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Summary. Although the maximum entropy method is capable of 
giving the period of a pure sine wave with very few data points, it 
is very sensitive to noise. The half power width of a spectral peak 
obtained by this method is proportional to (a,jA)2, where a. is the 
standard deviation of the noise and A is the semiamplitude of the 
light curve. More serious are the consequences of a systematic 
shift of the spectral peak, by an amount proportional to the same 
factor. A simple autocorrelation method that is free of systematic 
errors is also discussed. 
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I. Introduction 

The maximum entropy (ME) method of spectral analysis was 
recently developed by Burg (for a detailed discussion see Smylie et 
al., 1973). Although originally the method was derived, as the 
name indicates, from considerations oflnformation Theory, it has 
been shown by Van den Bos (1971) to be equivalent to obtain 
from the data, by least squres, the coefficients of a prediction filter. 
S'llch a filter has the property that given a time series {y0 , y1, 

y2, ... ,yN_ 1} with uniform spacing Lit, any yi is a linear com· 
bination of theM preceding values: 

M 

Yi= L g,yi-k+ai, (1) 
k=1 

where {g1,g2 , ... ,gM} are the coefficients of a prediction filter of 
order Mandai represents the prediction error. The ME power 
spectrum is given by 

I M ~-2 
I.Y(J)I 2 oc 1- k~1 gkexp(-2nifkL1t) (2) 

The coefficients of the prediction filter can be found by 
minimizing the mean squared prediction error by the method of 
least squares. The resulting normal equations have as coefficients 
the values of the autocorrelation function which may be estimated 
from 

(3) 
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IT. The Case of a Pure Sine Wave with Noise 

The order M of the filter depends on the complexity of the data. 
For instance, a simple sine wave 

(4) 

(where A, f 0 , 1p, and ni stand for semi·amplitude, frequency, initial 
phase and noise) can be predicted by a second order filter with 
coefficients 

(5) 

The presence of more than one sine wave (including harmonics) 
requires proportionally more terms. The M = 2 case is sufficient 
for many astronomical applications; in geophysics however high· 
er orders are necessary, for instance in the analysis of polar 
motions or seismic data. This leads to large systems of normal 
equations, which may be solved by Burg's recursive algorithm 
(Smylie et al., 1973). 

To find the effect of noise on the ME power spectrum in the 
M = 2 case, we may use the autocorrelation function of the time 
series defined in Eq. (4), which has the theoretical values 

4>o=!A2+a;' 

4>1 =!A2 cos(2nf0 L1t), 

4> 2=!A2 cos(4nf0 L1t), 

(6) 

where a. is the standard deviation of the noise ni of Eq. (4). The 
normal equations are (Smylie et al., 1973): 

4>og1 + <l>1g2 = <l>1 (7) 

<l>1g1 + 4>og2 = <l>2 · 

Their solution is 

g1 =4>1(4>o-4>2)/D, g2=(4>o4>2-4>i)/D, D=lj>~~lj>~. (8) 

Inserting Eqs. (6) into (8), we obtain in the low noise limit, or more 
precisely when 

(9) 

the coefficients 

(10) 

g2 ~ - 1- [4+ sin2(2!/0 L1t)l :~ 
which differ from the exact values given in Eq. (5) by amounts 
proportional to the ratio (a,jA)2. This will produce a broadening, 
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Fig. 1. Left: simulated time series consisting of 64 samples of a 
sine wave of frequency fo in 10% noise, as given by Eq. (4), and a 
portion of its unsmoothed periodogram (the filled circles represent 
the result of a fast Fourier transform). The maximum entropy 
spectrum has its peak shifted to f', while f" represents the estimate 
obtained from Eq. (13). Right: same as above, with data reduced 
to 32 points with a large eccentric gap 

and, worse, a shift of the ME power spectrum peak. Inserting 
Eqs. (10) into (2), after some manipulation, we obtain a half power 
width of 

Af112 ~(a.fA)2(nAW 1 [1 + 3 cot2(2nf0 At)] 

and a shift of 

(11) 

(12) 

These expressions are not valid near f 0 =0 andf0 =JN=(2At)- 1 

because of Eq. (9). They do not depend on the length of the record 
because we used the exact expressions ( 6). In practice some 
additional error will be introduced by the estimation of the 
autocorrelation function from a finite record. As examples, Fig. 1 
shows two simulated light curves with a signal to noise ratio 
A/an= 10 and their respective periodograms and ME power 
spectra. While the resolution of the latter is somewhat better, the 
shift of the peak is readily apparent even for this relatively small 
amount of noise. The integral of the ME spectrum, which is 
proportional to A2 , is not greatly affected. 

m. A Simplified Autocorrelation Method 

In the approach of Blackman and Tukey (1958), the power 
spectrum is obtained from a Fourier transform of the tapered 

·autocorrelation function. When a single periodicity is present in 
the data, a short-cut method can be used that gives directly the 
value of fo without having to calculate the complete autocor­
relation function. This is based on the three Eqs. (6), which may be 
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solved for A, a •' and f 0 , as functions of the values of ¢ 0 , c{J 1, and ¢ 2 

given by Eq. (3). The solutions ( ± their errors) are: 

A= [(c/J~ + 8¢i)li2 _ ¢ 2]1/2 ±(2/N)1i2a. 

a.=(c/Jo -}A2)1/2 ±N-112an 

f" = (2nA t) - 1 arcos(2c{J 1/ A 2) 

±(2/N)1' 2 [nAt sin(2nf0 At)]- 1 (a.fA)2, 

(13) 

where f" is a better estimate of fo than the peak of a ME spectrum. 
The noise contained in the data causes an uncertainty in the 
estimate of the autocorrelation function which propagates to the 
result giving the standard deviations indicated in Eqs. (13), ob­
tained with the theory of propagation of errors (e.g., Bevington, 
1969), for N~ 1. For the example shown on the left side of Fig. 1, 
the uncertainties in A and a. are less than 2 %. The error in the 
frequency is still proportional to (a.fA)2 as in the ME method, but 
is no longer systematic and is too small to be noticeable in Fig. 1. 

IV. Discussion 

The ME method is a new, high resolution technique that provides 
estimates of power spectra even for short time series. It has been 
applied widely to geophysical problems and also, to a lesser 
extent, to astrophysics (e.g., Richer and Ulrych, 1974). 

We may compare the accuracy ofthe ME method with that of 
the periodogram. Because of the finite length of the time series, the 
periodogram is the convolution of the Fourier transform of the 
light curve with that of the time window W(t) (Gray and 
Desikachary, 1973). For uninterrupted observation during a span 
T, the amplitude of the Fourier transform of W(t) is IW(J)I 
= lsin(nfT)/(nf)l. Thus, if y(t) contains only one frequency fo (a 
more general case is not considered here), the periodogram will be 
proportional to I W(f- f 0 ) + W(f + f 0)l 2 , consisting of two peaks 
(at f = ±f0 ) of half power widths Af112 ~0.886 T- 1. The in­
terference between each peak and the sidebands of the other, and 
the presence of noise, distort slightly the spectrum causing small 
shifts of the maxima. The existence of gaps in the data (when 
several nights are combined) complicates the shape of the time 
window W(t) and markedly increases the power in the sidebands 
of W(f), as can be seen in Fig. 1. 

In principle, the finite extent Tofthe data is of no consequence 
with the ME method, which uses the coefficients of a prediction 
filter. These contain the information necessary to extend the time 
series indefinitely in both directions, as well as fllling any gap. The 
drawback is the strong sensitivity to noise, which causes errors in 
the calculated coefficients of the prediction fllter, thus affecting 
non-linearly the spectrum through Eq. (2). Whereas the resulting 
broadening [Eq. (11)] is mostly due to the noise, the frequency 
shift [Eq. (12)] is mostly due to the non-linear interaction between 
the peaks located (for real data) at f = ±f0 • Equations (11)-(13) 
show that errors are minimized if the sampling rate is such that 
fo ~(4At)- 1 (i.e., one half of the Nyquist frequency JN), where 
distortion disappears. In the absence of noise both the ME and 
the correlation method give exact results, independently ofT, with 
N?;,3. 

It is easy to show that for complex data, the corresponding 
first order complex prediction filter produces unshifted spectra, 
since only one peak appears in the range - JN<f <fN· This is the 
reason why the analysis of Lacoss (1971), based on a complex 
correlation matrix, resulted in a width f 112 independent of fo and 
failed to reveal the shift, although his numerical experiments 
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showed both effects. These problems are greatly reduced for a 
periodogram, where the noise power is distributed throughout the 
whole spectrum so that only a small fraction of the noise affects 
each peak; also, the effects of interference between peaks are less 
severe. 

With respect to computational speed, the periodogram was 
about five times slower than the ME method in the examples of 
Fig. 1, but much more accurate (the frequency shift of the peak 
was 20 times smaller). The autocorrelation scheme of Section III 
was several hundred times faster than the periodogram, only 
slightly less accurate, and may even run on a small calculator. 
There is little advantage in using the Fast Fourier Transform 
(FFT) algorithm (Cooley and Tukey, 1965), because of its in­
sufficient resolution: for instance, the 64 data points of Fig. 1 
produce a 32 point FFT (O<f <fN) shown as full circles in the 
periodograms. To obtain enough intermediate spectral points 
with the FFT one can extend the data with zeros to complete at 
least 1024 points before transforming, although losing thereby 
some of the advantage in computing time. 
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