Mostrar registro simples

dc.contributor.advisorVigo, Álvaropt_BR
dc.contributor.authorUtpott, Nicole Machadopt_BR
dc.date.accessioned2015-11-10T02:41:27Zpt_BR
dc.date.issued2015pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/129437pt_BR
dc.description.abstractEm estudos clínicos onde o desfecho é uma variável dicotômica e o fator de exposição é de natureza quantitativa, uma grande dificuldade reportada pelos pesquisadores é estimar a razão de chances quando a relação entre o preditor e a resposta é não linear no logito. Práticas comuns como transformações, utilização de termos polinomiais e categorização das variáveis acarretam uma série de problemas, como: perda de poder, subjetividade da análise e dificuldades na interpretação. Por vezes, essas técnicas não possibilitam a estimação da razão de chances - medida de associação frequentemente utilizada em pesquisas, principalmente na epidemiologia. A abordagem de regressão logística utilizando b-splines é uma técnica pouco difundida e que pode ser útil para investigar relações não lineares entre preditores quantitativos com um desfecho binário, pois busca modelar as variáveis sem impor restrições, através de um modelo suavizado. Desta forma, o objetivo principal deste trabalho é revisar a literatura estatística a fim de identificar diferentes abordagens do uso de splines e explorar algoritmos implementados para empregar o método. Rotinas computacionais desenvolvidas por Gregory et al. (2008) foram utilizadas para ajustar diferentes modelos, variando o grau dos polinômios e a quantidade de pontos de corte. Os modelos ajustados mostraram-se fortemente capazes de identificar a relação funcional de um preditor quantitativo com um desfecho dicotômico, utilizando um banco de dados simulados. Os modelos de regressão logística utilizando b-splines podem ser avaliados através da estatística AIC e permitem estimar a razão de chances e o intervalo de confiança para valores pontuais da covariável, a partir de um valor de referência definido pelo usuário.pt_BR
dc.format.mimetypeapplication/pdf
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectRegressão logísticapt_BR
dc.subjectEstimaçãopt_BR
dc.titleRegressão Logística utilizando b-splines : uma maneira de lidar com relações não linearespt_BR
dc.typeTrabalho de conclusão de graduaçãopt_BR
dc.identifier.nrb000976776pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Matemática. Departamento de Estatísticapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2015pt_BR
dc.degree.graduationEstatística: Bachareladopt_BR
dc.degree.levelgraduaçãopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples