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ABSTRACT

Context. PG 1159-035, a pre-white dwarf with Teff � 140 000 K, is the prototype of the PG 1159 spectroscopic class and the
DOV pulsating class. Pulsating pre-white dwarf stars evolve rapidly: the effective surface temperature decreases rapidly, the envelope
contracts and the inner structure experiences stratification due to gravitational settling. These changes in the star generate variations
in its oscillation periods. The measurement of temporal change in the oscillation periods, Ṗ, allows us to estimate directly rates of
stellar evolutionary changes, such as the cooling rate and the envelope contraction rate, providing a way to test and refine evolutionary
models for pre-white dwarf pulsating stars.
Aims. Previously, only two pulsation modes of the highest amplitudes for PG 1159-035 have had their Ṗ measured: the 516.0 s and
the 539.3 s modes. We measured the Ṗ of a larger number of pulsation modes, increasing the number of constraints for evolutionary
studies of PG 1159-035. We attempted to use the secular variations in the periods of multiplets to calculate the variation in the
rotational period, the envelope contraction rate, and the cooling rate of the star.
Methods. The period variations were measured directly from the PG 1159-035 observational data and refined by the (O–C) method.
Results. We measured 27 pulsation mode period changes. The periods varied at rates of between 1 and 100 ms/yr, and several can
be directly measured with a relative standard uncertainty below 10%. For the 516.0 s mode (the highest in amplitude) in particular,
not only the value of Ṗ can be measured directly with a relative standard uncertainty of 2%, but the second order period change, P̈,
can also be calculated reliably. By using the (O–C) method, we refined the Ṗs and estimated the P̈s for six other pulsation periods.
As a first application, we calculated the change in the PG 1559-035 rotation period, Ṗrot = (−2.13 ± 0.05) × 10−6 ss−1, the envelope
contraction rate Ṙ = (−2.2 ± 0.5) × 10−13 R� s−1, and the cooling rate Ṫ = −1.42 × 10−3 K s−1.
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1. Introduction

PG 1159-035 is the prototype of two star classes: the PG1159
spectroscopic class and the DOV pulsating class, discovered by
McGraw et al. (1979). The estimated temperature for PG 1159-
035 is 140 000±5000 K (Werner et al. 1991; Dreizler et al. 1998;
Jahn et al. 2007), which places this star in the pre-white dwarf
sequence of the Hertzsprung-Russell diagram.

Analyzing the light curve obtained by the Whole Earth
Telescope (WET) (Nather et al. 1990) in the 1989 campaign,
Winget et al. (1991) (henceforth W91) identified 122 pulsation
modes in PG 1159-035 with periods between 300 and 1000 s,
and spherical harmonic index � = 1 or � = 2. The excellent
results allowed W91 to calculate the asteroseismological mass
of the star (M/M� � 0.59) and several other stellar parameters,
such as the rotation period (Prot = 1.38 ± 0.01 days), the incli-
nation of the rotation axis (i � 60◦), and a limit to the magnetic
field strength (B < 6000 G). Costa et al. (2008), analyzing the
PG 1159-035 combined data sets from 1983, 1985, 1989, 1993,
and 2002, increased the number of identified pulsation modes
to 198, the largest after the Sun, refining the determination of the
rotation period (Prot = 1.3920 ± 0.0008 days) and other stellar
parameters previously estimated by W91. The comparison of the
Fourier transforms of light curves from different years indicates
that the amplitudes of the pulsation modes change with time, and
their intensities in the light curves can decrease to lower than the

lower limit for reliable detection. Of the 198 detected modes,
about 75% appear in only one of the FTs, about 25% in two or
more FTs, and only 14 of the 198 pulsation modes (all of them
with index � = 1) appear in the five FTs.

About 97% of all stars end their evolution as white dwarfs.
The pre-white dwarf stage is one of the “front doors” to the white
dwarf cooling sequence. There are two evolutionary channels
that are known to occur prior to the white dwarf stage. The first
channel involves the evolution of the star from the Horizontal
Branch to white dwarf by means of the Asymptotic Giant Branch
(AGB), the Planetary Nebula phase, and PG1159 type stars. In
the second channel, the star evolves directly from the Extended
Horizontal Branch to the white dwarf stage, but without passing
through the Planetary Nebula phase.

In its evolution, a pre-white dwarf star can traverse the DOV
(PG1159 or GW Vir) instability strip, becoming a multiperiodic
non-radial pulsating star, of periods between 100 and 1000 s.
The exact values of the pulsation periods are defined by the mass,
temperature, rotation, magnetic field, and structural characteris-
tics of the star. While it passes through the DOV/PNNV insta-
bility strip, the star cools, its envelope contracts, and its interior
experiences stratification due to the gravitational settling. As a
consequence, the pulsation periods change with time. The hot-
ter the star is, the quicker are the changes in its pulsation peri-
ods. For example, in G117-B15A, a DAV white dwarf star with
Teff � 12 000 K, the highest amplitude period, 215 s, changes 1 s
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in 8 million years, while in the hotter DOV star, PG 11559-035,
with Teff � 140 000 K, the 516 s period, the one of the highest
amplitude, changes 1 s in only 350 years.

This work is a complementary study of the results obtained
in Costa et al. (2008). We used the measured periods in the
PG 1159-035 light curves of the 1983–2002 data sets to calculate
the secular variation in several pulsation modes of PG 1159-035,
enlarging the number of constraints for future evolutionary stud-
ies of this star. As an immediate application, we show in Sect. 4
how the measured Ṗs in a multiplet can be used to calculate the
cooling rate of the star, the envelope contraction rate and the
variation in the rotational period. Part of the procedure used here
was proposed by Kawaler et al. (1985a), Kawaler (1986) and
other authors, but was never applied to (pre-)white dwarf stars
because this requires precise period and Ṗ determinations. As
highlighted in Sect. 4, the calculations are based on many hy-
pothesis about the interior of the star, but it is a first approach
taking into account the available observational data. PG 1159-
035 is the first and only white dwarf in which we can apply these
theories and test their limitations and reliability.

2. Measurement of secular changes in period

2.1. Period as a function of time

If we assume that a pulsation period P is a continuous and
smooth function of time, P = P(t), then it can be expanded in
terms of a Taylor series,

P(t − to) = P(to) +
dP
dt

∣∣∣∣∣
t=to

(t − to) +
1
2

d2P
dt2

∣∣∣∣∣∣
t=to

(t − to)2 (1)

+
1
6

d3P
dt3

∣∣∣∣∣∣
t=to

(t − to)3 + . . .

where to is an instant of time used as reference and dnP/dtn are
the period derivatives of nth order. In the above equation, the
number of terms that must be considered depends on the values
of the derivatives and the time interval Δt = t − to covered by
the observational data. For DAV pulsating stars, which evolve
more slowly, the terms higher than first order can be neglected,
but for DOV stars (and even some DBV stars), it is necessary to
consider the second order term,

P(t − to) � Po + Ṗo (t − to) +
1
2

P̈o (t − to)2, (2)

where Po = P(to) and Ṗo and P̈o are the first and second order
derivatives, respectively, calculated at t = to,

Ṗo ≡ dP
dt

∣∣∣∣∣
t=to

and (3)

P̈o ≡ d2P
dt2

∣∣∣∣∣∣
t=to

· (4)

2.2. Direct measurement of Ṗ

If a period P changes linearly during the time intervalΔt (P̈ � 0),
the Ṗ accuracy, σṖ, considering two measurements only, can be
estimated by

σṖ �
√

2
σP

Δt
, (5)

where σP is the uncertainty in the period determination. For
PG 1159-035, σP has values of between ∼0.002 and 0.2 s. For
Δt = 19 yr, we are able to measure directly Ṗ over∼3×10−12 ss−1

for the most accurately determined periods and over ∼1.6 ×
10−10 ss−1 for the others. In other words, with the 19-year dataset
it is not possible to measure directly Ṗ below ∼3 × 10−12 ss−1,
even for the most accurately measured periods. However, we can
use the (O–C) method discussed in Sect. 2.3 to estimate Ṗ below
this limit and improve all results obtained by direct measure-
ment.

2.3. The (O–C) method

The (O–C) method (see e.g. Kepler 1993) is the most well-
established method for the measurement of secular changes in
pulsating star periods. Practically, its efficiency has been demon-
strated by studies of several pulsating stars, such as the DAV
star G117-B15A (Kepler et al. 2005a,b) and the DBV star R548
(Mukadam et al. 2003).

By definition, the period of a periodic signal is the derivative
of the time, t, relative to the cycle fraction (epoch), E:

P ≡ dt
dE
· (6)

From this definition, we can derive an equation to determine the
instant of time at which a maximum in the pulsation cycle oc-
curs, Tmax, in terms of a power series of the cycle number,

Tmax = To+Po ·E+ 1
2
·Po ·Ṗ·E2+

1
6

(
P̈ · Po

2 + Ṗ2 · Po

)
·E3+. . . (7)

where To is a particular time of maximum used as temporal refer-
ence. For DAV stars, the terms over the second order in E can be
neglected, but in PG 1159-035 we need to consider all terms up
until the third order in E. Equation (7) provides a powerful way
of determining small Ṗ and/or P̈, which is known as the (O–C)
method. In this method, initial values are first assumed for To,
Po, Ṗ and P̈ (we used the directly measured Ṗ and P̈ = 0 as ini-
tial values). Using the initial values and the observed values for
Tmax, we then calculate the (integer) number of cycles, E, from
Eq. (7). Using the obtained values for E, we finally fit Eq. (7) to
the observed Tmax, recalculating the values of To, Po, Ṗ, and P̈.
We note that the number of cycles E calculated in the second
step can be biased if the initial values in the first step are not
sufficiently good, since generally they are not. In this case, we
need to take into account the bias calculating the uncertainties
in E and considering all possible combinations of the numbers
of cycle. For each combination, we derive a possible solution in
the third step. The most likely solution is the highest probability
one (fitting with lower χ2).

Even when direct measurement cannot be achieved, the pe-
riod versus time plot indicates that the hypothesis stating that
the period smoothly changes with time is false (assuming that
the periods and their uncertainties are well determined). In this
case, we cannot use the (O–C) method.

3. Period changes in PG 1159-035

Table 1 lists all pulsation modes detected in Fourier Transforms
for data of two or more years derived by Costa et al. (2008).
Dashes (−) indicate non-detected modes. The periods were cal-
culated at the average BCT date of each data set: 244 5346.87422
for 1983; 244 6147.66421 for 1985; 244 7593.33756 for 1989;
244 9065.92947 for 1993; and 245 2410.63535 for 2002. The
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Table 1. Observed periods (in seconds) in each yearly data set.

