Mostrar registro simples

dc.contributor.authorAntunes, Felipe Leitept_BR
dc.contributor.authorBenetti, Fernanda Pereira da Cruzpt_BR
dc.contributor.authorPakter, Renatopt_BR
dc.contributor.authorLevin, Yanpt_BR
dc.date.accessioned2015-12-25T02:39:21Zpt_BR
dc.date.issued2015pt_BR
dc.identifier.issn1539-3755pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/131386pt_BR
dc.description.abstractIn the thermodynamic limit, systems with long-range interactions do not relax to equilibrium, but become trapped in nonequilibrium stationary states. For a finite number of particles a nonequilibrium state has a finite lifetime, so that eventually a system will relax to thermodynamic equilibrium. The time that a system remains trapped in a quasistationary state (QSS) scales with the number of particles as Nδ, with δ > 0, and diverges in the thermodynamic limit. In this paper we will explore the role of chaotic dynamics on the time that a system remains trapped in a QSS.We discover that chaos, measured by the Lyapunov exponents, favors faster relaxation to equilibrium. Surprisingly, weak chaos favors faster relaxation than strong chaos.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 92, no. 5 (Nov. 2015), 052123, 7 p.pt_BR
dc.rightsOpen Accessen
dc.subjectCaospt_BR
dc.subjectTermodinâmicapt_BR
dc.subjectMétodos Lyapunovpt_BR
dc.subjectRelaxacaopt_BR
dc.titleChaos and relaxation to equilibrium in systems with long-range interactionspt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000980969pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples