Mostrar registro simples

dc.contributor.authorSousa, Meirielen Caetano dept_BR
dc.contributor.authorCaldas, Ibere Luizpt_BR
dc.contributor.authorOzorio de Almeida, Alfredo Miguelpt_BR
dc.contributor.authorPakter, Renatopt_BR
dc.contributor.authorRizzato, Felipe Barbedopt_BR
dc.date.accessioned2016-06-11T02:08:45Zpt_BR
dc.date.issued2015pt_BR
dc.identifier.issn1742-6588pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/142557pt_BR
dc.description.abstractWe analyze the isochronous island chains that appear in the Poincaré sections of near integrable twist systems. When the system presents just one resonant perturbation with a winding number, the number of chains is constant and it is completely determined by the perturbation. However, for systems that are perturbed by an infinite number of resonant perturbations with the same winding number, the number of isochronous chains depends on the superposition of the perturbations and it is a function of the parameters. Considering a system that describes wave-particle interaction, we show that the number of island chains increases without limit when the wave period or wave number are increased.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofJournal of physics : conference series. Bristol. Vol. 641 (2015), 012003, 6 p.pt_BR
dc.rightsOpen Accessen
dc.subjectSistemas hamiltonianospt_BR
dc.titleMultiple island chains in wave-particle interactionspt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000987358pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples