Weak and strong coupling theories for polarizable colloids and nanoparticles
Visualizar/abrir
Data
2011Tipo
Abstract
A theory is presented which allows us to accurately calculate the density profile of monovalent and multivalent counterions in suspensions of polarizable colloids or nanoparticles. In the case of monovalent ions, we derive a weak-coupling theory that explicitly accounts for the ion-image interaction, leading to a modified Poisson-Boltzmann equation. For suspensions with multivalent counterions, a strong-coupling theory is used to calculate the density profile near the colloidal surface and a Po ...
A theory is presented which allows us to accurately calculate the density profile of monovalent and multivalent counterions in suspensions of polarizable colloids or nanoparticles. In the case of monovalent ions, we derive a weak-coupling theory that explicitly accounts for the ion-image interaction, leading to a modified Poisson-Boltzmann equation. For suspensions with multivalent counterions, a strong-coupling theory is used to calculate the density profile near the colloidal surface and a Poisson-Boltzmann equation with a renormalized boundary condition to account for the counterion distribution in the far field. All the results are compared with the Monte Carlo simulations, showing an excellent agreement between the theory and the simulations. ...
Contido em
Physical review letters. Melville. Vol. 107, no. 10 (Sep. 2011), 107801, 5 p.
Origem
Estrangeiro
Coleções
-
Artigos de Periódicos (40281)Ciências Exatas e da Terra (6158)
Este item está licenciado na Creative Commons License