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ABSTRACT

A Runtime System for Data-Flow Task Programming on Multicore Architectures
with Accelerators

In this thesis, we propose to study the issues of task parallelism with data dependen-
cies on multicore architectures with accelerators. We target those architectures with the
XKaapi runtime system developed by the MOAIS team (INRIA Rhône-Alpes).

We first studied the issues on multi-GPU architectures for asynchronous execution
and scheduling. Work stealing with heuristics showed significant performance results,
but did not consider the computing power of different resources. Next, we designed a
scheduling framework and a performance model to support scheduling strategies over
XKaapi runtime. Finally, we performed experimental evaluations over the Intel Xeon Phi
coprocessor in native execution.

Our conclusion is twofold. First we concluded that data-flow task programming can
be efficient on accelerators, which may be GPUs or Intel Xeon Phi coprocessors. Second,
the runtime support of different scheduling strategies is essential. Cost models provide
significant performance results over very regular computations, while work stealing can
react to imbalances at runtime.

Keywords: Parallel programming, accelerators, task parallelism, data flow dependencies,
work stealing.





RESUMO

Uma Ferramenta para Programação com Dependência de Dados em Arquiteturas
Multicore com Aceleradores

Esta tese investiga os desafios no uso de paralelismo de tarefas com dependências de
dados em arquiteturas multi-CPU com aceleradores. Para tanto, o XKaapi, desenvolvido
no grupo de pesquisa MOAIS (INRIA Rhône-Alpes), é a ferramenta de programação base
deste trabalho.

Em um primeiro momento, este trabalho propôs extensões ao XKaapi a fim de sobre-
por transferência de dados com execução através de operações concorrentes em GPU, em
conjunto com escalonamento por roubo de tarefas em multi-GPU. Os resultados experi-
mentais sugerem que o suporte a asincronismo é importante à escalabilidade e desem-
penho em multi-GPU. Apesar da localidade de dados, o roubo de tarefas não pondera a
capacidade de processamento das unidades de processamento disponíveis. Nós estuda-
mos estratégias de escalonamento com predição de desempenho em tempo de execução
através de modelos de custo de execução. Desenvolveu-se um framework sobre o XKaapi
de escalonamento que proporciona a implementação de diferentes algoritmos de escalo-
namento. Esta tese também avaliou o XKaapi em coprocessodores Intel Xeon Phi para
execução nativa.

A conclusão desta tese é dupla. Primeiramente, nós concluímos que um modelo de
programação com dependências de dados pode ser eficiente em aceleradores, tais como
GPUs e coprocessadores Intel Xeon Phi. Não obstante, uma ferramenta de programação
com suporte a diferentes estratégias de escalonamento é essencial. Modelos de custo
podem ser usados no contexto de algoritmos paralelos regulares, enquanto que o roubo de
tarefas poder reagir a desbalanceamentos em tempo de execução.

Palavras-chave: Programação paralela, aceleradores, paralelismo de tarefas, dependên-
cia de dados, roubo de tarefas.





RÉSUMÉ

Vers un Support Exécutif avec Dépendance de Données pour les Architectures
Multicœur avec des Accélérateurs

Dans cette thèse , nous proposons d’étudier des questions sur le parallélism de tâche
avec dépendance de données dans le cadre de machines multicœur avec des accélérateurs.
La solution proposée a été développée en utilisant l’interface de programmation haute
niveau XKaapi du projet MOAIS de l’INRIA Rhône-Alpes.

D’abord nous avons étudié des questions liés à une approche d’exécution totalement
asyncrone et l’ordonnancement par vol de travail sur des architectures multi-GPU. Le vol
de travail avec localité de données a montré des résultats significatifs, mais il ne prend pas
en compte des différents ressources de calcul. Ensuite nous avons conçu une interface et
une modèle de coût qui permettent d’écrire des politiques d’ordonnancement sur XKaapi.
Finalement on a évalué XKaapi sur un coprocesseur Intel Xeon Phi en mode natif.

Notre conclusion est double. D’abord nous avons montré que le modèle de program-
mation data-flow peut être efficace sur des accélérateurs tels que des GPUs ou des copro-
cesseurs Intel Xeon Phi. Ensuite, le support à des différents politiques d’ordonnancement
est indispensable. Les modèles de coût permettent d’obtenir de performance significatifs
sur des calculs très réguliers, tandis que le vol de travail permet de redistribuer la charge
en cours d’exécution.

Mots-clés: Programmation parallèle, accélérateur, parallélisme de tâche, dépendance de
données, vol de travail.
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1 INTRODUCTION

Parallelism can be see as an ubiquitous aspect in life. Although our speech is sequen-
tial, music has a lot of concurrent elements at same time presented by each instrument.
Yet, those instruments play a stream of sound that may not sense anything pleasant if
taken isolated. In parallel computing, there are many research areas ranging from archi-
tectures to high-level paradigms that can not be taken separately. For instance, parallel
programming models abstract underlying architecture details; but it also may be depend
on hardware tendencies.

Most programmers may prefer sequential processors as observed in the years pre-
dominated by technology advances such as deep pipeline, out-of-order, speculative pro-
cessors. These architectures maintained the existing sequential programming model and
the increasing performance at affordable price for technology at that time. However,
this demand for more performance led to inefficient chips in terms of transistor and
power (ASANOVIC et al., 2009).

In the last few years the industry decided to replace the power-inefficient processor
with efficient processors on the same chip, providing more and more on-die cores each
year. Current microprocessors are homogeneous multicore chips containing from two
to sixteen cores, with even higher core counts in the near future. An architectural trend
is the emergence of manycore accelerators with many tightly coupled processing units
(PU) such as graphics cards (GPU) or Intel Xeon Phi coprocessors for high performance
computing (HPC). Although multicore chips seeks to maintain the execution speed of
sequential programs while moving into multiple cores, accelerators favor the execution
throughput (KIRK; HWU, 2012). Therefore, such architectures have heterogeneous PUs
in terms of computing power and programming model.

Hence, in many cases, familiar and widely used algorithms need to be rethought and
rewritten to take advantage of modern multicore and manycore architectures. Parallel
algorithms with fine granularity and asynchronicity are essential in order to exploit paral-
lelism and to improve scalability (BUTTARI et al., 2009).

1.1 Motivation

A challenge in heterogeneous systems is delegate work efficiently to take advantage
of all available parallelism since the workload can be affected by the differences in the
processing power of each PU. Besides, there are more issues to be considered as de-
pendencies between tasks of different PUs and overhead costs. These costs come from
decisions of where actually execute a task, loading its execution code at runtime, costs of
library calls from different PU softwares, and memory transfers required since the PUs
do not share the same memory address space.
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A well-known load balancing strategy is work stealing. It is a decentralized scheduling
algorithm that whenever a processor runs out of work, it steals work from a randomly
chosen processor. This strategy achieves provably good performance results for shared-
memory systems, but it is not actually applied to heterogeneous systems because of its
cache-unfriendly limitations (ACAR; BLELLOCH; BLUMOFE, 2000) and co-processor
nature of PU units.

Little research has been done on comparing scheduling strategies on heterogeneous
architectures. AUGONNET et al. (2009) compare three strategies in one experiment,
which may be insufficient to assert the strengths and weaknesses of each strategy. Most
common strategies rely on cost models such as HEFT (AUGONNET et al., 2010) or cen-
tralized scheduling (AYGUADé et al., 2009; BUENO et al., 2011, 2012). We note that
both approaches have drawbacks. A cost model scheduling depends on regular computa-
tions and does not adapt to load variation at runtime. Besides, a centralized scheduling
does not scale as the number of workers increase, and is not suitable for fine-grained
computations.

1.2 Hypothesis

In order to deal with the issues on heterogeneous systems, we must consider some
hypothesis about runtime systems for accelerators:

— A data-flow task programming model should allow to loose synchronization and
exploit parallelism on accelerators;

— A runtime system should improve performance on accelerators by fully asynchronous
operations;

— Work stealing scheduler with data locality heuristics should overcome its cache-
unfriendly problem;

— Dynamic scheduling strategies should react to unbalances compared to cost models
at runtime.

1.3 Objectives

The main objective of this work is to study the issues of task parallelism with data
dependencies on multi-CPU architectures with accelerators. We target those architectures
with the XKaapi runtime developed by the french team MOAIS (INRIA Rhône-Alpes).

We first propose the use of data-flow task programming model as a solution to program
heterogeneous architectures. Task parallelism seems to be a well-suited programming
model since parallelism is explicit and processor oblivious, i.e., applications can unfold
more parallelism than resources available. In addition, data-flow dependencies provide an
explicit memory view and abstract data transfers.

Concerning the work distribution at runtime, we then study the work stealing sched-
uler for multi-GPU architectures. We overcome the cache-unfriendly problem of work
stealing by locality heuristics that, consequently, reduce data transfers substantially.

In order to evaluate our work stealing strategies, we study strategies that predict exe-
cution cost at runtime by cost models. They may avoid erroneous decisions since work
stealing does not consider the processing power of the available resources. We propose
a broader approach in which a scheduling framework is designed to support different
scheduling algorithms over multi-CPU and multi-GPU architectures.
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In addition, one of our objectives is to evaluate the XKaapi runtime on the Intel Xeon
Phi coprocessor. The coprocessor has support for x86 instructions and can run CPU
programs entirely inside the accelerator. Our hypothesis is that our runtime may scale in
a manycore architecture because of its overhead cost and scheduling by work stealing.

1.4 Contributions

The first contribution of this thesis concerns the proposal of XKaapi extensions in
order to support multi-GPU systems. This contribution was published in two papers. The
first was published in IEEE 24th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD’12) (LIMA et al., 2012). In this paper we
described our concurrent GPU operations to overlap data transfer and execution, along
with work stealing scheduler of XKaapi.

The second paper was published in IEEE 27th International Symposium on Parallel &
Distributed Processing (IPDPS’13) (GAUTIER et al., 2013). In this paper we described
our proposed scheduling heuristics to overcome the cache-unfriendly problem of work
stealing.

The second contribution of this thesis concerns a study of scheduling strategies that
include dynamic scheduling and cost model with performance prediction. Part of this
contribution was submitted to Parallel Computing journal. In this paper we evaluated dif-
ferent scheduling strategies over XKaapi scheduling framework on multi-CPU and multi-
GPU architectures.

Finally, the third contribution of this thesis concerns the evaluation of a data-flow task
programming model over the Intel Xeon Phi coprocessor. The preliminary results of our
third contribution were presented in IEEE 25th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD’13) (LIMA et al., 2013). In
this paper, we described preliminary results of data-flow programming and work stealing
scheduler of XKaapi on the Intel Xeon Phi coprocessor in native mode.

We give an overview of our contributions in Figure 1.1 that are highlighted in green.
XKaapi version 1.0.1 provided support for the basic building blocks of our contributions:
data-flow programming model, multicore support, and work stealing scheduler. Since
this version we extended the runtime at our first contribution with multi-GPU support
and work stealing heuristics (Chapter 5). Furthermore, our first work originated our two
other contributions: version 2.1 with multi-CPU and multi-GPU support and scheduling
framework (Chapter 6) and version 2.0 for Intel MIC architecture (Chapter 7).

Figure 1.1 – Timeline of the contributions of this thesis (green boxes).

• multi-CPU and 
multi-GPU 

• scheduling 
framework 

• performance model

XKaapi 
1.0.1

XKaapi 
2.0
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2.0
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• data-flow model 
• work stealing

• multi-GPU 
• work stealing 

heuristics 
• software cache

• Intel MIC support
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1.5 Context

In my master thesis at UFRGS, advised by Nicolas Maillard, I studied dynamic pro-
cess creation in MPI in conjunction with system threads. After the master defense, I went
to Grenoble for two months in order to establish a collaboration in the context of par-
allel programming with XKaapi. The initial PhD subject was defined after a number of
meetings with Everton Hermann (early PhD student) and Bruno Raffin.

This work has been developed in the brazilian research group GPPD 1 (UFRGS) and
the french research team MOAIS 2 (LIG). Besides, it has been involved in the context
of the internacional associated lab LICIA 3 composed of research groups from UFRGS
and LIG. This work is also part of the efforts for efficient execution of fine-grained algo-
rithms on multicore architectures with the XKaapi environment developed by the MOAIS
team. It also continues the work of Everton Hermann’s thesis (HERMANN, 2010), co-
supervised MOAIS/EVASION, that studied the parallelization of SOFA with KAAPI for
multi-GPU architectures using work stealing. In addition to my advisors Nicolas Mail-
lard (advisor at UFRGS), Bruno Raffin (directeur de thése at LIG), and Vincent Danjean
(encadrant at LIG), I worked in collaboration with:

— Claudio Schepke about parallel applications, mostly climatological models such as
OLAM (SCHEPKE et al., 2013);

— Stéfano D. K. Mór about scheduling algorithms and theoretical aspects;

— Thierry Gautier in XKaapi development and most of experiments;

— Grégory Mounié and Denis Trystram about scheduling algorithms for GPUs.

1.6 Thesis Outline

The text of this thesis is composed of three parts and eight chapters, as follows:

Part I – Parallel Programming
This Part, composed of three chapters, gives an overview on parallel architectures
and programming, along with related works in runtime systems.

Chapter 2 – Background
In this Chapter we provide background for parallel architectures and programming
models, as well as scheduling algorithms for multicore and manycore architectures.

Chapter 3 – Programming Environments
This Chapter presents related works on parallel programming environments. It
starts with programming tools for multicore and SMP architectures. The Chapter
ends with runtime systems that target multi-CPU architectures with accelerators.

Chapter 4 – XKaapi Runtime System
In this Chapter we detail the XKaapi runtime that is the basis of this work. We
first describe its goal and programming interface. We then detail its work stealing
scheduler from previous works. The Chapter ends with a description of XKaapi
data-flow computation.

Part II – Contribution
In this Part, composed of four chapters, we present our contributions of this thesis.

1. http://ppgc.inf.ufrgs.br
2. http://moais.imag.fr
3. licia-lab.org

http://ppgc.inf.ufrgs.br
http://moais.imag.fr
licia-lab.org
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Chapter 5 – Runtime Support for Multi-GPU Architectures
This Chapter describes our first contribution on runtime systems for multi-GPU.
We first describe our extensions for multi-GPU systems such as asynchronous ex-
ecution, concurrent GPU operations, and memory management. We then describe
our work stealing heuristics to overcome its cache-unfriendly problem. The Chap-
ter ends with our experimental results in order to evaluate XKaapi extensions and
work stealing heuristics.

Chapter 6 – Scheduling Strategies over Multi-CPU and Multi-GPU Systems
In this Chapter we present a broader approach to evaluate different scheduling
strategies on multi-CPU and multi-GPU architectures. It starts with a description of
the scheduling framework and performance model to design strategies over XKaapi.
We then detail the three scheduling strategies implemented on top of our framework.
The Chapter ends with experimental results to evaluate the strategies.

Chapter 7 – Runtime Support for Native Mode on Intel Xeon Phi Coprocessor
This Chapter evaluates XKaapi in native execution on an Intel Xeon Phi coproces-
sor. It describes the modifications in order to optimize XKaapi runtime. The rest of
the Chapter details the experimental results in three sets of benchmarks.

Chapter 8 – Conclusion
This Chapter presents the conclusion of this thesis. We also describe our contribu-
tions and future perspectives.

Part III – Appendixes
Finally, this Part contains the appendixes of this thesis.
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Part I

Parallel Programming
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2 BACKGROUND

The widespread usage of multicore processors has put parallel computing into evi-
dence. Its ubiquitous presence let to the popularity of architectures and programming
models in which programming is oblivious of hardware details. On the other hand, ac-
celerators offer high throughput parallelism at cost of programming models that expose
an explicit memory view. Their success comes from its power processing and low cost,
allowing widespread usage through simulation and scientific computing.

In the remainder of this Chapter we will explain the basic concepts on parallel archi-
tectures and programming models, as well as scheduling algorithms. Our interest here is
to introduce those concepts focusing on heterogeneous architectures composed of multi-
core processors and accelerators.

We first classify parallel architectures and describe multicore processors and many-
core accelerators (Section 2.1). Next, we introduce the concept of parallel programming
models and describe four models based on architectural aspects and decomposition strate-
gies (Section 2.2). Finally, we discuss scheduling algorithms with focus on heterogeneous
systems (Section 2.3).

2.1 Parallel Architectures

As mentioned earlier, current CPU microprocessors are homogeneous multicore chips
containing from two to sixteen cores, with even higher core counts in the near future. A
related architectural trend is the emergence of heterogeneous systems with many tightly
coupled PUs such as graphics cards (GPUs), heterogeneous processors (Cell BE), or Intel
Xeon Phi coprocessors for HPC. Therefore, such architectures have heterogeneous PUs
in terms of computing power and programming model. In general, CPUs are serial with
a small number of cores, and GPUs are parallel with hundreds of cores. An alternative
to these homogeneous multicore chips is an asymmetric multicore chip, in which one or
more cores are more powerful than the others (HILL; MARTY, 2008).

This Section reviews basic principles in parallel architectures. We start presenting
two complementary concepts to classify those architectures. The first is the Flynn tax-
onomy, and the second is based on the memory access and organization of the memory
system. We then describe two big groups of parallel architectures. One is the group of
general-purpose processors, which is composed of multicores, and the other is the group
of specialized processors, which is composed of accelerators such as Cell BE, GPU, and
Intel Xeon Phi. Finally we describe an example of heterogeneous architecture composed
of multi-CPU and multi-GPU named Idgraf.
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2.1.1 Architecture Models

Although there is no consensus in parallel community, the Flynn taxonomy (FLYNN,
1972) is a frequently used classification in parallel systems. It classifies a system accord-
ing to the number of instruction streams and the number of data streams it can manage
simultaneously. The four classes are: Multiple Instruction Single Data (MISD), Single
Instruction Single Data (SISD), Single Instruction Multiple Data (SIMD), and Multiple
Instruction Multiple Data (MIMD). In parallel computing, the two former classes are not
considered since SISD corresponds to a classical Von Neumann system and MISD is an
unusual architecture.

SIMD architectures, which are also known as data-parallel or vector architectures,
apply the same instruction to multiple data items. It can also be described as having
a single control unit. A “classical” SIMD system must operate synchronously. They are
employed on regular computations, which can be expressed as vector or matrix operations.
Today, SIMD architectures are often found within mainstream processors, for example the
MMX/SSE unit in the Intel Pentium processor line, and in accelerators such as GPUs and
Intel Xeon Phi coprocessors.

MIMD systems support multiple simultaneous instruction streams operating on mul-
tiple data streams. They typically consist of a collection of independent processing units,
each of which has its own control unit. In addition, unlike SIMD systems, MIMD systems
are usually asynchronous. The main types of MIMD systems are detailed in Section 2.1.2.

2.1.2 Memory Systems

Parallel systems can also be classified by the memory access and organization of the
memory system. There are mainly two types of memory systems: shared-memory systems
and distributed-memory systems.

In shared-memory systems a collection of independent processors are connected to a
memory system through an interconnection network, and each processor can access each
memory location. The interconnect can either connect all the processors to the main mem-
ory, or each processor has direct access to a block of main memory and the processors can
access other memory blocks by special hardware. Two types of shared-memory systems
are the uniform memory access (UMA) and the non-uniform memory access (NUMA).
In an UMA system the access cost of any memory address is uniform for all processors.
Systems in this group are symmetric multiprocessors (SMP) and the first multicore pro-
cessors.

In NUMA systems each processor, or group of processors, has its own local memory
block. Similar to UMA, it offers an unified memory address space accessible by all pro-
cessors. Data access in a local memory is faster than access in a remote memory unit.
Most of NUMA systems are cache coherent, and the term CC-NUMA is often employed
to emphase. Although the processor design may required more hardware, it has some
advantages in respect with UMA architectures. NUMA machines with local memories
for each processor reduces the bottleneck of a central memory when several processors
attempt to access the memory at the same time. In addition, this architecture is more
scalable than UMA enabling the employ of a larger number of processors. Examples
of NUMA architecture are the AMD Opteron processors and the most recent Intel Xeon
processors (Nehalem and Sandy-Bridge). Both processors implement Cache Coherency
protocol that employs dedicated hardware to control the coherency of cached data by
processors.
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In distributed-memory systems, each processor is paired with its own private memory
and the processor-memory pairs communication over an interconnection network. There-
fore, processors may communicate explicitly by sending messages or by using special
functions that provide access to the memory of another processor. A well-known exam-
ple of distributed systems are clusters. They are composed of a collection of commodity
systems called nodes connected by commodity interconnection network, such as Ether-
net. In fact, the term cluster can also be applied to a system that includes proprietary in-
terconnects or special hardware designed for a specific parallel computer (DONGARRA
et al., 2003). These systems with non-commodity components are sometimes denomi-
nated massively parallel processor (MPP).

2.1.3 General Purpose Processors

Conceptually, the simplest approach to increasing the amount of work performed per
clock cycle is to clone a single core multiple times on the chip. Each of these cores
may execute independently, sharing data trough the memory system. This design is a
scaling down of traditional multisocket SMP systems. However, multicore systems come
in different guises, and it can be very difficult to define a core. For example, a mainstream
CPU generally includes a wide range of functional blocks such that it is independent of
other cores on the chip. However, some models shares functional units between pairs
of cores. The aim of such a design is to raise efficiency by improving occupancy of
functional units.

The AMD Phenon II represents AMD’s current mainstream CPUs. It has up to six
cores, allowing a high degree of parallel execution. The CPUs have large caches, up to 512
kB L2/core and 6MB shared. Each core carries a full 128-bit SSE unit that can issue add,
multiply, and miscellaneous instructions simultaneously. It has a wide L1 cache interface
(128 bits/cycle) and decodes, fetches, and issues six integer operations in parallel.

Intel’s Sandy Bridge microarchitecture occupies a similar market segment. Like Phe-
nom, Sandy Bridge supports full 128-bit SSE operations through multiple pipelines and
issues up to six operations of mixed types in parallel. In addition, Sandy Bridge supports
256-bit Advanced Vector Extensions (AVX) operations, allowing up to 16 single precision
floating point operations per cycle. As in Atom, Intel added multithreading support to Ne-
halem, and maintained this in Sandy Bridge. In this case, each core can mix operations
from a pair of threads in the execution units.

UltraSPARC T1 microprocessor, codename Niagara, is a multithreaded SPARC pro-
cessor designed by Sun Microsystems. It is optimized for multithreaded performance in
commercial servers and increases the application performance by throughput (KONGE-
TIRA; AINGARAN; OLUKOTUN, 2005). Niagara supports 32 hardware threads by
combining ideas from chip multiprocessors and fine-grained multithreading. Four inde-
pendent on-chip memory controllers provide about 20 GB/s of bandwidth to memory.

2.1.4 Manycore and Heterogeneous Architectures

In the last years, microprocessors have followed two different designing approaches (KIRK;
HWU, 2012). The multicore approach maximizes the execution speed of sequential pro-
grams. A multicore microprocessor has dozens of out-of-order, multiple issue processor
cores implementing the full x86 instruction set.

On the other hand, the manycore approach emphasis on the execution throughput of
parallel programs. Manycore processors have a large number of heavely multithreaded,
in-order, single-instruction cores. The hardware takes advantage of the massive number of
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threads to find work to do when some of them are in a stall on memory accesses. Besides,
manycore PUs have been enhanced with arithmetic logical units (ALU) for floating-point
operations such as fused multiple-add (FMA) from NVIDIA GPUs and Vector Processing
Unit (VPU) from Intel coprocessors. Figure 2.1 illustrates the design differences between
multicore (left) and manycore (right) microprocessors.

Figure 2.1 – Design differences between a multicore (left) and a manycore (right) micro-
processor. This multicore layout is based on a basic model from recent microprocessors,
and the manycore layout is similar to a GPU architecture representation.
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2.1.4.1 Cell BE Heterogeneous Processor

The Cell Broadband Engine (Cell BE) architecture is a heterogeneous chip multipro-
cessor jointly developed by IBM, Sony, and Toshiba. The Cell processor consists of nine
processors: a modified 64-bit Power PC core and eight simple SIMD RISC cores (PHAM
et al., 2005). The Power Processor Element (PPE) is the main core and optimized for
control tasks, capable of running an operating system. It controls the eight Synergistic
Processor Elements (SPE) optimized for data processing. The PPE instruction set extends
the 64-bit Power Architecture with cooperative offload processors (the SPEs), with the di-
rect memory access (DMA) and synchronization mechanisms to communicate with them,
and with enhancements for real-time management (KAHLE et al., 2005). On the other
hand, the SPE implements a new instruction-set architecture optimized for power and
performance on computing-intensive and media applications (GSCHWIND et al., 2006).

Cell BE processors are used from high-performance supercomputers, such as the IBM
Roadrunner (BARKER et al., 2008), to Playstation 3 game consoles, which may be the
cheapest Cell-based system on the market. It contains a Cell processor (with six SPEs),
256 MB of main memory, an NVIDIA graphics card, and a gigabit Ethernet (GigE) net-
work card. The Cell processor in the Playstation 3 is identical to the one found in high-end
servers, with exception that two SPEs are not available. In spite of its power, the PlaySta-
tion 3 has severe limitations for scientific computing including floating-point problems,
memory bandwidth limitations, and disproportional performance between the Cell pro-
cessor’s speed and that of the GigE interconnection (KURZAK et al., 2008).

The Cell BE has been employed in many applications on scientific computing (COX
et al., 2009; PANETTA et al., 2009), in addition to a number of tools and environ-
ments (GSCHWIND et al., 2007; BELLENS et al., 2006; AUGONNET et al., 2009;
OHARA et al., 2006).
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2.1.4.2 Graphics Processing Units and GPU Computing

Graphics Processing Unit (GPU) is a widespread class of accelerator. Over the past
few years, GPUs have evolved from a fixed function special-purpose processor to a general-
purpose architecture. In the early 2000’s, GPU was a fixed-function processor, build
around the graphics pipeline, composed mainly of two hardware units: the vertex units
to compute geometrical transformations, and the fragment units to process pixels. This
fixed-function pipeline lacked of generality and restricted GPU programming to graphics
applications. The efforts at this time for general purpose computation, in conjunction with
advances in microprocessor design, resulted in unified shader models. All programmable
units in the pipeline shared an array of processing units, in which featured the same in-
struction set.

The programming model of modern GPUs follows a SIMD model with many pro-
cessing units in parallel applying the same instruction. Each unit operates on integer or
floating-point data with a general-purpose instruction set, and can read or write data from
a shared global memory. This programming model allows branches in the code but not
without performance loss. GPUs devote a large fraction of resources to computation.
Supporting different execution paths on each unit requires a substantial amount of con-
trol hardware. Today’s GPUs group units into blocks, and they are processed in parallel.
If some units branch to different directions within a block, the hardware computes both
sides of the branch for all units in the block. The size of a block is known as the “branch
granularity” (OWENS et al., 2008).

In the context of General-Purpose Computing on the GPU (GPGPU), programming
for GPUs were not trivial since applications still had to be programed using graphics
APIs. General-purpose programming APIs has been conceived to express applications
in a familiar programming language. Examples of such APIs are NVIDIA’s CUDA and
OpenCL.

2.1.4.3 NVIDIA GPUs

In this direction, NVIDIA launched the G80 series (LINDHOLM et al., 2008) along
with Tesla devices dedicated to HPC. Since the G80, the Compute Unified Device Ar-
chitecture (CUDA) API is available, from high-end servers to desktops and embedded
systems.

The architecture of a NVIDIA GPU is composed of streaming-processor (SP) cores
organized as an array of streaming multiprocessors (SM). The number of SP cores and
SMs can vary from one generation of GPUs to another. Figure 2.2 on the following page
from KIRK; HWU (2012, p. 9) shows an overview of a NVIDIA GPU architecture. Each
SM has a number of SPs that share control logic and instruction cache. In addition, each
SP core contains a scalar multiply-add (MAD) unit and floating-point multipliers. A low-
latency interconnect network between the SPs and the shared-memory banks provides
shared-memory access.

An example of GPU architecture is the third-generation Fermi GPUs. It has 16 SMs,
each with 32 SP cores, for a total of 512 cores. Each SM has a first-level (L1) data
cache, and the SMs share a common 768KB unified second-level (L2) cache. The Fermi
also introduces ECC memory protection to enhance data integrity in large-scale GPU
computing systems. Each SM may execute up to 1, 536 concurrent threads to help cover
long latency loads from global memory.

The SM hardware efficiently executes hundreds of threads in parallel while running
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Figure 2.2 – Overview of a CUDA-capable GPU architecture.

several different programs. Each SM thread has its own thread execution state and can
execute an independent code path. Concurrent threads of computing programs can syn-
chronize at a barrier with a single SM instruction. The SM uses the single-instruction,
multiple-thread (SIMT) processor architecture. The SM’s SIMT multithreaded instruc-
tion unit creates, manages, schedules, and executes threads in groups of 32 parallel threads
called warps.

Since the G80 architecture, each SM manages a pool of warps. Individual threads
composing a SIMT warp are of the same type and start together at the same program
address, but they are otherwise free to branch and execute independently. At each in-
struction issue time, the SIMT instruction unit selects a warp that is ready to execute and
issues the next instruction to that warp’s active thread. A SIMT instruction is broadcasted
synchronously to a warp’s active parallel threads; individual threads can be inactive due
to independent branching or prediction. A SIMT realizes full efficiency and performance
when all 32 threads of a warp take the same execution path. If threads of a warp di-
verge via a data-dependent conditional branch, the warp serially executes each branch
path taken, disabling threads that are not on that path. Branch divergence only occurs
within a warp; different warps execute independently. Figure 2.3 on the next page illus-
trates an example of branch divergence on the first warp.

2.1.4.4 Intel Coprocessor: Larrabee and MIC

The Larrabee architecture (SEILER et al., 2008) is a GPU based on an array of pro-
cessor cores running an extended version of the x86 instruction set. Its architecture has
multiple in-order x86 processor cores enhanced with a wide vector processor unit (VPU).
The L2 cache of Larrabee is shared and connected with the on-die ring network. Unlike
modern GPUs, the memory hierarchy supports transparently data sharing across all cores.
Larrabee improves general-purpose programmability by supporting legacy x86 ISA. Be-
sides, its programming model supports subroutines, virtual memory, and irregular data
structures.

The Intel Many Integrated Core (Intel MIC) is a coprocessor architecture incorporat-
ing earlier work on the Larrabee architecture. The first MIC prototype was named Knights
Ferry, followed by a commercial release codenamed Knights Corner. The product name of
the Knights Corner family is Intel Xeon Phi. The Intel Xeon Phi coprocessor is composed
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Figure 2.3 – GPU branch divergence example on the first warp.
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of several cores (up to 61 on the 7100 model) with in-order superscalar architecture. The
instruction set is based on the classical x86 instruction set enhanced with 64-bit instruc-
tions and specific extensions to address SIMD capabilities with large vector operations.
Each core has a 512-bit wide VPU and four independent thread contexts, which execute
in round-robin. A core has 32 KB of L1 instruction cache and 32 KB of data cache, as
well as a private L2 cache of 512 KB with access to all other L2 caches.

Cores are interconnected by a high speed ring-based bidirectional on-die interconnect
(ODI). Cache accesses are coherent using a full MESI coherency protocol. Figure 2.4 on
the following page gives an overview of the bidirectional DOI of MIC and the memory
controllers onto the ring (up to eight).

The Intel Xeon Phi can be seen as a set of hyperthreaded cores that share a global
memory organized by chunks, which is not very far from a SMP with shared UMA sys-
tem (JEFFERS; REINDERS, 2013). Communication between chunks is managed solely
by the hardware and transparent to the programmer. In order to illustrate the transparency
of MIC architecture, we show the output topology of hwloc 1 program for the Intel Xeon
Phi coprocessor model 5110P in Figure 2.5 on the next page. Clearly, at user mode level,
the system seems a general-purpose SMP platform.

The Intel Xeon Phi runs a modified Linux OS version based on a minimal embedded
Linux environment. The libraries include the Linux Standard Base (LSB) Core libraries
and a Busybox minimal shell (JEFFERS; REINDERS, 2013).

2.1.5 A Heterogeneous Machine: Idgraf

Idgraf is composed of two hexa-core Intel Xeon X5650 CPUs (12 CPU cores total)
running at 2.66 GHz with 72 GB of memory. It is enhanced with 8 NVIDIA Tesla C2050
GPUs (Fermi architecture) of 448 GPU cores (scalar processors) running at 1.15 GHz
each (2688 GPU cores total) with 3 GB GDDR5 per GPU (18 GB total). Figure 2.6 on
page 39 illustrates the hardware topology of Idgraf. The machine has 4 PCIe switches to

1. http://www.open-mpi.org/projects/hwloc/

http://www.open-mpi.org/projects/hwloc/
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Figure 2.4 – Microarchitecture diagram of Intel Knights Corner, simplified to illustrate
the cores interconnected by a bidirectional ring.
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Figure 2.5 – Topology of an Intel Xeon Phi 5110P coprocessor using hwloc.
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support up to 8 GPUs. When 2 GPUs share a switch, their aggregated PCIe bandwidth is
bounded to the one of a single PCIe 16x.

As in AGULLO et al. (2011), we consider the cumulated peak from matrix multi-
plication (GEMM) an upper bound on double precision (DP) performance we may obtain
using all Idgraf processing units. Our performance results were obtained using ATLAS
(version 3.9.39) for CPUs and CUBLAS (CUDA version 5.0) for GPUs. In DP the the-
oretical peak of a CPU core is 10.6 GFlop/s (127.2 GFlop/s for all 12 CPU cores) and
515 GFlop/s for a GPU (4.12 TFlop/s for all 8 GPUs). Thus, the DP theoretical peak of
Idgraf (all resources) is equal to 4.24 TFlop/s. Furthermore, the DP matrix multiplica-
tion peak is 8.9 GFlop/s on a CPU core (DGEMM from ATLAS) and 316.4 GFlop/s on a
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Figure 2.6 – Idgraf hardware topology with two hexa-core CPUs and eight Tesla C2050
GPUs.
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GPU (DGEMM from CUBLAS). Hence, the DP cumulated peak from DGEMM is about 2.6
TFlop/s. Table 2.1 summarizes the expected and obtained performance results on Idgraf.

Table 2.1 – Idgraf peak performance as well as estimated DGEMM performance for all
processing units in the system.

#units
System (#cores) DP peak DGEMM perf.

Intel Xeon X5650 2 (6) 127.2 GFlop/s 106.8 GFlop/s
NVIDIA Tesla C2050 8 (448) 4120 GFlop/s 2531.2 GFlop/s
Idgraf cumulated (expected) 4.2 TFlop/s 2.6 TFlop/s

2.1.6 Discussion

The trend for more parallelism and power efficient chips was followed by the popular-
ity of accelerators. Recently we can observe the growth of two main types of accelerators
for HPC systems.

The first type is the well-established GPUs for general-purpose programming through
programming models CUDA, OpenCL, and OpenACC. It offers hundreds of simple in-
order cores and emphasis execution throughput over latency. Despite the evolve of many
techniques to reduce the burden of programmers since its earlier models, optimization
on GPUs may require a deep knowledge of underling architecture and does not rely only
on the usage of large number of lightweight threads. For example, the GPU architecture
exposes a memory hierarchy for low latency accesses along with a thread hierarchy in the
shape of a grid. Nonetheless, tuning of GPU applications to exploit full potential of such
architectural model relies on the programmer.

The second type is the Intel MIC architecture based on x86 ISA enhanced with 64-bit
and SIMD instructions. This coprocessor emphasis throughput as well as transparency to
the programmer. It provides well-known programming models for general-purpose pro-
cessors such as OpenMP and Intel Cilk Plus. Thus, the Intel MIC architecture seems to
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attain transparency for programmers and hide most of architectural details. Regarding
optimization techniques, recent experiments on MIC report that performance improve-
ment may come by using classic techniques for CPUs. They include stride-one access,
data blocking, data reorganization, false sharing (DONGARRA et al., 2003, p. 63) as
well as vectorization (JEFFERS; REINDERS, 2013; PENNYCOOK et al., 2013; FANG;
VARBANESCU; SIPS, 2013; FANG et al., 2013).

It seems that the fact of exposing architectural details may dictate the success of a
specific accelerator. For instance, Cell processors are a suitable case of an accelerator that
may attain significant performance results. However, its programming model restrained
its wide acceptance. Successful cases such as GPUs suggest that accelerators play an
important role in HPC in order to overcome challenges. They include higher performance
results, employment of more applications such as simulation models, and reduce energy
consumption without performance lost. The question is if Intel MIC coprocessor would
attain such wide acceptance on HPC similar to GPU accelerators.

The rest of this Chapter provides an overview of the main parallel programming mod-
els on HPC.

2.2 Programming Models

A parallel programming model is an abstraction of the underlying architecture; in
other words, a view of data and execution to developers. A representation of the pro-
gramming model’s role is the Parallel Bridge described by ASANOVIC et al. (2006) and
illustrated in Figure 2.7. It presents the bridge as a balance between opacity (right side)
and visibility of architecture’s details (left side) to programmers. Opacity improves ar-
chitecture’s abstraction and obviates the need of programmers to learn the architecture’s
details; thus, it favors programmer’s productivity. On the other hand, visibility shows
the key aspects of the underlying architecture for programmers. It allows performance
tunning based on architecture’s details.

Figure 2.7 – Parallel Bridge between applications and hardware, which the bridge repre-
sents the parallel programming models.
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Heterogeneous architectures have brought many aspects in the context of parallel pro-
gramming models. The heterogeneous nature of PUs exposes different parallel program-
ming models at the same time in the context of instructions. Some PUs are efficient at
MIMD or task parallelism, in which PUs execute tasks independently and asynchronously.
Such PUs are general-purpose processors such as multicore chips. However, other PUs
have better performance at SIMD or data parallelism, namely massive-parallel PUs. They
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execute one single instruction on different pieces of data and do not have task dependen-
cies. Manycore accelerators are a well-known example of such architectures.

The programming model is also responsible to provide a data view of the abstract ar-
chitecture. There are many data views from different programming models, among them
shared-memory and distributed-memory models. Indeed, the advent of accelerators has
included a new memory view apart from the previous two classic models. The resulting
heterogeneous architecture breaks the shared-memory address space in a different mem-
ory space dedicated to the accelerator and accessible by DMA bus requests. Therefore,
the memory view from those architectures introduces additional performance parameters
and programming directives.

The memory transfers between CPUs and accelerators play a key performance factor,
as well as other factors such as bus occupancy and hierarchy. In general, the bus trans-
fer rate is slower than the processing ratio of accelerators resulting a bottleneck to the
overall performance. Transfer operations may be reduced to improve the bandwidth and
feed accelerators with data to be processed. In the other hand, programming tools for
accelerators expose a number of memory characteristics to exploit efficiently the bus and
high-speed memory levels as caches.

This Section describes parallel programming models for parallel platforms avoiding
specific programming environments. Five parallel programming models are described
based on architectural aspects and decomposing strategy. Details on parallel programming
environments and tools are described in Chapter 3 on page 51.

2.2.1 Message Passing

The message-passing model is widely used on parallel computing, which consists of
basic mechanisms of send and receive communications. Message-Passing Interface (MPI)
and Parallel Virtual Machine (PVM) are the most popular specifications of the message-
passing model. Both systems are designed to be portable to a wide range of parallel
platforms.

MPI defines a portable interface using either C or Fortran for SPMD and MPMD
programs (since MPI-2). It offers since MPI-2 asynchronous messages, collective com-
munications, parallel I/O operations, dynamic process management, multithreaded pro-
grams, and remote memory accesses (GROPP; LUSK; THAKUR, 1999). The two basic
message-passing primitives are MPI_Send and MPI_Recv for synchronous messages.
The original MPI-1 standard required the number of processes to be specified at startup
time as a parameter. The more recent MPI-2 standard supports dynamic task creation,
through its dynamic process management, and multithreaded programming.

In addition, Charm++ (KALE; KRISHNAN, 1993) is a message-driven parallel lan-
guage implemented as a C++ library. Charm++ parallelism is expressed by collections of
objects called chare objects, which execute in response to messages received from other
chare objects. The adaptive runtime system keeps track of the physical location of chare
objects and handles low-level details of the network. Charm++ applications are written to
have significantly more chare objects than processors, which allow the overlap between
computation and network communication.

2.2.2 Shared Memory

Shared-memory model is widely used in parallel programming for multicore archi-
tectures. In this model, it is assumed that all data structures are allocated in a common
address space that is accessible from every processor. As described in Section 2.1.2,
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shared-memory systems may have non-uniform access cost to a memory address.
In shared-memory architectures, communication is implicit since memory is accessi-

ble by all processors. For this reason, shared-memory models focus on primitives for
expressing concurrency and synchronization along with techniques to minimize over-
head (GRAMA et al., 2003). One exception is data-flow programming models since
communication is explicit using data access modes (GAUTIER; BESSERON; PIGEON,
2007). On the other hand, synchronization is implicit and dependencies between tasks are
automatically managed by the runtime.

Most of programming tools on this model derivate from multi-threading to express
parallelism. Examples of such tools are Pthreads (ELECTRICAL; ELECTRONIC EN-
GINEERS, 1995), OpenMP (CHAPMAN; JOST; PAS, 2007), TBB (REINDERS, 2007),
Cilk (FRIGO; LEISERSON; RANDALL, 1998) and Cilk++ (FRIGO et al., 2009).

2.2.3 Distributed Shared Memory

Distributed shared-memory (DSM) model or Partitioned Global Address Space (PGAS)
is a parallel programming model for shared and distributed systems. It is based on a global
address space view of the platform. The global memory address space is logically par-
titioned and a portion of it is local to each thread, called shared segment. This shared
segment is also accessible by any remote thread, although it may not benefit of data lo-
cality. In addition, a thread can use local data named private segment that is not included
in global address space. PGAS model intends to benefit of the advantages of local-view
style and global view of address space. Each memory segment is illustrated in Figure 2.8
where each thread has local access to its private segment and shared segment, which is
shared by other threads.

Figure 2.8 – Memory view of PGAS programming model with shared segments compos-
ing the global space, and private segments per thread.
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A number of PGAS languages are ubiquitous in this model such as Co-array For-
tran (NUMRICH; REID, 2005), Titanium (HILFINGER et al., 2005), and Unified Parallel
C (UPC) (CONSORTIUM, 2005).

2.2.4 Data and Task Parallelism

The design of parallel algorithms in general needs to divide the work among the
processing elements (PE) (processes or threads) so that each PE gets roughly the same
amount of work. Ideally, we also need to arrange the PEs to synchronize and commu-
nicate. FOSTER (1995) describes an outline of four distinct steps to design a parallel
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program: partitioning, communication, agglomeration, and mapping. Data parallelism
and task parallelism are directly related to the partitioning phase and expose the oppor-
tunities for parallel execution. It divides the problem in smaller pieces based on data or
computation.

Data parallelism, also named data decomposition or domain decomposition, is a
straightforward and commonly used method to express concurrency in algorithms. In
this programming model, the data associated with the problem is partitioned and then
mapped to tasks. The decomposed data may be the data input, the output computed, the
intermediate data, or owner-computes rule (GRAMA et al., 2003).

Task parallelism, also functional parallelism or control parallelism, represents a dif-
ferent and complementary programming model. This strategy decomposes the computa-
tion to be performed rather than the manipulated data. This programming model can be
employed on tasks that perform different computations and are independent from each
other. But task parallelism is commonly used on algorithms that tasks have dependencies
and unfold a directed acyclic graph (DAG). When dependency between tasks and data
are considered, the algorithm unfolds a data-flow graph (DFG) (GALILEE et al., 1998).
For instance, recursive algorithms are a straightforward example of task parallelism in
which each recursive function call is replaced by a task and a synchronization to wait for
produced results if necessary. Another example is parallel loops in which each iteration
is mapped to a task without dependencies.

2.2.5 Discussion

The advent of heterogeneous systems brought the use of programming models that
expose more aspects of underlying architecture in order to exploit full potential of accel-
erators. They are independent of the number of processors, but they are based on shared-
memory with disjoint address spaces on the same system. While those programming
models offer a ways to express large parallelism through multithreading, they impose an
explicit memory view.

ASANOVIC et al. (2006) report some recommendations on designing parallel pro-
gramming models for parallel systems. They show an interesting analysis concerning
various programming models for 5 critical aspects sorted from most explicit (visibility)
to most implicit (opacity). The most two implicit models are HPF and OpenMP, which is
widely accepted for shared-memory architectures. Hence, it seems that implicit models
in most aspects can deliver high performance such as OpenMP (CHAPMAN; JOST; PAS,
2007). Recent versions of OpenMP also include task parallelism (AYGUADé et al., 2009)
from version 3.0 and accelerators (OpenMP Architecture Review Board, 1997-2013) in
the new 4.0 version. Still, OpenMP is incipient regarding the memory view because its
original goal was shared-memory systems with an uniform memory view, which does
not even consider NUMA aspects. Other works similar to OpenMP describe a memory
view through data dependencies like Intel Offload Compiler (NEWBURN et al., 2013),
OmpSs (BUENO et al., 2012), and OpenACC (KIRK; HWU, 2012).

Task parallelism seems to be a well-suited programming model for heterogeneous
architectures. Parallelism is explicit, while all other aspects pointed by ASANOVIC
et al. (2006) are implicit and relies on the underlying runtime system. Besides, this
model favors fine granularity and asynchronicity that are essential in order to expoit par-
allelism and improve scalability in modern multicore and manycore architectures (BUT-
TARI et al., 2009).
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2.3 Scheduling Algorithms

Scheduling is concerned with the allocation of scarce resources to activities, or tasks,
with the objective of optimizing one or more performance metrics. Resources may be
machines, CPU, memory and I/O devices, etc. There are also many performance metrics
to optimize such as minimization of makespan, or minimization of the number of late
tasks. This Section describes algorithms that relate the following load balancing variables:
data locality, heterogeneous computing resouces, and ocupancy.

We will focus on the task parallelism programming model that unfolds parallelism by
means of fork/join constructs. We assume that algorithms create tasks by spawn construct
and synchronization execution by sync construct, similar to Cilk programming exten-
sions (BLUMOFE et al., 1995). We first describe two algorithms over multicore pro-
cessors (work stealing) and accelerators (HEFT), then we present related works on work
stealing on GPUs, and online scheduling for heterogeneous systems.

2.3.1 Work Stealing

Work stealing is a distributed list scheduling algorithm with receiver-initiated load
balancing. A worker (the thief) who runs out of work randomly selects another worker
(the victim) from whom to steal work. Cilk (BLUMOFE et al., 1995; BLUMOFE; LEIS-
ERSON, 1998; FRIGO; LEISERSON; RANDALL, 1998) is a well-known programming
tool that implements work stealing with provably efficiency for a number of P homoge-
neous processors. Throughout this section, we use the Cilk’s work stealing as reference.

In general, each processor, called worker, has a ready deque (doubly-ended queue) of
ready tasks. Each deque has two ends, a head and a tail, from which tasks can be added
or removed. At first, a worker tries to remove a task from the tail of its deque. When
a worker runs out of work, it becomes a thief and attempts to steal a task from another
worker, called its victim. The thief steals tasks from the head of the victim’s deque, the
opposite end from which the victim is working. A worker adds and removes tasks from
the deque’s tail, while thieves may work at the opposite end.

The work stealing algorithm has theoretical lower bounds to fully strict computations,
whose each task has a direct edge to its parent task. The execution time is constrained by
two parameters: work and critical path. The work, denoted T1, is time by one-processor
execution. The critical path length, denoted T∞, is the total execution time required by
an infinite-processor execution. The expected execution time, including scheduling over-
head, is bounded by

TP = T1/P +O(T∞), (2.1)

assuming an ideal parallel computer. Work stealing guarantees with high probability that
only O(PT∞) steal attempts occur (O(T∞) on average for each processor). All these
costs are borne on the critical path.

The described work stealing applies a depth-first execution of tasks for two main rea-
sons. First, steals of top level tasks may contain larger amounts of work than lower levels.
Stealing large amounts of work tends to lower synchronization costs, because fewer steals
are necessary. Second, tasks at the tail of the deque are also the ones in lower levels in the
DAG. Therefore, if processors are idle, the work they steal tends to make progress along
the critical path.

Work stealing is efficient for recursive and fine-grained algorithms. However, clas-
sical work stealing does not consider locality (ACAR; BLELLOCH; BLUMOFE, 2000;
GUO et al., 2010) due to randomized stealing nor heterogeneous processors (BENDER;
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PHILLIPS, 2007).

2.3.1.1 The Work-First Principle

FRIGO; LEISERSON; RANDALL (1998) describe the following principle:

The work-first principle: Minimize the scheduling overhead borne by the
work of a computation. Specifically, move overheads out of the work and
onto the critical path.

Let us denote by Ts the running time of a sequential program and the work overhead by
c1 = T1/Ts. According to the work-first principle, incorporating critical path and work
overheads into Equation 2.1 yields

TP ≤ c1T1/P + c∞T∞ ≈ c1Ts/P, (2.2)

under the condition of “parallel slackness”, that is, the average parallelism exceeds the
number of processors. The work-first principle states that minimize c1 is important, even
at the expense of a larger c∞, since c1 has direct impact on performance. The principle
may affect scalability if c∞ is too large.

2.3.1.2 Work-First versus Help-First

The work-first implementation states that a worker executes a newly spawned task and
leaves the continuation (current task) to be stolen by another worker (FRIGO; LEISER-
SON; RANDALL, 1998). On the other hand, the help-first policy dictates that a worker
executes the continuation and leaves the spawned tasks to be stolen.

GUO et al. (2009) report that the work-first policy is designed for scenarios in which
steal is a rare event, and its steal overhead becomes significant as the number of workers
increases. They give an analysis for iterative computations with each iteration creating a
new task. Using the total amount of work in one iteration of a parallel loop T , the time
to migrate a task from one worker to another tsteal and the time to save the continuation
for each iteration tcont. Under the work-first policy, one worker will save and push the
continuation onto the local deque and another idle worker may steal it. Thus, distributing
P chunks among P workers will require P − 1 steals and these steals must occur sequen-
tially, considering the classic work stealing. In the THE protocol (FRIGO; LEISERSON;
RANDALL, 1998), a push operation on the deque is lock-free but a thief must acquire
the lock on the victim’s deque, thus tcont � tsteal. As P increases, the actual work for
each worker T/P decreases and the total time will be dominated by the time to distribute
tasks, which is O(tstealP ).

A help-first policy can be space-efficient for stack size assuming that the required
space to save a continuation is greater than for a spawned task. Besides, let us assume
ttask the time to create and push a task onto the local deque, the inequality ttask � tsteal
holds. However, the work-first policy can be more space-efficient than help-first in Cilk
“two-clone” strategy (FRIGO; LEISERSON; RANDALL, 1998). Each parallel procedure
has two versions: a “fast” clone and a “slow” clone. The fast clone executes in sequential
semantics and has little support to parallelism. When a task is spawned, the fast clone
runs. Whenever a thief steals a task, it runs the slow clone.

We will use two cases to describe the space requirements of help-first and work-first:
a parallel loop with each iteration creating a new task, and a recursive computation. In
the parallel loop, work-first is space-efficient because it will not push the created task at
each iteration. Instead, it will execute the fast clone in sequential semantics. A help-first
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strategy will push all tasks of the loop and may cause a stack overflow. On the other hand,
a recursive computation with work-first will push the continuation at each recursion level
and may cause stack overflow.

The analysis from GUO et al. (2009) only considers the implied overhead of each
strategy, in which it concludes that help-first has less overhead than work-first. However,
it lacks of an accurate analysis of space requirements, which depends on the parallel
algorithm.

2.3.2 Heterogeneous Earliest-Finish-Time

TOPCUOGLU; HARIRI; WU (2002) describe the Heterogeneous Earliest-Finish-
Time (HEFT) algorithm, which is a scheduling algorithm for a bounded number of het-
erogeneous processors. We describe in this Section the problem scope of HEFT, and the
scheduling algorithm.

2.3.2.1 Scheduling Problem

The HEFT scheduling defines the application, the target computing environment,
and the performance criteria of scheduling. The application is represented by a DAG
G = (V,E) where V is the set of v tasks and E is the set of e edges between the tasks.
Each edge (i, j) ∈ E represents the precedence constraint. The computing environment
consists of a setQ of q heterogeneous processors connected in a fully connected topology.

Before presenting the objective function, it is necessary to define the EST and EFT
attributes, which are derived from a given partial schedule. EST (ni, pj) is the earliest
start time and EFT (ni, pj) is the earliest finish time of task ni on processor pj . For the
entry task nentry of a given task graph,

EST (nentry, pj) = 0. (2.3)

Given wi,j the estimated execution time of task ni on processor pj , and ci,k the com-
munication cost of the edge (i, k) which is to transfer data from task ni (scheduled in
pm) to task nk (scheduled in pn). For each task in the graph, the EFT and EST values
are computed recursively starting from the entry task, as shown in 2.4 and 2.5. In order
to compute the EFT of a task ni, all immediate predecessors tasks of ni must have been
scheduled.

EST (ni, pj) = max{avail[j], max
nm∈pred(ni)

(AFT (nm) + cm,i)}, (2.4)

EFT (ni, pj) = wi,j + EST (ni, pj), (2.5)

where pred(ni) is the set of predecessor tasks of task ni and avail[j] is the earliest time
at which processor pj is available for task execution. If nk is the last assigned task on
processor pj , the avail[j] is the time that processor pj completed the task nk and is avail-
able to execute another task. The inner max block in the EST equation returns the ready
time, i.e, the time when all data needed by ni is available at processor pj .

The objective of HEFT is to minimize the makespan (Cmax), or the schedule length,
of a task graph. After a task nm is scheduled on a processor pj , the earliest start time and
the earliest finish time of nm on pj is equal to the actual star time, AST (nm), and the
actual finish time, AFT (nm), of task nm, respectively.
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2.3.2.2 HEFT Algorithm

The algorithm has two major phases: a task prioritizing phase for computing the
priorities of all tasks and a processor selection phase for select the tasks in the order of
their priorities and scheduling each task on its “best” processor, which minimizes the
task’s finish time.

The search of an appropriate idle time slot of task ni on a processor pj stars at the
time equal to the ready time of ni on pj , which is the time when all input data of ni have
arrived at processor pj . HEFT has anO(eq) time complexity for e edges and q processors.
The algorithm is depicted in Algorithm 1.

Algorithm 1: Heterogeneous Earliest-Finish-Time.
1 Compute task prioritizing for all tasks by transversing graph upward, starting from

the exit task
2 Sort the tasks in a scheduling list by nonincreasing order of priority values
3 while there are unscheduled tasks in the list do
4 Select the first task, ni, from the list of scheduling
5 foreach processor pk in the processor set (pk ∈ Q) do
6 Compute EFT (ni, pk) value using the insertion-based scheduling policy
7 end
8 Assign task ni to the processor pj that minimizes EFT of task ni

9 end

2.3.3 Algorithms for Heterogeneous Systems

Many works in the literature propose scheduling strategies evolving accelerators. We
split this Section in two groups of related works: strategies restricted to GPUs, and online
scheduling on runtime systems.

2.3.3.1 Work Stealing on GPUs

CEDERMAN; TSIGAS (2008) compared four load balacing strategies to distribute
thread blocks among workers (streaming processors) of a GPU. The strategies are based
on a centralized queue with blocking operations, centralized queue with no-blocking op-
erations, centralized queue with static distribution, and task stealing. Task stealing has
modifications regarding the work stealing scheduler. The authors assume an initial work
distribution among workers and when they run out of work they try to steal from others.
The victim selection is performed in a round-robin fashion. According to their findings,
the task stealing with non-blocking operations was able to scale and outperformed static
distributions.

ZHOU et al. (2009) designed a Reyes renderer, called RenderAnts, using work steal-
ing on multi-GPU. In order to reduce inter-GPU transfers, they duplicate some computa-
tions and send all scene data to all GPUs at the beginning of the pipeline. Task stealing
follows a recursive data splitting scheme with adaptive granularity. When a subregion
has more than a given threshold of computing primitives and any other GPU is idle, the
subregion is split.

TOSS; GAUTIER (2012) study a lock-free work stealing scheduler embedded into a
GPU. It exploits two levels of parallelism: the first level with independent and coarse sub-
problems, and the second level with finer threads that cooperate for the same computation.
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Each worker is a SM with a work queue of first-level tasks. When a worker runs out of
work, it tries to steal randomly from another worker.

2.3.3.2 Online Scheduling

We relate here the works on scheduling algorithms for heterogeneous architectures.
Most of the strategies are designed in conjunction with runtime systems, whose we detail
in Chapter 3 on page 51.

AUGONNET et al. (2010) study strategies based on the HEFT scheduling algorithm.
They compare the impact of execution time (heft-tm) in addition to data transfers (heft-
tmdp) and and data prefetch (heft-tmdp-pr). The prefetch policy makes input transfers in
advance at the moment when a task is scheduled to a worker.

AYGUADé et al. (2009) describe the StarSs runtime system for multi-GPUs, named
GPUSs. It schedules tasks by centralized list scheduling according to the available GPUs.
From those available GPUs, the scheduling strategy maps tasks to the GPU that minimizes
data transfers. Recent versions of the GPUSs runtime called OmpSs (BUENO et al.,
2011, 2012) extend scheduling strategies by two policies: centralized with first-in first-
out (FIFO) strategy, and locality-aware. The locality-aware strategy of OmpSs computes
a locality score for each GPU at task creation. This score is based on the data on each
worker for execution of the new task. The main difference of these strategies is the use
of a local queue and a global queue, which contains tasks with no affinity score. An idle
worker looks for tasks into the local queue, then the global queue, and last it tries to steal
work from another worker. The strategies proposed by AYGUADé et al. (2009), BUENO
et al. (2011), and BUENO et al. (2012) have the limitation of strict usage of GPUs, while
CPUs are involved only in runtime routines.

PLANAS et al. (2013) study a scheduling strategy with task versioning similar to
StarPU on multi-CPU and multi-GPU systems. The scheduler at first distributes tasks
in round-robin to calibrate the performance of tasks for each worker. Next, it uses a
HEFT approach to reduce the finish time of tasks. The only novelty of this work is the
use of multi-version implementation for a target architecture. The programmer can give
multiple task implementations for a given architecture and the runtime will choose the
most efficient depending on the target worker.

HERMANN (2010) proposes a static and dynamic scheduling for iterative computa-
tions on multi-CPU. Based on the work of Laurent Pigeon (PIGEON, 2007), it expresses
a loop in a task graph, partitioned and redeployed at each iteration. First it applies a static
partitioning to group related tasks in the same partition and to create partitions that are
weakly dependent. After this initial partitioning, a work stealing approach is applied. The
stealing of tasks is decomposed in two phases: a partition level stealing, and a task level
stealing. An idle worker visits each worker trying to steal a ready partition to execute. If
it fails, the worker will try to steal a ready task.

The static and dynamic scheduling enforce data locality and reduce the total number
of steals. From this multi-CPU strategy, the multi-GPU has few changes (HERMANN
et al., 2010). The initial partitioning tries to minimize communications between workers.
In addition, to overcome the processing power differences of CPUs and GPUs, it con-
siders the execution time of each partition. Each partition has a ratio TCPU/TGPU that
is constantly updated taking into account the execution time from the previous iteration.
Partitions with TCPU/TGPU ratio below a given threshold execute on CPUs, otherwise on
GPUs. Since task stealing between partitions can lead to expensive memory transfers, the
second phase (task level stealing) is replaced by a locality guided work stealing based on
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the work of ACAR; BLELLOCH; BLUMOFE (2000). Each partition has a affinity list of
workers: a partition owned by a given worker has an other distant worker in its affinity list
if and only if this distant worker holds at least one task that interacts with the partition.

2.3.4 Discussion

Several authors have studied work stealing for shared-memory (HERMANN, 2010;
ACAR; BLELLOCH; BLUMOFE, 2000; BLUMOFE et al., 1995; BLUMOFE; LEIS-
ERSON, 1998; FRIGO; LEISERSON; RANDALL, 1998; GAUTIER et al., 2013; TCHI-
BOUKDJIAN; DANJEAN; RAFFIN, 2010; TCHIBOUKDJIAN et al., 2010; TRAORé
et al., 2008; ROCH; TRAORé; BERNARD, 2006) and distributed (QUINTIN; WAG-
NER, 2010; NIEUWPOORT; KIELMANN; BAL, 2000, 2001; RAVICHANDRAN; LEE;
PANDE, 2011; GUO et al., 2009; BLUMOFE; LISIECKI, 1997; DINAN et al., 2009;
GAUTIER; BESSERON; PIGEON, 2007; MIN; IANCU; YELICK, 2011) systems. In
addition, some scheduling strategies based on work stealing are used for GPU and multi-
GPU load balancing.

On the other hand, scheduling on heterogeneous systems does not have studies on
dynamic strategies. Most common strategies rely on cost models such as HEFT (AU-
GONNET et al., 2010) or centralized scheduling (AYGUADé et al., 2009; BUENO et al.,
2011, 2012). We note that both approaches have drawbacks. A cost model scheduling
depends on regular computations and does not adapt to load variations at runtime. Be-
sides, a centralized scheduling does not scale as the number of workers increase, and is
not suitable for fine-grained computations since a single queue of tasks may become a
bottleneck.

2.4 Summary

Despite the evolve of many techniques to reduce the burden of programmers, tuning
of GPU applications to exploit full potential of such architectural model relies on the pro-
grammer. Successful cases such as GPUs suggest that accelerators play an important role
in HPC in order to overcome challenges. Nonetheless, the Intel Xeon Phi coprocessor,
based on x86 ISA, emphasis throughput as well as transparency to the programmer. It pro-
vides well-known programming models for general-purpose processors such as OpenMP
and Intel Cilk Plus.

Task parallelism seems to be well-suited programming model with explicit paral-
lelism. Its association with data-flow dependencies offers a memory view independent
of underlying architecture. In addition, it allows to loose synchronization that is an es-
sential aspect to exploit parallelism and improve scalability on architectures with acceler-
ators (HERMANN, 2010; BUTTARI et al., 2009).

In the context of scheduling, little research has been done on dynamic scheduling for
heterogeneous architectures. Although work stealing is an efficient strategy with theo-
retical performance guarantee, it has also been known to be cache-unfriendly for some
applications due to randomized stealing.
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3 PROGRAMMING ENVIRONMENTS

The increasing usage of multicore processors and manycore accelerators in HPC evi-
dences the need to rely on programming models that abstract the underlying architecture,
in memory and processor view. Ideally, an application may unfold parallelism oblivious of
memory levels and available processors to compute. A programming model well-suited
for this purpose is task parallelism, described in the previous Chapter, that has explicit
parallelism and may have uniform memory view considering data dependencies to con-
struct a data-flow graph (DFG) (GALILEE et al., 1998). Therefore, a task will execute
only when data input is produced.

To exploit the potential of heterogeneous architectures, a runtime system plays an es-
sential role. It may provide a programming model and balance workload among process-
ing units at runtime. Besides, if tasks have data dependencies, a parallel program may be
oblivious to data transfers between disjoint address spaces since it describes intrinsically
the necessary transfer by data access modes.

We are interested here in programming environments for parallel programming over
heterogeneous machines improved with manycore accelerators. This Chapter first overviews
programming tools for shared-memory systems whose programming model includes tasks
parallelism (Section 3.1). We then present programming tools that target GPUs or Intel
Xeon Phi accelerators (Section 3.2).

3.1 Shared Memory Programming

3.1.1 OpenMP

OpenMP is a standard API for shared-memory parallel programming. It consists of a
set of compiler directives, library routines, and environment variables for building mul-
tithreaded parallel applications (CHAPMAN; JOST; PAS, 2007). A main concept of
OpenMP is incremental parallelism through the addition of parallel regions. The pro-
grammer adds parallel directives to the sequential code. In parallel regions, the program
forks additional threads to form a team of threads. The threads execute in parallel across
a region of code and, at the end, wait until the full team reaches this point and then join
back together.

A parallel region does not distribute the work by itself, being necessary the use of
work-sharing directives to specify how the work is to be shared among the executing
threads. Probably, the most common work-sharing directive is the for loop. Version 3.0
of OpenMP introduced dynamic task creation through task construct, which specifies
an unit of parallel work as an explicit task (AYGUADé et al., 2009), and synchronization
by taskwait construct. Figure 3.1 on the following page shows an example of the
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Fibonacci sequence using the task directive to create tasks dynamically.

