Show simple item record

dc.contributor.authorBrouzos, Ioannispt_BR
dc.contributor.authorFoerster, Angelapt_BR
dc.date.accessioned2014-10-15T02:12:37Zpt_BR
dc.date.issued2014pt_BR
dc.identifier.issn1050-2947pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/104558pt_BR
dc.description.abstractWe show that the breaking of integrability in the fundamental one-dimensional model of bosons with contact interactions has consequences on the stationary correlation properties of the system. We calculate the energies and correlation functions of the integrable Lieb-Liniger case, comparing the exact Bethe-ansatz solution with a corresponding Jastrow ansatz. Then we examine the nonintegrable case of different interaction strengths between each pair of atoms by means of a variationally optimized Jastrow ansatz, proposed in analogy to the Laughlin ansatz. We show that properties of the integrable state are more stable close to the Tonks-Girardeau regime than for weak interactions. All energies and correlation functions are given in terms of explicit analytical expressions enabled by the Jastrow ansatz. We finally compare the correlations of the integrable and nonintegrable cases and show that apart from symmetry breaking the behavior changes dramatically, with additional and more pronounced maxima and minima interference peaks appearing.en
dc.format.mimetypeapplication/pdf
dc.language.isoengpt_BR
dc.relation.ispartofPhysical review. A, Atomic, molecular, and optical physics. New York. Vol. 89, no. 5 (May 2014), 053623, 9 p.pt_BR
dc.rightsOpen Accessen
dc.subjectSistemas de bósonspt_BR
dc.subjectEquacao de bethe ansatzpt_BR
dc.subjectSistemas de férmionspt_BR
dc.titleTrace of broken integrability in stationary correlation propertiespt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000922049pt_BR
dc.type.originEstrangeiropt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record