Mode � m k ± 1 1983 1985 1989 1993 2002
(s)

376.0 2 0 22 376.6472 ± 0.0019 376.0411 ± 0.0057 – – –
387.4 2 0 27 – – 387.4972 ± 0.0164 – 387.4878 ± 0.0160
390.3 1 –1 14 390.2763 ± 0.0009 – 390.2959 ± 0.0050 – 390.3486 ± 0.0316
390.8 1 0 14 – – – 390.7740 ± 0.0152 390.9327 ± 0.0476
397.2 2 +2 28 – 397.2251 ± 0.0042 – – 397.2591 ± 0.0226
399.0 2 +1 28 – – 398.9141 ± 0.0140 – 399.1425 ± 0.0112
400.0 2 0 28 – – 400.0585 ± 0.0039 400.0396 ± 0.0057 400.0383 ± 0.0121
401.6 2 –2 28 – – – – 401.1103 ± 0.0201
412.0 1 0 15 – – 412.0097 ± 0.0093 – 412.0451 ± 0.0122
414.3 2 –1 28 – – 414.3894 ± 0.0093 414.4157 ± 0.0086 414.3356 ± 0.0114
415.5 2 –2 28 – 415.4274 ± 0.0030 415.6016 ± 0.0050 – 415.7585 ± 0.0155
422.5 2 +2 30 422.5397 ± 0.0008 – – 422.5630 ± 0.0027 422.5768 ± 0.0056
426.2 2 –1 30 – – – 426.2398 ± 0.0064 426.3075 ± 0.0089
427.5 2 –2 30 – – 427.5585 ± 0.0033 427.5125 ± 0.0060 427.4328 ± 0.0514
430.3 1 +1 16 430.2347 ± 0.0032 – – – 430.3800 ± 0.0407
434.2 1 –1 16 – 434.3305 ± 0.0030 – – 434.1443 ± 0.0179
436.5 2 +1 31 – – 436.5258 ± 0.0160 436.5766 ± 0.0074 436.5366 ± 0.0226
439.2 2 –1 31 – – 439.2814 ± 0.0134 439.2268 ± 0.0089 439.2376 ± 0.0149
440.6 2 –2 31 – – 440.6920 ± 0.0061 440.6430 ± 0.0043 440.4827 ± 0.0124
451.5 1 +1 17 451.5928 ± 0.0005 451.5776 ± 0.0012 451.5906 ± 0.0019 451.6007 ± 0.0015 451.5806 ± 0.0030
452.4 1 0 17 452.4275 ± 0.0008 452.3713 ± 0.0022 452.4310 ± 0.0021 452.4324 ± 0.0022 452.4478 ± 0.0035
453.2 1 –1 17 453.2534 ± 0.0016 – – 453.2800 ± 0.0039 453.2743 ± 0.0066
493.7 1 +1 19 493.7640 ± 0.0005 493.7490 ± 0.0013 493.7984 ± 0.0024 493.7941 ± 0.0025 –
494.8 1 0 19 494.9043 ± 0.0012 – 494.8633 ± 0.0178 494.8046 ± 0.0094 –
511.9 2 0 37 – – 512.0018 ± 0.0293 511.9741 ± 0.0123 –
515.0 2 –1 37 515.0718 ± 0.0031 515.0311 ± 0.0033 – 515.0300 ± 0.0140 514.9390 ± 0.0194
516.0 1 +1 20 516.0260 ± 0.0004 516.0374 ± 0.0006 516.0548 ± 0.0016 516.0663 ± 0.0014 516.1028 ± 0.0019
517.1 1 0 20 517.1225 ± 0.0023 517.1402 ± 0.0014 517.1663 ± 0.0024 517.1827 ± 0.0020 –
518.2 1 –1 20 – – 518.2884 ± 0.0028 518.2960 ± 0.0027 518.2980 ± 0.0077
526.4 2 –1 38 – – 526.3592 ± 0.0566 – 526.4515 ± 0.0165
536.9 1 +1 21 536.8412 ± 0.0031 – 536.9530 ± 0.0075 536.8223 ± 0.0155 537.0081 ± 0.0127
538.1 1 0 21 538.1585 ± 0.0008 – 538.1547 ± 0.0026 – 538.1696 ± 0.0047
539.3 1 –1 21 539.3593 ± 0.0006 539.4030 ± 0.0010 539.3552 ± 0.0020 539.3546 ± 0.0012 –
540.9 2 –2 39 – – – 540.9620 ± 0.0150 540.8784 ± 0.0600
544.3 2 +2 40 – – – 544.3258 ± 0.0204 544.3305 ± 0.0235
557.1 1 +1 22 – – 557.1386 ± 0.0034 557.1137 ± 0.0138 557.1383 ± 0.0139
558.4 1 0 22 – – 558.4476 ± 0.0043 558.4449 ± 0.0073 558.4297 ± 0.0066
559.7 1 –1 22 – – 559.7135 ± 0.0124 559.7608 ± 0.0078 559.7461 ± 0.0258
561.9 2 0 41 561.9714 ± 0.0028 – – 562.0109 ± 0.0226 561.7732 ± 0.0261
641.4 1 0 26 – – 641.5343 ± 0.0138 641.4278 ± 0.0329 –
644.9 1 –1 26 – 644.8953 ± 0.0043 644.9868 ± 0.0165 – –
668.5 1 0 27 – – 668.5441 ± 0.0446 – 668.4789 ± 0.0590
685.8 1 +1 28 – – 685.7817 ± 0.0899 685.8593 ± 0.0337 –
689.7 1 –1 28 – – 689.7606 ± 0.0321 689.8163 ± 0.0234 –
705.8 1 +1 29 – 705.8474 ± 0.0094 705.9310 ± 0.0220 – –
727.0 1 +1 30 – – 727.1008 ± 0.0250 – 727.0057 ± 0.0425
729.6 1 0 30 – – 729.5007 ± 0.0614 729.7205 ± 0.0409 –
731.6 1 –1 30 – – 731.4527 ± 0.0187 731.6075 ± 0.0280 731.7440 ± 0.0706
755.3 1 –1 31 – – 755.3732 ± 0.0635 755.2315 ± 0.0489 –
812.5 1 +1 34 – 812.4437 ± 0.0124 812.5725 ± 0.0537 – –
819.7 2 –2 60 819.7720 ± 0.0049 – 819.9484 ± 0.0277 819.5586 ± 0.0289 –
842.8 1 –1 35 842.8731 ± 0.0032 – 842.8873 ± 0.0258 – –
861.7 1 0 36 – 861.6775 ± 0.0092 – 861.8524 ± 0.0293 –
877.6 1 +1 37 – – – 877.6142 ± 0.0703 877.7300 ± 0.0660

