Integrals of motion and quantum operators for hydrogenic atoms in external fields
dc.contributor.author | Beims, Marcus Werner | pt_BR |
dc.contributor.author | Gallas, Jason Alfredo Carlson | pt_BR |
dc.date.accessioned | 2014-10-04T02:13:29Z | pt_BR |
dc.date.issued | 2000 | pt_BR |
dc.identifier.issn | 1050-2947 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/104173 | pt_BR |
dc.description.abstract | We report five cases of integrability for a hydrogenic atom under three static external fields: a magnetic field, an electric field, and a van der Waals interaction. Exact integrals of motion and corresponding quantum operators are obtained explicitly for each case. Integrals of motion (quantum operators) can be expressed as components of a suitably generalized Runge-Lenz vector (operator). Quadratic quantum operators are found to have the amazing property of requiring a nonclassical extra term proportional to h². The structuring of the classical phase space is investigated numerically via Poincare surfaces of section and corroborates the analytical results. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | Physical review. A, Atomic, molecular, and optical physics. New York. Vol. 62, no. 4 (Oct. 2000), 043410 12p. | pt_BR |
dc.rights | Open Access | en |
dc.subject | Teoria quântica | pt_BR |
dc.title | Integrals of motion and quantum operators for hydrogenic atoms in external fields | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 000275818 | pt_BR |
dc.type.origin | Estrangeiro | pt_BR |
Este item está licenciado na Creative Commons License

-
Artigos de Periódicos (42138)Ciências Exatas e da Terra (6312)