do Rio Grande do Sul. Instituto de Matemática e Estatística. Curso de Estatística: Bacharelado.
Colecciones
-
Tesinas de Curso de Grado (37361)Tesinas Estadística (295)
Este ítem está licenciado en la Creative Commons License