Figure 3.1 – Example of the Fibonacci computation with OpenMP tasks.
1 void TaskFibo ( int* ptr, int n ) {
2 if (n < 2) {
3 *ptr = n;
4 } else {
5 int res1 =0;
6 int res2 =0;
7 #pragma omp task untied shared(res1) firstprivate(n)
8 TaskFibo( &res1, n-2);
9 #pragma omp task untied shared(res2) firstprivate(n)

10 TaskFibo( &res2, n-1);
11 #pragma omp taskwait
12 *ptr = res1 + res2;
13 }
14 }

In addition, OpenMP specifies data-sharing clauses to describe data access by all con-
current threads such as shared (shared by all threads) and private (local to each
thread). The untied directive tells to the runtime a new task can be executed by any
thread worker.

3.1.2 Cilk and Cilk++

Cilk is a multithreaded runtime system that extends the C language with simple key-
words to create and synchronize tasks. The programmer is responsible to expose paral-
lelism and exploit locality, and the runtime system is in charge of scheduling tasks on the
target platform.

The Cilk language has three keywords: cilk identifies a Cilk procedure that is the
parallel version of a C function; spawn executes a Cilk procedure in parallel; and sync
is a local barrier that suspends the procedure until all of its children have completed. Data
dependencies are implicit through return values and other values sent from one task to
another, which is called fully strict computation (BLUMOFE et al., 1995).

One classic example of a Cilk code is the recursive implementation of the nth Fi-
bonacci number computation. The sequential reference algorithm is shown in Figure
3.2a, and Figure 3.2b shows the Cilk version. It is not the optimal version of this algo-
rithm, yet it is a simple way to show how we can profit of parallelism with few changes in
the code. A Cilk program has the same semantics as the C program when Cilk keywords
are deleted, whose this C program is called serial elision or C elision.

In a similar way, Cilk++ is a C++ extension to express parallelism through keywords
cilk_spawn, cilk_sync, and cilk_for (LEISERSON, 2009). The last keyword
(cilk_for) is an additional feature over classic Cilk extensions allowing parallel loops
that are automatically parallelized through a recursive divide-and-conquer strategy. Be-
sides, FRIGO et al. (2009) describe the concept of Cilk++ hyperobjects to avoid determi-
nacy races in code with non-local variables. An example of hyperobject type is reducers
capable to provide a reduction mechanism without explicit locking of atomic updating.

Cilk and Cilk++ follow the same implementation philosophy described by FRIGO;
LEISERSON; RANDALL (1998). The compiler generates two clones of the same Cilk
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Figure 3.2 – Recursive implementation of the Fibonacci number computation (left) com-
pared to its Cilk version (right). Each recursive call with spawn creates a new task asyn-
chronously. The sync keyword is used to wait the previously created tasks and sums
their result.

(a) A sequential C program.
1 int fibonacci( int n

)
2 {
3 int x, y;
4 if( n < 2 )
5 return n;
6
7 x = fibonacci( n-1

);
8 y = fibonacci( n-2

);
9

10
11 return (x+y);
12 }

(b) A parallel Cilk program.
1 cilk int fibonacci( int n )
2 {
3 int x, y;
4 if( n < 2 )
5 return n;
6
7 x = spawn fibonacci( n-1

);
8 y = spawn fibonacci( n-2

);
9 sync;

10
11 return (x+y);
12 }

procedure: a fast clone and a slow clone. The fast clone is similar to a C procedure with
few modification, while the slow clone has full support for parallelism. When a task is
spawned, the fast clone runs. Whenever a thief steals a task, however, the task is converted
into its slow clone. Cilk runtime expects that the number of steals is small and the fast
clones to be executed most of the time.

The Cilk scheduler uses a work stealing strategy for load balancing. Idle processors,
called thieves, “steal” threads from busy processors, called victims. Each worker owns a
spawn deque – a double-ended queue (CORMEN et al., 2009, p. 236) – in that the worker
can insert or remove tasks on the tail end of its deque, but other workers (“thieves”) can
only remove from the head end. In its implementation, FRIGO; LEISERSON; RAN-
DALL (1998) propose the THE protocol to resolve the race condition when a thief tries
to steal the same task that its victim is attempting to pop. Its key idea is that operations
by the worker on the tail of its deque contribute to the work overhead, while operations
by thieves on the head contribute only to the critical path overhead, in accordance to the
work-first principle introduced in Section 2.3.1 on page 44.

3.1.3 Threading Building Blocks

Intel Threading Building Blocks (TBB) (REINDERS, 2007) is a C++ runtime library
without compiler support or language extensions. Its parallelism can be expressed in
terms of tasks, which are represented as instances of a task class, or using concurrent con-
tainer classes through generic interfaces. Most of TBB programming interface is focused
on data-parallel programming relying on generic programming. The development of In-
tel TBB is strongly inspired by Cilk, mostly on its scheduling strategy. TBB uses work
stealing to redistribute the work across processors.

An Intel TBB implementation of the nth Fibonacci number is shown in Figure 3.3
on the following page. The execute method represents the task code executed by the
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library, which spawns two new tasks and waits for their results. Its C++ programming
interface requires much more code to express the same functionality than compiled lan-
guages such as Cilk or OpenMP.

Figure 3.3 – Example of an Intel TBB task of the Fibonacci sequence.
1 class TaskFibo: public tbb::task {
2 public:
3 const int n;
4 int* const sum;
5
6 TaskFibo ( int n_, int* sum_ ) : n(n_), sum(sum_) {}
7
8 task* execute() {
9 if ( n < 2 ) {

10 *sum = n;
11 } else {
12 int x, y;
13 TaskFibo& a = *new (allocate_child())TaskFibo( n-1,

&x );
14 TaskFibo& b = *new (allocate_child())TaskFibo( n-2,

&y );
15 set_ref_count(3);
16 spawn (b);
17 spawn_and_wait_for_all(a);
18
19 *sum = x+y;
20 }
21
22 return NULL;
23 }
24 };

3.1.4 Athapascan/KAAPI

Athapascan is a parallel programming interface developed by the MOAIS project from
the INRIA/LIG. It relies on task parallelism and data dependencies expressed using ex-
plicitly shared data types (by default all data are local). Like Cilk, it supports recursive
parallelism to express divide and conquer algorithms. Additionally, Athapascan can ex-
ploit non-recursive parallelism by means of data dependency analysis. The Athapascan
syntax and semantic are described by GALILEE et al. (1998) and the technical report
of ROCH; REVIRE; GAUTIER (2003) gives the complete programming API.

A runtime environment, called KAAPI, offers an abstraction of the hardware architec-
ture, providing an uniform interface for parallel programming and communication (GAU-
TIER; BESSERON; PIGEON, 2007). The load balancing uses a work stealing approach
like done by Cilk, where an idle processor steals work from busy processors. It also offers
fault tolerance and distributed-memory support.



55

3.1.4.1 Programming Model

The Athapascan programming model relies on a DFG of task dependencies using the
notion of tasks and shared data. The high level API used to express data dependencies is
inspired by the Jade Parallel Programming Language (RINARD; SCALES; LAM, 1993).
Athapascan has basically two keywords: Shared and Fork. The Shared keyword
declares an object in the global memory, which can be accessed by any processor. The
Fork<Task> keyword creates a new parallel task Task, similarly to the spawn construct
of Cilk.

A task in Athapascan is a function whose signature contains all the data it shares
with other tasks. This signature also contains the access mode of each parameter : a
read-only parameter is declared using Shared_r while a write-only data is declared as
Shared_w. The program execution is driven by the data availability, according to these
access modes. A task requesting a read access must wait for all the previous writers before
starting the execution.

Combining recursive and data driven execution one can express more complex struc-
tures and better exploit the parallelism of algorithms. One example using the Fibonacci
number computation is shown in Figure 3.4. As done in Cilk, the Fibonacci number is
computed recursively, and tasks are spawned to compute each branch. However, the ex-
ecution is controlled by the DFG and not by the program recursion structure of the full
strict model (Section 3.1.2 on page 52).

The unrolling of the DFG is illustrated in Figure 3.5 on the following page through
the Fibonacci number computation (Figure 3.4 on the next page). The initial task is called
by the main thread and receives the output buffer as parameter (Figure 3.5(a)). When the
initial tasks are executed they create other tasks recursively (Figures 3.5(b) and 3.5(c)).
Inside the Fibonacci function the tasks are linked by data dependencies. For instance
the Sum tasks wait the end of both preceding Fibonacci functions.

Using DFG offers a more flexible parallel programming model compared to Cilk and
Intel TBB fully strict model. The Athapascan model allows a synchronization between
tasks that are at the same recursion level. For instance, tasks Sum and Fibonacci have
a data dependency to compute the sum of both Fibonacci tasks. To support synchro-
nization between tasks at a same level, TBB and Cilk provides a synchronization task,
which forces the application to wait for the end of all the previous spawned tasks. This
synchronization is used to wait for all the previous Fibonacci tasks before summing
them. In Fibonacci computation, this synchronization call does not impair performance
since in all the cases the summing depends on all the previous Fibonacci tasks.

3.1.4.2 KAAPI runtime structure

KAAPI is a runtime environment that implements the Athapascan API. It offers an
abstraction layer for the underlying hardware, along with data sharing, fault tolerance,
and task scheduling. Among the KAAPI functionalities this Section will be restrained to
the programming model and scheduling aspect.

Figure 3.6 on page 57 shows the hierarchical structure of KAAPI. One KAAPI pro-
cess is launched per computing node. Then, each KAAPI process is composed by system
threads called K-Processors. Usually there is one K-Processor per processor in the ma-
chine. The K-Processors execute the user level threads implemented by KAAPI. These
lightweight threads are called K-Threads, and contain a stack of tasks spawned by the
user. The K-Threads are non preemptive, i.e., their execution cannot be interrupted by
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Figure 3.4 – Recursive version of the Fibonacci sequence with Athapascan interface.
1 struct Sum {
2 void operator()( a1::Shared_w<int> res,
3 a1::Shared_r<int> a,
4 a1::Shared_r<int> b) {
5 res.write( a.read() + b.read() );
6 }
7 };
8
9 struct Fibonacci {

10 void operator()( a1::Shared_w<int> res, int n ) {
11 if( n < 2 )
12 res.write( n );
13 else {
14 a1::Shared<int> res1, res2;
15 a1::Fork<Fibonacci>()(res1, n-1);
16 a1::Fork<Fibonacci>()(res2, n-2);
17 a1::Fork<Sum>() (res, res1, res2);
18 }
19 }
20 };
21
22 void fibonacci( unsigned int n ) {
23 a1::Shared<int> res;
24 a1::Fork<Fibonacci>()( res, n );
25 a1::Fork<Print>()( res ); /* Print the result */
26 }

Figure 3.5 – Fibonacci dependency graph on Athapascan model.
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the runtime environment. This kind of hierarchical structure is used because creating and
switching context among KAAPI threads is much faster than switching context on system
threads.

Figure 3.6 – KAAPI runtime structure.
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3.2 Heterogeneous Architectures

This Section describes parallel programming models available in the literature for
heterogeneous architectures. It begins with the primarily programming models for GPUs
CUDA, OpenCL, and OpenACC. After, we show an overview of runtime tools such as
Charm++, StarPU, OmpSs, KAAPI, and Intel Xeon Phi software.

3.2.1 CUDA, OpenCL, and OpenACC

In this Section we overview three well-known programming tools for parallel pro-
gramming on GPU accelerators. While NVIDIA CUDA is a proprietary tool for NVIDIA
GPUs, OpenCL and OpenACC are open specifications that may have multiple implemen-
tations.

The Compute Unified Device Architecture (CUDA) is a general-purpose parallel
programming model for NVIDIA GPUs. A CUDA program consists of one or more
phases that are executed on either the host (CPU) or a GPU device in a fork-join strategy
like OpenMP parallel regions (CHAPMAN; JOST; PAS, 2007, p. 24). The phases that
exhibit little or no data parallelism are implemented in the host code, while whose phases
rich in data parallelism are implemented in the device code (KIRK; HWU, 2012). The
NVIDIA C Compiler (nvcc) separates the two at compile time. The host code is ordinary
C/C++ code, while the device code is an extended ANSI C with keywords for labeling
data-parallel functions, called kernels, and their associated data structures.

The parallelism is expressed by a hierarchy of thread groups. A CUDA thread is
a lightweight unit of execution that is identified using a thread index that can be one-
dimensional up to three-dimensional forming a thread block. There is a limit to the num-
ber of threads per block; however, a kernel can be executed by multiple equally-shaped
thread blocks. Blocks are organized into a one-dimensional up to three-dimensional grid
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of thread blocks.
In CUDA, the host and devices have separate address spaces. The host allocates

GPU memory with cudaMalloc() calls and transfers data to and from the GPU us-
ing cudaMemcpy calls. The GPU address space has three memory levels:

— Local memory is read-write and private to each thread;
— Shared memory is read-write and shared per-block thread;
— Global memory is read-write and accessible to all threads.

It also offers a subset of the texturing hardware that the GPU uses for graphics to access
texture and surface memory.

CUDA supports a number of features such as asynchronous execution, concurrency
with streams, event monitoring, unified virtual address space (UVA), and multi-device
support.

The Open Computing Language (OpenCL) is a standard framework that is man-
aged by the Khronos Group and offers both a device-side language and a host manage-
ment layer for devices in a system (GASTER et al., 2012). It provides task-based and
data-based parallelism, whose device-side language is designed to efficiently map to a
wide range of devices. This device-language, OpenCL C, is a restricted version of the
C99 language with extensions appropriate to execute data-parallel code on specialized
processor devices.

The unit of concurrent execution in OpenCL is a work-item, which can be mapped to
dimensions of input or output data as a n-dimensional range (NDRange). Work-items can
be organized in groups of equally-sized workgroups. An index space of N dimensions
requires workgroups of N dimensions; thus, a three-dimensional index space requires
three-dimensional workgroups. Work-items within a workgroup can perform barrier op-
erations to synchronize and have access to a shared memory address space, in a similar
way to the CUDA thread blocks. On the host side, the context container acts as a mech-
anism for host-device interaction. In addition, communication with a device occurs by
submitting commands to a command queue on the host.

Due to its support to multi-platform and multi-vendor portability, OpenCL has a more
complex programming API and device management (KIRK; HWU, 2012, p. 298). While
the OpenCL standard is designed to support portability across different devices, such
portability does not come for free. A portable OpenCL code will need to avoid optional
features that may allow applications to achieve more performance.

The OpenACC API provides a set of compiler directives and library routines to par-
allel programs on accelerators (KIRK; HWU, 2012, chap. 15). Its programming model
relies on compiler pragmas (#pragma acc) with directives for incremental develop-
ment of parallel programs. An OpenACC program has an execution strategy similar to
OpenCL and CUDA with a parallel region or kernel region to create and execute code in
an accelerator device.

Parallelism in an OpenACC device is organized as a hierarchy where a worker is
an execution thread and a group of workers is a gang. The OpenACC memory model
treats host and device memory as separated. Unlike CUDA, programmers do not need
to code explicitly data movements, they can just annotate which memory object need
to be transfered. The data clauses in OpenACC are copy_in (from host to device),
copy_out (from device to host), and copy (to copy in both directions).

More recently, OpenACC is in process of integration with OpenMP 4.0 to provide
OpenMP support for accelerators. The OpenACC founding members are part of the
OpenMP working group for accelerators (KIRK; HWU, 2012, p. 337).
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3.2.2 Charm++

JETLEY et al. (2010) extended the Charm++ runtime system to support GPUs with
the Charm++ GPU Manager. It allows the overlap of chare objects with the use of dif-
ferent CUDA streams for every chare executing on the GPU and delaying transfers from
CPU to GPU as far as possible. Users of GPU Manager define work requests that specify
the GPU kernel and any data transfer operations. The system controls the execution of
work requests to maximize overlapping of computations and data transfers. The system
returns control to the user upon completion of a work request through a callback object
specified by the user per work request. Figure 3.7 shows a simple example of a GPU
request on Charm++. The runtime calls kernelSelect at task execution passing a
workRequest with necessary arguments to the kernel execution. The workRequest
object at kernelSetup has more parameters such as input and output data, which are
omitted for the sake of space.

Figure 3.7 – A code example of the Charm++ GPU Manager with a task submission to a
GPU.
1 void kernelSetup(void *cb) {
2 workRequest *wr= (workRequest*) malloc(sizeof(

workRequest));
3 wr->callbackFn = cb; /* Callback function */
4 enqueue(wrQueue, wr); /* Enqueue this task to be

executed */
5 }
6
7 void kernelSelect(workRequest *wr) {
8 helloKernel<<<wr->dimGrid,wr->dimBlock,wr->smemSize

>>>();
9 }

VASUDEVAN; VADHIYAR; KALÉ (2013) improve the Charm++ GPU Manager by
a new framework on top of Charm++ called G-Charm. It schedules at runtime chare
objects between CPUs and GPUs based on the current loads and the estimated execution
time provided by previous executions. Its scheduling strategy, however, seems to not
consider data transfer costs in its decision. The memory layer of G-Charm keeps track
of chare buffers in order to reduce memory transfers. If a chare buffer is already present
on a GPU memory it will be reused in the future. In addition, it dynamically combines
multiple GPU kernels to reduce the cost of kernel invocations. Combining depends on
adjacent chares with adjacent memory regions at application level.

3.2.3 StarPU

StarPU is a runtime system providing a data management facility and an unified ex-
ecution model over heterogeneous architectures including GPUs and Cell BE proces-
sors (AUGONNET et al., 2009,?, 2011; AUGONNET, 2011). It offers a runtime API and
C language annotations designed into a GCC plug-in (COUTéR, 2013). StarPU program-
ming model relies on explicit parallelism by tasks with data dependencies and a memory
layer to abstract transfers among disjoint address spaces.

StarPU execution model relies on the use of codelet, which is a task description with
the input and output data. A codelet provides the means to express task dependencies
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and implementations of one task to different accelerators, being only necessary a specific
function to each accelerator. The execution of codelets are asynchronous and with no
order guarantee.

The data management facility provides a high level API that hides the complexity of
transfers from and to accelerators. StarPU introduces the notion of filters, an interface to
describe the data layout or to manipulate the sub-data. Each accelerator has a buffer that
describes the parameters of a task and the access mode.

The StarPU runtime also provides a set of scheduling policies from dynamic work
balance (eager policy) or based on performance models such as HEFT. On one hand, its
runtime does not provide performance guarantees using an eager policy that has no exten-
sions or improvements to heterogeneous systems. On the other hand, research on StarPU
clearly focus on performance models for task prediction and scheduling through HEFT
based algorithms. Previous works study the impact of different task prediction strategies
along with HEFT extensions such as data prefetch. Nonetheless, StarPU transfer predic-
tion lacks of more studies over its accuracy. It predicts data transfers based on an offline
sampling of bandwidth transfer between PUs.

Figure 3.8 on the facing page illustrates an example of vector scaling using the StarPU
API. First it uses the structure starpu_perfmodel to select the history-based perfor-
mance model along with the entry name for the scaling task. Next, it creates a starpu_codelet
structure, composed of two implementations (CPU and CUDA) and their function point-
ers. The vector scaling task is created at line 26.

3.2.4 StarSs and OmpSs

StarSs proposes a programming model to exploit task-level parallelism by OpenMP-
like pragmas (AYGUADé et al., 2009) and a runtime system to schedule tasks while
preserving dependencies. The StarSs extensions have the advantage to simplify the par-
allelization of sequential programs to GPUs (GPUSs) and Cell BE (CellSs). The runtime
is divided in three actors: main thread, helper thread and workers. The main thread gen-
erates tasks and the helper thread consumes them, mapping to the most suitable device.
Worker threads wait for available tasks and perform the necessary data transfers between
the main memory and the GPU memory. The StarSs scheduler is a variation of the work
pushing strategy where the master generates tasks while the helper thread pushes tasks on
workers’ pool.

OmpSs (BUENO et al., 2011, 2012; PLANAS et al., 2013; BUENO et al., 2013) is a
continuation of StarSs and extends SMPSs (BADIA et al., 2009) and GPUSs (AYGUADé
et al., 2009) by providing simpler code annotations with the capacity to have recursive
tasks. OmpSs does not offer any library API to write a program and the user depends of
the Mercurium compiler (BUENO et al., 2012).

Figure 3.9 on page 62 illustrates an example of the matrix multiplication on top of
OmpSs. The algorithm calls the method matmult_tile at line 21 and the runtime
identifies two task versions of this method by directive task at lines 2 and 10. Note
that this directive also describes data-flow dependencies on created tasks. Lines 1 and 8
identify the task’s target (smp or cuda), in addition to directive implements that gives
an alternative version for the specified target device.

The OmpSs runtime, called Nano++, offers different scheduling strategies, and most
results are reported on a centralized scheduling strategy with data locality on multi-CPU,
multi-GPU, and clusters. This centralized strategy may compromise scalability on fined-
grained algorithms. Its runtime provides memory coherence protocols such as write-
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Figure 3.8 – StarPU program example for vector scaling.
1 /* Here it selects the history-based performance model

*/
2 static struct starpu_perfmodel vector_scal_model = {
3 .type = STARPU_HISTORY_BASED,
4 .symbol = "vector_scale_model"
5 };
6
7 static starpu_codelet cl = {
8 .modes = { STARPU_RW }, /* access modes */
9 .where = STARPU_CPU | STARPU_CUDA,

10 .cpu_func = scal_cpu_func, /* CPU */
11 .cuda_func = scal_cuda_func, /* GPU */
12 .nbuffers = 1, /* number of arguments */
13 .model = &vector_scal_model
14 };
15
16 void compute(float* vector, int n){
17 starpu_data_handle vector_handle; /* vector handle */
18 starpu_vector_data_register(&vector_handle, 0, (

uintptr_t)vector, n, sizeof(float));
19
20 struct starpu_task *scal_task = starpu_task_create();
21 scal_task->cl = &cl; /* task codelet */
22 scal_task->callback_func = NULL;
23 scal_task->buffers[0].handle = vector_handle;
24 scal_task->buffers[0].mode = STARPU_RW;
25
26 int ret = starpu_task_submit(scal_task);
27 starpu_task_wait_for_all();
28 starpu_data_unregister(vector_handle);
29 }

back and write-through, but the write-back is on average always the best, as reported
by QUINTANA-ORTÍ et al. (2009). Recent versions of OmpSs include specific multi-
versions of the same task (PLANAS et al., 2013) and regions of strided and/or overlapped
data (BUENO et al., 2013).

3.2.5 KAAPI Extensions for Iterative Computations

Everton Hermann’s thesis studies a parallelization approach to tightly coupled com-
puting units composed of multi-CPU and multi-GPU (HERMANN, 2010). The work
relies on the open source SOFA physics simulation library, which supports various types
of differential equation solvers for single objects as well as complex scenes of different
kinds of interacting physical objects (rigid objects, deformable solids, fluids).

One of his contributions was the Multi-GPU Abstraction Layer introducing multi-
architecture data types. The multi-GPU implementation for standard data types intends to
hide the complexity of data transfers and coherency management among multiple GPUs
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Figure 3.9 – Example of matrix multiplication using multi-versioning with OmpSs anno-
tations.
1 #pragma omp target device (smp) copy_deps
2 #pragma omp task input([BS*BS]A, [BS*BS]B) inout([BS*BS]

C)
3 void matmul_tile(float *A, float *B, float *C, int BS) {
4 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
5 BS, BS, BS, 1.0, A, BS, B, BS, 1.0, C, BS);
6 }
7
8 #pragma omp target device (cuda) implements(matmul_tile)

\
9 copy_deps

10 #pragma omp task input([BS*BS]A, [BS*BS]B) inout([BS*BS]
C)

11 void matmul_tile_cuda(float *A, float *B, float *C, int
BS) {

12 cublasSgemm(’T’, ’T’, BS, BS, BS, 1.0, A, BS, B, BS,
1.0, C, BS);

13 }
14
15 void matmul(int mb, int nb, int kb,
16 float **A, float **B, float **C, int BS) {
17 int i, j, k;
18 for(i = 0; i < mb; i++)
19 for(j = 0; j < nb; j++)
20 for(k = 0; k < kb; k++)
21 matmul_tile(A[i*mb+k], B[k*kb+j], C[i*mb+j], BS);
22 }

and CPUs. In the context of shared-memory multiprocessors all CPUs share the same
address space and data coherency is managed by hardware. In opposite, even when em-
bedded in a single board, GPUs have their own local address space. It describes the
development of a distributed shared-memory (DSM) like mechanism to release the pro-
grammer from the burden of moving data between a CPU and a GPU or between two
GPUs.

When accessing a variable, the proposed data structure first queries the runtime envi-
ronment to identify the PU trying to access the data. Then it checks a bitmap to test if the
accessing PU has a valid data version. If so, it returns a memory reference that is valid in
the address space of the PU requesting data access. If the local version is not valid, a copy
from a valid version is required. It happens when a PU accesses a variable for the first
time, or when another PU has changed the data. This detection is based on dirty bits to
flag the valid versions of the data on each PU. These bits are easily maintained by setting
the valid flag of a PU each time the data is copied to it, and resetting all the flags but that
of the current PU when the data is modified.

Another contribution is the Multi-Implementation Task definition. It requires an in-
terface to hide the task implementation that is very different if it targets a CPU or a GPU.
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It provides a high level interface for architecture specific task implementations as demon-
strated in Figure 3.10. First a task is associated with a signature that must be respected by
all implementations. This signature includes the task parameters and their access modes
(read or write). This information will be further used to compute the data dependencies
between tasks. Each CPU or GPU implementation of a given task is encapsulated in a
functor object, which provides a clear separation between a task definition and its various
architecture specific implementations.

Figure 3.10 – C++ example of KAAPI multi-implementation task definition. In left is the
CPU implementation, and in right the GPU implementation.
struct TaskName: Task::Signature<double*>{};

template<> template<>
struct RunCPU<TaskName>{ struct RunGPU<TaskName>{
void operator()( double* a ) void operator()( double

* a )
{ /* CPU code */ } { /* GPU code */ }

}; };

A scheduler approach is also implemented. It first relies on a task partitioning that is
executed every time the task graph changes. Between two task graph partitioning, work
stealing is used to reduce the load imbalance that may result from work load variations due
to the dynamic behavior of the simulation. We detail its mixed approach in Section 2.3.3
on page 47.

3.2.6 Intel Xeon Phi Coprocessor Programming

The Intel Xeon Phi coprocessor is a throughput-oriented accelerator offering a broader
variety of programming models unlike other HPC accelerators. The card runs a Linux-
based operating system, called uOS, and has a x86 instruction set (see coprocessor details
in Section 2.1.4.4 on page 36). Programming for this coprocessor has basically two ap-
proaches:

— Offload model where a (host) program offloads work to a coprocessor;

— Native model where a program natively runs on processors or coprocessors and
may communicate by various methods.

Its software stack has combinations for both models (JEFFERS; REINDERS, 2013, chap. 7).
The Offloading model is supported by different programming tools such as Intel Cilk
Plus, OpenMP, and Intel TBB. Besides, these three tools have native execution support in
conjunction with MPI applications, in which MPI processes may run on processors and
coprocessors communicating by message-passing.

The Offload compiler and runtime of Intel Xeon Phi software (NEWBURN et al.,
2013) offer language pragma directives #pragma offload to offload computations
from a host processor to a coprocessor. The Offload compiler hides parallelism from pro-
grammer and manages data transfers and code execution, which rely on its runtime. Fig-
ure 3.11 on the next page shows an example of vector scaling using the Offload compiler.
Line 2 indicates that the for loop will be offloaded to an Intel MIC coprocessor (directive
target(mic)) and it has a data in read-write access mode (directive inout). Inside
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Figure 3.11 – Example of a scaling vector program using the Intel Offload compiler.
1 void scaling_vector(float* vector, int n, float factor)

{
2 #pragma offload target(mic) inout(vector:length(n))
3 #pragma omp parallel for
4 for(int i= 0; i < n; i++) {
5 vector[i] = vector[i] * factor;
6 }
7 }

the offload code block the program can use OpenMP directives such as parallel loops and
task parallelism (see Section 3.1.1 on page 51).

Recently, many other experiments have been done on the Intel Xeon Phi coprocessor.
CRAMER et al. (2012) evaluated the overhead of the offload directives and compared
with a 16-socket 128-core system composed of Intel Xeon X7550 processors. It con-
cluded that the overhead was low compared to large multicore systems.

The OmpSs technical report of LABARTA; BELTRAN (2013) from the EU FP7
project DEEP reported preliminary experiments on Cholesky factorization on pre-release
prototypes of the Intel Xeon Phi (Intel Knights Corner and Intel Knights Ferry) for matrix
of size 8192× 8192.

PENNYCOOK et al. (2013) reported the use of the SIMD instruction sets of Intel
Xeon processors and Intel Xeon Phi coprocessors to accelerate molecular dynamics (MD)
simulations. The use of an Intel Xeon Phi coprocessor with SIMD was 5.2x faster than
scalar execution.

EISENLOHR et al. (2012) reported comparisons on a dense linear QR factorization
in Intel Cilk Plus and OpenMP on a dual Intel Knights Ferry coprocessors connected
through PCIe to a dual 6-cores Intel Westmere X5680. They observed some degradation
of Intel Cilk Plus when the number of threads was higher than the hardware cores.

MAGMA (TOMOV; DONGARRA; BABOULIN, 2010) implements static schedul-
ing for linear algebra algorithms on heterogeneous systems composed of GPUs. Recently
it has included some hybrid methods that use a Sandy Bridge processor and an Intel Xeon
Phi coprocessor (DONGARRA et al., 2013).

HEINECKE et al. (2013) designed three versions of the Linpack benchmark for nodes
with Intel Xeon Phi coprocessors: native, single-node hybrid, and multi-node hybrid ver-
sion.

3.2.7 Other High Level Tools

This section presents programming tools with a higher level programming model in
order to hide architecture details.

HMPP (DOLBEAU; BIHAN; BODIN, 2007) is a set of compiler directives similar to
OpenMP, tools and software runtime that support parallel programming in C for hybrid
platforms. HMPP introduces the codelet concept that declares a computation or task to
be executed on the accelerator, being the only code block with architecture details.

Harmony (DIAMOS; YALAMANCHILI, 2008) is runtime system with dynamic schedul-
ing, out-of-order (OOO) execution, and programming model composed of compute ker-
nels and control decisions. Sequoia (FATAHALIAN et al., 2006) is a memory hierarchy
aware programming language to express explicitly locality and communication on top of
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clusters of hybrid machines. Merge (LINDERMAN et al., 2008) is a high-level parallel
programming language based on the map-reduce pattern for hybrid architectures. The
Merge framework abstracts most of the architectural characteristics by a compiler and
runtime support. As in Sequoia programming language, each work unit is a task, the
principal parallel construct.

Furthermore, there are many other solutions concerning stream processing as Brook (BUCK
et al., 2004), RapidMind (MCCOOL et al., 2006), PeakStream (PAPAKIPOS, 2007), and
StreamIt (THIES; AMARASINGHE, 2010).

3.3 Summary

In the context of multicore, shared-memory programming, several tools have stud-
ied task parallelism and dynamic scheduling by work stealing (BLUMOFE et al., 1995;
REINDERS, 2007; GAUTIER; BESSERON; PIGEON, 2007; LEISERSON, 2009). This
programming model favors granularity and asynchronicity that are essential to exploit
parallelism and scalability in modern multicore architectures. Nevertheless, little re-
search has been done on task parallelism with data dependencies with the exception of
related works on Athaspascan/KAAPI (GALILEE et al., 1998; GAUTIER; BESSERON;
PIGEON, 2007).

On accelerators data parallelism has been studied by several programming languages (KIRK;
HWU, 2012; GASTER et al., 2012). Most of parallelism is expressed through fork-join
in which a host application offload a computational block to an accelerator. Besides, there
are efforts on data dependencies to provide means of automatically transfer data such as
OpenACC and Intel Offload Compiler.