period uncertainties, σP, were calculated from nonlinear fitting
of sinusoidal curves for all the detected frequencies, using the
Levenberg-Marquardt method. Monte Carlo simulations of syn-
thetic light curves for PG 1159-035, as proposed by Costa &
Kepler (2000), indicate that the calculated uncertainties in pe-
riod (and also in phase and amplitude) are excellent when the
pulsation frequencies are solved and the amplitudes are constant.
However, the calculated uncertainties can be underestimated for

modes with amplitudes that change during the observations or
for non-solved frequencies.

3.1. Direct measurement

Figure 2 shows the period (in seconds) versus time (in years)
plots for all the modes detected in three or more FTs. Above
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each graph, there is the average period (in seconds) and the (�, m,
k) indices of the pulsation mode (the k index has an uncertainty
±2). The error bars represent the 1σ uncertainties in the period
measurement. The slope of the fitted curve is indicated at the top
of each graph.

In most cases, the points distribution is consistent statisti-
cally with a linear fit, taking into account the uncertainties in the
period measurements. This is particularly notable in the cases of
the 422.5 s, 427.5 s, 440.6 s, 494.8 s, 516.0 s, and 517.1 s pulsa-
tion modes. In the 451.5 s, 493.7 s, 536.9 s, and 819.7 s plots, the
points are scattered with large dispersions relative to the straight
lines. It is possible that some points with lower confidence levels
have been mistakenly identified. The measured Ṗ for the pulsa-
tion modes in Fig. 2 are listed in Table 2. The relative standard
uncertainty (σṖ/ |Ṗ |) in the Ṗ measurement of the 516.0 s period
is only 2.0% and for other five periods the relative standard un-
certainties are less than 10%: 422.5 s, 440.6 s, 452.4 s, 453.2 s,
and 517.1 s.

3.2. (O–C) method

We used the directly measured Ṗ as initial values (setting P̈ = 0)
in the (O–C) method to refine the Ṗ and periods of the modes
present in three or more FTs. With three points only, the fitting
provides preliminary values for future calculations. We also used
the (O–C) method to calculate P̈ of the modes present in four or
five of the FTs. Our most accurate results are given in Table 2.

The accuracy of the Ṗ determination is, in general, two or-
ders of magnitude smaller than that of direct measurement. We
note that the (O–C) fitting assumes that the periods change
smoothly with time. If the changes are not smooth or if they
depend on higher order terms, the (O–C) can produce incorrect
results. It is also important to note that although the most suit-
able solution is the most probable one, it is not necessarily the
true solution and no solution has an uncertainty of below 1%.
Future photometric observations of PG 1159-035 should con-
firm or discard our results.

We comment on three particular cases: changes in the
516.0 s, 517.1 s, and 539.1 s periods. The two first cases were
identified by W91 and Costa et al. (2008) as the m = +1 and
m = 0 components, respectively, of the triplet (� = 1) with radial
index k = 20 ± 2; they are used in Sect. 4 to calculate PG 1159-
035 evolutionary rates. The 516.0 s mode is clearly present in
the FT of all data sets. The same occurs with the 517.1 s mode,
apart from the 2002 FT. The 539.1 s period was identified as the
component m = −1 of the k = 21 ± 2 triplet and was the second
period to have its Ṗ determined (Costa et al. 1995).

3.3. The 516.0 s mode

The 516.0 s pulsation mode (� = 1, m = +1, k = 20±2) is one of
the highest amplitude modes of PG 1159-035. Using the 1983,
1985, 1989, and 1993 data sets, Costa et al. (1999) achieved the
first direct measurement of period change in a (pre-)white dwarf,
deriving Ṗ516 = (+13.0±2.6)×10−11 ss−1. They refined this value
with the (second order) (O–C) method finding Ṗ516 = (+13.07±
0.03) × 10−11 ss−1.

