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We study electric field driven deracemization in an achiral liquid crystal through the formation and

coarsening of chiral domains. It is proposed that deracemization in this system is a curvature-driven

process. We test this prediction using the recently obtained exact result for the distribution of hull-

enclosed areas in two-dimensional coarsening with nonconserved scalar order parameter dynamics [J. J.

Arenzon et al., Phys. Rev. Lett. 98, 145701 (2007)]. The experimental data are in very good agreement

with the theory. We thus demonstrate that deracemization in such bent-core liquid crystals belongs to the

Allen-Cahn universality class, and that the exact formula, which gives us the statistics of domain sizes

during coarsening, can also be used as a strict test for this dynamic universality class.

DOI: 10.1103/PhysRevLett.101.197801 PACS numbers: 64.70.mj, 64.60.Cn

Many aspects of the nonequilibrium relaxation of mac-
roscopic systems still remain to be grasped. The domain
growth of two competing equilibrium phases after a
quench from the disordered phase is a relatively simple
out-of-equilibrium problem and in some cases the mecha-
nism underlying coarsening is well understood (curvature
driven, bulk diffusion, etc.) [1]. However, an important part
of the description of these processes remains phenomeno-
logical and, to a certain extent, qualitative.

According to the scaling hypothesis, a system in the late
stages of coarsening is described by a scaling phenome-
nology in which there is a single characteristic length scale,
RðtÞ, that grows with time. As a consequence, all dynami-
cal properties occurring on scales large compared to micro-
scopic ones are described by scaling functions in which
lengths are scaled by RðtÞ. For example, the pair-
correlation function, Cðr; tÞ ¼ hSðx; tÞSðxþ r; tÞi, where
S takes the values �1 in the two equilibrium phases, has
the scaling form Cðr; tÞ ¼ g½r=RðtÞ� [1]. Verifying the
scaling hypothesis, and computing the scaling functions,
has been a long-standing challenge. Recently, however,
significant progress was made when the distribution
nhðA; tÞ of hull-enclosed areas (those enclosed by the outer
boundaries of domains) was computed for scalar noncon-
served order parameter dynamics in d ¼ 2 and the scaling
hypothesis verified for this quantity [2,3]. The analytically
obtained distribution function was shown to be robust and
hold—to a high numerical precision—in Monte Carlo
simulations of the pure [2,3] and disordered [4] bidimen-
sional kinetic Ising Model (2dIM). The question remains

as to whether more complicated experimental systems
could also be described by such a universal formula.
In this Letter we test this result experimentally in a

liquid crystal system and we find a very good agreement
with the theory. We thus demonstrate that the system
belongs to the universality class of nonconserved scalar
order parameter dynamics and that the exact formula is a
universal property of these systems. In the following para-
graphs we describe the experiment and present a detailed
analysis of the data.
The experimental system chosen is one that exhibits

electric field driven deracemization, the spontaneous or
driven formation of chiral domains from an achiral solu-
tion. Since its discovery by Louis Pasteur, more than
150 years ago [5], deracemization has been a fundamental
question in the investigation of chirality. More recently,
practical applications in, for example, drug design and
synthesis, boosted research in this field, as the effect of
most modern drugs is based on chiral molecules.
Spontaneous deracemization in an achiral fluid system is
very unusual and a topic of only recent interest [6]. It can
occasionally be observed in liquid crystalline systems [7–
9], mainly formed by bent-core or so-called ‘‘banana’’
molecules. The most likely reason for chiral conglomerate
formation is steric interactions. This is also evidenced by
computer simulations and theory, which indicate chiral
conformations of on the average achiral molecules [10].
Electric field induced switching between chiral domains
was demonstrated in Ref. [11]. Kane et al. [12] very
recently exhibited the electric field driven deracemization
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of an achiral fluid liquid crystalline system, and gave a
theoretical interpretation of the conglomerate formation in
terms of a difference in the chemical potential of left- and
right-handed molecules under electric field application.