On the other hand, several runtime systems have studied task parallelism with data de-
pendencies systems over heterogeneous architectures (BUENO et al., 2011; AUGONNET
et al., 2009). They provide a programming model able to describe a DAG of tasks to run
over PUs. These runtime systems schedule tasks based on cost models or centralized
strategies derived from list scheduling. However, there are few studies on the effects of
data-flow programming models with dynamic scheduling strategies on heterogeneous ar-
chitectures equipped with accelerators. HERMANN et al. (2010) study the combination
of work stealing and graph partitioning. But their approach is restricted to the domain of
iterative applications.
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4 XKAAPI RUNTIME SYSTEM

XKaapi 1 is a novel implementation of the KAAPI runtime developed by the INRIA
MOAIS 2 team. More than a runtime, XKaapi is a fully featured software stack to program
parallel architectures. The core stack is written in C and is designed using a bottom up
approach: each layer is kept as specialized as possible to fit a specific need.

Currently, the runtime stack includes: a runtime supporting multicores and multipro-
cessors; a set of ABIs (QUARK (YARKHAN; KURZAK; DONGARRA, 2011), OpenMP
runtime libGOMP (BROQUEDIS; GAUTIER; DANJEAN, 2012)); a set of high level
APIs such as C++ API Kaapi++ and C API Kaapic (LEMENTEC; DANJEAN; GAU-
TIER, 2011); and a source-to-source compiler (LEMENTEC; GAUTIER; DANJEAN,
2011) based on the ROSE compiler framework.

In this Chapter, we introduce the XKaapi programming model and runtime system,
that are the basis of our contributions on heterogeneous systems. Section 4.1 overviews
XKaapi’s semantic and runtime. In Section 4.2, we introduce the Kaapi++ programming
interface that is used throughout the rest of this dissertation. Section 4.3 details the run-
time scheduler, the work stealing algorithm. In Section 4.4, we describe the XKaapi
data-flow mechanism.

4.1 Overview

The XKaapi semantic remains sequential like in its predecessor Athapascan (GALILEE
et al., 1998), but the KAAPI runtime has been redesigned (GAUTIER; BESSERON; PI-
GEON, 2007) and then specialized for multi-CPU/multi-GPU iterative applications (HER-
MANN et al., 2010). The proposal of XKaapi runtime is to target multicore architectures
and accelerators such as GPU and Intel Xeon Phi. Figure 4.1 on the next page shows the
scope of KAAPI (see Section 3.1.4 on page 54) and XKaapi on parallel systems.

The XKaapi task model (GAUTIER; BESSERON; PIGEON, 2007), as in Cilk (FRIGO;
LEISERSON; RANDALL, 1998), Intel TBB (REINDERS, 2007), OpenMP-3.0 (CHAP-
MAN; JOST; PAS, 2007) or StarSs (BUENO et al., 2012; AYGUADé et al., 2009), en-
ables non-blocking task creation: the caller creates tasks and continues the program ex-
ecution. A XKaapi program is composed of sequential code and some annotations or
runtime calls to create tasks. The parallelism in XKaapi is explicit, while the detection of
synchronizations is implicit: the dependencies between tasks and the memory transfers
are automatically managed by the runtime. The execution of a XKaapi program generates
a sequence of tasks that access data in a shared memory. From this sequence, the runtime

1. http://kaapi.gforge.inria.fr
2. http://moais.imag.fr

http://kaapi.gforge.inria.fr
http://moais.imag.fr
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Figure 4.1 – Comparison between KAAPI and XKaapi runtime.
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extracts independent tasks to dispatch them to the available PUs.
A task in XKaapi is a function call that returns no value except through the shared

memory and the list of its effective parameters. Depending of the API, tasks are created
using code annotation (#pragma kaapi task directive) if the XKaapi compiler is
used (LEMENTEC; GAUTIER; DANJEAN, 2011), or by library function (kaapic_spawn
call using XKaapi’s C API, or by calling the template function ka::Spawn), or by low
level runtime function calls.

4.2 Kaapi++ Interface

The Kaapi++ API is a C++ interface derived from the Athapascan API but with mod-
ifications at data sharing and task signature. Here we detail the Kaapi++ interface by
mapping a C++ function to a Kaapi++ code with tasks.

First, a task is associated with a signature that includes the number of effective pa-
rameters and their access modes. The code from Figure 4.2 illustrates an example of task
signature based on a C++ function signature. The F function has two effective parameters
in which the first is an input (n) and the second an output (result).

Figure 4.2 – Example of a Kaapi++ task signature from a C++ function.

C++ function signature Kaapi++ task signature

void F(
double n,
double* result

);

struct TaskF: public ka::Task<2>::
Signature<

double, /* input parameter */
ka::W<double> /* output parameter */

> {};

Second, the implementation of task TaskF from Figure 4.2 corresponds to a C++
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function, i.e., an object from a class having the operator() function specialized to
a specific architecture. The implementation for a given architecture corresponds to a
template specialization of the TaskBodyCPU or (not exclusive) TaskBodyGPU classes.
The template classes must be specialized with the UserTaskName, i.e. the name of the
class that has been used to defined the signature. The types and the number of effective
parameters must match the task’ signature. Each shared data of the effective parameters
has to be enclosed in a ka::pointer type according to its access mode. The mapping
from C++ function to a Kaapi++ task is shown in Figure 4.3. The input parameter n does
not change, while the output argument result from a pointer type double* requires a
ka::pointer_w class type.

Figure 4.3 – Mapping of a C++ function to a Kaapi++ task.

C++ function definition Kaapi++ task body specialization

void F (
double n,
double* result

){

*result = n*n+1;
}

template<> struct TaskBodyCPU<TaskF>
{

void operator() (
double n,
ka::pointer_w<double> result

){

*result = n*n+1;
}

};

Similarly to Athapascan (ROCH; REVIRE; GAUTIER, 2003), Kaapi++ has two ac-
cess types: immediate and postponned. By default the access type of an object is imme-
diate meaning that a task may directly access the object at execution time. On the other
hand, an access type is postponned (access mode suffixed by “P”) if the task will not
directly perform an access on the object. Instead, it will create other (recursive) tasks that
may access this object. The available access modes in Kaapi++ are:

— ka::W<T> for write access mode, meaning that the task will write a new value of
type T.

— ka::R<T> for read access mode, meaning that the task will only read the previous
value of type T, without possibility to modify the data.

— ka::RW<T> for exclusive access mode, meaning that the task will read or write a
value of type T.

— ka::CW<T> for concurrent write access mode, meaning that the task will write a
value of type T with accumulation law.

Figure 4.4 shows the conversion rules between task’s signature definition and Kaapi++
task implementation.

The mapping of C++ function call to Kaapi++ task creation is illustrated in Figure 4.5
on the next page. The template function ka::Spawn<T> is a non-blocking call that
creates a XKaapi task in a help-first policy. Note that in this case we do not need to
modify the argument’s types at creation time. Next, Kaapi++ function ka::Sync blocks
execution until all tasks execute respecting the tasks’ precedence. In this case both tasks
can not execute in parallel because of a true dependency on results object (read-after-
write dependency).



70

Figure 4.4 – Kaapi++ Conversion rules between task’s signature and task body arguments.

type of signature parameter body definition’s parameter type
T T
T const T&

ka::R[P] < T > ka::pointer_r[p] < T >
ka::W[P] < T > ka::pointer_w[p] < T >
ka::RW[P] < T > ka::pointer_r[p]w[p] < T >
ka::CW[P] < T > ka::pointer_cw[p] < T >

Figure 4.5 – Example of Kaapi++ task creation.

C++ function calls Kaapi++ task creation

F(n, &result);
Print(&result);

ka::Spawn<TaskF>()(n, &result)
;

ka::Spawn<TaskPrint>()(&result
);

ka::Sync();

Kaapi++ also provides multi-versioning of a task implementation based on the work
of HERMANN et al. (2010). Each CPU or GPU implementation is encapsulated in a
functor object, which must respect its task signature. This concept of multi-versioning
and task implementation allows a clear separation between the task definition and its
implementations. Moreover, the access modes in task’s signature allow the runtime to
automatically take care of memory transfers. Figure 4.6 shows an example of a task with
CPU (TaskBodyCPU) and GPU (TaskBodyGPU) implementations conforming to its
signature (Figure 4.2).

Figure 4.6 – Example of Kaapi++ multi-versioning with CPU and GPU implementations.

Kaapi++ CPU version Kaapi++ GPU version

template<>
struct TaskBodyCPU<TaskF> {
void operator() (

double n,
ka::pointer_w<double>

res
)
{
/* CPU implementation */

}
};

template<>
struct TaskBodyGPU<TaskF> {
void operator() (
ka::gpuStream stream,
double n,
ka::pointer_w<double>

res
)
{
/* GPU implementation */

}
};

The runtime represents multi-versioning through a task format containing signature
information and task implementations. The first consists of access modes and parameter
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types, while the second has a pointer to each task implementation. XKaapi expects at least
the CPU implementation of a task signature. At task execution the runtime will execute
the signature’s implementation based on the current worker type, i.e. CPU or GPU.

We note, however, that the code inside a GPU implementation is not compiled nor
verified by XKaapi. Kaapi++ interface allows to include GPU specific code, such as
CUDA, if and only if the application is compiled by a GPU compiler. An application with
CUDA extensions within a GPU task should be compiled by NVIDIA CUDA compiler
nvcc since it also support C++ code.

4.3 Scheduling by Work Stealing

The XKaapi runtime implements work stealing inspired by Cilk design described
by BLUMOFE et al. (1995) and FRIGO; LEISERSON; RANDALL (1998). Thanks to
Cilk, the work stealing technique has become popular and is often considered when it
comes to dynamically balance the work load among PUs. The work stealing principle
can be synthesized as follows. An idle thread, called a thief, initiates a steal request to a
random selected victim. On reply, the thief receives a copy of one ready task, leaving the
original task marked as stolen. Coherency between a thief and its victim is ensured by a
Dijsktra-like protocol from FRIGO; LEISERSON; RANDALL (1998).

The XKaapi runtime creates a system thread for each worker, which is in general a
processor core. A thread creates tasks and pushes them on its own work queue, which is
represented as a stack. The enqueue operation is very fast, typically about ten cycles on
the last x86/64 processors (BROQUEDIS; GAUTIER; DANJEAN, 2012). As for Cilk, a
running XKaapi task can create child tasks, which is not the case for the other data-flow
programming tools previously mentioned (YARKHAN; KURZAK; DONGARRA, 2011;
AYGUADé et al., 2009; AUGONNET et al., 2009), except the recent StarSs extension
OmpSs (BUENO et al., 2012). Once a task ends, the thread executes its children following
a FIFO order by popping tasks from its own work queue. During task execution, if a thread
finds a stolen task, it suspends its execution and switches to the work stealing scheduler
that waits for dependencies to be met before resuming the task. Otherwise, and because
sequential execution is a valid order of execution (GALILEE et al., 1998; GAUTIER;
BESSERON; PIGEON, 2007), tasks are performed in FIFO order without computation
of data-flow dependencies.

The main difference between XKaapi and other software (AUGONNET et al., 2009;
BUENO et al., 2012; YARKHAN; KURZAK; DONGARRA, 2011) is that XKaapi com-
putes data-flow dependencies only when an idle thread searches for a ready task. Comput-
ing data-flow dependencies during steal operations reduces the overhead of normal task
execution in recursive programs where the number of steals is dependent of the critical
path. This concept follows the work-first principle (FRIGO; LEISERSON; RANDALL,
1998): at the expense of a larger critical path, XKaapi moves the cost of computing ready
tasks from the work performed by the victim during task’s creation to the steal operations
performed by thieves.

Thanks to our approach, the classical fine-grained recursive Fibonacci in a data-flow
implementation shows an overhead T1/Tseq of about 10 (BROQUEDIS; GAUTIER; DAN-
JEAN, 2012), which is of the same order as Cilk or TBB that do not handle data-flow de-
pendencies. In XKaapi, the cost of task creation is several orders of magnitude lower than
in StarPU (AUGONNET et al., 2009), StarSs (AYGUADé et al., 2009) or OmpSs (BUENO
et al., 2012).
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4.3.1 Runtime Data Structures

The XKaapi runtime represents a worker stack by activation frames inspired by the
Cilk runtime (FRIGO; LEISERSON; RANDALL, 1998; FRIGO et al., 2009). Each in-
stance of a XKaapi task creates an activation frame at runtime. A running task creates
an instance of an activation frame and pushes new tasks and their arguments to it. An
activation frame is composed of:

— data stack pointer (sp_data) – the next available position in the data stack, which
grows from the bottom to the top;

— stack pointer (sp) – the next available task position at the bottom of the task stack,
which grows from the top to the bottom;

— current task (pc) – it points the next ready task to execute, from the point of view
of the current worker. It executes from the top (least pushed task) to the bottom
(last pushed task).

— task list (tasklist) – a list of tasks with calculated dependencies. This mechanism
is explained in Section 4.3.3.

Each XKaapi worker has a thread context allocated at execution time. The thread
context provides storage for task stack, which is a set of activation frames, and data stack
in a contiguous block of memory. Its fields are:

— data stack (sp_data) – storage for data arguments;
— activation frame stack (stackframe) – storage for the activation frames of tasks;
— stack frame pointer (sfp) – it contains information about the current frame (pc, sp,

etc).
Both stacks grow in opposite directions inside a continuous memory block, provided by
the thread context. The task stack grows from the top to the bottom, and the data stack
grows from the bottom to the top. A XKaapi thread context is full when the stack pointer
(sp) is equal to the data stack pointer (sp_data). The runtime guarantees that an allocation
request in one stack (data or task) returns a contiguous block of memory.

4.3.2 Concurrent Steal Requests

If a program is highly parallel, i.e. T∞ � T1, then the number of steal operations
per thread remains in order O(T∞) which is low. In that case, the cost of computing
data-flow, perhaps multiple times if several idle threads iterate over the same queue, is
negligible with comparison to systematic computation on task creation. Otherwise, if the
frequency of steal operations increases, XKaapi tries to aggregate multiple requests to the
same victim.

XKaapi aggregation protocol elects one “thief” worker to reply to all steal requests.
This aggregation strategy reduces the number of steal requests and the computing of data-
flow dependencies from k steal requests to a less costly operation requesting k ready tasks.
HENDLER et al. (2010) give a theoretical analysis and show a reduction of the total steal
request number. In addition, Tchiboukdjian et al. (TCHIBOUKDJIAN; GAST; TRYS-
TRAM, 2012) propose a theoretical analysis of work stealing with task dependencies,
considering a XKaapi-like protocol.

4.3.3 Reduction of Steal Overhead

In order to reduce the cost of computing ready tasks, XKaapi implements an optimiza-
tion to compute ready tasks at steal operation. The runtime attaches to the worker’s victim
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stack an accelerating data structure for steal operations. The runtime switches to this new
structure when the cost becomes important, especially when the victim’s stack contains
many tasks, as for instance in blocked linear algebra algorithms (BUTTARI et al., 2009).

In a steal operation, the scheduler computes a list of tasks’ successors from data-flow
dependencies and attaches it to the worker’s stack. The successors of a task are tasks with
true dependencies with the task. Subsequently, using the successors list, activated tasks
are pushed directly into a ready task list. If new tasks are created, the scheduler computes
a new list of their successors. Therefore, the search for a ready task, which would be
proportional to the number of tasks in the stack (and to the number of task arguments k
in order to computer their dependencies), switches to constant time (access to the first
element of the list of ready tasks). Consequently, subsequent steal operations in a thread
with a ready task list have lower cost. This optimization moves the overhead of computing
ready tasks from each steal operation to the steal operation that detects new tasks in the
stack.

This optimization is also possible by the Kaapi++ interface that provides a task at-
tribute ka::SetStaticSched(). Indeed, XKaapi creates an embedded task that will
calculate dependencies and attaches the list of ready tasks using the same algorithm from
the steal operation. In Appendix B on page 153 we detail an example of the task attribute
in the Cholesky algorithm.

4.4 Data Flow Computation

In XKaapi runtime, tasks share data if they have access to the same memory region.
A memory region is defined as a set of addresses in the process virtual address space. The
user is responsible for indicating the mode each task uses to access memory: the main
access modes are read, write, reduction or exclusive (read and write).

During a steal operation, the thief thread computes true dependencies (read after
write) between tasks according to the access modes. At the expense of memory copy, the
scheduler may solve false dependencies (write after read and write after write) through
variable renaming. Algorithm 2 on the next page shows a simplified version of XKaapi
data-flow computation. It has as input the stack of a worker’s victim pstacki , and output a
ready task t. The algorithm maintains the last access mode to a specific shared variable,
defined as alast, through a hash table indexed by its memory address. Each access in write
or exclusive mode produces a new data version, which creates a true dependency.

4.4.1 DFG Example

Figure 4.7 on page 75 illustrates a code fragment to compute the matrix multiplication
using the Kaapi++ API. Each parameter ri, rj, rk of type ka::rangeindex cor-
responds to a range of indexes. The data type ka::range_2d is an abstraction to view
a memory region as a 2D array. A construction such as A(ri,rk) represents the sub-
matrix of elements from position (i,k) to (iblocksize,k+blocksize)+ with the same
leading dimension size of A (by method A->lda()).

Figure 4.8 on page 75 shows an example of a XKaapi DFG from the blocked matrix
product algorithm of Figure 4.7. Each object of the DFG represents:

— orange diamond – a shared data instance in which we use labels to illustrate the
matrix tile, such as A(i,j);

— pink square box – an access to a shared object creating a data version, displayed



74

Algorithm 2: Data-flow computation in XKaapi.
Input : victim stack pstacki

Output: ready task t

1 for frame← top frame of pstacki to bottom frame of pstacki do
2 for t← top task of frame to bottom task of frame do
3 foreach shared data di of task t do
4 ai ← access mode for di
5 alast ← last access mode to di
6 if ai is postponned access type then
7 mark ai as ready dependency
8 end
9 if alast is void or ai is write-only access then

10 mark ai as ready dependency
11 end
12 if ai == alast and ai is read access then
13 mark ai as ready dependency
14 end
15 if alast is void or ai has write access then
16 alast ← ai
17 end
18 end
19 if all shared arguments of t are ready then
20 return t
21 end
22 end
23 end
24 return nil

by v. 0 for initial version;

— green ellipse – a task, in this example the GEMM for TaskGEMM.

Dependencies between objects are represented as arrows in the DFG. Standard arrows
into tasks are read dependencies, while arrows with a diamond tail have write access.
Dotted lines indicate the sequence of data versions; in our example, they connect nodes
for C tiles.

4.5 Summary

In this Chapter we detailed the XKaapi runtime and programming model. As suc-
cessor of Athapascan/KAAPI, XKaapi has different design choices at runtime level in
order to efficiently run on multicore architectures and to reduce overhead on fine-grained
algorithms.

The programming model is similar to Athapascan, but it dictates that tasks share data
having access to the same memory region. The Kaapi++ API adds the concept of task
signature that specifies the number of arguments and access modes. In addition, Kaapi++
concept of multi-versioning allows a clear separation between the task definition and its
implementations.
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Figure 4.7 – Simplified example of a Kaapi++ blocked matrix product.
1 template<> struct TaskBodyCPU<TaskGEMM> {
2 void operator() (
3 ka::range2d_r<double> A, ka::range2d_r<double> B,
4 ka::range2d_rpwp<double> C
5 ){
6 for( i=0; i < N; i+= blocksize ){
7 ka::rangeindex ri(i, i+blocksize);
8 for( j=0; j < N; j+= blocksize ){
9 ka::rangeindex rj(j, j+blocksize);

10 for( k=0; k < N; k+= blocksize ){
11 ka::rangeindex rk(k, k+blocksize);
12 ka::Spawn<TaskGEMM>()( A(ri,rk), B(rk,rj), C(ri,

rj) );
13 }
14 }
15 }
16 }
17 };

Figure 4.8 – A XKaapi DFG of the blocked matrix product.
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The XKaapi runtime reduces costs mainly using activation frames and work stealing
optimizations. Concurrent steal requests and on-demand ready task list provide provably
optimizations to our work stealing scheduler (TCHIBOUKDJIAN; GAST; TRYSTRAM,
2012). Besides, the allocation of one stack for data and activation frame in a continuous
block of memory allows constant time operations, instead of queues of memory blocks
like in KAAPI. However, the current XKaapi mechanism of stack allocation does not
support on-demand allocation when the stack is full.

The standard version of XKaapi does not have support for heterogeneous systems,
even if the Kaapi++ API predicts task multi-versioning. HERMANN et al. (2010) report
the first experiments on data-flow computations on multi-GPU for iterative computations.
However, its strategy does not provide a generic design of work stealing with multi-GPU
scheduling.
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5 RUNTIME SUPPORT FOR MULTI-GPU ARCHITECTURES

The works in this Chapter were published in LIMA et al. (2012) and GAUTIER et al.
(2013).

In heterogeneous systems with accelerators such as GPUs, it is essential a runtime
system to abstract hardware details and offers a programming model able to express par-
allelism with few architecture details. The runtime has to overcome challenges such as a
programming model, a memory view of the system, and scheduling.

In this Chapter, we describe our first contribution of this thesis. We detail the XKaapi
runtime extensions for heterogeneous architectures composed of multi-CPU and multi-
GPU. The extensions implement a programming model that offers asynchronous execu-
tion of GPU tasks and abstracts memory details. Algorithms on top of XKaapi describe
the execution flow through the task dependencies and the runtime decides the target re-
source (CPU or GPU) and performs memory transfers as necessary. Our current version
supports NVIDIA CUDA and it relies on the features of recent GPUs such as Fermi and
Kepler models.

The remainder of this Chapter details the features to support multi-GPUs in XKaapi
by Kaapi++ annotations (Section 5.1), runtime workers with GPUs and asynchronous
execution (Section 5.2), concurrent GPU operations (Section 5.3), memory management
(Section 5.4), and scheduling (Section 5.5). We conclude with the experimental results
(Section 5.6) on the Idgraf heterogeneous architecture.

5.1 Kaapi++ User Annotations

XKaapi provides for programmers the concept of user annotation to pass scheduling
hints in the Kaapi++ API. Its goal consists in advising the scheduler that a task is more
efficient on a certain processor type, since CPUs and GPUs have different processing
power. The main annotation for scheduling strategies on heterogeneous architectures is
the SetArchitecture (or SetArch). The SetArch annotation restricts a task to a
specific architecture type (CPU or GPU) and the runtime shall comply with this condition.
Thus, a task with attribute CPU (ka::ArchHost) or GPU (ka::ArchCUDA) will not
be executed by a worker of different type, allowing CPU-only and GPU-only tasks.

An example of scheduling hints by user annotations is illustrated in Figure 5.1 on the
following page. It creates two independent tasks in which the first executes on any CPU
(line 2) and the second on any CUDA GPU (line 5). Appendix B on page 153 gives a
complete example of the Cholesky factorization with user annotations.

We note that only CPU tasks have support for recursive task creation. Recursive
support from GPU tasks would demand a finer control of memory regions, which was
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Figure 5.1 – Example of scheduling hints in the Kaapi++ API.
1 /* CPU-only task */
2 ka::Spawn<TaskOnlyCPU>( ka::SetArch(ka::ArchHost) )( /*

*/ );
3
4 /* GPU-only task */
5 ka::Spawn<TaskOnlyGPU>( ka::SetArch(ka::ArchCUDA) )( /*

*/ );

previously studied by BUENO et al. (2013).

5.2 GPU workers and Task Execution

Our runtime for multi-GPU dedicates a CPU core to manage a target GPU in the same
way as other runtime tools such as OmpSs and StarPU. Figure 5.2 illustrates the execution
mechanism of XKaapi over three computing units (workers): two CPUs and one GPU.
The CPU cores become CPU workers and execute CPU computations (TaskBodyCPU
code), while the GPU core becomes a GPU worker and does not compute CPU tasks. This
worker is dedicated to find ready tasks and to send computations to the GPU. Besides,
the core executes all host code to manage the GPU such as memory management and
execution control.

Figure 5.2 – Runtime structure of XKaapi with multi-GPU. A core is dedicated to control
a target GPU.
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push pop

Core Core GPU

push pop push pop

CPU 
tasks

CPU 
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For each task executed on a GPU, the runtime first requests memory from our software
cache and transfers the input data. XKaapi basically inserts prologue and epilogue hooks
before and after task execution, respectively, to perform those requests. The software
cache request may result in a memory allocation under the availability of GPU memory
for new data. The runtime assumes that the GPU task implementation launches the GPU
kernels asynchronously.

XKaapi has a mechanism of software cache to handle memory allocation and consis-
tency (Section 5.4). Data transfers and kernels on GPU are handled asynchronously by an
extension of CUDA streams in order to abstract the control flow of GPUs (Section 5.3).
Once a task implementation (TaskBodyGPU) launched computations on a GPU, XKaapi



81

scheduler will select the next ready task to execute by sending its input data in advance in
order to overlap data transfer with kernel execution (Section 5.3). Data transfers and ker-
nel invocation on a GPU are handled asynchronously as well as the completion of these
operations.

5.3 Concurrent Operations between CPU and GPU

Recent GPUs such as NVIDIA’s Fermi allow new techniques to explore asynchronism
in multi-GPU systems. Fermi GPUs have one execution engine and two copy engines ca-
pable of concurrent execution and transfers (two-way host-to-device and device-to-host),
under the condition that no explicit nor implicit synchronization occur. This Section de-
tails how we exploit these capabilities.

XKaapi has an execution strategy for GPUs that avoids CUDA’s implicit synchro-
nizations and exploits concurrent memory transfers in the two ways along with kernel
execution. It splits the execution of a GPU task in three basic operations: host-to-device
input transfers (H2D), TaskBodyGPU execution (i.e. launch of CUDA kernels) (K), and
device-to-host output transfers (D2H).

5.3.1 Kstream Structure

Since concurrency between data transfers and kernel launches must use CUDA streams,
we define a new data structure, called kstream, that encapsulates three types of CUDA
streams: a stream for host-to-device transfer, a stream for kernel execution and a stream
for device-to-host transfer. The kstream structure allows to insert a request for one of the
three types it handles (H2D, K, or D2H).

A callback function and its argument can be specified for each request insertion.
Moreover, after each request insertion, the kstream inserts a CUDA event to detect the
completion of the asynchronous operation. Once the kstream detects the event comple-
tion, it calls the callback function with its argument as parameter. It is the responsibility
of the client of the kstream structure to regularly poll for the completion of asynchronous
requests by calling a specific function.

This design allows concurrent execution between CUDA streams of each type. The
kstream represents three flows of FIFO ordered GPU operations whose execution are
independent from each other. The FIFO order is only respected among operations of the
same type (H2D, K or D2H). The callback mechanism permits to compose a sequence of
operations and it is typically used by the GPU work stealing algorithm: first to insert data
transfers for inputs of a task, and then to invoke the TaskBodyGPU when the transfer
ends. Our callback strategy permits H2D-K-D2H execution order and uses events to
ensure consistency. In addition, CUDA events are a lightweight mechanism to closely
monitor the device’s progress and avoid implicit synchronization.

The runtime does not require synchronization points in the TaskBodyGPU code; in-
deed, the programmer must be aware that synchronous operations can lead to “holes” in
the kstream pipeline so he must avoid them. It is important to note that implicit synchro-
nizations, such as device and page-locked memory allocations and GPU operations to the
default stream (named as 0), block other streams of the same device.

5.3.2 Sliding Window

Figure 5.3 on the next page illustrates the way our kstream structure allows to pipeline
concurrent operations on a Fermi GPU. XKaapi uses a sliding window strategy to limit
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the number of enqueued operations at each stream in the GPU. In our example, the sliding
window of Figure 5.3 has two operations for each computing stream.

Figure 5.3 – Sequential and concurrent operations in a recent GPU card.
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We empirically found that the best performance gain is obtained when having two
tasks being processed per GPU. Starting more tasks do not increase performance signif-
icantly and reduce the capacity to balance the work load, because GPU tasks can not be
aborted neither stolen after the start of a GPU transfer. In addition, a sliding window of
two operations by stream would guarantee the overlap of transfer and execution minimiz-
ing pipeline gaps.

5.4 Memory Management

Similar to a DSM, XKaapi memory management enables the use of different address
spaces, which are transparent to the programmer, and divides a heterogeneous system in
main memory (or host memory) and GPU device memory of each card. The runtime
keeps track of physical addresses of each data through a structure called Kaapi Memory
Data (kmd).

Each instance of a kmd associates one memory address on each address space, i.e.,
one CPU memory address and one GPU memory address for each card, or null if the
data is not present in the corresponding address space. Each address space maintains the
kmds that belong to it, and performs kmd queries in linear time O(n) through a hash table
indexed by the memory pointers contained in this space. Optimize this query is essential
to reduce data consistency’s overheads.

Figure 5.4 on the facing page illustrates a simplified version of kmd structure for a
shared data argument of a hypothetical XKaapi task. It has basically three fields to track
the pointer values for each address space (data), a bitmap to track which address space
has a valid valid copy (valid_bits), and a bitmap to track which address space has a pointer
allocated previously (add_bits). In this example the host and GPU 1 have a pointer to this
shared data. We protect bitwise operations on the bitmaps by atomic built-in functions of
C compilers such as GCC.

The designed memory management is divided in two main components: software
cache and consistency mechanism.
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Figure 5.4 – XKaapi kmd structure to track valid replicas of a shared data.
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5.4.1 Software Cache

XKaapi manages GPU memory through a software cache, based on the Least Recently
Used (LRU) replacement policy. Each GPU worker maintains two FIFO queues in order
to keep track of allocated blocks. One queue stores blocks in read-only (RO) mode and the
other stores blocks in read-write (RW), write-only (WO) modes or concurrent write (CW)
modes. The first positions of the RO and RW/WO queues contain the last recently used
blocks, and the last positions the least recently used blocks. When a GPU task requires
to access a host memory block that is not present on the GPU, the runtime will allocate
memory and insert it in one of the two queues, based on its access mode, after it has
initiated the data transfer (for data in read access mode).

If the GPU memory is full, the software cache tries to evict the least recently used
memory block of its own queue (LRU policy). If possible, unused blocks are reused
without being freed. It verifies first at the end of the RO queue and, then, into the RW/WO
queue, respectively, if a memory block bigger or equal than the requested size is not
accessed anymore. Otherwise, it may free blocks from RO and RW/WO/CW queues,
respectively, as needed. This optimization avoids unnecessary CUDA calls. Furthermore,
the use of two queues (RO and RW/WO/CW) ensures that data produced by one task in
write mode has more chance to remain on the GPU than read-only data.

In order to enable asynchronous memory transfers with CUDA, user data is page-
locked through specific CUDA library function (cudaHostRegister). Similar strat-
egy exists for StarPU (AUGONNET et al., 2011), but it requires the use of strict data
structures provided by the StarPU runtime such as vector and matrix.

5.4.2 Consistency

Consistency is guaranteed by a lazy strategy using a write-back policy. Data transfers
to or from GPU occur only when a task accesses data and when the data is in an invalid
state in the target address space. This policy avoids unnecessary transfers, unlike write-
through policy (QUINTANA-ORTÍ et al., 2009; AUGONNET et al., 2011; BUENO et al.,
2012).

All transfer operations are asynchronous and rely on the use of our kstream data struc-
ture to signal the completion of operations. In the case of GPU-to-GPU transfers, the
runtime first performs a transfer device-to-host from a GPU with a valid copy, followed
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by a host-to-device transfer to the GPU that owns the task.
CUDA 4.1 or later includes transfers between two GPUs directly by DMA called peer-

to-peer device access. This feature is available when the function cudaDeviceCanAccessPeer
returns true. The current version of XKaapi does not make use of this feature, because
of its unpredictable behaviour concerning the GPU copy engines: with it, we could not
guarantee the coherence of concurrent data copies, nor their overlapping with a kernel
execution.

5.5 Runtime Scheduling

The XKaapi version for multicore architectures implements the work stealing sched-
uler based on Cilk and has specific optimizations for fine-grained parallel algorithms,
which have been sketched in Chapter 4 on page 67. For each used GPU, or GPU worker,
the runtime launches a thread on the host machine that runs a modified work stealing
algorithm.

In addition, each CPU or GPU worker has a local queue named mailbox in which re-
mote workers can push tasks. Scheduling heuristics make use of this additional queue by
worker to improve locality based on different parameters. Yet, the local queue is not re-
stricted to work stealing scheduling and can be employed to schedule static distributions.

We designed in XKaapi the classic work stealing algorithm, inherited from previous
works on multicore architectures, and two scheduling heuristics for local optimization
based on meta-data information of memory consistency: data-aware (H1) and locality-
aware (H2).

5.5.1 Work Stealing

In comparison with original multi-CPU work stealing, multi-GPU work stealing adds
a new state in the task state diagram that corresponds to a task for which input data are
under transfer. The GPU worker polls regularly the completion of previous asynchronous
GPU operations.