Fitting the curve P = Po + Ṗ (t − To) to the data in Table 1,
we measure Po = 516.0516± 0.0005 s and Ṗ = (+12.8 ± 0.3) ×
10−11 ss−1 at To = 244 7593.334592 (BCT). Including P̈ in the
fitting, P(T − To) = Po + Ṗ · (T − To) + 1/2 · P̈ · (T − To)2, we
obtain Po = 516.0534± 0.0008 s, Ṗ = (+13.2± 0.3)× 10−11 ss−1

and P̈ = (−7.8± 0.7)× 10−20 ss−2, at the same To. The two fitted
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Fig. 1. Temporal change in the 516.0 s pulsation period. The solid line
represents a linear fitting and the dashed line a quadratic fitting.

curves are shown in Fig. 1. Using these results as initial values in
the (third order) (O–C) method, we find a best-fit solution with
the parameters To = 244 7593.93114 ± 0.00002 (BCT), Po =
516.065545±0.00001 s, Ṗ = (+13.146±0.003)×10−11 ss−1, and
P̈o = (1.93±0.08)×10−20 ss−1. With the introduction of the third
order term, the new (O–C) result for Ṗ differs by a margin of
approximately 2.5σ from the previous value calculated by Costa
et al. (1999).

3.4. The 517.1 s mode

The 517.1 s period was identified as the central peak (m = 0)
of the k = 20 ± 2 triplet, where the 518.2 s and 516.0 s
modes are the m = −1 and m = +1 components, respectively.
This mode appears in all the FTs, apart from the 2002 FT.
By fitting a (linear) curve to the data in Table 1, we obtain
Ṗ = (+18.2 ± 0.8) × 10−11 ss−1; using this value as the ini-
tial value in the third order (O–C) fitting, we determine as
the best-fit solution To = 244 7593.33920 ± 0.00003 (BCT),
Po = 517.16755±0.00009 s, Ṗo = (+15.172±0.045)×10−11 ss−1,
and P̈o = (−81.7 ± 2.7) × 10−20 ss−1. The (O–C) results differs
by ∼3.7σ from the directly measured one. This difference is, at
least partially, due to introduction of the third order term.

3.5. The 539.3 s mode

The 539.3 s pulsation mode, identified � = 1, m = −1, and
k = 21 ± 2 was detected in the 1983, 1989, and 1993 FTs only
and was the second period for which Ṗ was measured. Costa
et al. (1995) used the (O–C) method applied to the same data
sets to calculate its Ṗ, obtaining Ṗ = (−0.82± 0.04)× 10−11 ss−1.
Using the same data sets but with an improved data reduc-
tion process, and frequency determination we obtained Ṗ =
(−1.5 ± 0.4) × 10−11 ss−1 from the direct measurement and Ṗ =
(−0.339 ± 0.015) × 10−11 ss−1, To = 244 7593.33895± 0.00002
(BCT), and Po = 539.35572 ± 0.00001 s from the (O–C) fit-
ting. The large difference between the present (O–C) result and
the (O–C) result obtained by Costa et al. (1995) is because in
this previous work the times of maximum and their uncertainties
were calculated using a linear fitting by a single sinusoidal curve.
As demonstrated by Costa et al. (1999) and Costa & Kepler
(2000), the linear fitting does not take into account the inter-
ference of the other pulsation modes over the fitted mode and
underestimate the calculated uncertainties.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079118&pdf_id=1
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Fig. 2. Temporal changing in the periods of 27 PG 1159-035 pulsation modes. The vertical axis of each graph represents the periods, in seconds,
and the horizontal axis is the time, in years. The bars represent the ±1σ uncertainties. The mode identification (period in seconds and the �, m and
k indices) appears in the first line above each graph. In the second line “Pdot” (Ṗ) is the slope of the straight line fitted to the points.

4. Application: calculating evolutionary timescales

4.1. Variation in the stellar rotation period

The observed frequency spacings between the m � 0 compo-
nents and the central (m = 0) peak of a multiplet are caused by
a combination of the effect of the stellar rotation and the effect

of the magnetic field of the star over the observed pulsation fre-
quencies (see e.g. Jones et al. 1989):

δνm = νm − ν0 = δνrot,m + δνmag,m. (8)

To a first-order approximation, the rotation splitting δνrot,m is
proportional to the angular rotation frequency Ωrot multiplied

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079118&pdf_id=2
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Table 2. Results from the direct method and (O–C) fitting.

Pulsation mode Direct (O–C) Fitting
〈P〉 � m k N Ṗ To Po Ṗ P̈
(s) ±2 ×10−11 ss−1 (BCT) (s) ×10−11 ss−1 ×10−19 ss−2

