Chaos and relaxation to equilibrium in systems with long-range interactions
dc.contributor.author | Antunes, Felipe Leite | pt_BR |
dc.contributor.author | Benetti, Fernanda Pereira da Cruz | pt_BR |
dc.contributor.author | Pakter, Renato | pt_BR |
dc.contributor.author | Levin, Yan | pt_BR |
dc.date.accessioned | 2015-12-25T02:39:21Z | pt_BR |
dc.date.issued | 2015 | pt_BR |
dc.identifier.issn | 1539-3755 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/131386 | pt_BR |
dc.description.abstract | In the thermodynamic limit, systems with long-range interactions do not relax to equilibrium, but become trapped in nonequilibrium stationary states. For a finite number of particles a nonequilibrium state has a finite lifetime, so that eventually a system will relax to thermodynamic equilibrium. The time that a system remains trapped in a quasistationary state (QSS) scales with the number of particles as Nδ, with δ > 0, and diverges in the thermodynamic limit. In this paper we will explore the role of chaotic dynamics on the time that a system remains trapped in a QSS.We discover that chaos, measured by the Lyapunov exponents, favors faster relaxation to equilibrium. Surprisingly, weak chaos favors faster relaxation than strong chaos. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 92, no. 5 (Nov. 2015), 052123, 7 p. | pt_BR |
dc.rights | Open Access | en |
dc.subject | Caos | pt_BR |
dc.subject | Termodinâmica | pt_BR |
dc.subject | Métodos Lyapunov | pt_BR |
dc.subject | Relaxacao | pt_BR |
dc.title | Chaos and relaxation to equilibrium in systems with long-range interactions | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 000980969 | pt_BR |
dc.type.origin | Estrangeiro | pt_BR |
Este item está licenciado na Creative Commons License
-
Artigos de Periódicos (40281)Ciências Exatas e da Terra (6158)