The liquid crystal employed in this investigation is
composed of a bent-core molecule, which together with
cell preparation conditions is discussed in detail in
Ref. [13]. The studied cell has a gap of 5 �m filled with
the liquid crystal, while lateral dimensions are much larger,
approximately 1 cm in each direction. We are thus effec-
tively investigating a two-dimensional system. Domain
coarsening was followed by temperature controlled polar-
izing microscopy (Nikon Optiphot-Pol microscope in com-
bination with a Linkham TMS91 hot stage), with a control
of relative temperatures to 0.1 K. Digital images were
captured at a time resolution of 1 s with a pixel resolution
of N ¼ 1280� 960, corresponding to a sample size of
520� 390 �m2 (JVC KY-F1030). Note that the imaging
box is approximately 1=200 of the whole sample. Electric
square-wave fields of amplitude E ¼ 14 V�m�1 and fre-
quency f ¼ 110 Hz were applied by a TTi-TG1010 func-
tion generator in combination with an in-house built linear
high voltage amplifier.

Cooling from the isotropic liquid, an optically isotropic
fluid liquid crystal phase is formed, which exhibits no
birefringence and thus appears dark between crossed polar-
izers. The phase transition is first order. On electric field
application, chiral deracemization occurs with domains of
opposite handedness growing as a function of time. This
coarsening process can easily be followed when the polar-
izers are slightly decrossed by a few degrees. The chiral
domains of opposite handedness get larger as smaller
domains disappear. At the same time the area distribution
of domains with opposite handedness remains constant at
an equal distribution of left- and right-handed domains,
because there is an overall constraint of zero chirality over
the full sample that needs to be respected. This was
checked experimentally and found to be true within ex-
perimental uncertainty due to finite size of the image
window and thresholding. Still, such a global constraint
(as opposed to a local one) is not expected to change
the coarsening universality class which remains curva-
ture driven [1].

We performed 10 runs lasting 10 min each with pictures
taken at intervals of 10 s on a single sample. Each run is
initialized by heating the sample above the transition tem-
perature and subsequently cooling below it. The coarsen-
ing process in the low temperature phase is visualized in
terms of domains, i.e., connected regions of the same
handedness. In Fig. 1 we show a three snapshots taken at
times t ¼ 0; 120; 300 s. These pictures are then thresh-
olded and an Ising spin si is assigned to each pixel, where
siðtÞ ¼ �1 for pixels that belong to left- or right-handed
domains, respectively. There are many spurious small do-
mains that are related to the experimental system [14]
rather than to thermal fluctuations. The induced graininess
is also reflected in the small r behavior of the pair-

correlation function Cðr; tÞ and the small A behavior of
nhðA; tÞ as we shall see below. Still, at face value the
domain geometry is the one of scalar nonconserved order
parameter dynamics, as can be checked by comparing to
the snapshots shown in [3] for the 2dIM.
The initial ‘‘magnetization density’’ in the imaging

window of the liquid crystal, defined as the average of
the spin variables over the box, mð0Þ ¼ N�1

PN
i¼1 sið0Þ, is

not zero. This initial value is only approximately conserved
by the dynamics, mðtÞ � mð0Þ ¼ 0:2� 0:1, but the actual
value depends on the thresholding operation.
We determine the growth law for the size,RðtÞ, of typical

domains from a direct measure of the spatial correlation
function, Cðr; tÞ � 1

N

P
N
i¼1hsiðtÞsjðtÞijj ~ri�~rjj¼r. The angular

brackets indicate an average over the 10 runs. Here and in
what follows, we measure distances in units of the pixel
size (a ’ 2:5 �m) and time in seconds for the experiments,
while for the simulations we will use the lattice spacing
and the Monte Carlo step as length and time units. The
distance dependence of the pair correlation at five equally
spaced times, t ¼ 100; . . . ; 500 s is displayed with thin
(red) lines in Fig. 2(a). As a consequence of the nonzero
magnetization, Cðr; tÞ does not decay to zero at large r.
More strikingly, the curves are time independent at dis-
tances r & 5 (C * 0:55) and they clearly depend on time at
longer distances with a slower decay at longer times. The
time independence at short distances and the long-distance
decay are atypical, as can be seen by comparing to the
spatial correlation in the 2dIM displayed in the inset to
Fig. 2(a). We ascribe the lack of time dependence at short
scales and the further slow decay to the graininess of the
experimental system. Indeed, in Fig. 2(a) we also show
with thick dashed (black) lines the correlation in the 2dIM
where we have flipped, at each measuring instant, 10% of
spins taken at random over the sample (the system dynam-
ics are not perturbed and between measurements we use
the original spins). By comparing the two sets of curves we
see that the effect of the random spins is similar to the one
introduced by the graininess of the system. This effect will
also be important for the analysis of the hull-enclosed area
distribution.
The function Cðr; tÞ obeys dynamical scaling, Cðr; tÞ ’

