Nature of long-range order in stripe-forming systems with long-range repulsive interactions
dc.contributor.author | Mendoza Coto, Alejandro | pt_BR |
dc.contributor.author | Stariolo, Daniel Adrian | pt_BR |
dc.contributor.author | Nicolao, Lucas | pt_BR |
dc.date.accessioned | 2015-05-16T02:00:40Z | pt_BR |
dc.date.issued | 2015 | pt_BR |
dc.identifier.issn | 0031-9007 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/116508 | pt_BR |
dc.description.abstract | We study two dimensional stripe forming systems with competing repulsive interactions decaying as r−α.We derive an effective Hamiltonian with a short-range part and a generalized dipolar interaction which depends on the exponent α. An approximate map of this model to a known XY model with dipolar interactions allows us to conclude that, for α < 2 long-range orientational order of stripes can exist in two dimensions, and establish the universality class of the models. When α ≥ 2 no long-range order is possible, but a phase transition in the Kosterlitz-Thouless universality class is still present. These two different critical scenarios should be observed in experimentally relevant two dimensional systems like electronic liquids (α = 1) and dipolar magnetic films (α = 3). Results from Langevin simulations of Coulomb and dipolar systems give support to the theoretical results. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | Physical review letters. Melville. Vol. 114, no. 11 (Mar. 2015), 116101, 5 p. | pt_BR |
dc.rights | Open Access | en |
dc.subject | Filmes finos magneticos | pt_BR |
dc.subject | Bloqueio coulombiano | pt_BR |
dc.title | Nature of long-range order in stripe-forming systems with long-range repulsive interactions | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 000965735 | pt_BR |
dc.type.origin | Estrangeiro | pt_BR |
Este item está licenciado na Creative Commons License
![](/themes/Mirage2Novo//images/lume/cc.png)
-
Artigos de Periódicos (41601)Ciências Exatas e da Terra (6258)