Inverse transition in a two-dimensional dipolar frustrated ferromagnet
View/ Open
Date
2011Type
Subject
Abstract
We show that the mean-field phase diagram of the dipolar frustrated ferromagnet in an external field presents an inverse transition in the field-temperature plane. The presence of this type of transition has recently been observed experimentally in ultrathin films of Fe/Cu(001). We study a coarse-grained model Hamiltonian in two dimensions. The model supports stripe and bubble equilibrium phases, as well as the uniform phase. At variance with common expectations, already in a single-mode approx ...
We show that the mean-field phase diagram of the dipolar frustrated ferromagnet in an external field presents an inverse transition in the field-temperature plane. The presence of this type of transition has recently been observed experimentally in ultrathin films of Fe/Cu(001). We study a coarse-grained model Hamiltonian in two dimensions. The model supports stripe and bubble equilibrium phases, as well as the uniform phase. At variance with common expectations, already in a single-mode approximation, the model shows a sequence of uniform-bubbles-stripes-uniform phase transitions upon lowering the temperature at a fixed external field. Going beyond the single-mode approximation leads to the shrinking of the bubbles phase, which is restricted to a small region near the zero-field critical temperature. Monte Carlo simulations results with a Heisenberg model are consistent with the mean-field results. ...
In
Physical review. B, Condensed matter and materials physics. Woodbury. Vol. 84, no. 1 (July 2011), 014404, 7 p.
Source
Foreign
Collections
-
Journal Articles (40361)Exact and Earth Sciences (6164)
This item is licensed under a Creative Commons License