Show simple item record

dc.contributor.authorBemfica, Fábio Sperottopt_BR
dc.contributor.authorGirotti, Horacio Oscarpt_BR
dc.date.accessioned2015-05-13T02:00:41Zpt_BR
dc.date.issued2008pt_BR
dc.identifier.issn1550-7998pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/116133pt_BR
dc.description.abstractThe generalized Weyl transform of index is used to implement the time-slice definition of the phase space path integral yielding the Feynman kernel in the case of noncommutative quantum mechanics. As expected, this representation for the Feynman kernel is not unique but labeled by the real parameter . We succeed in proving that the -dependent contributions disappear at the limit where the time slice goes to zero. This proof of consistency turns out to be intricate because the Hamiltonian involves products of noncommuting operators originating from the noncommutativity. The antisymmetry of the matrix parametrizing the noncommutativity plays a key role in the cancellation mechanism of the α-dependent terms.en
dc.format.mimetypeapplication/pdf
dc.language.isoengpt_BR
dc.relation.ispartofPhysical review. D. Particles, fields, gravitation, and cosmology. College Park. Vol. 78, no. 12 (Dec. 2008), 125009, 6 p.pt_BR
dc.rightsOpen Accessen
dc.subjectMecânica quânticapt_BR
dc.subjectTeoria quânticapt_BR
dc.subjectSistemas não comutativospt_BR
dc.titleNoncommutative quantum mechanics : uniqueness of the functional descriptionpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000734098pt_BR
dc.type.originEstrangeiropt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record