390.3 1 0 14 3 +10.4 ± 2.3 2447593.33753 ± 0.00009 390.30088 ± 0.00003 12.596 ± 0.020
400.0 2 0 28 3 −6.8 ± 2.8 2449065.92791 ± 0.00012 400.04271 ± 0.00002 −0.123 ± 0.027
414.3 2 –1 28 3 −14.6 ± 3.5 2449065.92697 ± 0.00018 414.41413 ± 0.00004 −22.065 ± 0.042
415.5 2 –2 28 3 +81.5 ± 2.6 2447593.33537 ± 0.00008 415.60748 ± 0.00008 55.633 ± 0.042
422.5 2 +2 30 3 +6.7 ± 0.6 2449065.92752 ± 0.00006 422.56237 ± 0.00001 4.984 ± 0.008
427.5 2 –2 30 3 −35.3 ± 5.0 2449065.93108 ± 0.00012 427.51584 ± 0.00004 −33.956 ± 0.060
436.5 2 +1 31 3 +1.5 ± 6.6 2449065.92902 ± 0.00015 436.59526 ± 0.00006 −10.899 ± 0.052
439.2 2 –1 31 3 −7.5 ± 4.7 2449065.92774 ± 0.00017 439.23003 ± 0.00005 −9.066 ± 0.048
440.6 2 –2 31 3 −48.8 ± 3.2 2449065.92750 ± 0.00008 440.64399 ± 0.00002 −47.992 ± 0.025
451.5 1 +1 17 5 0.0 ± 0.3 2449065.92845 ± 0.00003 451.60156 ± 0.00001 −1.498 ± 0.005 −2.908 ± 0.001
452.4 1 0 17 4 +2.6 ± 0.5 2449065.93009 ± 0.00004 452.43494 ± 0.00002 4.720 ± 0.007 −0.333 ± 0.014
453.2 1 –1 17 3 +5.4 ± 0.9 2449065.92972 ± 0.00007 453.28156 ± 0.00002 4.143 ± 0.013
493.7 1 +1 19 4 +9.0 ± 0.7 2447593.33963 ± 0.00003 493.79587 ± 0.00007 15.102 ± 0.041 8.656 ± 0.173
494.8 1 0 19 3 −30.1 ± 2.8 2447593.33761 ± 0.00024 494.85869 ± 0.00005 −30.526 ± 0.093
515.0 2 –1 31 4 −22.6 ± 2.6 2449065.93209 ± 0.00024 515.00799 ± 0.00018 −15.661 ± 0.033 6.332 ± 0.130
516.0 1 +1 20 5 +12.8 ± 0.3 2449065.93114 ± 0.00002 516.06545 ± 0.00001 13.146 ± 0.003 0.193 ± 0.008
517.1 1 0 20 4 +18.2 ± 0.8 2447593.33920 ± 0.00003 517.16755 ± 0.00009 15.172 ± 0.045 −8.166 ± 0.273
518.2 1 –1 20 3 +3.2 ± 1.8 2449065.93082 ± 0.00005 518.29767 ± 0.00001 −0.255 ± 0.016
536.9 1 +1 21 4 +28.1 ± 1.9 2449065.93110 ± 0.00025 536.82344 ± 0.00010 30.771 ± 0.037 6.110 ± 0.071
538.1 1 0 21 3 +1.0 ± 0.7 2447593.33642 ± 0.00003 538.15390 ± 0.00002 4.304 ± 0.010
539.3 1 –1 21 3 −1.5 ± 0.4 2447593.33895 ± 0.00002 539.35572 ± 0.00001 −0.339 ± 0.015
557.1 1 +1 22 3 −1.5 ± 3.3 2449065.92978 ± 0.00021 557.11218 ± 0.00005 −3.419 ± 0.057
558.4 1 0 22 3 −4.3 ± 1.9 2449065.92676 ± 0.00011 558.44566 ± 0.00003 −10.946 ± 0.031
559.7 1 –1 22 3 +12.2 ± 6.7 2449065.92945 ± 0.00012 559.76600 ± 0.00005 11.602 ± 0.050
561.9 2 0 41 3 −20.5 ± 3.7 2449065.93013 ± 0.00034 562.00642 ± 0.00004 −19.230 ± 0.044
731.6 1 –1 30 3 +84.3 ± 15. 2449065.92821 ± 0.00033 731.61198 ± 0.00012 88.859 ± 0.142
819.7 2 –2 60 3 −22.7 ± 7.8 2447593.34294 ± 0.00023 819.96585 ± 0.00013 −40.498 ± 0.195

by m, while the magnetic splitting δνmag is proportional to the
magnetic strength B = |B| multiplied by m2 (see e.g. W91),

δνm � m CΩrot + m2 D B2, (9)

where C and D are constants. Costa et al. (2008) demonstrated
that the PG 1159-035 magnetic strength is weak, B < 2000 G,
and that the contribution of the average magnetic splitting in the
total observed splitting is lower than 1% (δνmag,m = 0.007 ±
0.002 μHz), which allows us to approximate Eq. (9) with:

δνm � m CΩrot. (10)

The proportionality constant C can be rewritten (Hansen et al.
1977) as

C = 1 −C0 −C1, (11)

where C0 is the uniform rotation coefficient that depends on k
and �, and equals C0 = C0(k, �), and C1, related to nonuni-
form rotation effects, is a function of k, � and |m|, and equals
C1 = C1(k, �, |m|). The second coefficient depends on the adi-
abatic pulsation properties, equilibrium structure, and rotation
law. If we assume uniform rotation, C1 = 0 and then C � 1−C0.
In the asymptotic limit with high radial overtones (k � 1), the
uniform rotation coefficient can be approximated by (Brickhill
1975) C0 � [� (� + 1)]−1. For � = 1 modes, C0 � 1/2, C � 1/2,
and Eq. (10) can be rewritten as:

νm − ν0 � m
1
2
Ωrot. (12)

This approximation is accurate to about 5% for the PG 1159-035
frequency splittings (Costa et al. 2008).