A task that completes its execution, when the asynchronous kernel launch has com-
pleted, activates the successor tasks (according to the data-flow dependencies) that be-
come ready. These new ready tasks are pushed on the tasks’ queue attached to the current
GPU and they may be stolen by one CPU or another GPU.

Since GPU task execution is asynchronous, the end of a TaskBodyGPU code does
not guarantee the conclusion of its launched kernels or data transfers to the host memory.
The sliding window of concurrent operations also helps our work stealing scheduler be-
cause the number of enqueued GPU tasks is reduced and does not retain all ready tasks,
which can be stolen by other GPUs or CPUs. Activation of successor tasks occurs only
after the end of all launched kernels from a GPU task. However, modified data in the
GPU is not transfered back to the host memory. This mechanism favors our write-back
consistency policy detailed in Section 5.4 on page 82.

5.5.2 Data-Aware Work Stealing (H1)

The goal of our data-aware heuristic, also here named H1, is to reduce memory trans-
fers between host and devices in order to execute a ready task. It is similar to the classic
work stealing but considers meta-data information to reduce memory transfers. BUENO
et al. (2012) proposed a related scheduling strategy named locality-aware, but over a cen-
tralized scheduler.
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In our strategy, for each ready task to be pushed, the algorithm first goes through
every shared data argument of the task and searches for the workers where this data is
in valid state. If the argument is valid, it keeps track of the amount of valid data (bytes)
in this worker. The worker that owns the maximum number of data bytes in valid state
for this task is then chosen as target to run the task. The ready task will be pushed onto
the mailbox of the target worker, which would execute tasks from its mailbox before
becoming a “thief”. We note that a ready task pushed into the mailbox of a worker may
be stolen if a worker becomes idle.

In Algorithm 3 we illustrate our designed algorithm. It accumulates for each shared
argument the total number of valid bytes on each worker pj . At line 8 it sorts workers
by decreasing order of bytes and selects worker pj that minimizes data transfer to execute
task n.

Algorithm 3: Data-aware work stealing to reduce data transfers.
Input : ready task n
Output: target worker pi

1 foreach shared argument di of task n do
2 foreach worker pj do
3 if di is in valid state on the memory node of worker pj then
4 totalj ← totalj+ size in bytes of di
5 end
6 end
7 end
8 pi ← worker j from totalj that has the maximum number of bytes in valid state
9 return pi

5.5.3 Locality-Aware Work Stealing (H2)

The goal of our locality-aware, also named here H2, is to reduce invalidations of data
replicas based on an owner-computes rule (OCR). This heuristic is similar to the approach
proposed by ACAR; BLELLOCH; BLUMOFE (2000), but with an automatic scheme to
(locally) reduce the number of cache invalidations instead of the explicit code annotation.
GUO et al. (2010) also propose a similar locality heuristic.

Our locality-aware strategy searches a shared data argument that has write or exclusive
access mode. It pushes a ready task to the mailbox of a worker (CPU or GPU) that has
a valid copy of this argument (i.e output argument). If more than one worker is eligible,
then the scheduler simply selects a worker at random. We note that a ready task pushed
into the mailbox of a worker may be stolen if a worker becomes idle.

We show our algorithm in Algorithm 4 on the following page. It goes through each
shared argument of a task n and tests the access mode. If the argument has write access,
it queries to the memory management which worker has a valid copy of di. The algorithm
returns the local (current) worker plocal if no worker or no write argument are found.

5.6 Experiments

The goal of our experiments is to evaluate the XKaapi runtime extensions for hetero-
geneous architectures composed of multi-CPU and multi-GPU. We evaluate:
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Algorithm 4: Locality-aware work stealing to reduce cache invalidations.
Input : ready task n
Output: target worker pi

1 foreach shared argument di of task n do
2 ai ← access mode for di
3 if ai has write access then
4 pi ← a worker with di in valid state
5 return pi
6 end
7 end
8 return plocal

— XKaapi ability to overlap communication with task execution (Section 5.6.3);

— Single-GPU and multi-GPU performance (Section 5.6.4);

— Comparison of scheduling heuristics (Section 5.6.5);

— The impact of CPUs to improve performance (Section 5.6.6).

In each experiment, we show in the x-axis the number of resources as the number of
GPUs or the number of CPUs and GPUs for each execution. We employ this notation to
clearly distinguish the number of computing CPUs and GPUs at runtime. Since XKaapi
dedicates a CPU to manage a GPU, the number of computing CPUs is the number of total
CPUs minus the number of GPUs. Each result is a mean of 30 executions. The 95%
confidence interval is represented on the graphs.

5.6.1 Platform and Environment

All experiments have been conducted on a heterogeneous, multi-GPU system, named
“Idgraf” (see Section 2.1.5 on page 37). Figure 5.5 illustrates the hardware topology of
Idgraf with two hexa-core CPUs and eight Tesla C2050 GPUs.

Figure 5.5 – Idgraf hardware topology for multi-GPU experiments.
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We used as software environment GNU/Linux Debian squeeze x86/64, the compiler
GCC 4.4, CUDA 5.0, and the library ATLAS 3.9.39 (BLAS and LAPACK). We also used
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MAGMA 1.1.0 for linear algebra algorithms and StarPU 1.0.1 (with its HEFT scheduling
algorithm) as performance references.

5.6.2 Benchmarks

Our experiments use the same parallel version of the dense linear algebra problems
matrix product (C ← βC+αAB) and Cholesky factorization, as found in PLASMA (BUT-
TARI et al., 2009). The matrix data layout is the same as in PLASMA (tile data layout).

In XKaapi version we designed two versions of the parallel Cholesky algorithm:
default algorithm as found in PLASMA, and a parallel-diagonal version. The parallel-
diagonal Cholesky is a two level algorithm in order to exploit XKaapi capacity for CPU
recursive tasks. The first level uses the PLASMA algorithm with 1024×1024 tiles, and the
second level unfolds the panel factorization (DPOTRF) in sub-tiles of size 128 × 128 us-
ing the same parallel algorithm of the first level. The details of both Cholesky algorithms
on XKaapi are depicted in Appendix B on page 153. We have not used auto-tuning to
select the sizes of the tile and sub-tile, but an empirical approach: after a few experiments
showing their average good performance, we have decided to use theses values.

We calculate the number of Flops according to PLASMA (BUTTARI et al., 2009)
algorithms. All results, except when specified, are in double precision floating-point op-
erations.

5.6.3 Concurrent Operations

This Section presents our experiments to evaluate the capacity of XKaapi to exploit
asynchronous data transfers in concurrence with GPU kernel executions. Our experi-
ment measures the performance of the matrix product algorithm. Matrices A and B of
dimension N×N are decomposed into tiles (or blocks) of size s× s. We devised our im-
plementation such that all computations are performed on the GPU. Matrix computation
is done with double precision, each block-matrix product launches CUDA kernels using
the CUBLAS DGEMM routine.

We compared the performance of three versions:

— CUBLAS (no copy) – CUBLAS when the time to copy input and output matrices
is not considered. We note that CUBLAS (no copy) is used as reference of the GPU
peak performance.

— CUBLAS – CUBLAS with input and output transfers included using asynchronous
execution, i.e, we used non-blocking calls and a synchronization at the end. The
obtained results did not include memory allocations.

— XKaapi (tile=s) – our XKaapi implementation with the blocked matrix multiplica-
tion. Tasks used native calls to CUBLAS DGEMM on s× s tile sizes. Each measure
includes all the costs of CUDA memory allocations and data transfers.

Figure 5.6 on the following page illustrates the results of DGEMM with the three ver-
sions and different tile sizes for XKaapi. CUBLAS (no copy) attained its peak performance
(about 315 GFlop/s) for 4096×4096 square matrices. For larger matrices, the performance
decreased to 293 GFlop/s.

Our XKaapi version, that takes data transfers into account, with blocks of size 1024×
1024 and 2048×2048, reached the GPU peak performance for matrices bigger than 6144×
6144. For matrices bigger than 8192 × 8192 XKaapi’s implementation sustained 309
GFlop/s for a 2048× 2048 block size, outperforming CUBLAS (293 GFlop/s).
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Figure 5.6 – Performance results from DGEMM on Idgraf for a single CPU and a single
GPU, and different block sizes.
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Thanks to the XKaapi software cache and to our design to exploit concurrent GPU
operations, our blocked DGEMM algorithm sustained 309 GFlop/s performance peak even
after the GPU runs out of memory with matrices larger than 10240 × 10240, which re-
quire ≈ 2.43 GB of device memory out of the 3 GB available on the NVIDIA Tesla
C2050 GPUs. XKaapi version with block size of 1024× 1024 generates tasks that can be
exploited by our runtime to pipeline and overlap data transfers with computations. Our
results suggest that we are able to overlap an important amount of the data transfers with
the GPU kernel executions.

For small matrices, because the number of tasks remains low, data transfers were
not entirely overlapped by computation. Even in this case, XKaapi attained significant
results. For instance, the performance of CUBLAS nocopy with matrices of size 2048 ×
2048 was about 312 GFlop/s. It dropped to 152 GFlop/s if we take into account the data
transfers. Our XKaapi DGEMM for this matrix dimension and with block size of 1024 ×
1024 generates 8 tasks for each sub-matrix product, and it reached 240 GFlop/s, which
corresponds to 157% of improvement over CUBLAS version, which has data transfer
costs.

5.6.4 Performance Results

5.6.4.1 Single-CPU and Single-GPU

We compared our work stealing based runtime XKaapi to StarPU (AUGONNET et al.,
2011) and single-GPU MAGMA (TOMOV; DONGARRA; BABOULIN, 2010). StarPU
schedules at runtime the entire task graph using the HEFT static scheduling algorithm. In
XKaapi and StarPU, the Cholesky factorization of the diagonal block is sequential and
executed on the CPU. MAGMA is a hand tuned library that can use up to one GPU. The
work distribution is hand coded into the MAGMA library. The MAGMA version uses
a more sophisticated implementation where part of the diagonal block factorization is
exported on the GPU.

Figure 5.7 on the next page reports our results using one CPU and one GPU for
Cholesky factorization. XKaapi and StarPU, with runtime scheduling decisions, outper-
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formed MAGMA when the matrix is bigger than 10240 × 10240. The whole matrix size
is about 800 MB, and can be stored into the 3 GB of device memory. Only the last matrix
of dimension 20480 × 20480 can not be stored into the GPU memory. The main differ-
ence between XKaapi and StarPU versus MAGMA is that MAGMA is unable to exploit
parallelism with dynamic scheduling, as is done by XKaapi and StarPU.

Figure 5.7 – Cholesky performance results on Idgraf for single-CPU and single-GPU with
block size 1024× 1024.
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For small matrix dimensions (less than 2048 × 2048), the performance of MAGMA
and XKaapi were similar, but StarPU seems to suffer from higher overhead. XKaapi had
a little drop and then reached StarPU’s performance.

5.6.4.2 Multi-GPU

For the multi-GPU evaluation, our experiments measured the performance of DGEMM
and Cholesky using from 1 to 8 GPUs, with matrix dimension of 16384×16384 and block
size of 1024× 1024. Figure 5.8 on the following page shows the performance results for
DGEMM using XKaapi and StarPU. XKaapi outperformed StarPU in all cases and attained
2023.14 GFlop/s (or speed-up 6.74 on 8 GPUs with respect to single-GPU).

Figure 5.9 on the next page reports the results for the Cholesky factorization. In
StarPU and XKaapi programs, all tasks, except the diagonal factorization DPOTRF, were
performed by GPUs. Unlike the DGEMM case, the Cholesky factorization acceleration,
up to 8 GPUs, was below the expected: neither XKaapi nor StarPU implementations did
scale. StarPU reached 680.82 GFlop/s (or speed-up 2.94 with respect to single-GPU).
Experiments with bigger matrices (up to 20480× 20480) showed the same behavior. This
means that, when using more that 4 GPUs, communications costs may not be neglected.

5.6.4.3 Memory Transfers

XKaapi and StarPU allow to monitor the execution by collecting post-mortem traces
of performance counters. We have collected, for one instance of DGEMM and Cholesky,
the total number of bytes exchanged between the main memory and the GPUs.

Table 5.1 on page 91 shows in Gigabytes (GB) the total amount of memory transfers
with StarPU and XKaapi on the DGEMM benchmark for matrix size 16384× 16384. Sur-
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Figure 5.8 – DGEMM performance up to 8 GPUs. The matrix size was 16384×16384 with
block size 1024× 1024.
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Figure 5.9 – Multi-GPU Cholesky factorization with 16384 × 16384 matrices and block
size 1024× 1024.
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prisingly, StarPU generated bigger data exchanges than XKaapi up to 4 GPUs, although it
uses an a priori HEFT algorithm. For a matrix of size S bytes, if the GPU memory could
store the entire data, DGEMM implies 3× S bytes from host to device transfer and S bytes
of transfer to get back the result. For a double precision matrix of dimension 16384 = 214,
the data transfer volume is 8 GB.

On the Cholesky factorization, as illustrated in Table 5.2, the footprint generated by
XKaapi was larger than StarPU. These results seem consistent with our hypothesis that
work stealing is cache-unfriendly and may degrade performance. Indeed, HEFT schedul-
ing of StarPU may minimize the makespan and reduce data footprint.

We previously showed that bad scaling of Cholesky factorization exhibited on Fig-
ure 5.9 may be due to bad overlap of communication by computation. Table 5.2 on the
facing page evidences why XKaapi performed worst than StarPU. XKaapi had more data



91

Table 5.1 – Memory transfers of DGEMM in GB with matrix order 16384 × 16384 and
block size 1024× 1024. The sum of input and output data transfers is 8 GB.

DGEMM transfers (GB)

GPUs 1 2 4 6 8

XKaapi 8.00 10.27 16.49 23.23 29.29
StarPU 22.54 14.97 16.98 20.09 24.35

Table 5.2 – Memory transfers of Cholesky in GB with matrix size 16384 × 16384 and
block size 1024× 1024. The sum of input and output data transfers is 4 GB.

Cholesky transfers (GB)

GPUs 1 2 4 6 8

XKaapi 3.71 7.38 12.28 12.89 14.62
StarPU 2.23 3.81 6.55 7.38 9.00

transfers. Moreover, when using more than 4 GPUs, the architecture share PCIe 16x
links between GPUs (see Section 2.1.5 on page 37). Hence, bottlenecks on data transfers
became key factor on performance.

Using work stealing directed by data affinity would allow XKaapi to reach StarPU
performances. But the amount of data transfers would still be a bottleneck. To overcome
this limitation, the parallel algorithm would use bigger blocks on GPU. Still, using bigger
blocks means that DPOTRF would become a bottleneck as this task is currently run only
on CPU. A parallel implementation, partially on GPU (such as MAGMA), for this task
would then be required.

5.6.5 Comparison of Work Stealing Heuristics

Here we compared the performance of our work stealing heuristics (see Section 5.5)
against the default work stealing algorithm (label default) for matrix product (DGEMM) and
Cholesky factorization (DPOTRF) benchmarks. The matrix size was constant (40960 ×
40960) while we vary the number of GPUs.

5.6.5.1 Parallel Matrix Product

Figure 5.10 on the following page reports the performance of the parallel DGEMM using
up to eight GPUs. For all heuristics, speedup linearly increased with the number of GPUs
(Figure 5.10a). The peak performance was 2426.40 GFlop/s for 8 GPUs (2.43 TFlop/s).
This corresponds to a sustained performance of 303 GFlop/s per GPU, which was very
close to the peak (315 GFlop/s) on the DGEMM kernel. For matrices of size 16384×16384
XKaapi attained 2.0 TFlop/s, and 1.6 TFlop/s for matrices of size 8192× 8192.

Our three heuristics showed similar GFlop/s performance. When looking at the total
amount of data transfered (Figure 5.10b) the locality-aware heuristic (H2) outperformed
the two other approaches with transfers reduced up to 24%. Clearly, the overlapping
capability of XKaapi allowed to mask almost all the delays in data transfers. It appears
that the different heuristics in this case do not impact performance.
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Figure 5.10 – Comparison of our three work stealing heuristics for DGEMM on 8 GPUs for
a matrix size of 40960× 40960.

(a) Performance in GFlop/s.
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(b) Total data transfers in (GB).
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5.6.5.2 Cholesky factorization

In addition to GPUs, we involved all remaining CPU cores in computations, out of the
12 available, after removing the ones each GPU monopolizes to run its GPU worker.

Figure 5.11 illustrates the obtained results. We conclude that: (a) the default heuristic
had a bigger communication footprint that may explain its poor scalability on more than
four GPUs; (b) data-aware heuristic (H1), which may reduce the communication foot-
print, enabled a gain in scalability up to six GPUs; (c) locality-aware heuristic (H2) had
the lowest volume of data transfers and scaled up to 8 GPUs. The peak performance with
H2 was 1.79 TFlop/s in double precision and 3.92 TFlop/s in single precision.

Figure 5.11 – Performance results of DPOTRF on eight GPUs and four CPUs for a matrix
size of 40960× 40960.
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We note that with more than 4 GPUs, at least 2 GPUs share the same PCIe-16x bus.
Consequently, a scheduling algorithm that introduces a lot of memory transfer is more
penalized on such hardware.

5.6.5.3 Scalability of the Cholesky Factorization

Figure 5.12 gives an overview of the performance that have been achieved on the
Cholesky factorization for different matrix sizes on 8 GPUs and 4 CPUs using our two
heuristics and default work stealing. Except for matrices of size 4096 × 4096, which
results were almost equal, locality-aware (H2) had the best performance for all matrix
sizes and scaled as the matrix size grows.

Figure 5.12 – Scalability of the work stealing heuristics for Cholesky on 8 GPUs and 4
CPUs compared to one GPU and one CPU execution.
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5.6.5.4 Overlap Impact

We refine the analysis of performance impact when data transfers are overlapped with
kernel executions on multi-GPU. Figure 5.13 on the next page shows the performance
results of the Cholesky factorization using the default work stealing and our locality-aware
(H2) heuristic on 4 CPUs and 8 GPUs. On the default strategy, the overlap improved
performance by 160.28 GFlop/s for the largest matrices (40960 × 40960). The gain was
significantly higher for the locality-aware heuristic (H2), where the performance gain was
about 550.48 GFlop/s for the largest matrices.

In addition, even in the cases without any overlapping, locality-aware heuristic im-
proved performance over the default work stealing strategy by 431.45 GFlop/s for the
largest matrices (40960×40960). These findings suggest that our locality-aware heuristic
enables significant performance gains even without any concurrent operations.

5.6.6 Multi-CPU Performance Impact

We analyze the gain of using several CPUs for the parallel-diagonal Cholesky factor-
ization. Table 5.3 on the following page shows the performance results of the locality-
aware heuristic (H2) when using up to 8 CPUs and 4 GPUs for different matrix sizes.
Matrices up to a 16384 × 16384 size showed significant performance gains. For matri-
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Figure 5.13 – Impact of overlapping in XKaapi default and locality-aware work stealing
algorithm for Cholesky on 4 CPUs and 8 GPUs.
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ces larger than 32768 × 32768 the factorization did not benefit from additional CPUs.
The reason for these different performance gains was the influence of the compute-bound
tasks in the factorization. Level-3 BLAS operations such as DGEMM dominated the overall
execution in a O(N3) growth order with respect to panel factorizations, which increase in
order O(N).

Table 5.3 – Performance results (in GFlop/s) using 4 GPUs and variable number of CPUs.

CPUs
Matrix order

4096 8192 16384 32768 40960

1 53.85 206.38 622.55 962.21 1052.58
±0.98 ±2.70 ±7.90 ±31.77 ±20.53

4 115.16 391.05 755.91 1013.65 1022.45
±1.02 ±2.64 ±6.89 ±7.81 ±37.55

8 138.34 439.70 782.21 999.46 1045.53
±1.06 ±3.38 ±10.51 ±6.90 ±4.19

To illustrate executions, Figure 5.14 on the next page displays the Gantt diagrams
for two configurations. On the top, one CPU and 4 GPUs compute the parallel-diagonal
Cholesky factorization of a small matrix of size 6144× 6144. This configuration reached
a performance of 122.61 GFlop/s. We can see that GPUs were idle, because they waited
for the panel factorization performed by the CPU (the factorization task is on the critical
path of the execution). By increasing the number of CPUs to 4 (bottom part of the figure),
the performance increased to 243.80 GFlop/s.

These extra CPUs enabled to accelerate the panel factorization with a 8.4 GFlop/s gain
per CPU, but more importantly they enabled to reduce the idle time of GPUs leading to a
global gain of 121.18 GFlop/s. As reported by KURZAK et al. (2010), BUTTARI et al.
(2009), and SONG; DONGARRA (2012) the acceleration of the tasks on the critical path
(panel factorization) is important.
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Figure 5.14 – Gantt chart from the parallel-diagonal Cholesky for a matrix size 6144 ×
6144 on 4 GPUs (red) and up to 4 CPUs (blue).
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5.7 Summary

Most recent runtime systems incorporate support for heterogeneous architectures such
as StarPU and OmpSs. It seems that a suitable programming model on these architectures
may be based on task parallelism and data-flow dependencies for fine-grained parallelism.
These aspects have been studied in a similar way for multicore runtime systems since
fine-grained algorithms was essential to loose synchronization points and improve data
locality (BUTTARI et al., 2009; HERMANN, 2010).

In this Chapter, we presented the XKaapi runtime extensions for data-flow task pro-
gramming on heterogeneous architectures. Algorithms on top of XKaapi express par-
allelism through tasks with dependencies without architecture details, and the runtime
decides the target resource (CPU or GPU). In addition, it offers user annotations to pass
scheduling hints.

We designed an asynchronous approach of concurrent GPU operations that achieved
an almost ideal overlapping of data transfer and kernel execution with DGEMM algorithm
for single-GPU. Thanks to this overlapping, the use of a dynamic work stealing algorithm
permitted to reach high performance as the theory predicts for shared-memory machine
without communication costs. Thus, overlapping almost enables to hide the heterogeneity
of the memory accesses on a multi-GPU system.

Besides, the use of work stealing on multi-CPU and multi-GPU systems is one of
the key contributions on scheduling for such architectures. Since classic work stealing
is cache-unfriendly (GUO et al., 2010), tackling this problem is critical on such systems
with disjoint memory spaces. We provided a work stealing scheduling with annotation
at API level and a locality-aware work stealing based on local reduction of cache in-
validations. This approach is similar to owner-computes rule (OCR) strategies since the
runtime schedules tasks using access mode and metadata memory information of shared
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arguments.
Along with a work stealing strategy, a key contribution is the use of recursive CPU

tasks to unfold parallelism at another level with fine-grained tasks. It is established that
CPUs are efficient on fine-grained tasks and GPUs on coarse-grained tasks. Our exper-
iments using a parallel-diagonal version of the Cholesky algorithm achieved significant
performance results. These findings lead us to believe that different grain sizes may be
a promising technique for heterogeneous systems. Furthermore, this concept can be ex-
panded to exascale systems containing distributed and heterogeneous resources.

Nonetheless, our scheduling strategy based on work stealing lacks of more sophisti-
cated decisions in order to consider processing power of available resources. We orig-
inally assumed that some tasks of a certain algorithm are more efficient on GPUs than
CPUs. The obtained results with scheduling annotations seem consistent with our hy-
pothesis. On the other hand, it is unlikely to achieve similar results for unknown tasks
without empirical observations.

In the next Chapter, we overcome our scheduling limitation by a broader approach. We
introduce a scheduling framework along with performance models for task and transfer
prediction. Hence, scheduling algorithms such as work stealing and HEFT (TOPCUOGLU;
HARIRI; WU, 2002) are designed on top of our framework for XKaapi.
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6 SCHEDULING STRATEGIES OVER MULTI-CPU AND
MULTI-GPU SYSTEMS

The works in this Chapter are part of an under reviewing paper.

With the recent evolution of processor design, future generations of processors will
contain hundreds of cores. To increase the performance per watt ratio, the cores will be
non-symmetric with few highly powerful cores and numerous, but simpler, cores. The
success of these machines will rely on the ability to schedule the workload at runtime,
even for small problem instances.

One of the main challenges is to define the scheduling strategy that may be able to
exploit all potential parallelism on a heterogeneous architectures composed of multiple
CPUs and multiple GPUs. Previous works demonstrate the efficiency of strategies such as
static distribution (DONGARRA et al., 2012; HORTON; TOMOV; DONGARRA, 2011;
SONG; DONGARRA, 2012; TOMOV; DONGARRA; BABOULIN, 2010), centralized
list scheduling with data locality (BUENO et al., 2012), cost models (AGULLO et al.,
2011,?, 2010; AUGONNET; THIBAULT; NAMYST, 2010; AUGONNET et al., 2011)
based on Earliest-Finish-Time scheduling (TOPCUOGLU; HARIRI; WU, 2002), and dy-
namic for a specific application domain (BOSILCA et al., 2012; HERMANN et al., 2010).
Nevertheless, few studies have reported on performance of different scheduling strategies
for heterogeneous multi-CPU and multi-GPU platforms.

In our previous work, we state that the classic work stealing is cache-unfriendly and
does not consider data locality (GAUTIER et al., 2013; LIMA et al., 2012). In Chapter 5,
we describe a locality-aware work stealing that improves significantly the performance of
compute-bound linear algebra problems such as matrix product and Cholesky factoriza-
tion. However, it does consider the processing power of available resources.

In this Chapter, we study a broader approach to evaluate different scheduling strate-
gies. We compare three different scheduling strategies for data-flow task programming on
heterogeneous architectures: the locality-aware work stealing (GAUTIER et al., 2013),
the Heterogeneous Earliest-Finish-Time (HEFT) (TOPCUOGLU; HARIRI; WU, 2002),
and the distributed Dual Approximation algorithm (DDA) (KEDAD-SIDHOUM et al.,
2013). The strategies are designed on top of the XKaapi scheduling framework with
performance models for task and transfer prediction.

The remainder of this Chapter is organized as follows. Section 6.1 explains the
XKaapi scheduling framework to design scheduling strategies. In Section 6.2 we intro-
duce our performance models for task and data transfer prediction. Section 6.3 describes
the algorithm details of the three scheduling strategies on top of XKaapi. Finally, Sec-
tion 6.4 presents our experimental results on the Idgraf heterogeneous architecture.
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6.1 Scheduling Framework

In most runtime systems, the scheduler is designed as a plug-in that interfaces with
an API able to manage a list of tasks. Most of list algorithms consider a centralized man-
agement of the list. However, the cost of concurrent list access induces synchronization
overhead that can not be ignored. A suitable approach is to distribute the list among work-
ers and each manages its own list of tasks. For instance, work stealing and work pushing
are popular distributed list scheduler algorithms.

We designed a framework in XKaapi in order to implement different scheduling strate-
gies based on distributed list scheduling. Our interface is mainly inspired in work stealing
and is composed of three operations: pop, push and steal.

Let us denote the operation’s scope as local, whose manipulated list belongs to the
current worker, and remote to a list not owned by the current worker. All three operations
contain two parameters: a task list to manipulate (local or remote) and a task as input or
output.

6.1.1 Overview of Task List and Task Descriptor

A XKaapi ready task list (tasklist) is a data structure for tasks with mutual exclusion
to avoid race conditions. The list is double-ended (deque) and double-linked in order to
remove and to insert an element at any position. By default XKaapi supports distributed
list scheduling with one task list per worker. Still, a centralized strategy can create a
global list of tasks. In this Chapter, all algorithms are based on distributed list scheduling
and have one list per worker.

The task descriptor (kaapi_taskdescr_t) is an additional structure to encapsulate XKaapi
tasks and contains task information and a list of its direct dependencies. It is used to opti-
mize steal requests in XKaapi work stealing at runtime whenever a thief searches a stack
for ready tasks for execution in a data-flow programming model (see Section 4.3.3 on
page 72). In the context of our scheduling framework, based on the ready task list, we
assume that scheduling strategies receive a task list with calculated true dependencies and
created tasks.

6.1.2 A Distributed Scheduling Algorithm

Algorithm 5 on the next page illustrates a general scheduling loop of our scheduling
strategies. At each iteration of the loop, either the own queue is not empty and the worker
uses it or the worker emits a steal request to a randomly selected worker in order to get
a task to execute. In Figure 6.1 on the facing page we show a flowchart to represent the
scheduling loop. Due to dependencies, once a worker executes a task, it calls the activate
operation in order to activate its successors.

Prologue and epilogue hooks give support to perform actions before and after task ex-
ecution at line 9 of Algorithm 5, respectively. AUGONNET et al. (2011) employ hooks to
deal with inaccuracy or missing performance prediction in the context of the HEFT strat-
egy. Our scheduling strategies also apply these hooks to calibrate performance models
(Section 6.2) and correct erroneous predictions due to unpredictable or unknown behav-
ior, such as operating system state or I/O disturbance. Let us note that those actions are
optional and the scheduling strategy may decide if a performance model should be used.

All of our scheduling strategies follow this algorithm. The workers terminate their
execution when all the tasks in the system are completed.
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Algorithm 5: General scheduling loop of a worker wj .

1 while Execution not terminated do
2 if Worker own queue is empty then
3 T ← steal from a random selected worker
4 if T 6= ∅ then
5 local_push T into worker own queue
6 end
7 else
8 T ← pop from the worker own queue
9 Execute T

10 activate the task’s successors of T
11 end
12 end

Figure 6.1 – General scheduling loop of the XKaapi scheduling framework.
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6.1.3 Scheduling by Pop, Push, and Steal

A framework interface for scheduling strategies is not a new concept in heteroge-
neous systems. BUENO et al. (2012) and AUGONNET et al. (2011) described a minimal
interface to design scheduling strategies and selection at runtime. But, there is little infor-
mation available on the comparison of different strategies. Most of then reported perfor-
mance on centralized list scheduling and performance model. We propose a framework
based on work stealing to design scheduling algorithms derived from list scheduling. Our
framework is composed of three basic operations (pop, push, and steal) along with addi-
tional methods. The C structure to describe a scheduling strategy is depicted in Figure 6.2.

A pop removes one task from the head of a task list for execution over the current
worker. It is restricted to tasks capable of execution in the current worker, i.e., tasks with
an implementation to the current architecture type (CPU or GPU). Its scope is local to the
current worker and may perform load balancing in centralized strategies. Thus, a pop can
be issued to a remote task list with mutual exclusion.

The push method inserts one task at the head or the tail of a list. We designed two
push versions depending on the list’s scope: local and remote. A local push inserts a
task at list’s head and is commonly employed in the scope of a local task list to the cur-
rent worker. Task insertion and removal from the same list position, in this case the
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Figure 6.2 – Data structure in C of a scheduling strategy on XKaapi.
1 typedef struct kaapi_sched_t {
2 /* Initialize the scheduling strategy. */
3 void (*init)(void);
4
5 /* Clean up this scheduling strategy. */
6 void (*finalize)(void);
7
8 /* Remove a task from this tasklist.
9 * Returns 0 if successful, EBUSY otherwise. */

10 int (*pop)( kaapi_tasklist_t*, kaapi_taskdescr_t** );
11
12 /* Insert a task into this tasklist. */
13 void (*push)(kaapi_tasklist_t* const,
14 kaapi_taskdescr_t* const);
15
16 /* Insert all activated tasks by a task into this

tasklist.
17 * Note that the runtime has computed true depedencies

and
18 * each task descriptor contains a list of tasks to be
19 * activated. Returns the number of activated tasks. */
20 uint32_t (*push_activated)(kaapi_tasklist_t* const,
21 kaapi_taskdescr_t* const);
22
23 /* Remote a task from this processor victim. (optional)

*/
24 kaapi_taskdescr_t* (*steal)(kaapi_processor_t* const,
25 kaapi_taskdescr_t* const);
26
27 /* Hook called before a task execution. (optional) */
28 void (*prologue)(kaapi_taskdescr_t* const);
29
30 /* Hook called after a task execution. (optional) */
31 void (*epilogue)(kaapi_taskdescr_t* const);
32 } kaapi_sched_t;

list head, is a well-known technique to improve locality of tasks (BLUMOFE; LEISER-
SON, 1998). An exception of the local push scope is centralized strategies in which there
is one task list shared by a number of workers. Whereas, a remote push inserts tasks
onto the tail of non-local list worker. This operation provides support for a number of
additional list scheduling based strategies such as heuristics (ACAR; BLELLOCH; BLU-
MOFE, 2000) and work pushing from cost models. In addition to both versions of push, a
push_activated inserts task successors into the list. It provides a way to apply cost model
strategies over a set of ready tasks for execution.