g½r=RðtÞ�. We define the characteristic length scale RðtÞ at

FIG. 1 (color online). The first snapshot displays the configu-
ration right after the quench, t ¼ 0 s. The others are snapshots
during the evolution t ¼ 120; 300 s.
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time t by the conditionCðR; tÞ ¼ 0:2 but other choices give
equivalent results. The good quality of the scaling is shown
in Fig. 2(b). The time dependence of the growing length
RðtÞ is shown in the inset to Fig. 2(b) with points. The error
bars are estimated from the variance of the values obtained
from the 10 independent runs. We measure the growth
exponent 1=z by fitting the long-time behavior of RðtÞ,
say for t > 30 s, and we find 1=z ’ 0:45� 0:10. The ex-
ponent thus obtained is close to the theoretically expected
value 1=2 for clean nonconserved order parameter dynam-
ics [1]. The data suggest that for times longer than t ’ 30 s
the system is well in the scaling regime.

We now turn to the analysis of the distribution of hull-
enclosed areas. Each domain has one external perimeter
which is called the hull. The hull-enclosed area is the total
area contained within this perimeter. In [2,3] we derived an
exact analytical expression for the hull-enclosed area dis-
tribution of curvature-driven two-dimensional coarsening
with nonconserved order parameter. Using a continuum
description in which the nonconserved order parameter is
a scalar field we found that the number of hull-enclosed
areas per unit area, nhðA; tÞdA, with enclosed area in the

interval [A, Aþ dA], after a quench from high tempera-
tures is

nhðA; tÞ ¼ 2ch=ðAþ �htÞ2: (1)

ch ¼ 1=8�
ffiffiffi
3

p
is a universal constant that enters this ex-

pression through the influence of the initial condition and
was computed by Cardy and Ziff in their study of the
geometry of critical structures in equilibrium [15]. �h is
a material dependent constant relating the local velocity v
of an interface and its local curvature �, in the Allen-Cahn
equation, v ¼ �ð�h=2�Þ� [16]. Equation (1) can be recast
in the scaling form nhðA; tÞ ¼ ð�htÞ�2fðA=�htÞ, with
fðxÞ ¼ 2ch=ðxþ 1Þ2. In this way, scaling with the charac-
teristic length scale, RðtÞ ¼ ffiffiffiffiffiffiffi

�ht
p

, for coarsening dynamics
with scalar nonconserved order parameter in a pure system
is demonstrated.
We counted the number of hull-enclosed areas in [A,

Aþ dA] to construct nhðA; tÞ. It is important to note that
although the zero-chirality constraint should be satisfied by
the full sample, the experimental data are taken using a
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FIG. 3 (color online). Scaling plot of the number density of
hull-enclosed areas in: (a) the experiment; (b) the 2dIM with
linear size L ¼ 1280 and periodic boundary conditions evolving
with nonconserved order parameter at T ¼ 0. In the latter the
measurements are done on a box with linear size ‘ ¼ 1000. The
lines are the prediction in Eq. (1). In the 2dIM case we exclude
the spanning clusters from the statistics. In the insets we exclude
all domains that touch the border while in the main panels we
include them in the statistics. Surprisingly, in both cases �h ¼
2:1, although this is just a coincidence since �h is not a universal
quantity and length and time units are different between experi-
ments and simulations.
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FIG. 2 (color online). Spatial correlation function at different
times after the quench. (a) Experimental data at five equally
spaced times, t ¼ 100; . . . ; 500 s with thin (red) lines, and nu-
merical simulation data in the 2dIM with 10% randomly flipped
spins at five equally spaced times, t ¼ 100; . . . ; 500 MCs with
dashed (black) lines. We clearly notice the effect of graininess at
very small scales (r & 5 in the experiment and r & 1 in the
simulation), where there is no time dependence in either case.
Inset: the actual spatial correlation in the 2dIM. (b) Study of the
scaling hypothesis, Cðr; tÞ ’ g½r=RðtÞ� in the liquid crystal, at the
same times as in panel (a). Inset: the time dependence of the
growing-length scale. The slope of this line is 1=z ’
0:45� 0:10.
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finite imaging window inside the sample: at each measur-
ing time, many domains touch the window boundaries (in
contrast to the numerical simulations in [2–4] in which we
used periodic boundary conditions). The zero-chirality
constraint is thus not obeyed exactly, both because the
image window is just a subset of the whole sample and
also because of the thresholding operation.