Deriving both sides of the equation above relative to time,

ν̇m − ν̇0 � m
1
2
Ω̇rot (13)

or in terms of periods,

Ṗrot � 2
m

⎛⎜⎜⎜⎜⎝ Ṗm

P2
m
− Ṗ0

P2
0

⎞⎟⎟⎟⎟⎠ P2
rot, (14)

where Ṗrot is the instantaneous rotation period change rate.
Taking the time derivative of Eq. (14) we obtain the second

derivative P̈rot:

P̈rot � − 4
m

⎛⎜⎜⎜⎜⎝ Ṗ2
m

P3
m
− Ṗ2

0

P3
0

⎞⎟⎟⎟⎟⎠ P2
rot +

2
m

⎛⎜⎜⎜⎜⎝ P̈m

P2
m
− P̈0

P2
0

⎞⎟⎟⎟⎟⎠ P2
rot (15)

+
4
m

⎛⎜⎜⎜⎜⎝ Ṗm

P2
m
− Ṗ0

P2
0

⎞⎟⎟⎟⎟⎠ Prot Ṗrot.

In Eq. (16), the second term is the dominant term for PG 1159-
035 and the other two terms can be neglected:

P̈rot � 2
m

⎛⎜⎜⎜⎜⎝ P̈m

P2
m
− P̈0

P2
0

⎞⎟⎟⎟⎟⎠ P2
rot. (16)

We note that with at least two well-determined Ṗ in a triplet, we
are able to calculate the rotation period change rate, Ṗrot, using
Eq. (14). If P̈0 and P̈m are both known, we can also calculate P̈rot
from Eq. (16).

Using the (O–C) method results for the (m = 0) 517.1 s
and the (m = +1) 516.0 s modes and the rotation period,
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Prot = 1.3920 ± 0.0008 days (Costa et al. 2008), in Eqs. (14)
and (16), we obtain:

Ṗrot � (−2.13 ± 0.05) × 10−6 ss−1 and (17)

P̈rot � (+9.0 ± 0.3) × 10−14 ss−2. (18)

Using the direct method results, the rates are Ṗrot � (−2.5±0.3)×
10−6 ss−1 and P̈rot � (+8.0 ± 8.8) × 10−14 ss−2.

The accuracy of Ṗrot measured by Eq. (14) depends strongly
on the accuracies of Ṗm and Ṗ0, far more than on the accuracies
of the pulsation periods or rotation period. Keeping unchanged
σṖ0

and σṖm
and increasing the uncertainties in P0 and Pm by a

factor of 10, the Ṗrot uncertainty is almost unaffected, although it
changes sensitively with σṖ0

and σṖm
. However, the uncertain-

ties in the period determination, σPm , affect indirectly the Ṗrot
uncertainty, because both σṖ0

and σṖm
depend on σPm and σP0 .

If the period uncertainty are then underestimated, the uncertainty
in Ṗrot must also be. The results above and the following results
are discussed in the final section of this article.

4.2. The contraction rate

We now calculate the contraction timescale, R/Ṙ, and contrac-
tion rate, Ṙ. For a star of uniform rotation and negligible mass
loss (Kawaler 1986; Costa et al. 1999),

Ṙ
R
� 1

2
Ṗrot

Prot
· (19)

Using the result above for Ṗrot, we obtain:

Ṙ
R
� (−8.9 ± 0.2) × 10−12 s−1, (20)

which is equivalent to

Ṙ
R
� (−2.8 ± 0.1) × 10−4 R�/yr. (21)

If we use the radius predicted by evolutionary models for
PG 1159-035 by Kawaler & Bradley (1994) R� = (0.025 ±
0.005) R�, the radius change rate Ṙ would be:

Ṙ = (−2.2 ± 0.5) × 10−13 R�/s (22)

or

Ṙ = (−5 ± 1) km/yr. (23)

Using an approximation of the 517.1 s mode Ṗ and following
the same steps, Costa et al. (1999) derived Ṙ/R � (−4 ± 15) ×
10−11 s−1. With the measurement of Ṗ of the 517.1 s mode, the
obtained value for the contraction rate is far more constrained,
but, as pointed out by the authors, more realistic estimations of
Ṙ/R must use differential rotation at least for the outer layer
of the star. Models for differentially rotating white dwarf stars
calculated by Ostriker & Bondenheimer (1968) suggest that the
center rotates more rapidly than the outer layers, but not signif-
icantly so i.e. Ωsurface/Ωcenter > 0.2. In this case, our Ṙ/R calcu-
lated from Eq. (19) must be seen as an upper limit for the actual
value:∣∣∣∣∣∣

Ṙ
R

∣∣∣∣∣∣ < −8.9 × 10−12 s−1. (24)

4.3. The cooling rate

We can now obtain a first estimate for the PG 1159-035 cool-
ing rate, Ṫ . The changes in period are related to two physical
processes in the star: the cooling of the star and the envelope
contraction (see e.g. Winget et al. 1983; Kawaler et al. 1985a):

Ṗ
P
� −a

Ṫm

Tm
+ b

Ṙ
R

(25)

where P is the pulsation period (for the m = 0 multiplet com-
ponent), Tm is the temperature at the region where the model’s
weight function has maximum weight (where we emphasize that
Tm is the temperature, not the time of maximum, Tmax), R is
the stellar radius, and Ṗ, Ṫm, and Ṙ, are the respective temporal
variation rates. The constants a and b are positive numbers and,
roughly, a � 1/2 and b � 1 (Kawaler et al. 1985b). Then,

Ṫm

Tm
= 2

(
− Ṗ

P
+

Ṙ
R

)
· (26)

Using Ṗ/P = +2.94×10−13 s−1 for the (m = 0) 517.0 s pulsation
mode, we obtain

Ṫm

Tm
= (−1.84 ± 0.04) × 10−11 s−1. (27)

Since Ṙ/R = 0.89×10−11 s−1, Eq. (25) implies that the PG 1159-
035 temporal change in period is controlled far more by the stel-
lar cooling than by the contraction of its envelope, as expected.
The evolution of white dwarf and pre-white dwarf stars is domi-
nated by cooling, but in hot pre-white dwarfs, the envelope con-
traction is still significant.