A steal removes a task from the list’s tail of a remote worker, or victim. Our steal op-
eration is based on the classic work stealing algorithm detailed by FRIGO; LEISERSON;
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RANDALL (1998). An idle thread, called a thief, initiates a steal request to a random
selected victim. To find a ready task, a thief thread calls the steal from the framework
passing as parameter the victim’s task list. On reply, the steal returns a reference (or
memory pointer) of one ready task. In our framework, XKaapi steal does not require the
removal of the stolen task from the victim’s list. The runtime only expects the selection
of a task to be stolen and removed, which will be performed by XKaapi. A strategy can
disable steal by not specifying a steal function.

6.1.4 Prologue and Epilogue Hooks

Prologue and epilogue hooks give support to perform actions before and after task
execution, respectively. It receives as parameter the actual task to execute. AUGONNET
(2011) studies the use of hooks to deal with inaccuracy or missing performance prediction
in the context of the HEFT strategy. Our scheduling strategies also apply these hooks
to calibrate performance models (Section 6.2) and correct erroneous predictions due to
unpredictable or unknown behavior, such as operating system state or I/O disturbance.
Let us note that those actions are optional and the scheduling strategy may decide if a
performance model should be used.

6.2 Performance Model

Cost models depend on a certain knowledge of both application algorithm and the un-
derlying architecture to predict performance at runtime. In order to predict performance,
we designed a performance model for task execution time and communication, similar
to StarPU (AUGONNET; THIBAULT; NAMYST, 2010). Our task prediction is based
on history-based model, and transfer time estimation is based on asymptotic bandwidth.
They are associated with scheduling strategies to predict task completion time such as
HEFT.

6.2.1 Predicting Data Transfer

On a multi-GPU system it is important to estimate data transfer time in order to decide
if its better to migrate a computation to another PU, sometimes in a distant memory node.
XKaapi memory management keeps track of data replicas and is able to receive queries
about data state on a certain resource and where a valid replica can be found.

Our performance model can predict communication transfer by asymptotic band-
width, which is benchmarked through offline sampling of the PCIe latency and band-
width. When the runtime initializes by the first time in the machine it begins the sampling
procedure. This sampling detects all available resources (CPUs or GPUs) and performs
a series of ping-pong benchmarks by measuring both the bandwidth and the latency be-
tween each pair of resource (from a CPU to a GPU for instance). In addition, we collect
peer-to-peer transfers between GPUs when available, depending on the PCIe topology.
All collected values are stored in a text file and loaded each time a scheduling strategy
requests XKaapi performance modeling.

Each task prediction considers the state of meta-data information in the memory and
calculates the transfer time by the number of bytes from one device to the host, or vise
versa. At the transfer prediction, the model calculates the necessary transfers to execute
a task on a CPU or GPU depending on its meta-data state on the target processor.

Let us assume that ti→j is the predicted transfer time from worker i to worker j given n
bytes of data to transfer, Bi→j the stored bandwidth, and Li→j the latency. An estimation
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of transfer time between workers i and j can be derived from the bandwidth (Bi→j) and
latency (Li→j):

ti→j =
n

Bi→j

+ Li→j (6.1)

Nevertheless, multi-GPU systems may have to consider bus contention due to mul-
tiple data transfers and other I/O activities not related to the parallel application. Mod-
eling data transfer is a difficult problem since a lot of interactions may occur between
I/O devices and the entire memory subsystem. We adopt the transfer modeling proposed
by AUGONNET (2011) with a slight modification. While AUGONNET (2011) divides
the bandwidth in Equation 6.1 by all accelerators in the system, we divide this bandwidth
only by the actual accelerators in use at runtime. This division aims to consider the per-
formance bottleneck of concurrent data transfers from or to distant workers. Equation 6.2
gives the estimated transfer time for a number of n bytes from worker i to j.

ti→j =
n

Bi→j

naccel.

+ Li→j =
n

Bi→j

× naccel. + Li→j (6.2)

A more accurate transfer model may depend on a deep knowledge of the I/O and
memory system. Besides, this strategy may also require a deeper understanding of the
operating system and its subsystems related to I/O and memory. In the XKaapi perfor-
mance model we do not take into account those aspects for the sake of simplicity. We
do not consider, for instance, the number of hops to transfer data such as PCIe bridges in
recent machines with multiple GPUs. On the other hand, we assume that the estimated
bandwidth from offline sampling may implicitly reflect the penalty of hops to transfer
over PCIe bridges. Moreover, our performance results on overlapping data transfers (see
Section 5.6 on page 85) led us to infer that transfer costs would have fewer impact on the
overall performance.

6.2.2 Performance Modeling of Tasks

The XKaapi performance model for task prediction relies on a history-based model
for regular computations. We chose to develop an online performance model transparent
to the application that does not depend on external tools and manual tuning.

The choice of a performance model for tasks is related to its work load characteristics.
It may depend on the input size and layout, or the input contents as for irregular computa-
tions. For instance, the tiled algorithms for dense linear algebra divide the input in square
blocks of equal size. Even it is possible to adapt granularity at runtime, executions with
the same matrix size may use the same set of block sizes with slight variations. The run-
time can take advantage of this regularity of data and work load by storing the execution
time of each task based on input layout and size, plus worker type (CPU or GPU).

We use three task fields to identify a performance entry: task name, input size (foot-
print), and processor type. The key to identify an unique hash entry of tasks is then
composed of (taskname, taskfootprint, ptype). At each executed task the scheduling strat-
egy can make use of prologue or epilogue hooks to update a task entry in order to be
applied by the next execution. Still, we note that enabling task model sampling on GPUs
may affect performance since the runtime has to disable asynchronous execution in order
to know its actual completion time.

A limitation of a history-based model is to assume that performance is only dependent
of data input size and layout, and independent of the actual data contents. An example of
unpredictable task duration is the pivoting phase of the LU panel factorization.
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6.3 Scheduling Strategies on Top of XKaapi

This Section introduces our three scheduling strategies designed on top of the XKaapi
scheduling framework. We describe the locality-aware work stealing (GAUTIER et al.,
2013), the Heterogeneous Earliest-Finish-Time (HEFT) (TOPCUOGLU; HARIRI; WU,
2002) and the distributed Dual Approximation (DDA) (KEDAD-SIDHOUM et al., 2013).
Here we consider a multicore parallel architecture with m homogeneous CPUs and k
homogeneous GPUs. Let us denote by pCPU

i the processing time of task Ti on a CPU and
pGPU
i on a GPU.

6.3.1 Locality-Aware Work Stealing

The locality-aware work stealing (H2) is a heuristic for the classic work stealing in
order to overcome its cache-unfriendly problem. The algorithm was introduced in our
previous work on multi-GPU scheduling and detailed in Section 5.5.3 on page 85. The
main difference relies on the push of task’s successors to selected remote workers based on
meta-data information attached to each user data (GAUTIER et al., 2013). This heuristic
resembles an “owner-computes rule” and is similar to the approach proposed by ACAR;
BLELLOCH; BLUMOFE (2000), but without explicit annotation. H2 tries to reduce the
invalidations of the data replicas through a remote push of a newly ready task on the
worker that has a valid copy of its data parameters on write or exclusive access mode. If
more than one worker is eligible, then it simply selects a worker at random among the set
of possible workers. We note that this task pushed to a remote worker may be stolen by
an idle worker.

6.3.2 Heterogeneous Earliest-Finish-Time

The Heterogeneous Earliest-Finish-Time (HEFT), proposed by TOPCUOGLU; HARIRI;
WU (2002), is a scheduling algorithm for a bounded number of heterogeneous processors.
It has two major phases: task prioritizing for computing the priorities of all tasks and a
worker selection phase to select the “best” worker, which minimizes the task’s finish
time. The HEFT algorithm complexity is O(v2×p) for v tasks and p workers (CPUs plus
GPUs). More details on this algorithm are given in Section 2.3.2 on page 46.

Our XKaapi HEFT scheduler is based on the algorithm presented in Section 2.3.2 on
page 46 and implements both phases (task prioritizing and worker selection) at activation
of the task’s successors (push_activated operation). The task prioritizing phase calculates
for all ready tasks a speedup Si =

pCPU
i

pGPU
i

relative to a GPU execution. Next, it sorts the
list of ready tasks by Si in decreasing order. In the worker selection phase, the algorithm
selects tasks in the order of their speedup Si and schedules each task on its “best” worker,
which minimizes the task’s finish time. Algorithm 6 on the following page describe the
basic steps of the HEFT strategy over XKaapi.

Although the original HEFT considers that the appropriate time slot on a worker pi
starts when all input data of a task Ti is available at pi, we define the appropriate time slot
when the worker pi completes the execution of its last assigned task. Our HEFT algorithm
incorporates data communications onto the search of an appropriate idle time slot by time
prediction of data transfer for each worker (CPU or GPU) according to the task data state.

We added to HEFT performance prediction two constants called “factors” for the ex-
ecution (α) and communication (β) time. The predicted time for a task is defined by
Ti = αpi + βTi where α modifies the execution time pi and β the total predicted transfer
time.
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Algorithm 6: Heterogeneous Earliest-Finish-Time (push_activated).
Input : A task descriptor td
Output: A list of tasks tasklist

1 foreach task i activated by task descriptor td do
2 Si ← pCPU

i

pGPU
i

3 end
4 Sort activated tasks by decreasing speedup Si

5 foreach task i activated by task descriptor td do
6 Schedule task i to minimize finish time on a worker pi
7 Remote push of task i into tasklist of worker pi
8 Update dates of worker pi
9 end

6.3.3 Distributed Dual Approximation

The principle of the distributed Dual Approximation (DDA) algorithm is based on a
dual approximation (HOCHBAUM; SHMOYS, 1987). Let us recall that a k-dual approx-
imation scheduling algorithm considers a guess λ (which is an estimation of the optimal
makespan) and either delivers a schedule of makespan at most kλ or answers correctly
that there is no schedule of length at most λ. The process is repeated by a classical binary
search on λ up to a targeted precision of ε (KEDAD-SIDHOUM et al., 2013).

Our DDA implements the scheduling algorithm at activation of the task’s successors
(push_activated operation). Algorithm 7 on the next page illustrates the designed algo-
rithm, which consists on the following steps:

— Choice of the initial guess λ =
∑

i
max(pCPU

i ,pGPU
i )

2
(lines 2 and 4);

— Extract the tasks which fit only into GPUs (pCPU
i > λ), and symmetrically those

which are dedicated to CPU (line 5);

— Keep this schedule if the tasks fit into λ (line 8). Otherwise, reject this schedule if
there is a task larger than λ on both CPUs and GPUs (line 11);

— Add to the tasks allocated to the GPU those which have the largest speedup relative
to GPU time (defined by pCPU

i

pGPU
i

) up to reaching the threshold λ (line 14);

— Put all the remaining tasks in the m CPUs and execute them using a earliest-finish-
time scheduling policy (line 14).

We also added to DDA performance prediction two constants called “factors” for the
execution (α) and communication (β) time. The predicted time for a task is defined by
Ti = αpi + βTi where α modifies the execution time pi and β the total predicted transfer
time.

6.4 Experiments

This Section presents the experimental results of our scheduling strategies designed
through the XKaapi scheduling framework on a heterogeneous multi-CPU and multi-GPU
architecture (6.4.1). We describe the benchmarks from the PLASMA library (6.4.3) and
the methodology of our experiments (6.4.2). At last, we show the performance results
with the scheduling strategies described in Section 6.3 (6.4.4) and their analysis (6.4.5).
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Algorithm 7: Distributed Dual Approximation (push_activated).
Input : A list of ready tasks tasklist

1 lower ← 0
2 upper ←

∑
j max(p

CPU
i , pGPU

i )

3 while (upper − lower) > ε do
4 λ← upper+lower

2

5 Schedule tasklist into λ to minimize finish time
6 if tasks do fit into λ then
7 upper ← λ
8 Keep current schedule
9 else

10 lower ← λ
11 Reject current schedule
12 end
13 end
14 Push tasklist based on the last schedule that fits λ

Appendix C on page 161 reports the performance model results for the experimental
results of this Chapter. The Appendix contains the task execution time from the history-
based model, and the asymptotic bandwidth values from XKaapi offline sampling.

6.4.1 Platform and Environment

All experiments have been conducted on the heterogeneous, multi-GPU system, named
“Idgraf” (see Section 2.1.5 on page 37). Figure 6.3 illustrates the hardware topology of
Idgraf with two hexa-core CPUs and eight Tesla C2050 GPUs. We used as software envi-
ronment GNU/Linux Debian squeeze x86/64, the compiler GCC 4.4, CUDA 5.0, and the
library ATLAS 3.9.39 (BLAS and LAPACK).

Figure 6.3 – Idgraf hardware topology for experimental results on scheduling strategies.
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6.4.2 Methodology

All factorizations were in double precision floating-point operations. We repeated the
number of executions (up to 30) and we report the mean, as well as the 95% confidence
interval.

In each experiment, we show in the x-axis the number of resources as the number of
GPUs or the number of CPUs and GPUs for each execution. We employ this notation to
clearly distinguish the number of computing CPUs and GPUs at runtime. Since XKaapi
dedicates a CPU to manage a GPU, the number of computing CPUs is the number of total
CPUs minus the number of GPUs (see Section 5.2 on page 80 for details).

In the case of the locality-aware work stealing (H2), we denote as “WS locality” and
suffix “SetArch” for annotated tasks to execute only on GPUs if a GPU version is avail-
able.

6.4.3 Benchmarks

Our experiments use the tiled algorithms of PLASMA (BUTTARI et al., 2009) for
matrix product (DGEMM), Cholesky (DPOTRF), LU (DGETRF), and QR (DGEQRF). We
implemented and extended the QUARK API (YARKHAN; KURZAK; DONGARRA,
2011) in XKaapi to support task multi-versioning. Each benchmark calls a registration
function responsible to associate one PLASMA task to a GPU version. At the task execu-
tion, our QUARK version runs the appropriate task implementation if the target worker is
a CPU or a GPU. The GPU kernels of QR and LU are based on previous works for hetero-
geneous architectures from AGULLO et al. (2011,?, 2010) and adapted from PLASMA
CPU algorithm and MAGMA from TOMOV; DONGARRA; BABOULIN (2010).

We report the highest performance obtained from different block sizes (NB) on each
combination benchmark plus scheduling strategy. Each figure has the strategy name and
the block size used for the experiment. The internal block value (IB) for PLASMA tasks
was 128× 128.

6.4.3.1 Cholesky

The Cholesky factorization (DPOTRF) decomposes an n× n real symmetric positive
definite matrix A into the form A = LLT where L is an n×n real lower triangular matrix
with positive diagonal elements (AGULLO et al., 2010). The tile Cholesky algorithm
(PLASMA_dpotrf_Tile) has four kernels with a GPU version: DPOTRF (CPU/GPU),
DTRSM (CPU/GPU), DSYRK (CPU/GPU), and DGEMM (CPU/GPU). We used the SetArch
for all tasks with GPU version.

6.4.3.2 LU

The LU factorization (DGETRF) of a matrixA has the formA = LU where L is lower
triangular and U is upper triangular. Similar to AGULLO et al. (2011), our tile LU fac-
torization from PLASMA (PLASMA_dgetrf_incpiv_Tile) has four kernels with a
GPU version: DGETRF (CPU/GPU), DGESSM (CPU/GPU), DTSTRF (CPU/GPU), and
DSSSSM (CPU/GPU). We used the SetArch for tasks with GPU version and speedup
greater than one (see Figure C.1 on page 161) over the CPU version: DGESSM and
DSSSSM.
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6.4.3.3 QR

The QR factorization (DGEQRF) of an m × n real matrix A has the form A = QR
where Q is an m×m real orthogonal matrix and R is an m× n real upper triangular ma-
trix (AGULLO et al., 2011). Our tile QR factorization from PLASMA (PLASMA_dgeqrf_Tile)
has four kernels in which two have a GPU version: DGEQRF (CPU), DORMQR (CPU/GPU),
DTSQRT (CPU), and DTSMQR (CPU/GPU). We used the SetArch for all tasks with GPU
version.

6.4.4 Performance Results

We present in this Section the results with matrix sizes 8192×8192 and 16384×16384
in order to evaluate the behavior of each scheduling strategy with different work loads.

Figure 6.4 on the next page shows the experimental results with matrix multiplication
(DGEMM) in respect with performance (Figures 6.4a and 6.4c) and total memory transfer
(Figures 6.4b and 6.4d). The cost models and the locality-aware with SetArch had a sim-
ilar performance behavior and displayed a gap of up to 32.13 GFlop/s. HEFT and DDA
strategies attained the peak performance of 1808.24 GFlop/s and 1797.35 GFlop/s with
8192 × 8192 matrix, respectively, while the locality-aware work stealing with SetArch
annotation was slightly better with 1840.37 GFlop/s. This same pattern was observed
in 16384 × 16384 matrix with peak performance of 2160.17 GFlop/s for work stealing
with SetArch. In addition, work stealing had the highest communication footprint com-
pared to other strategies in both inputs (5.62 GB and 42.22 GB) but attained significant
performance results for matrix 16384 × 16384 (Figure 6.4c). These results suggest that
the performance on highly compute-bound problems have direct relation with the com-
munication footprint. Nevertheless, the work stealing strategy with locality and SetArch
slightly outperformed cost models.

Figure 6.5 on page 109 shows the performance results with the Cholesky factorization
(DPOTRF) in respect with performance (Figures 6.5a and 6.5c) and total memory trans-
fer (Figures 6.5b and 6.5d). The cost models and the locality-aware work stealing with
SetArch had a similar performance behavior. The HEFT strategy outperformed the work
stealing with SetArch with matrix 8192 × 8192 (difference of ≈ 81.41 GFlop/s), but it it
was surpassed by work stealing SetArch with matrix 16384×16384 (≈ 30.81 GFlop/s). In
most cases the HEFT strategy outperformed the others, except for matrix 16384× 16384
from 4 GPUs (Figure 6.5c). Besides, the obtained performance results have direct relation
with communication footprint. The lowest footprint with 8 GPUs was attained by HEFT
for matrix 8192×8192 (2.31 GB) and by work stealing SetArch for matrix 16384×16384
(11.31 GB). As expected, work stealing showed the highest footprint in both matrix sizes.
DDA strategy, even including data transfers in prediction, had high footprint that affected
the performance in both inputs.

Figure 6.6 on page 110 reports the experimental results with the LU factorization
(DGETRF) in respect with performance (Figures 6.6a and 6.6c) and total memory transfer
(Figures 6.6b and 6.6d). With the exception of work stealing, all strategies showed similar
performance results, whereas HEFT slightly outperformed DDA with peak performance
of 136.04 GFlop/s (matrix 8192 × 8192) and 301.68 GFlop/s (matrix 16384 × 16384).
Work stealing with SetArch outperformed cost models for some cases, for instance from
4 GPUs & 8 CPUs to 6 GPUs & 6 CPUs (matrix 8192 × 8192) and 3 GPUs & 9 CPUs
(16384× 16384). Nevertheless, LU did not scale for matrix 16384× 16384 from 5 GPUs
& 7 CPUs. Differently of DGEMM and Cholesky, the locality-aware work stealing with
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Figure 6.4 – Performance results of matrix product (DGEMM).

(a) DGEMM (8192× 8192).
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(b) Transfer in GB (8192× 8192).
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(c) DGEMM (16384× 16384).
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(d) Transfer in GB (16384× 16384).
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SetArch did not attain the expected performance results for matrix 16384 × 16384 since
its implementation has two GPU tasks with SetArch attribute from a total of four tasks.
Hence, its communication footprint was higher and the performance was partially affected
since it is comparable to DDA and HEFT. The lowest footprint of LU with 8 GPUs was
5.31 GB (8192× 8192) and 32.35 GB (16384× 16384), both with HEFT strategy.

Finally, Figure 6.7 on page 111 reports the experimental results with the QR factor-
ization (DGEQRF) in respect with performance (Figures 6.7a and 6.7c) and total memory
transfer (Figures 6.7b and 6.7d). The performance results of HEFT outperformed the
work stealing strategies for almost all cases, with peak performance of 119.10 GFlop/s
(8192 × 8192) and 293.11 GFlop/s (16384 × 16384). Still, QR did not scale for matrix
16384×16384 from 5 GPUs & 7 CPUs. QR was the only test where work stealing showed
performance results near the obtained peak, even with the highest footprint compared to
other strategies. The cost model strategies had a minimal communication footprint com-
pared to work stealing strategies, regardless of DDA that attained the lowest performance
results. The lowest footprint of QR with 8 GPUs was 10.78 GB (8192× 8192) and 72.86
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Figure 6.5 – Performance results of Cholesky (DPOTRF).

(a) DPOTRF (8192× 8192).
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(b) Transfer in GB (8192× 8192).
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(c) DPOTRF (16384× 16384).
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(d) Transfer in GB (16384× 16384).
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GB (16384× 16384), both with HEFT strategy.

6.4.5 Discussion

The experimental results of the four benchmarks had similar behaviors with the addi-
tion of more GPUs depending on the problem nature. LU and QR performance did not
scale like matrix multiplication or Cholesky for the matrix size 16384 × 16384. These
results can be explained by assuming that LU and QR have fewer BLAS-3 tasks than the
other two. Cholesky and DGEMM are compute-bound and its workload is dominated by
BLAS-3 operations (matrix-to-matrix). Whereas, LU and QR present more BLAS-2 oper-
ations (matrix-vector) and did not profit of all GPU parallelism, specially in our algorithm
version. Other works on LU and QR factorizations attained higher performance results
on heterogeneous architectures (AGULLO et al., 2011,?), most of them are reported in
single-precision floating point operations.

In addition, the HEFT strategy outperformed other strategies in most cases, and had
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Figure 6.6 – Performance results of LU (DGETRF).

(a) DGETRF (8192× 8192).
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(b) Transfer in GB (8192× 8192).
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(c) DGETRF (16384× 16384).
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(d) Transfer in GB (16384× 16384).
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the lowest communication footprint for DGEMM, LU and QR. One possible explanation is
that the performance prediction allows to reduce footprint and exploit efficiently the tar-
get architecture. HEFT selects the “best” processor that minimizes the task’s finish time,
and reduce communication footprint given the knowledge of PCIe bandwidth capacity
between each pair of CPU and GPU. Nonetheless, this knowledge of the underlying ar-
chitecture comes at the cost of tuning and building a performance model at runtime or
offline. We note that such a model can not be applied to irregular applications since their
workload is unknown until execution.

In a similar way, DDA strategy attained similar performance results compared to
HEFT for DGEMM, Cholesky and LU. Its main advantage is theoretical guarantee in worst-
case scenario in which task predictions differ significantly (KEDAD-SIDHOUM et al.,
2013). Nevertheless, it showed a higher footprint than HEFT for nearly all cases. These
results suggest that DDA would be improved if it considers data affinity in its prediction
besides data transfers for task execution.

On the other hand, the designed locality-aware work stealing (H2) with SetArch anno-
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Figure 6.7 – Performance results of QR (DGEQRF).

(a) DGEQRF 8192× 8192.
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(b) Transfer in GB (8192× 8192).
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(c) DGEQRF 16384× 16384.
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(d) Transfer in GB (16384× 16384).
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tation for GPUs showed significant performance despite its higher communication foot-
print for DGEMM, QR and LU. This strategy without any annotation only reported com-
petitive results for experiments in which CPUs dominate execution, i.e., using 11 CPUs.
These results led us to infer two conclusions. First, a dynamic scheduling strategy can
exploit efficiently heterogeneous architectures if the strategy makes use of data locality or
uses a scheduling hint such as SetArch. In our experiments, there was no need to tune our
executions but annotate certain tasks highly efficient on GPUs, which attain a speedup
greater than one. Second, without using any annotations, work stealing is efficient on
multi-CPU and it may guarantee performance gains only when CPU predominates per-
formance. For instance, QR results with work stealing without annotations were near
other strategies.

In some cases, our experimental results with work stealing SetArch outperformed cost
models and also had a higher communication footprint. This phenomena occurred for
most of points in Figure 6.4 (DGEMM), Figure 6.6 (LU), and Figure 6.7 (QR). Exception
to this was Cholesky results in Figure 6.5 whose footprint was lower than obtained for
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cost models. These findings imply that the XKaapi runtime efficiently overlapped GPU
transfer with kernel execution (LIMA et al., 2012). Despite this advantage, it also stress
one of the strategy limitations. The limitation of our locality-aware heuristic relies on
the lack of knowledge about the application algorithm. In this sense, the strategy without
any annotation is not aware of the efficiency in a certain architecture type. Since CPUs
and GPUs are heterogeneous in computing power, a bad decision will affect tasks out-
side the critical path, which are candidates to be offload to accelerators, and may impact
performance.

6.5 Summary

Scheduling is one of the essential building blocks for high performance on parallel
systems, especially heterogeneous architectures. The heterogeneous nature of such archi-
tectures involves assumptions that include processing power, data transfer rate, bus con-
tention, work load balancing, etc. Previous works studied strategies such as static distribu-
tion (DONGARRA et al., 2012; HORTON; TOMOV; DONGARRA, 2011; SONG; DON-
GARRA, 2012; TOMOV; DONGARRA; BABOULIN, 2010), data locality (BUENO
et al., 2012), and cost models (AGULLO et al., 2011,?, 2010; AUGONNET; THIBAULT;
NAMYST, 2010; AUGONNET et al., 2011) based on Earliest-Finish-Time scheduling (TOPCUOGLU;
HARIRI; WU, 2002).

In this Chapter, we presented a comparison of different scheduling strategies based on
cost models and dynamic scheduling by work stealing for heterogeneous multi-CPU and
multi-GPU architectures. We designed and evaluated three scheduling strategies on top
of XKaapi runtime: locality-aware work stealing, Heterogeneous Earliest-Finish-Time
(HEFT) and distributed Dual Approximation (DDA). We conducted experimental results
with four tile algorithms from PLASMA on a heterogeneous architecture composed of 8
GPUs and 12 CPUs.

Our designed strategy HEFT outperformed the work stealing strategies in almost all
cases. Clearly, the main reason for its efficiency is the knowledge of both the application
and the underlying architecture to predict performance. Therefore, it reduced communica-
tion footprint and processor’s idle time by selecting the “best” processor at runtime. The
cost models such as HEFT and DDA have the disadvantages of requiring performance
tuning for prediction on a specific architecture, and they are not applicable to irregular
applications.

Our work stealing strategy with annotations, in this case the use of SetArch for GPU
specific tasks, showed better results than cost models for some cases. The four tile al-
gorithms for PLASMA attained significant results with this strategy, mainly DGEMM,
Cholesky and QR. Our work stealing strategy had a higher communication footprint, but
it is possible to obtain performance results with the overlap of GPU transfer and kernel
execution. These findings led us to believe that work stealing can be suitable for heteroge-
neous architectures. Its does not require tuning for specific architecture, and is applicable
to irregular problems. However, it is complex to attain the peak performance without any
knowledge of architecture details on a heterogeneous architectures. Except for the QR
experiments, the other problems did not attain performance as good as cost models.

We conclude that scheduling strategies based on cost models can be applied consid-
ering a specific type of parallel algorithms. These algorithms have tasks whose workload
are very regular, and it varies according to its input size. A task entry on current per-
formances models, including the model presented, has as identifier the input size and
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assumes a certain workload associated. Thus, no other parameters is considered at ex-
ecution time prediction. Although simple techniques to correct prediction errors were
applied, such as time correction before task execution (see Section 6.2), a scheduling
decision of cost models such as HEFT was not questioned. Cost models may be insensi-
tive to imbalances from the underlying system or tasks. Besides, tuning of the designed
algorithm is essential and restricted to the target architecture.

On the other hand, the use of work stealing may show efficient performance provided
that scheduler hints are given along with an efficient runtime system. This strategy may be
efficient on irregular algorithms, and reacts to imbalances dynamically at runtime based
on the idle resources. We originally assumed that most of tasks with a GPU version
provide a speedup greater than one over its CPU version. A dynamic strategy with data
locality can overcome the cache-unfriendly nature of pure work stealing. Furthermore, the
use of task annotation (SetArch) in order to hint the scheduler can deal with the processing
power differences of resources. We acknowledge the limitations of this approach that
include previous knowledge of task nature (compute-bound or memory-bound).

These two types of scheduling strategies, grouped by cost model and dynamic schedul-
ing, can efficiently distribute workload on heterogeneous architectures. While cost models
were conceived for this architectures, dynamic scheduling is efficient in conjunction with
heuristics and scheduler hints, as suggested by our results.

Finally, on the context of runtime systems, we conclude that our scheduling frame-
work can provide a basic support for different scheduling strategies. Our framework,
conceived from work stealing, is also capable of expressing cost model strategies along
with performance models. We were able to design two different scheduling strategies,
cost models and dynamic scheduling, and to attain notable performance results. Besides,
our framework to express scheduling strategies on top of XKaapi opens the design of
other schedulers without major runtime modifications.
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7 RUNTIME SUPPORT FOR NATIVE MODE ON INTEL
XEON PHI COPROCESSOR

Part of the works in this Chapter were published in LIMA et al. (2013).

With the introduction of the Intel Xeon Phi coprocessor, Intel proposed an evolution
in the way to develop applications for accelerators. Several researchers have recently
moved their focus on this architecture (NEWBURN et al., 2013; CRAMER et al., 2012;
LABARTA; BELTRAN, 2013; PENNYCOOK et al., 2013; EISENLOHR et al., 2012;
TOMOV; DONGARRA; BABOULIN, 2010; HEINECKE et al., 2013), trying to position
the Intel Xeon Phi as a good candidate for executing efficient high-performance parallel
applications. For instance, the European DEEP project aims at studying the contribution
of the Intel Xeon Phi technology in the design of a novel architecture for paving the way
to Exascale.

High performance on multicore architectures requires several threads of control run-
ning mostly independent code, with limited synchronizations to ensure a smooth progress
of the computation. Programming directly with threads is considered as highly unproduc-
tive and error prone (LEE, 2006). Many parallel programming environments have been
proposed to exploit such architectures, and two of them, Cilk and OpenMP, behave espe-
cially well for executing fine-grained parallelism (see Sections 3.1.1 on page 51 and 3.1.2
on page 52). Both Cilk and OpenMP have basic constructs to create independent tasks and
to parallelize independent loops. Intel provides a rich set of parallel programming envi-
ronments like Pthreads (ELECTRICAL; ELECTRONIC ENGINEERS, 1995), OpenMP,
Intel Cilk Plus and TBB running on the Intel Xeon Phi, letting the programmer to choose
the one that best suits his needs. The availability of all these environments clearly posi-
tions the Intel Xeon Phi coprocessor as a reliable target for accelerated applications.

Even if these programming environments improves opacity, they may not be suited for
large-scale shared-memory architectures like a 240-threads Intel Xeon Phi coprocessor.
In particular, several studies (KURZAK et al., 2010; DURAN et al., 2009) show that the
strong synchronizations imposed by both OpenMP and Cilk execution models artificially
limit the available parallelism: in these programming models, the synchronization con-
struct blocks the running thread until previously spawned tasks have completed their ex-
ecution. These studies emphasize data-flow approaches that are able to expose fine-grain
one-to-one synchronizations between tasks: the runtime system can detect concurrent
tasks as soon as their inputs are produced.

Data-flow programming model is a promising approach to take into account data trans-
fers between disjoint memory address spaces. It was successfully validated on multi-
CPU / multi-GPU architectures, as described in Chapter 5 on page 79 and Chapter 6 on
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page 97, and on large-scale distributed platforms (GAUTIER; BESSERON; PIGEON,
2007; BUENO et al., 2012). However, few studies have reported on data-flow task pro-
gramming on the Intel Xeon Phi.

In this Chapter, we present performance evaluations of the XKaapi data-flow run-
time on native Intel Xeon Phi applications: our goal is to study the strengths and the
weaknesses of XKaapi to program native applications. We report a novel experimental
evaluation on porting a high-performance data-flow programming environment into the
Intel Xeon Phi coprocessor.