In Fig. 3(a) we show the hull-enclosed area distribution
in the liquid crystal at three different times. In the main
panel we included in the statistics the chopped areas that
touch the border of the image. The upward deviation of the
data with respect to the asymptotic power law A�2 is due to
the finite image size. Indeed, domains that touch the border
are actually larger but get chopped and contribute to bins of
smaller A’s and this induces a bias in the data. The inset
displays nh removing from the statistics the areas that
touch the border. The same anomaly appears in the 2dIM
if one uses a finite imaging box within the bulk. To show
this we simulated a system with L ¼ 1280 and periodic
boundary conditions and we measured nh in a finite square
window with linear size ‘ ¼ 1000 using 100 independent
samples. In Fig. 3(b) we show two sets of data for the
2dIM; in both cases we exclude the spanning cluster over
the full system size. One set of data includes areas touching
the border and lies above the theoretical curve. In the other
set we eliminated these areas from the statistics and the
data points fall on the analytic curve recovering the A�2

tail.
The data in Fig. 4 do not show any noticeable

time dependence at either small or large areas. In the small
A limit the time independence can be traced back to the
lack of time dependence in Cðr; tÞ at distances r & 5
(which corresponds to A ’ �r2 & 80), roughly the scale
of the spatial graininess (see Fig. 2). In the large A limit the
time dependence naturally disappears; structures with A �

R2ðtÞ are basically the ones already present in the initial
condition and have not had time to evolve yet. In between
these two limits the curves show a shoulder with a system-
atic time dependence that is the most relevant part of our
experimental data and it is very well described by the
analytic prediction (1) shown with solid lines. To conclude
we show that the random spins introduced by the measur-
ing method are not only responsible for the time inde-
pendence of nh at small A but also for the excess weight
of the distribution in this region. In the upper inset to Fig. 4
we show nh in the 2dIMwhere we introduced 10% random
spins at each measuring time. There is indeed a strong
similarity with the experimental data in the main panel that
could even be improved by choosing to flip spins in a fine-
tuned correlated manner. In the lower inset we show a
zoom-in of the interesting region using a log-lin scale.
In summary, our experimental results for the hull-

enclosed area distribution in the coarsening dynamics of
the liquid crystal are in very good agreement with the exact
analytic prediction for 2D nonconserved scalar order pa-
rameter dynamics presented in [2,3]. The experiment was
performed using an optimal choice of parameters (electric
field, thresholding procedure, temperature, frequency,
sample geometry, etc.). Although we do not expect our
qualitative results to change it would be interesting to
perform a detailed analysis of their effect on quantitative
features such as the value of �h.
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FIG. 4 (color online). The number density of hull-enclosed
areas for the liquid crystal sample at t ¼ 100, 200, 400 s,
excluding from the analysis the areas that touch the box border.
Lower inset: zoom-in of the interesting region using a log-lin
scale. Upper inset: nh for the 2dIM with 10% randomly flipped
spins at the measurement times t ¼ 100, 200, 400 MCs (see the
text). In both cases the lines are the theoretical prediction (1)
with ch ¼ 1=8�
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p
and �h ¼ 2:1.
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