In bright pulsators such as PG 1159-035 (Log (L/L�) � 2.6),
the weight function reaches a maximum closer to the core of the
star (Kawaler et al. 1985b). If we assume Tm � Tcore � 7.72 ×
107 K (Alejandro Córsico, personal communication),

Ṫm � −1.42 × 10−3 K/s � −45 000 K/yr. (28)

5. Summary and discussion

The main results of our present work are:

1. The PG 1159-035 pulsation periods vary at rates of between
0.5 and 1.0 ms/years. For the WET data sets, the accuracy in
the period determination is 10 ms for the least accurate cases
(low amplitudes) and 1 ms for the most accurate ones, which
enables the direct measurement of the pulsation periods af-
ter a few years of observation. After 19 years of observations,
the Ṗ of the 516.0 s mode (one of the modes with higher am-
plitude) was measured with a relative standard uncertainty
(σṖ/ |Ṗ|) of 2% and its P̈ could be estimated with relative
standard uncertainty of 10%.

2. The Ṗ of the 27 periods present in three or more yearly
Fourier transforms were measured directly and the values
were refined using (O–C) fitting. For seven of the pulsation
modes, we used third-order (O–C) fitting to calculate P̈. The
measured |P̈| are between 1.4×10−21 ss−2 and 8.7×10−19 ss−2.

3. Using the Ṗ of the m = 0 and m = +1 components of the
517.1 s multiplet, we estimated the rotation period change to
be Ṗrot = (−2.13 ± 0.05) × 10−6 ss−1 or 67.2 s/yr.

4. From the P̈ of the same multiplet, we estimated that the
second order variation in the rotational period was P̈ =
(+9.0 ± 0.3) × 10−14 ss−2.
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5. If we used the calculated values for Ṗrot, the PG 1159-035
contraction rate was Ṙ � (−5 ± 1) km s−1 for R� � (0.025 ±
0.005) R�, assuming uniform rotation, and the cooling rate is
Ṫm � −45 000 K/yr, assuming Tm � Tcore � 7.72 × 107 K.

Our results demonstrate that some periods decrease, while oth-
ers increase, at different rates, even for the same multiplet com-
ponents. Evolutionary models calculated by Kawaler & Bradley
(1994) and the La Plata group (Córsico et al. 2008; Althaus et al.
2008) predict that the Ṗ of (� = 1 and m = 0) pulsation modes
must have different values and signs (some increase, while other
decrease) due to the trapping of pulsation modes in different
layers of the star, but the calculated values do not fit the ob-
served Ṗs. The interior, evolution, and pulsation mechanisms in
PG 1159 stars are not well known. New models have been de-
veloped by the La Plata group to fit the observed results and will
be published in a future article.

A negative value for Ṗrot is expected, because pre-white
dwarf stars such as PG 1159-035 undergo rapid envelope con-
traction processes. With contraction, the stellar radius decreases.
To conserve angular momentum, the angular rotation speed must
increase. In other words, its rotation period decreases, and there-
fore Ṗrot < 0. The shorter rotation periods observed in white
dwarfs are of the order of few hours. This is the case, for ex-
ample, for the DBV EC20058-5234 (Prot � 2 h, Sullivan et al.
2008) and of the magnetic GD 356 (Prot = 2.6 h, Brinkworth
et al. 2004). If the PG 1159-035 rotation period changed from
its current value to Prot = 2 h during the DOV phase (∼106 yr),
the variation rate would be Ṗrot � −0.1 s/yr. However, the calcu-
lations in Sect. 4.1 estimate that the rotation period is changing at
a Ṗrot � (−67 ± 2) s/year rate, far higher than expected and P̈rot
is too excessively high to be physically acceptable. A possible
explanation is that the second order effects of the stellar rota-
tion over the rotational splitting are non-negligible as assumed
in Eq. (9). The simplification of assuming a uniform rotation is
also an error source in the Ṗrot calculation, but the difference in
the final result must not be larger than a factor of 10 (Ostriker &
Bodenheimer 1968). On the other hand, a high de/acceleration
of the stellar rotation is expected if the star recently experienced
a late thermal pulse (due to ejection of matter from the star) and
this may be the case for PG 1159-035. We note that if |Ṗrot|
is overestimated, both the contraction rate |Ṙ| and the cooling
rate |Ṫ | must also be overestimated.

The accuracy in the determination of Ṗrot by Eq. (14) de-
pends strongly on the accuracies of Ṗm and Ṗ0, far more than on
the period accuracies.

Although these first results are not fully understood, we have
shown that several long-term campaigns appear to be reach-
ing sufficient accuracy to interpret evolutionary changes. The
last PG 1159-035 observational campaigns were carried out in
2002 by WET. New observations of PG 1159-035 in future
years should allow the direct measurement of additional pulsa-
tion modes Ṗ and P̈ and the refining of derived values to date, im-
proving the calculation of the PG 1159-035 evolutionary rates.
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