The Intel Xeon Phi can be seen as a set of hyperthreaded cores that share a global
memory, which is not far from a multicore architecture. Porting XKaapi source code
to the Xeon Phi was not difficult, requiring to specialize memory barriers and atomic
operations to take into account the Xeon Phi specificities. Besides, we designed two main
runtime modifications to optimize XKaapi:

— A new thread placement over physical cores and hardware threads (Section 7.1);

— A modified version of work stealing where one thread is allowed to steal (Sec-
tion 7.2) in a physical core at the same time.

Most of this Chapter is dedicated to experimental results of the XKaapi runtime on the
Intel Xeon Phi using three sets of benchmarks (Section 7.3).

7.1 Thread Placement

The Intel MIC architecture has a hardware topology similar to a SMP processor with
four hardware threads (HT) per physical core, which is not far from a multicore architec-
ture. As detailed in Section 2.1.4.4 on page 36, the MIC system seems a general-purpose
SMP at user mode level.

We designed a new thread placement in order to evenly attribute threads to the Intel
Xeon Phi physical cores. XKaapi default placement fills all processing units sequentially,
i.e., in an Intel Xeon Phi it fills each physical core with threads in all four hardware threads
to step on the next physical core. In this placement strategy an execution with one thread
per physical core is not possible. For instance, considering an Intel Xeon Phi card with 60
physical cores, 60 threads would fill only 30 physical cores. In our new strategy , threads
are placed equally among the available cores. A 60 threads placement will result in one
thread per physical core.

Figure 7.1 on the facing page illustrates a comparison between the default XKaapi
placement over the new strategy for the Intel Xeon Phi coprocessor. In our example, we
note that there are 2 physical cores and 8 hardware threads to execute 5 threads. XKaapi
default placement (7.1a) distributes 4 threads on the first physical core and 1 thread on the
second. Our new placement (7.1b) puts 3 threads on the first physical core and 2 threads
on the second.

7.2 Work Stealing Scheduler

XKaapi work stealing scheduler have demonstrated the good scalability of XKaapi
even at fine grain (BROQUEDIS; GAUTIER; DANJEAN, 2012; GAUTIER et al., 2013).
The Intel Xeon Phi version has the same features detailed in Section 4.3 on page 71. Nev-
ertheless, XKaapi does not have optimizations for physical cores with hardware threads.
Each core has support to 4 hardware threads that may execute two instructions per clock
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Figure 7.1 – XKaapi thread placement of five threads on the Intel Xeon Phi.

(a) Default placement.
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cycle (JEFFERS; REINDERS, 2013, p. 249). Its multithreading may be useful for HPC
workloads although the optimal number of threads may range from 2 to 4 threads per
physical core.

XKaapi work stealing algorithm was modified on the Intel Xeon Phi version in order
to avoid bottlenecks on the physical core. Algorithm 8 shows the steps performed before
and after a thread executes a steal request. A XKaapi thread is allowed to enter in steal
state only when no other thread in the same physical core is attempting to steal. Line 5
does the steal request and was unmodified for this version. If a thread is already in steal
state on the same physical core, the current thread yields the CPU (hardware thread) by
pause instruction. The operations to test and enter in stealing state (lines 1 and 4) were
implemented by a Compare-and-Swap (CAS) operation.

Algorithm 8: XKaapi algorithm to steal tasks on the Intel Xeon Phi.
1 while There is a thread in Stealing State on this physical core do
2 Yield the hardware thread
3 end
4 Enter in Stealing State on this physical core
5 Try to steal a ready task from a random worker
6 Leave Stealing State from this physical core

7.3 Experiments

This Section presents experimental results of the XKaapi runtime system on a single
Intel Xeon Phi coprocessor in native execution. Our objectives are:

1. Compare XKaapi over OpenMP and Intel Cilk Plus for multicore processors (Intel
Xeon Sandy Bridge) and manycore coprocessors (Intel Xeon Phi);

2. Evaluate XKaapi on an Intel Xeon Phi using task parallel benchmarks such as
PLASMA and BOTS.

First we describe our target platform (Section 7.3.1) composed of four processors and
one coprocessor. Next we report performance results of an Intel Xeon Phi coprocessor
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compared to an Intel Xeon Sandy Bridge processor (Section 7.3.2). Then we show our
preliminary experiments with PLASMA (Section 7.3.3) and BOTS (Section 7.3.4).

All times reported in this Section are average of more than 30 executions with a warm-
up phase of 2 runs.

7.3.1 Platform and Environment

All the applications were executed natively on the Intel Xeon Phi environment. The
Intel Xeon Phi used is a 5110P with 60 cores running at 1.053 Ghz and sharing 8 GB of
memory. Each core has support to 4 hardware threads, for a total of 240 threads.

The host platform, hereafter called Intel Xeon Sandy Bridge, contains 4 Intel Xeon
E5-4620 multicore processors for a total of 32 cores running at 2.20 GHz and sharing
384 GB of main memory. On this machine, hyperthreading was activated and enabled 2
hardware threads per core resulting in a total of 64 hardware threads.

The software environment used on Intel Xeon Sandy Bridge was the following: the
operating system was a Debian distribution with a 3.8.11 Linux kernel; the OpenMP and
Intel Cilk Plus applications were compiled with the Intel C/C++ compiler 13.1.3 and
executed using the corresponding runtime system from Intel. Intel Xeon Phi’s firmware
version was 1.14.4616 and comes with version 13.0.1 of the Intel C/C++ compiler, MPSS
2.1.6720-13 and compiler_xe_2013.1.117. The benchmarks were compiled with Intel
icpc and the -O3 option. On Intel Xeon Sandy Bridge, threads were explicitly bound to
physical cores for OpenMP and XKaapi.

We evaluated XKaapi version 2.0 with the modifications described in this Chap-
ter. XKaapi applications were compiled with the same Intel compilers used to compile
OpenMP and Intel Cilk Plus applications.

7.3.2 Comparison Xeon vs Xeon Phi

In this Section we report experimental evaluations of XKaapi compared to Intel OpenMP
and Intel Cilk Plus on an Intel Xeon Sandy Bridge machine and an Intel Xeon Phi co-
processor. We designed three parallel benchmarks in order to evaluate performance and
runtime overhead:

— Fibonacci computation that allows to study overhead and scalability;

— NQueens search to generate irregular and dynamic tasks;

— Cholesky factorization based on tile blocked algorithm from PLASMA in order to
measure raw performance on each architecture.

7.3.2.1 Fibonacci

The Fibonacci benchmark computes the n-th Fibonacci number using a naive recur-
sive computation. The purpose of this benchmark is to compare the overheads and scal-
ability of the runtime systems that come with the OpenMP, the Intel Cilk Plus and the
XKaapi programming environments on both the Intel Xeon Phi coprocessor and the Intel
Xeon Sandy Bridge machine.

The code executed by each of the three environments generates the same number of
tasks: each recursive call creates two child tasks (with #pragma omp task, cilk_spawn
or ka::Spawn) to compute the n − 1 and n − 2 Fibonacci numbers in parallel, and
then synchronizes the created tasks (with #pragma omp taskwait, cilk_sync or
ka::Sync) before returning the sum of the two subresults. The recursion stops when
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the computation of the Fibonacci number is less than 2 (see Section 3.1 on page 51 for
code examples in OpenMP and Cilk).

Figure 7.2 reports experimental results on Intel Xeon Sandy Bridge (7.2a) and Intel
Xeon Phi (7.2b) respectively. The obtained results show that XKaapi had the lowest
overhead among the three tested environments. XKaapi was 1.83 times faster than Intel
Cilk Plus with 64 threads on Intel Xeon Sandy Bridge and 2.01 times faster than Intel
Cilk Plus with 240 threads on Intel Xeon Phi. XKaapi speedup was 3.28 with 64 threads
on Intel Xeon Sandy Bridge and 21.78 with 160 threads on the Intel Xeon Phi. Intel Cilk
Plus had speedup over the sequential version for almost all cases except on Intel Xeon
Sandy Bridge below 24 threads. Its speedup was 1.79 with 64 threads on Intel Xeon
Sandy Bridge and about 10.11 with 240 threads on Intel Xeon Phi.

Figure 7.2 – Fibonacci speedup over sequential execution for XKaapi, OpenMP, and Intel
Cilk Plus (input of N = 38).

(a) Intel Xeon Sandy Bridge.
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(b) Intel Xeon Phi.
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On the contrary, Intel OpenMP exhibited poor performance for this benchmark with
fine grain recursive tasks. The speedup results on Intel Xeon Sandy Bridge were below
1 for all thread configurations. The maximum speedup obtained on Intel Xeon Phi was
1.18.

On this benchmark, the Intel Xeon Phi was about 13 times slower than Intel Xeon
Sandy Bridge on the sequential execution (Ts), but on 1-core execution (T1) 6.4 times
slower with Intel Cilk Plus and 5.4 slower with XKaapi. If we look at the maximum
performance on both architectures, the Intel Xeon Phi was about 2.1 times slower than
Intel Xeon Sandy Bridge on the tested benchmark.

7.3.2.2 NQueens

The NQueens benchmark is based on the Takaken (TAKAKEN, ????) optimized se-
quential code to compute the number of solutions for the NQueens problem. It has been
parallelized using XKaapi since 2007 (GAUTIER; BESSERON; PIGEON, 2007) and we
adapted it to OpenMP and Intel Cilk Plus. We have decided not to consider the OpenMP
BOTS NQueens program as baseline as it runs slower than Takaken’s code, mainly be-
cause it does not take symmetries of the configuration into account. Sequential execution
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of our code is about 1200 times faster than BOTS NQueens for N = 16 using the same
icpc compiler with the -O3 option.

The principle of the parallelization is a recursive exploration of the different configu-
rations of the chessboard: a set of possible configurations is generated at each recursive
call, taking symmetries into account. Each configuration is explored by an independent
task. On final recursion, possible solutions are accumulated in a global variable. The
parallelism is generated until a threshold, then the code performs sequential exploration.

The OpenMP, Intel Cilk Plus and XKaapi codes generate the same independent tasks.
The main difference between the three environments resides in the way solutions are
accumulated. As the original code relies on a 3D vector of solutions holding each of the
3 considered symmetries, the OpenMP version uses a critical region to accumulate the
solutions. The Intel Cilk Plus version behaves similarly, using a mutex to implement the
same kind of critical region. So, for each accumulation, these runtime systems perform
an a priori synchronization before accessing the global variable.

Nevertheless, the XKaapi version creates tasks with access to the global variable de-
clared as “cumulative write access” (GALILEE et al., 1998; GAUTIER; BESSERON;
PIGEON, 2007), which allows to accumulate arbitrary data with an user-defined asso-
ciative operator. When a thief thread steals a task, the runtime creates a new per thief
thread data that the stolen task and its descendants use for the accumulation. When the
stolen task completes, the new data is accumulated to the victim thread’s data. At the
end, the global variable contains the final accumulated result. This mechanism enables
the XKaapi runtime to reduce the required synchronizations compared to OpenMP and
Intel Cilk Plus.

Our first experiments with NQueens aim to evaluate the impact of the grain size on
the parallel algorithm. Figure 7.3 on the next page illustrates execution times for different
grain sizes on Intel Xeon Sandy Bridge and Intel Xeon Phi. First we note that setting the
NQueens threshold to bigger values will generate more parallelism, creating more fine-
grain tasks. Both Intel Cilk Plus and OpenMP results can be explained by the overhead
when executing fine-grain tasks (greatest threshold in the Figure). On the other hand,
XKaapi seems to be able to efficiently execute applications at finer task grains while
limiting the negative impact of runtime-related overheads on the overall execution time.

On 64 hardware threads (32 cores) of Intel Xeon Sandy Bridge, the minimum time for
XKaapi was obtained with a threshold of t = 6, which is different from the one used by
Intel Cilk Plus (t = 3) and OpenMP (t = 5). On the 240 threads of Intel Xeon Phi, we set
the threshold to t = 6 for all the environments.

Figure 7.4 on the facing page reports the speedup S = Ts/TP for NQueens (N =
17) on Intel Xeon Sandy Bridge and Intel Xeon Phi. For each environment, we report
the performance obtained using the best threshold. The speedup for all three (OpenMP,
Intel Cilk Plus, and XKaapi) environments were similar up to 16 threads on Intel Xeon
Sandy Bridge and up to 60 threads on the Intel Xeon Phi. For all other cases, XKaapi
outpeformed OpenMP and Intel Cilk Plus. On Intel Xeon Sandy Bridge, XKaapi reached
a speedup of 30.21 on 32 threads and 39.52 on 64 threads while OpenMP reached 29.39
and 33.43 of speedup respectively. On Intel Xeon Phi XKaapi reached a speedup of
58.76 on 60 threads and 85.51 on 240 threads while OpenMP reached 55.10 and 65.51 of
speedup respectively. XKaapi had the maximum speedup on both architectures: 39.52 on
Intel Xeon Sandy Bridge (64 threads) and 90.18 on Intel Xeon Phi (120 threads). XKaapi
was 1.18 times faster than OpenMP on 64 threads on Intel Xeon Sandy Bridge and 1.3
times faster than OpenMP on 240 threads on Intel Xeon Phi.



121

Figure 7.3 – Time versus threshold for NQueens benchmark (N=17) for XKaapi, Intel
Cilk Plus and OpenMP.

(a) Intel Xeon Sandy Bridge.
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(b) Intel Xeon Phi.
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Figure 7.4 – Scalability of the NQueens benchmark (N=17) for XKaapi, Intel Cilk Plus
and OpenMP.

(a) Intel Xeon Sandy Bridge.
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(b) Intel Xeon Phi.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120  140  160  180  200  220  240

S
pe

ed
up

Threads

XKaapi (t=6)
Cilk Plus (t=6)
OpenMP (t=6)

For NQueens (N = 17), the best execution time on Intel Xeon Phi obtained by XKaapi
was 1.27 seconds on 120 threads. On Intel Xeon Sandy Bridge, the best execution time on
16 threads over 8 physical cores was 1.32 seconds. For this benchmark, we can confirm
that the Intel Xeon Phi coprocessor may be able to reach better performance than a single
Intel Xeon Sandy Bridge socket.

7.3.2.3 Cholesky

The Cholesky factorization (POTRF) decomposes an n × n real symmetric positive
definite matrix A into the form A = LLT where L is an n×n real lower triangular matrix
with positive diagonal elements (AGULLO et al., 2010).

Figure 7.5 on the next page shows the pseudo-code of both the XKaapi and the Intel
Cilk Plus versions. The main difference between the two versions is the absence of syn-
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chronization in the XKaapi code thanks to data-flow dependencies between tasks. The
user is responsible for indicating the mode each task uses to access memory and the
runtime system build dependencies between tasks that access to same memory region.
The XKaapi code illustrates the C++ interface that does not require a specific compiler:
in the notation A(ri,rj), ri and rj denote a range of indexes so that A(ri,rj)
is a sub-matrix of matrix A. Thanks to this finer knowledge of tasks dependencies, the
runtime system can schedule ready tasks between two main iterations in k (KURZAK
et al., 2010; DURAN et al., 2009). The OpenMP version is similar to the Intel Cilk
Plus version by replacing cilk_spawn by #pragma omp task and cilk_sync
by #pragma omp taskwait.

Figure 7.5 – Example of a left-looking Cholesky factorization with XKaapi and Intel Cilk
Plus.
1 /* XKaapi */
2 for( k=0; k < NB; k++ ) {
3 ka::Spawn<POTRF>()( A(k,k

) );
4 for( m=k+1; m < NB; m++ )
5 ka::Spawn<TRSM>()( A(k,k

),
6 A(m,k) );
7
8 for( m=k+1; m < NB; m++ )

{
9 ka::Spawn<SYRK>()( A(m,k

),
10 A(m,m) );
11 for( n=k+1; n < m; n++ )
12 ka::Spawn<GEMM>()( A(m

,k),
13 A(n,k), A(m,n) );
14
15 }
16 }

1 /* \cilk */
2 for( k=0; k < NB; k++ ) {
3 POTRF( A(k,k) );
4 for( m=k+1; m < NB; m++ )
5 cilk_spawn TRSM( A(k,k),
6 A(m,k) );
7 cilk_sync;
8 for( m=k+1; m < NB; m++ )

{
9 cilk_spawn SYRK( A(m,k),

10 A(m,m) );
11 for( n=k+1; n < m; n++ )
12 cilk_spawn GEMM( A(m,k

),
13 A(n,k), A(m,n) );
14 cilk_sync;
15 }
16 }

Our experiments use the same parallel version of the Cholesky factorization, as found
in PLASMA (BUTTARI et al., 2009). The algorithm has been re-implemented in two
versions: block version (same as in PLASMA) and parallel-diagonal version (GAUTIER
et al., 2013). The parallel-diagonal Cholesky is a two level parallel algorithm: at the up-
per level, we use the PLASMA algorithm; at the lower level the panel factorization task
(POTRF) is parallelized using the same parallel algorithm as at upper level by decompos-
ing one tile in sub-tiles of size 32 × 32. We have not used auto-tuning to select the sizes
of the tile and sub-tile, but an empirical approach: after a few experiments showing their
average good performances, we have decided to use theses values. The two algorithms on
XKaapi are similar to the multi-GPU version depicted in Appendix B on page 153.

Figure 7.6 on the next page reports the GFlop/s rate obtained for a matrix of size
8192 × 8192 with tiles of size 256 × 256. The overall best performance was obtained
by XKaapi for both architectures. On Intel Xeon Sandy Bridge, OpenMP and Intel Cilk
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Plus had a similar level of performance. On Intel Xeon Phi, the behavior is the same than
on Intel Xeon Sandy Bridge, except the XKaapi parallel-diagonal version showed an im-
portant performance improvement. Results on bigger matrices follow the same behavior
(Figure 7.7) on the two architectures.

Figure 7.6 – Results of Cholesky benchmarks for XKaapi, OpenMP, and Intel Cilk Plus
for matrix size 8192×8192 and tile size 256×256. MKL was only measured on the Intel
Xeon Phi and omitted on the Intel Xeon Sandy Bridge.
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(b) Intel Xeon Phi.
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Figure 7.7 – Results of Cholesky benchmarks for XKaapi, OpenMP, and Intel Cilk Plus
for a matrix of size 16384× 16384 and tile size 512× 512. MKL was only measured on
the Intel Xeon Phi and omitted on the Intel Xeon Sandy Bridge.
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(b) Intel Xeon Phi.
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On the Intel Xeon Phi architecture, the cores are efficient on regular matrix operations,
which is the case for tasks TRSM, GEMM and SYRK of Figure 7.5 on the preceding page,
but not for the POTRF task. On the Cholesky factorization, the POTRF tasks on diagonal
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block A(ri,ri) are on the critical path of the execution. Any reduction in the comple-
tion of POTRF tasks allows other cores to resume their execution, thus reducing idle time.
The same phenomenum was observed on multi-CPU/multi-GPU factorization (KURZAK
et al., 2010; AGULLO et al., 2010; GAUTIER et al., 2013) where POTRF tasks are inef-
ficient on GPU, thus to decrease execution time, tasks belonging to the critical path have
to be parallelized. On multi-CPU/multi-GPU this was done by executing PORTF tasks on
CPUs. On Intel Xeon Phi, the same performance improvement can be obtained by paral-
lelizing POTRF tasks as performed by the XKaapi parallel-diagonal version described in
our previous multi-GPU implementation (GAUTIER et al., 2013).

Figures 7.6b and 7.7b show an interesting behavior on the Intel Xeon Phi. If we
compare MKL performance with the two XKaapi codes (parallel-diagonal and block ver-
sions), XKaapi versions were above the performance of MKL in most cases. The parallel-
diagonal version was up to 47% faster than MKL (for 60 threads) and faster than MKL
up to 180 threads (matrix 8192× 8192). Moreover, for a matrix size of 8192× 8192, the
XKaapi version reached 152.67 GFlop/s with 60 threads, 191.9 GFlop/s with 100 threads
and only 194.57 GFlop/s with 120 threads. The MKL reached 103.35 GFlop/s with 60
threads, 137.8624 with 100 threads and 224.28 GFlop/s with all the 240 threads.

Without any description of how the MKL POTRF routine is implemented, the XKaapi
version was able to provide a higher ratio GFLops/thread than MKL up to 180 threads.
These findings led us to believe that our initial port on Intel Xeon Phi may not take care of
affinity between tasks and data, and our randomized work stealing may have an important
memory footprint. Techniques we have developed for multi-GPUs (GAUTIER et al.,
2013) would be tested to improve the scalability of our runtime system.

The XKaapi parallel-diagonal Cholesky factorization obtained at most 81.15 GFlop/s
on one Intel Xeon Sandy Bridge socket for a matrix size of 8192 × 8192. The same
code on Intel Xeon Phi performed at 194.57 GFlop/s, and the MKL was at most 224.28
GFlop/s. Therefore, one Intel Xeon Phi was 2.4× more powerful than one Intel Xeon
Sandy Bridge socket on this benchmark.

7.3.2.4 Runtime Overhead

Table 7.1 shows the runtime overhead measured from Intel OpenMP, Intel Cilk Plus,
and XKaapi on Intel Xeon Sandy Bridge processor and Intel Xeon Phi coprocessor. Our
overhead metric is T1/Ts where T1 is the execution time of the parallel algorithm with
1 thread and Ts the sequential algorithm. These measures suggest that XKaapi had a
lower overhead for both architectures on the Fibonacci benchmarks. Intel OpenMP had
the highest overhead of almost 33× on Intel Xeon Sandy Bridge and 17× on Intel Xeon
Phi over the sequential time. On the other hand, all runtime systems had similar results
for the NQueens search: 0.93× on Intel Xeon Sandy Bridge and 0.98× on Intel Xeon Phi.

7.3.3 PLASMA: Cholesky, LU, and QR

Our experiments use the tiled algorithms of PLASMA 1 version 2.5.2 for Cholesky,
LU, and QR. The purpose of this benchmark is to compare performance results of static
strategy and dynamic load balancing (XKaapi and QUARK). We performed experiments
over four parallel versions of each benchmark:

1. MKL parallel version;

1. http://icl.cs.utk.edu/plasma/

http://icl.cs.utk.edu/plasma/
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Table 7.1 – Runtime overhead for Fibonacci and NQueens on Intel Xeon Sandy Bridge
and Intel Xeon Phi.

Intel Xeon Sandy Bridge Intel Xeon Phi

T1/Ts T1/Ts

Ts OpenMP Cilk XKaapi Ts OpenMP Cilk XKaapi

Fibonacci 0.27 33.48 19.13 10.59 3.77 17.39 8.80 4.11
NQueens 21.67 0.93 0.92 0.93 114.95 0.98 0.98 0.98

2. PLASMA static scheduling;

3. Dynamic scheduling with XKaapi;

4. Dynamic scheduling with QUARK from PLASMA.

We implemented the QUARK API (YARKHAN; KURZAK; DONGARRA, 2011) in or-
der to execute PLASMA algorithms over the XKaapi runtime on Intel Xeon Phi.

We used MKL kernels for BLAS and LAPACK to implement algorithm tasks. We
report all results from PLASMA in floating-point operations per seconds (GFlop/s). Ta-
ble 7.2 lists PLASMA methods and parameters for our experiments. We note that the
peak performance obtained on the Intel Xeon Phi of our experiments was 603.63 GFlop/s
with MKL matrix multiplication in double precision (DGEMM).

Table 7.2 – PLASMA method and parameters for experiments on the Intel Xeon Phi. The
parameters of PLASMA are matrix size, block size (NB), and internal block size (IB).

LAPACK PLASMA Matrix
Method method method size NB IB

Cholesky DPOTRF PLASMA_dpotrf_Tile 8192 128 32
LU DGETRF PLASMA_dgetrf_incpiv_Tile 8192 128 32
QR DGEQRF PLASMA_dgeqrf_Tile 8192 128 32

Figure 7.8 on the following page shows performance results of Cholesky. In most
cases MKL outperformed other strategies. The peak performance with MKL was 215.60
GFlop/s, which is 35.71% of the coprocessor peak. XKaapi attained performance re-
sults near PLASMA static scheduling, whose peak was 109.45 GFlop/s at 120 threads.
PLASMA QUARK exhibited poor performance beyond 40 threads.

Figure 7.9 on the next page illustrates performance results of LU. In most cases MKL
outperformed other strategies and attained 159.73 GFlop/s of peak performance, which is
26.46% of the coprocessor peak. XKaapi version showed similar performance compared
to PLASMA static version. PLASMA QUARK exhibited poor performance beyond 40
threads.

Figure 7.10 on page 127 shows performance results of QR. In a similar way MKL
outperformed other strategies with peak of 149.86 GFlop/s, which is 24.82% of the co-
processor peak. XKaapi outperformed PLASMA static version from 80 threads and its
peak was 83.31 GFlop/s. PLASMA QUARK outperformed PLASMA static scheduling
and MKL with 60 threads (60.57 GFlop/s), but dropped using more than 80 threads.
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Figure 7.8 – Cholesky factorization results from PLASMA with matrix size 8192× 8192
on Intel Xeon Phi.
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Figure 7.9 – LU factorization results from PLASMA with matrix size 8192 × 8192 on
Intel Xeon Phi.
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7.3.4 BOTS: FFT, Health, SparseLU, and Strassen

The purpose of our preliminary experiments in this Section is to evaluate the XKaapi
runtime with task parallel benchmarks and compare to native Intel OpenMP on an Intel
Xeon Phi. The Barcelona OpenMP Tasks Suite 2 (BOTS) is a set of applications that allow
to evaluate OpenMP implementations (DURAN et al., 2009). Most of its applications
use the OpenMP task directives. In our experiments we selected four benchmarks from
BOTS:

1. FFT computes the one-dimensional Fast Fourier Transform of a vector with n com-
plex values. Its parallel version is based on Cilk’s recursive implementation.

2. Health simulates the Columbian Health Care System.

2. https://pm.bsc.es/projects/bots

https://pm.bsc.es/projects/bots
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Figure 7.10 – QR factorization results from PLASMA with matrix size 8192 × 8192 on
Intel Xeon Phi.
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3. SparseLU computes a LU matrix factorization over sparse matrices.

4. Strassen algorithm uses hierarchical decomposition of a matrix for multiplication
of large dense matrices. Its parallel version is based on Cilk’s recursive implemen-
tation.

We designed a BOTS version using XKaapi compiler annotations with data dependen-
cies (LEMENTEC; GAUTIER; DANJEAN, 2011).

Table 7.3 gives the input parameters, T1, and overhead T1/Ts of BOTS on the Intel
Xeon Phi. Both OpenMP and XKaapi had similar results for T1 and overhead of about 1
for all benchmarks.

Table 7.3 – Input parameters and runtime overhead of BOTS on the Intel Xeon Phi.

OpenMP XKaapi

Benchmark Input Ts T1 T1/Ts T1 T1/Ts

FFT 32M floats 158.82 s 160.59 s 1.01 160.79 s 1.01
Health medium.input 61.14 s 72.57 s 1.18 71.73 s 1.17
SparseLU n = 25, m = 25 1.03 s 1.03 s 0.99 1.04 s 1.00
Strassen n = 1024, y = 64 5.94 s 5.68 s 0.95 6.03 s 1.01

Figure 7.11 on the following page shows speedup Ts/TP on Intel Xeon Phi coproces-
sor. XKaapi outperformed OpenMP with SparseLU (7.11c) in all cases and Health up
to 120 threads (7.11b). Nonetheless, OpenMP reached better results on FFT (7.11a) and
Strassen (7.11d). On FFT, OpenMP reached the maximum speedup of 85.24 with 220
threads, 2.92 times better than XKaapi best result (29.14 of speedup with 100 threads).
For Health, OpenMP had the maximum speedup of 33.98 with 180 threads, only 1.03
times better than XKaapi best result (32.79 of speedup with 120 threads). SparseLU max-
imum speedup of 16.55 on 60 threads was obtained with XKaapi, 1.63 times better than
OpenMP best result (10.15 of speedup with 20 threads). In Strassen OpenMP attained the
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best speedup of 11.87 with 40 threads, 1.33 times better than XKaapi best speedup (8.86
with 20 threads).

Figure 7.11 – Preliminary results of BOTS benchmarks FFT, Health, SparseLU, and
Strassen on the Intel Xeon Phi.

(a) FFT.
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(b) Health.

 0

 5

 10

 15

 20

 25

 30

 35

1 1020 40 60 80 100 120 140 160 180 200 220 240

S
pe

ed
up

Threads

OpenMP (untied)
XKaapi

(c) SparseLU.
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(d) Strassen.
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7.4 Discussion

In our benchmarks, we evaluated the XKaapi runtime overhead and performance. It
appears that XKaapi had the lowest overhead compared to Intel OpenMP and Intel Cilk
Plus. XKaapi intrinsic overheads due to the computation of the data-flow dependencies
between tasks are incurred by steal operations. If the number of steal operations is very
small compared to the number of created tasks, as in Fibonacci (FRIGO; LEISERSON;
RANDALL, 1998), data-flow related overheads do not impact XKaapi’s performance ob-
tained.

One reason for Intel OpenMP overhead could be the fact that the 1-core execution is
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optimized to avoid task creation, performing simple function calls as for the sequential
code. The reference time T1 does not include overheads that only appears when several
cores are used. We already noticed that the overheads of GNU/GCC libGOMP runtime
system (BROQUEDIS; GAUTIER; DANJEAN, 2012) on fine grain task-based programs
were large, and smaller for Intel’s OpenMP implementation. On this task-based program,
the Intel OpenMP runtime could be improved to achieve better performance, for instance
by using the approach described by BROQUEDIS; GAUTIER; DANJEAN (2012).

Results of our benchmarks on an Intel Xeon Sandy Bridge machine and Intel Xeon
Phi coprocessor showed that one Intel Xeon Phi chip with 60 cores can be a competitive
architecture almost outperforming one socket of the complex superscalar and out-of-order
8 cores Intel Xeon E5-4620 processor, if, and only if, (a) the application exhibits enough
parallelism, even irregular and dynamic, for the 240 available threads; (b) the runtime is
able to schedule fine grain tasks with low overhead.

In addition, XKaapi outperformed other strategies on our performance experiments on
Cholesky in C++. Although, its performance was below MKL after 120 threads. These
results can be explained by the lack of autotunning and use of vector instructions. It
seems that the grain size of our experiments did not attain best performance and may
exhibit cache problems. We assume that MKL would have a fine tuned task size and
would explore Intel Xeon Phi full potential of its VPUs.

Our PLASMA experiments attained results compared to static scheduling of PLASMA,
but below MKL. It seems that PLASMA algorithms are not efficient on accelerators such
as the Intel Xeon Phi. For instance, our parallel-diagonal strategy was able to improve
performance significantly. Besides, the poor performance of QUARK dynamic schedul-
ing suggests that QUARK is not able to scale and have contentions such as global locks
and memory barriers.

Our preliminary experiments with BOTS benchmarks exposed the main weaknesses
of the XKaapi runtime compared to Intel OpenMP. It seems that XKaapi exhibited high
overhead on recursive tasks with workload such as FFT and Strassen, unlike Fibonacci
benchmark from our previous experiments. Besides, Intel OpenMP may optimize recur-
sive calls at compiler time.

7.5 Summary

In this Chapter, we presented performance results of the XKaapi data-flow program-
ming model on the Intel Xeon Phi coprocessor in native execution. We evaluated three
sets of benchmarks in order to mainly evaluate XKaapi runtime overhead and perfor-
mance. In our first set, we compared XKaapi to OpenMP and Intel Cilk Plus, native Intel
Xeon Phi parallel programming environments provided by Intel. We conducted experi-
ments with a 60-core Intel Xeon Phi and four Intel Xeon Sandy Bridge with 32 physical
cores and 64 hardware threads. Our second set was composed linear algebra algorithms
of PLASMA over dynamic scheduling with XKaapi and QUARK, and static scheduling
from PLASMA. Finally, the third set consisted in evaluate XKaapi with four task parallel
benchmarks from BOTS.

Our performance benchmarks on linear algebra applications showed that using finer
synchronizations between tasks (data-flow dependencies) is more efficient than only re-
lying on the fork-join model as OpenMP and Intel Cilk Plus. Fine grain parallelism may
be increasingly essential as the number of cores grow faster than memory capabilities.
Although the 60 cores of our Intel Xeon Phi shared only 8 GB of memory, the design of
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parallel applications under these constraints require finer tasks that may hopefully take
advantage of finer data-flow dependencies for better performance.

