Show simple item record

dc.contributor.advisorGamermann, Danielpt_BR
dc.contributor.authorPellizzaro, José Antôniopt_BR
dc.date.accessioned2020-03-12T04:13:32Zpt_BR
dc.date.issued2019pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/206682pt_BR
dc.description.abstractThe success of network science to describe many complex systems and their ubiquitous presence has brought the development of new, more efficient, methods of analysis to the spotlight. However, some problems still remain open. One of which, the focus of our work, is the determination of a network’s community structure. Even though there’s no consensual formal definition, communities come from the intuitive idea that nodes form subgroups in the larger networks. In this regard, many different algorithms have been proposed in order to identify such groups. Here we tackle this problem in two different fronts: first, we developed a new algorithm based on the Surprise function and secondly, we created a novel benchmark, a set of artificial networks with a seeded community structure, to compare the performance of competing algorithms. Our own Surpriser algorithm was tested against seven other methods from the literature in three different benchmarks. We show that the Surprise based methods are the most consistent among different benchmarks, with Surpriser having an edge over the competition. Finally, we show that our benchmark is the hardest of the three as very few algorithms are able to solve it.en
dc.description.abstractO sucesso da teoria dos grafos para descrever sistemas complexos, bem como a onipresença destes, deu muito destaque a elaboração de métodos eficientes para sua analise. No entanto, varias questões continuam em aberto. Uma delas, a qual nos dedicamos neste trabalho, é a obtenção das comunidades presentes nessas redes. Muito embora não exista um consenso formal sobre sua definição, a presença de comunidades vem da ideia intuitiva de que nós formam subgrupos dentro da rede. Neste sentido, muitos algoritmos diferentes foram propostos para identificar tais grupos. Aqui nós atacamos este problema em duas frentes: primeiro, desenvolvemos um novo algoritmo baseado na função Surprise e segundo, criamos um novo benchmark, um conjunto de redes artificiais com comunidades préestabelecidas, para comparar a performance de diferentes algoritmos. O nosso algoritmo, chamado Surpriser, foi testado contra sete outros métodos da literatura em três benchmarks diferentes. Nós mostramos que métodos baseados na Surprise são os mais consistentes nos diferentes benchmarks e que o nosso Surpriser leva uma vantagem sobre os últimos. Finalmente, mostramos que o nosso benchmark é o mais difícil dos três, pois poucos algoritmos conseguem resolve-lo.pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.rightsOpen Accessen
dc.subjectGraphsen
dc.subjectGrafospt_BR
dc.subjectNetworksen
dc.subjectRedespt_BR
dc.subjectAlgorítmopt_BR
dc.subjectCommunity Detectionen
dc.subjectBenchmarksen
dc.subjectSurpriseen
dc.titleAn algorithm for network community structure detection by Surprisept_BR
dc.typeDissertaçãopt_BR
dc.identifier.nrb001111404pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Físicapt_BR
dc.degree.programPrograma de Pós-Graduação em Físicapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2019pt_BR
dc.degree.levelmestradopt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record