
VOLUME 69, NUMBER 18 PH YSICAL REVIEW LETTERS 2 NOVEMBER 1992
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Vacuum polarization eA'ects are nonperturbatively incorporated into the photon propagator to elimi-

nate the severe infrared problems characteristic of (2+1)-dimensional QED (QED3). The theory is thus

rephrased in terms of a massive vector boson whose mass is e~/8tt. Subsequently, it is shown that

electron-electron bound states are possible in QED3.
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Recently [1],the effective nonrelativistic potential
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describing the fermion-fermion interaction in the
Maxwell-Chem-Simons (MCS) theory [2], was derived
in the lowest perturbative order [the notation in Eq. (1) is

explained in Ref. [3]) [4]. The aim of Ref. [I) was to
determine whether the potential (1) could bind a pair of
identical fermions. For positive values of 8, a numerical

solution of the Schrodinger equation confirmed the ex-
istence of a bound state for e /tr8 500, m/8=10s, and
1 = 1. Further numerical analysis indicated that all
identical-fermion bound states are located in the region
e /tr8& 1.

Thus, we were naturally led to study the limit 8 0
where the MCS theory degenerates into (2+1)-
dimensional QED (QED3). Power counting indicates
that QED3 is plagued with infrared singularities whose
degree of divergence grows with the order of perturba-
tion. Moreover, when QED3 is treated nonperturbatively

by means of the Bloch-Nordsieck (BN) approximation
[5-7), one finds for the two-point fermionic Green's func-
tion of momentum p the expression
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where Q=u p —m, u is a timelike vector (u =1) replac-
ing the gamma matrices in the BN scheme, e(Q) is the
sign function, M is a subtraction point, and C is the Euler
constant. Clearly, G is well defined for generic values of
Q but develops an essential singularity at Q=0. The fact
that G does not behave as a simple pole at Q=O signals
the presence of infrared singularities.

As is known [5], the BN approximation eliminates all
vacuum polarization diagrams [8]. In this work we start
by demonstrating that when the vacuum polarization
effects are nonperturbatively incorporated into the pho-
non propagator, the infrared structure of QED3 changes
drastically and all inconsistencies disappear. Essentially,
the theory is reformulated in terms of a massive vector
boson whose mass is l8l =e /8tr, the dynamically induced
Chem-Simons term [2,9) being at the root of this mecha-
nism. It turns out then that the effective electron-
electron low-energy potential arising from QED3 can
be read off directly from (1) after the replacement 8—e /8tr, namely,

'(r)» tlt) —y" tir+ etlty"A» tlr m tfrVr,
— (4)

describing the coupling of charged fermions (tlr, tlr) of
mass m =lml and charge e to the gauge field potential
2 . In principle, m can be either positive or negative, but
we shall analyze here the case m & 0. Neither parity nor
time reversal are, separately, symmetries of the model.

We concentrate on the lowest-order graph contributing
to the vacuum polarization tensor II» (q). Since we are
interested in the quantum corrections to a nonrelativistic
potential, we shall retain only those terms of zero and
first order in q. Gauge invariance alone ensures that
II (0) =0. As for the first-order contribution, which

gives origin to the induced Chem-Simons term [2,9], one

L The terms proportional to Ko in (3) are now both repul-
sive. The term 8L/mr becomes attractive (repulsive)
for negative (positive) eigenvalues of L, while the term
proportional to Kt acts in the opposite way. We conclude
the paper by showing that electron-electron bound states
are also possible in QED3.

Our starting point is the QEDs Lagrangian density
[10)
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finds

IIp")(q) = i —(e'/8z)ep „q" . (5)

We emphasize that II~' (q) is ultraviolet finite, and that,
therefore, no regularization is needed for its computation.
At this point a word of caution is necessary. If one
adopts the point of view of keeping ultraviolet divergences
under control by regularizing the entire theory, the result
quoted in this last equation is only true if a parity-time-
reversal-invariant regularization is used.

Because of the severe infrared singularities, the stan-
dard perturbative series fails to exist in QEDs. On the
other hand, one knows that when a Chem-Simons term is

added to the free part of the QED3 Lagrangian (the
MCS theory), a topological mass for the vector field is

generated, freeing the theory from the infrared diver-
gences. In view of this, we modify the photon propagator
by resummin~ the geometric series resulting from the
iteration of II~ (see Fig. 1). As far as the nonrelativistic
approximation is concerned, this is equivalent to the in-

troduction into the free Lagrangian of the Chem-Simons
term

where the subscripts g, |., and I. make reference to those
pieces of D„,proportional to g„„e„,~k~, and k„k„respec-
tively. The computation of Az is straightforward and

yields
3 2
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where, as in Ref. [11, v (p() [6 + (pI)l is a two-
component spinor describing a free electron of two-
momentum p( (p() in the initial (final) state. Since Ar
does not depend upon the momentum transfer q =p i

—p ~,

it can be absorbed into the wave-function renormalization
constant. When computing A~ and A," only zero- and
first-order terms in q/m will be retained, since our in-

terest is restricted to the nonrelativistic regime. Further-
more, all loop momentum integrals are ultraviolet finite
and there is, then, no need for regularization. After ab-
sorbing the zero-order terms into the wave-function re-
normalization constant, one arrives at
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Hence, the induced Chem-Simons coefficient is, as previ-
ously stated,
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where
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From (1) and (7) it then follows that the QEDs eA'ective

electron-electron low-energy potential is, in fact, that
given by (3).

Before investigating whether the potential (3) can sus-
tain electron-electron bound states, we want to show that
the above proposed solution for QED3 is consistent, in the
sense that all remaining contributions to V ' are, up to
some power of ln(e /m), of order e /m or higher with

respect to (3) and, therefore, vanish as e /m 0. To see
how this comes about, we compute the vertex correction
A" to & ' arising from the diagram in which only one
massive vector particle is exchanged (see Fig. 2) [11].
After the replacement 0 0;„, the massive vector field

propagator can be read oA' directly from Eq. (4) of Ref.
[il,

(8)
where P„,=g„„—k„k,/k a—nd an arbitrary function
f(k ) has been incorporated into the longitudinal part.
Accordingly, A" can be split as follows:
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From Eqs. (11)-(14) it follows that A" ' (q) behaves as
(e /m) ln(e /m) when e /m 0 (0;„/m 0), while

power counting indicates that the full vertex insertion
A" (q) (Fig. 2) diverges logarithmically at the above-
mentioned infrared limit. The fact that A"(')(q) exhibits
an improved infrared behavior is not a peculiarity of the
particular insertion under analysis but applies to any ver-
tex part involving an arbitrary number of exchanged mas-
sive vector particles. Indeed, the leading infrared diver-

+ + o ~ s

FIG. 1. Wavy lines represent free photons, while dashed lines
refer to massive vector particles. FlG. 2. The vertex insertion A".
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gence of any of these parts only shows up in those terms

containing even powers of the momentum transfer q, as
can be seen by setting to zero the loop momenta in the
numerators of the corresponding Feynman integrals.
Thus, the terms linear in q exhibit a milder infrared be-

havior.
By using the technique described in [1] one finds the

correction hV ' to the potential (3) arising from the

diagrams in Fig. 3,

FIG. 3. Diagrams contributing to the potential h, V
QED3
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From (13)-(15) it follows that eAV ' also behaves as
t

(e /m)ln(e /m) when e /m 0, and turns out to be
negligible if e /m«1. This establishes the region of va-

lidity of our results.
We turn next to the investigation of the existence of

bound states of two identical fermions of mass m in-

teracting through the nonrelativistic potential V
given by (3). The corresponding radial Schrodinger
equation is found to read

S(R„((y)=e„(R„((y), (i6)
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y =e r/8(r, al„=e /(rt8;„t =8, P;„=m/t8;„t =8(rm/e, e„(
=64(r mE„j/e, and E„( is the energy eigenvalue. A

straightforward analysis of (18) reveals that electron-
electron bound states are only possible for I = —1, —3,
—5, and —7. Had we chosen the negative sign for (n we

would have obtained 8;„=+e /8(r and bound states, with

identical energy eigenvalues, for I=+1, +3, +5, and

+7.
The existence of bound states for the potential given in

(18) was examined numerically by means of a stochastic
variational algorithm. In this way we were able to quick-

ly identify the state of minimum energy (n=0) for a
given I and a variety of values of the parameter p;„.

In order to be able to represent the wave function

Rp((y) and the expectation value of the energy ep( nu-

merically, we must choose a discrete collection of points

along the radial direction. Hence, we calculated
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= 19
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where the values of dy and i,„were chosen to ensure a
big enough range of integration, and a small enough in-
tegration interval. We then varied the wave function ran-
domly, accepting any changes that decreased the energy
[12]. We found that, starting from an arbitrary initial
guess for Roi it relaxed very fast towards a stable func-

e 8 (r) + e e L
Ko r + K| r-

8x ~ 2 8~2~ 2 8z r
(is)

tional configuration. The expectation value of the energy
soon became negative, confirming the existence of a
bound state. One of these configurations, together with
the corresponding potential, is displayed in Fig. 4.

We also measured the expectation value of the radius
in the state thus obtained, which gives an idea of its size.
The stability of the results was tested against variations
of the range of integration interval.

In Table I we present our numerical results, calculated
assuming m to be the electron mass. The energy eigen-
values for I —5 and —7 are very close to those corre-
sponding to I= —3 and —1, respectively, and for this
reason they have not been included in Table I. The aver-

age radius of the bound state is given in A, and the bind-

ing energy in eV. The corresponding approximate disso-
ciation temperature in K is also given. The errors quoted
were evaluated from the small variations observed in the
results when the range and interval of integration were
varied.

It is interesting to note that there are ranges of the pa-
rameters I and p;„where the results are numerically con-
sistent with the observed transition temperatures of high-
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FIG. 4. The bound state wave function (dashed line) and the
potential U('e(y) (splid line) for I —3 and il;„3000. The
vertical scale refers only to the potential. The normalization of
the wave function is arbitrary.
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TABLE I. The size and energy of the bound states.

I P;„Size (A) Energy (10 eV) Temperature (K)

—
1 1000 88 ~ 2

3000 300 + 5

—3 1000 64+ 1

3000 218 + 4

—4.8 ~ 0. 1

—0.42 ~ 0.01

—19.6+ 0.4
—1.7 + 0.04

55~1
4.8 + 0. 1

228+ 4
19.7 ~ 0.4

' On leave of absence from Instituto de Fisica, Universi-
dade Federal do Rio Grande do Sul, Caixa Postal 15051,
91500-Porto Alegre, RS, Brazil.
On leave of absence from Instituto de Fisica, Universi-
dade de Sao Paulo, Caixa Postal 20516, 01498 Sao Paulo,
SP, Brazil.
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