This Chapter presented preliminary and promising performance results of XKaapi
on the Intel Xeon Phi coprocessor. These results led us to infer that a data-flow task
programming with efficient scheduling would be essential on accelerators. Although, on
some cases, it seems that to use the full potential of the Intel Xeon Phi coprocessor would
depend on the use of vector instructions (JEFFERS; REINDERS, 2013, p. 249).
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8 CONCLUSION

With the reported findings in this thesis we hope to contribute with the state of art of
parallel programming for parallel systems, specially multicore architectures with acceler-
ators. The main objective of this thesis is to study the issues of data-flow task program-
ming on multi-CPU architectures enhanced with accelerators. We target those architec-
tures with the XKaapi runtime system.

The structure of this thesis reflects our approach. We first studied the issues on multi-
GPU architectures for asynchronous execution and scheduling. Work stealing with heuris-
tics showed significant performance results, but did not consider the computing power of
different resources. Next, we designed a scheduling framework and a performance model
to support scheduling strategies over XKaapi runtime. Finally, we performed experimen-
tal evaluations over the Intel Xeon Phi coprocessor in native execution.

Our conclusion is twofold. First we concluded that data-flow task programming can
be efficient on accelerators, which may be GPUs or Xeon Phi coprocessors. The main
advantages of this programming model are the implicit synchronizations and abstraction
of data transfers. Second, the runtime support of different scheduling strategies is essen-
tial. Cost models provide significant performance results over very regular computations,
while work stealing can react to imbalances at runtime. Although its provably efficiency,
work stealing performance depends on scheduling heuristics to consider data locality on
heterogeneous systems.

8.1 Contributions

Throughout this thesis, we have shown that data-flow task programming provides a
flexible way to exploit parallelism and loose synchronization. Parallelism is explicit and
favors fine granularity that is essential on modern multicore and manycore architectures.
In addition, data-flow dependencies provide an explicit memory view of the underlying
architecture and abstract data transfers on disjoint address spaces. Unlike shared-memory
models, detection of synchronizations is implicit to the application and expressed by ac-
cess modes, i.e, a task executes if and only if its input parameters are produced.

We designed an execution mechanism to improve asynchronism on multi-GPU sys-
tems by concurrent GPU operations. This approach enabled the overlap of data transfer
along with execution of GPU code avoiding explicit GPU synchronizations. Thanks to
this overlapping, we were able to hide most of communication costs and reduce hetero-
geneity of memory accesses. Therefore, our concurrent GPU operations reduced synchro-
nization and enabled efficient data-flow task programming on accelerators.

In addition, the use work stealing heuristics on multi-GPU is one of our key contri-
butions on scheduling. Classic work stealing does not consider data locality in schedul-
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ing decisions and results on high data footprint. A locality heuristic based on owner-
computes rule showed data transfer reduction and, consequently, significant performance
speedup. Nonetheless, the support of multiple scheduling strategies is important on het-
erogeneous architectures. Although regular computations benefit from performance pre-
diction and scheduling by cost models, imbalances can be addressed by low-overhead,
receiver-initiated, scheduling such as work stealing.

Along with programming model and scheduling, we shown that the use of recursive
tasks allow to unfold parallelism at runtime and to improve performance substantially.
It is established that multicore processors are efficient on fine-grained task, while accel-
erators benefit from coarse-grained decomposition. A parallel algorithm with a hybrid
decomposition, mixing fine-grained and coarse-grained tasks, can take full advantage of
the underlying architecture.

We also studied the impact of data-flow task programming and work stealing on
a manycore accelerator. Our experiments on the Intel Xeon Phi coprocessor showed
XKaapi efficiency over native tools based on fork-join programming model. However,
we concluded that compute-bound benchmarks lacked of vector operators for optimal
performance.

This thesis also contributed to the XKaapi runtime development from the french team
MOAIS (INRIA Rhônes-Alpes). In the last XKaapi source version, source control statis-
tics reported that the multi-GPU version resulted in 440 commits and about 7, 500 addi-
tional or modified code lines.

8.2 Perspectives

The contributions of this thesis have raised several open questions. In this Section,
we detail some of the possible research opportunities to better exploit parallel systems,
mainly composed of accelerators.

8.2.1 Compiler Directives

The current compiler directives of XKaapi runtime offer task parallelism, data-flow
dependencies, and adaptive loops (LEMENTEC; GAUTIER; DANJEAN, 2011). How-
ever, it does not offer task multi-versioning for heterogeneous systems.

Another possible approach is the design of a established standard API. A standard
interface based on pragmas may avoid the re-write of applications on top of XKaapi. The
OpenMP version 4.0 standard predicts the use of data dependencies and accelerators.

A future work includes an optimized runtime system for OpenMP 4.0 that may target
different architectures such as multi-GPU and Intel Xeon Phi coprocessors. Since 4.0 it
incorporates an accelerator model and data-flow dependencies by depend clause. Fig-
ure 8.1 on the next page shows an example of OpenMP 4.0 data dependencies for a matrix
multiplication program.

8.2.2 XKaapi Benchmarks

Throughout this work, we basically performed experimental results using linear al-
gebra algorithms because they are studied by other related works in the context of task
parallelism and heterogeneous systems. Nevertheless, a runtime system with different
programming interfaces such as XKaapi may ideally have a set of benchmarks to evaluate
its performance under new features, or architectures.

A suggested future work is the support of task parallel benchmarks in order to evalu-
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Figure 8.1 – Example of matrix multiplication on OpenMP 4.0 standard.
1 void matmul(int NB, float A[NB][NB], float B[NB][NB],

float C[NB][NB])
2 {
3 #pragma omp parallel
4 #pragma omp single
5 {
6 for(int i = 0; i < NB; i++)
7 for(j = 0; j < NB; j++)
8 for(k = 0; k < NB; k++)
9 #pragma omp task depend(in:A[i][k],B[k][j]) depend

(inout:C[i][j])
10 matmul_tile( A[i][k], B[k][j], C[i][j] );
11 }
12 }

ate the XKaapi runtime. There are a number of benchmarks for OpenMP, Cilk Plus, and
CUDA, that cover a range of applications such as PBBS (SHUN et al., 2012), BOTS (DU-
RAN et al., 2009), Parboil (STRATTON et al., 2012), and Rodinia (CHE et al., 2010,
2009).

8.2.3 Intel Xeon Phi Extensions

A perspective from this thesis is future extensions of XKaapi runtime for the Intel
Xeon Phi coprocessor. The first research question is if work stealing heuristics can im-
prove scalability on native execution. This line would follow our previous research on
multi-GPU scheduling. Besides, a promising topic is to study the performance of PCIe
interconnected multi-Intel Xeon Phi architectures. In this scenario, a system may run
several instances of the XKaapi runtime, one for each coprocessor and one for the host
system, that communicate through PCIe and message passing. The programming model
remains unmodified, while scheduling may use distributed-memory techniques for load
balancing.

8.2.4 Parallel Adaptive Algorithms

Most of parallel algorithms in this work are expressed by task parallelism and data
dependencies, whose execution results in a DAG of tasks or a DFG considering their data
dependencies. Still, a parallel algorithm implies in an overhead calculated by

Toverhead = T1/Tserial (8.1)

where T1 is the execution of the parallel algorithm with one processor. Such overhead
may prevent applications to scale in manycore architectures.

The concept of parallel adaptive algorithms is simple: to unfold parallelism only when
necessary. Hence, in the context of work stealing scheduling, it creates parallel work only
with idle resources at stealing requests. The adaptive algorithm can be expressed by two
operations: extract_seq and extract_par. A worker will extract sequential work
by extract_seq with no parallel overhead until it becomes idle. Then, it will try to ex-
tract parallel work from the computation in progress by extract_par. Consequently,
a worker will execute the sequential version most of time and will minimize the work
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T1/P . TRAORé et al. (2008) show promising results using STL algorithms designed
over parallel adaptive algorithms.

A future work in the context of this thesis is the design of adaptive algorithms on het-
erogeneous systems. Such approach can allow the use of variable grain sizes of sequential
work since accelerators are able to execute bigger computations than CPUs in general.

8.2.5 Exascale Systems

An exascale system refers to a computing system capable to attain performance over
one exaflop (1018 operations). DONGARRA et al. (2011) list several assumptions about
exascale systems on hardware and software level, as well as programming models. For
instance, it is essential that a programming model offers support for multiple levels of
parallelism. Those levels include distributed and shared architectures composed of accel-
erators such as GPUs and Xeon Phi coprocessors. In addition, the runtime system should
be able to exploit parallelism over millions of cores

A research question based on this thesis is if data-flow task programming model
may produce efficient parallel algorithms for multi-level systems. DONGARRA et al.
(2011) suggests that a programming model for exascale may provide interoperability be-
tween stablished models such as MPI and OpenMP. We believe that recent extensions
to OpenMP indicate the acceptance of data-flow task programming as a programming
model for exascale. In addition, parallel overhead may be addressed by adaptive parallel
algorithms.

Another future perspective is the research on distributed support using XKaapi. In this
thesis we addressed issues on a single system composed of multicore CPUs and manycore
coprocessors such as GPU and Xeon Phi. However, we did not develop solutions on
distributed-memory systems. Previous works on Athapascan/KAAPI describe strategies
to data-flow programming on distributed systems (GALILEE et al., 1998; GAUTIER;
BESSERON; PIGEON, 2007). The contribution of this thesis combined with previous
works on Athapascan may give interesting results.



135

REFERENCES

ACAR, U. A.; BLELLOCH, G. E.; BLUMOFE, R. D. The data locality of work stealing.
In: ACM SPAA, 2000, New York, NY, USA. Proceedings. . . ACM, 2000. p.1–12.
(SPAA ’00).

AGULLO, E. et al. Faster, Cheaper, Better – a Hybridization Methodology to Develop
Linear Algebra Software for GPUs. In: HWU, W.-m. W. (Ed.). GPU Computing
Gems. [S.l.]: Morgan Kaufmann, 2010. v.2.

AGULLO, E. et al. QR Factorization on a Multicore Node Enhanced with Multiple GPU
Accelerators. In: IEEE IPDPS, 25., 2011, USA. Proceedings. . . [S.l.: s.n.], 2011.

AGULLO, E. et al. LU factorization for accelerator-based systems. In: IEEE/ACS
INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICA-
TIONS, 2011., 2011, Washington, DC, USA. Proceedings. . . IEEE Computer Society,
2011. p.217–224. (AICCSA ’11).

ASANOVIC, K. et al. The Landscape of Parallel Computing Research: a view
from berkeley. [S.l.]: EECS Department, University of California, Berkeley, 2006.
(UCB/EECS-2006-183).

ASANOVIC, K. et al. A view of the parallel computing landscape. Communications of
the ACM, New York, NY, USA, v.52, n.10, p.56–67, 2009.

AUGONNET, C. Scheduling Tasks over Multicore machines enhanced with Acceler-
ators: a runtime system’s perspective. 2011. PhD Thesis — Université Bordeaux 1,
Talence, France.

AUGONNET, C. et al. StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures. In: SIPS, H.; EPEMA, D.; LIN, H.-X. (Ed.). Euro-Par 2009
Parallel Processing. [S.l.]: Springer Berlin / Heidelberg, 2009. p.863–874. (Lecture
Notes in Computer Science, v.5704).

AUGONNET, C. et al. Exploiting the Cell/BE Architecture with the StarPU Unified
Runtime System. In: INTERNATIONAL WORKSHOP ON EMBEDDED COM-
PUTER SYSTEMS: ARCHITECTURES, MODELING, AND SIMULATION, 9.,
2009, Berlin, Heidelberg. Proceedings. . . Springer-Verlag, 2009. p.329–339. (SAMOS
’09).

AUGONNET, C. et al. Data-Aware Task Scheduling on Multi-accelerator Based Plat-
forms. In: ICPADS, 16., 2010. Proceedings. . . [S.l.: s.n.], 2010. p.291–298.



136

AUGONNET, C. et al. StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures. Concurrency and Computation: Practice and Experience,
[S.l.], v.23, n.2, p.187–198, 2011.

AUGONNET, C.; THIBAULT, S.; NAMYST, R. Automatic calibration of performance
models on heterogeneous multicore architectures. In: EURO-PAR, 2010. Proceed-
ings. . . Springer-Verlag, 2010. p.56–65.

AYGUADé, E. et al. An Extension of the StarSs Programming Model for Platforms with
Multiple GPUs. In: SIPS, H.; EPEMA, D.; LIN, H.-X. (Ed.). Euro-Par 2009 Parallel
Processing. [S.l.]: Springer Berlin / Heidelberg, 2009. p.851–862. (Lecture Notes in
Computer Science, v.5704).

AYGUADé, E. et al. The Design of OpenMP Tasks. IEEE Trans. Parallel Distrib. Syst.,
Piscataway, NJ, USA, v.20, n.3, p.404–418, 2009.

BADIA, R. M. et al. Parallelizing dense and banded linear algebra libraries using SMPSs.
Concurr. Comput.: Pract. Exper., Chichester, UK, v.21, p.2438–2456, 2009.

BARKER, K. et al. Entering the petaflop era: the architecture and performance of road-
runner. In: ACM/IEEE SUPERCOMPUTING, 2008., 2008. Proceedings. . . [S.l.: s.n.],
2008. p.1–11.

BELLENS, P. et al. CellSs: a programming model for the cell be architecture. In:
ACM/IEEE CONFERENCE ON SUPERCOMPUTING, 2006, New York, NY, USA.
Proceedings. . . ACM, 2006. p.86.

BENDER, M. A.; PHILLIPS, C. A. Scheduling DAGs on asynchronous processors.
In: ACM SYMPOSIUM ON PARALLEL ALGORITHMS AND ARCHITECTURES,
2007, New York, NY, USA. Proceedings. . . ACM, 2007. p.35–45. (SPAA ’07).

BLUMOFE, R. D. et al. Cilk: an efficient multithreaded runtime system. SIGPLAN Not.,
New York, NY, USA, v.30, n.8, p.207–216, Aug. 1995.

BLUMOFE, R. D.; LEISERSON, C. E. Space-Efficient Scheduling of Multithreaded
Computations. SIAM J. Comput., Philadelphia, PA, USA, v.27, p.202–229, 1998.

BLUMOFE, R. D.; LISIECKI, P. A. Adaptive and reliable parallel computing on net-
works of workstations. In: USENIX ANNUAL TECHNICAL CONFERENCE, 1997,
Berkeley, CA, USA. Proceedings. . . USENIX Association, 1997. p.10–10. (ATEC
’97).

BOSILCA, G. et al. DAGuE: a generic distributed dag engine for high performance com-
puting. Parallel Computing, [S.l.], v.38, n.1–2, p.37–51, 2012.

BROQUEDIS, F.; GAUTIER, T.; DANJEAN, V. libKOMP, an Efficient OpenMP Run-
time System for Both Fork-Join and Data Flow Paradigms. In: IWOMP, 12., 2012,
Rome, Italy. Proceedings. . . [S.l.: s.n.], 2012. p.102–115.

BUCK, I. et al. Brook for GPUs: stream computing on graphics hardware. In: ACM
SIGGRAPH, 2004, New York, NY, USA. Proceedings. . . ACM, 2004. p.777–786.
(SIGGRAPH ’04).



137

BUENO, J. et al. Productive cluster programming with OmpSs. In: PARALLEL
PROCESSING - VOLUME PART I, 17., 2011, Berlin, Heidelberg. Proceedings. . .
Springer-Verlag, 2011. p.555–566. (Euro-Par’11).

BUENO, J. et al. Productive Programming of GPU Clusters with OmpSs. In: IEEE
IPDPS, 2012. Proceedings. . . [S.l.: s.n.], 2012.

BUENO, J. et al. Implementing OmpSs support for regions of data in architectures with
multiple address spaces. In: ACM CONFERENCE ON INTERNATIONAL CONFER-
ENCE ON SUPERCOMPUTING, 27., 2013, New York, NY, USA. Proceedings. . .
ACM, 2013. p.359–368. (ICS ’13).

BUTTARI, A. et al. A class of parallel tiled linear algebra algorithms for multicore archi-
tectures. Parallel Computing, [S.l.], v.35, n.1, p.38–53, 2009.

CEDERMAN, D.; TSIGAS, P. On dynamic load balancing on graphics processors. In:
ACM SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON GRAPHICS HARDWARE,
23., 2008, Aire-la-Ville, Switzerland. Proceedings. . . Eurographics Association, 2008.
p.57–64. (GH ’08).

CHAPMAN, B.; JOST, G.; PAS, R. van der. Using OpenMP: portable shared memory
parallel programming. Cambridge, USA: The MIT Press, 2007.

CHE, S. et al. Rodinia: a benchmark suite for heterogeneous computing. In: IISWC,
2009. Proceedings. . . [S.l.: s.n.], 2009. p.44–54.

CHE, S. et al. A characterization of the Rodinia benchmark suite with comparison to
contemporary CMP workloads. In: IISWC, 2010. Proceedings. . . [S.l.: s.n.], 2010.
p.1–11.

CONSORTIUM, U. UPC Language Specifications, v1.2. [S.l.]: Lawrence Berkeley Na-
tional Lab, 2005. (LBNL-59208).

CORMEN, T. H. et al. Introduction to Algorithms, Third Edition. 3rd.ed. [S.l.]: The
MIT Press, 2009.

COUTéR, L. C Language Extensions for Hybrid CPU/GPU Programming with
StarPU. [S.l.]: INRIA, 2013. Research Report. (RR-8278).

COX, G. et al. Irregular Grid Raycasting Implementation on the Cell Broadband Engine.
In: SBAC-PAD, 21., 2009. Proceedings. . . [S.l.: s.n.], 2009. p.93–100.

CRAMER, T. et al. OpenMP Programming on Intel Xeon Phi Coprocessors: an early per-
formance comparison. In: MANY-CORE APPLICATIONS RESEARCH COMMU-
NITY (MARC) SYMPOSIUM AT RWTH AACHEN UNIVERSITY, 2012. Proceed-
ings. . . [S.l.: s.n.], 2012. p.38–44.

DIAMOS, G. F.; YALAMANCHILI, S. Harmony: an execution model and runtime
for heterogeneous many core systems. In: HIGH PERFORMANCE DISTRIBUTED
COMPUTING, 17., 2008, New York, NY, USA. Proceedings. . . ACM, 2008. p.197–
200. (HPDC ’08).



138

DINAN, J. et al. Scalable work stealing. In: ACM/IEEE SUPERCOMPUTING, 2009.,
2009, New York, NY, USA. Proceedings. . . ACM, 2009. p.53:1–53:11. (SC ’09).

DOLBEAU, R.; BIHAN, S.; BODIN, F. HMPP: a hybrid multi-core parallel program-
ming environment. 2007.

DONGARRA, J. et al. The International Exascale Software Project Roadmap. Int.
J. High Perform. Comput. Appl., Thousand Oaks, CA, USA, v.25, n.1, p.3–60,
Feb. 2011.

DONGARRA, J. et al. Dense Linear Algebra on Accelerated Multicore Hardware. In:
BERRY, M. W. et al. (Ed.). High-Performance Scientific Computing. [S.l.]: Springer
London, 2012. p.123–146.

DONGARRA, J. et al. MAGMA MIC 1.0: linear algebra library for intel xeon phi
coprocessors. 2013.

DONGARRA, J. et al. Achieving numerical accuracy and high performance using re-
cursive tile LU factorization with partial pivoting. Concurrency and Computation:
Practice and Experience, [S.l.], p.n/a–n/a, 2013.

DONGARRA, J. et al. (Ed.). Sourcebook of parallel computing. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2003.

DURAN, A. et al. A proposal to extend the OpenMP tasking model with dependent tasks.
Int. J. Parallel Program., Norwell, MA, USA, v.37, p.292–305, June 2009.

DURAN, A. et al. Barcelona OpenMP Tasks Suite: a set of benchmarks targeting the ex-
ploitation of task parallelism in openmp. In: ICPP’09, 2009. Proceedings. . . [S.l.: s.n.],
2009. p.124–131.

EISENLOHR, J. et al. Dense Linear Algebra Factorization in OpenMP and Cilk
Plus on Intel MIC Architecture: development experiences and performance analy-
sis. Austin, Texas, US, 2012.

ELECTRICAL, I. of; ELECTRONIC ENGINEERS, I. Information Technology –
Portable Operating Systems Interface (POSIX) – Part: System Application Pro-
gram Interface (API) – Amendment 2: Threads Extension [C Language]. New York,
NY: IEEE, 1995. IEEE Standard 1003.1c–1995.

FANG, J. et al. Benchmarking Intel Xeon Phi to Guide Kernel Design. [S.l.]: Delft
University of Technology, 2013. (PDS-2013-005).

FANG, J.; VARBANESCU, A. L.; SIPS, H. Identifying the Key Features of Intel Xeon
Phi: a comparative approach. [S.l.]: Delft University of Technology, 2013. (Identi-
fying the Key Features of Intel Xeon Phi: A Comparative Approach).

FATAHALIAN, K. et al. Sequoia: programming the memory hierarchy. In: ACM/IEEE
CONFERENCE ON SUPERCOMPUTING, 2006., 2006, New York, NY, USA. Pro-
ceedings. . . ACM, 2006. (SC ’06).

FLYNN, M. Some Computer Organizations and Their Effectiveness. IEEE Transactions
on Computers, [S.l.], v.C-21, n.9, p.948–960, 1972.



139

FOSTER, I. Designing and Building Paralllel Programs. [S.l.]: Addison-Wesley, 1995.

FRIGO, M. et al. Reducers and other Cilk++ hyperobjects. In: SPAA, 21., 2009, New
York, NY, USA. Proceedings. . . ACM, 2009. p.79–90. (SPAA ’09).

FRIGO, M.; LEISERSON, C. E.; RANDALL, K. H. The implementation of the Cilk-5
multithreaded language. SIGPLAN Not., New York, NY, USA, v.33, n.5, p.212–223,
May 1998.

GALILEE, F. et al. Athapascan-1: on-line building data flow graph in a parallel language.
In: PACT, 1998., 1998. Proceedings. . . [S.l.: s.n.], 1998. p.88–95.

GASTER, B. R. et al. Heterogeneous Computing with OpenCL. [S.l.]: Morgan Kauf-
mann, 2012.

GAUTIER, T.; BESSERON, X.; PIGEON, L. KAAPI: a thread scheduling runtime sys-
tem for data flow computations on cluster of multi-processors. In: PASCO’07, 2007,
London, Canada. Proceedings. . . ACM, 2007.

GAUTIER, T. et al. XKaapi: a runtime system for data-flow task programming on hetero-
geneous architectures. In: IEEE 27TH IPDPS, 2013. Proceedings. . . [S.l.: s.n.], 2013.
p.1299–1308.

GAUTIER, T. et al. X-KAAPI: a Multi Paradigm Runtime for Multicore Architectures.
In: ICPP WORKSHOPS, 42., 2013, Lyon, France. Proceedings. . . [S.l.: s.n.], 2013.

GRAMA, A. et al. Introduction to Parallel Computing. 2th.ed. USA: Addison-Wesley,
2003.

GROPP, W.; LUSK, E.; THAKUR, R. Using MPI-2: advanced features of the message-
passing interface. Cambridge, USA: MIT Press, 1999.

GSCHWIND, M. et al. Synergistic Processing in Cell’s Multicore Architecture. IEEE
Micro, Los Alamitos, CA, USA, v.26, n.2, p.10–24, 2006.

GSCHWIND, M. et al. An Open Source Environment for Cell Broadband Engine System
Software. Computer, [S.l.], v.40, n.6, p.37–47, June 2007.

GUO, Y. et al. Work-first and help-first scheduling policies for async-finish task paral-
lelism. In: IEEE IPDPS, 2009. Proceedings. . . [S.l.: s.n.], 2009. p.1–12.

GUO, Y. et al. SLAW: a scalable locality-aware adaptive work-stealing scheduler. In:
IEEE IPDPS, 2010. Proceedings. . . [S.l.: s.n.], 2010. p.1 –12.

HEINECKE, A. et al. Design and Implementation of the Linpack Benchmark for Sin-
gle and Multi-Node Systems Based on Intel(R) Xeon Phi(TM) Coprocessor. In: IEEE
IPDPS, 27., 2013, Boston, USA. Proceedings. . . [S.l.: s.n.], 2013.

HENDLER, D. et al. Flat combining and the synchronization-parallelism tradeoff. In:
ACM SPAA, 2010, New York, NY, USA. Proceedings. . . ACM, 2010. p.355–364.

HERMANN, E. Interactive Physical Simulation on Multi-core and Multi-GPU Ar-
chitectures. 2010. PhD Thesis — Institut National Polytechnique de Grenoble - INPG.



140

HERMANN, E. et al. Multi-GPU and Multi-CPU Parallelization for Interactive Physics
Simulations. In: EURO-PAR, 2010. Proceedings. . . Springer, 2010. v.6272, p.235–
246.

HILFINGER, P. N. et al. Titanium Language Reference Manual. [S.l.]: Computer Sci-
ence Division, University of California, Berkeley, 2005. (UCB/EECS-2005-15).

HILL, M.; MARTY, M. Amdahl’s Law in the Multicore Era. Computer, [S.l.], v.41, n.7,
p.33–38, July 2008.

HOCHBAUM, D. S.; SHMOYS, D. B. Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM, New York, NY, USA, v.34, n.1,
p.144–162, Jan. 1987.

HORTON, M.; TOMOV, S.; DONGARRA, J. A Class of Hybrid LAPACK Algorithms
for Multicore and GPU Architectures. In: SAAHPC, 2011., 2011, Washington, DC,
USA. Proceedings. . . IEEE Computer Society, 2011. p.150–158.

JEFFERS, J.; REINDERS, J. Intel Xeon Phi Coprocessor High Performance Program-
ming. [S.l.]: Morgan Kaufmann, 2013. 432p. v.1.

JETLEY, P. et al. Scaling Hierarchical N-body Simulations on GPU Clusters. In:
ACM/IEEE SUPERCOMPUTING, 2010., 2010. Proceedings. . . [S.l.: s.n.], 2010. p.1–
11.

KAHLE, J. et al. Introduction to the Cell multiprocessor. IBM Journal of Research and
Development, [S.l.], v.49, n.4.5, p.589–604, 2005.

KALE, L. V.; KRISHNAN, S. CHARM++: a portable concurrent object oriented sys-
tem based on c++. In: OBJECT-ORIENTED PROGRAMMING SYSTEMS, LAN-
GUAGES, AND APPLICATIONS, 1993, New York, NY, USA. Proceedings. . . ACM,
1993. p.91–108. (OOPSLA ’93).

KEDAD-SIDHOUM, S. et al. Scheduling Independent Tasks on Multi-cores with GPU
Accelerators. In: HETEROPAR WORKSHOP, 11., 2013. Proceedings. . . [S.l.: s.n.],
2013.

KIRK, D. B.; HWU, W.-m. W. Programming Massively Parallel Processors: a hands-
on approach. 2nd.ed. [S.l.]: Morgan Kaufmann Publishers Inc., 2012.

KONGETIRA, P.; AINGARAN, K.; OLUKOTUN, K. Niagara: a 32-way multithreaded
sparc processor. IEEE Micro, [S.l.], v.25, n.2, p.21–29, Mar. 2005.

KURZAK, J. et al. The PlayStation 3 for High-Performance Scientific Computing. Com-
puting in Science & Engineering, [S.l.], v.10, n.3, p.84–87, May 2008.

KURZAK, J. et al. Scheduling dense linear algebra operations on multicore processors.
Concurr. Comput. : Pract. Exper., Chichester, UK, v.22, p.15–44, 2010.

LABARTA, J.; BELTRAN, V. Prototype programming environment in Booster Node,
delivrable D5.1, EU DEEP project Dynamical Exascale Entry Platform. [S.l.: s.n.],
2013. (FP7-ICT-2011-7).



141

LEE, E. A. The Problem with Threads. Computer, Los Alamitos, CA, USA, v.39, p.33–
42, 2006.

LEISERSON, C. E. The Cilk++ concurrency platform. In: ANNUAL DESIGN AU-
TOMATION CONFERENCE, 46., 2009, New York, NY, USA. Proceedings. . . ACM,
2009. p.522–527. (DAC ’09).

LEMENTEC, F.; DANJEAN, V.; GAUTIER, T. X-Kaapi C programming interface.
[S.l.]: INRIA, 2011. Rapport Technique. (RT-0417).

LEMENTEC, F.; GAUTIER, T.; DANJEAN, V. The X-Kaapi’s Application Program-
ming Interface. Part I: data flow programming. [S.l.]: INRIA, 2011. Rapport Tech-
nique. (RT-0418).

LIMA, J. V. F. et al. Exploiting Concurrent GPU Operations for Efficient Work Stealing
on Multi-GPUs. In: SBAC-PAD, 24., 2012, New York, USA. Proceedings. . . IEEE,
2012. p.75–82.

LIMA, J. V. F. et al. Preliminary Experiments with XKaapi on Intel Xeon Phi Coproces-
sor. In: SBAC-PAD, 25., 2013, Porto de Galinhas, Brazil. Proceedings. . . [S.l.: s.n.],
2013.

LINDERMAN, M. D. et al. Merge: a programming model for heterogeneous multi-core
systems. SIGOPS Oper. Syst. Rev., New York, NY, USA, v.42, n.2, p.287–296, 2008.

LINDHOLM, E. et al. NVIDIA Tesla: a unified graphics and computing architecture.
IEEE Micro, [S.l.], v.28, n.2, p.39–55, 2008.

MCCOOL, M. D. et al. Performance evaluation of GPUs using the RapidMind develop-
ment platform. In: ACM/IEEE SUPERCOMPUTING, 2006., 2006, New York, NY,
USA. Proceedings. . . ACM, 2006. (SC ’06).

MIN, S.-J.; IANCU, C.; YELICK, K. Hierarchical work stealing on manycore clusters.
In: PGAS, 5., 2011. Proceedings. . . [S.l.: s.n.], 2011.

NEWBURN, C. J. et al. Offload Compiler Runtime for the Intel Xeon Phi Coproces-
sor. In: IEEE IPDPS WORKSHOPS AND PHD FORUM, 27., 2013. Proceedings. . .
[S.l.: s.n.], 2013.

NIEUWPOORT, R. v.; KIELMANN, T.; BAL, H. E. Satin: efficient parallel divide-and-
conquer in java. In: EURO-PAR, 6., 2000, London, UK, UK. Proceedings. . . Springer-
Verlag, 2000. p.690–699. (Euro-Par ’00).

NIEUWPOORT, R. v.; KIELMANN, T.; BAL, H. E. Efficient load balancing for wide-
area divide-and-conquer applications. In: ACM SIGPLAN PPOPP, 8., 2001, New York,
NY, USA. Proceedings. . . ACM, 2001. p.34–43. (PPoPP ’01).

NUMRICH, R. W.; REID, J. Co-arrays in the next Fortran Standard. SIGPLAN Fortran
Forum, New York, NY, USA, v.24, n.2, p.4–17, Aug. 2005.

OHARA, M. et al. MPI Microtask for programming the cell broadband engine processor.
IBM Systems Journal, Riverton, NJ, USA, v.45, n.1, p.85–102, 2006.



142

OpenMP Architecture Review Board. Available from Internet: http://www.
openmp.org.

OWENS, J. et al. GPU Computing. Proceedings of the IEEE, [S.l.], v.96, n.5, p.879–899,
2008.

PANETTA, J. et al. Seismic imaging on novel computer architectures. In: INTERNA-
TIONAL CONGRESS OF THE BRAZILIAN GEOPHYSICAL SOCIETY, 11., 2009.
Proceedings. . . [S.l.: s.n.], 2009.

PAPAKIPOS, M. The PeakStream Platform for Many-Core Computing. 2007.

PENNYCOOK, S. J. et al. Exploring SIMD for Molecular Dynamics, Using Intel Xeon
Processors and Intel Xeon Phi Coprocessors. In: IEEE IPDPS, 27., 2013. Proceed-
ings. . . [S.l.: s.n.], 2013.

PHAM, D. et al. The design and implementation of a first-generation CELL processor. In:
IEEE ISSCC, 2005. Proceedings. . . [S.l.: s.n.], 2005. p.184–592 Vol. 1.

PIGEON, L. Environnement interopérable distribué pour les simulations
numériques avec composants CAPE-OPEN. 2007. PhD Thesis — Institut Na-
tional Polytechnique de Grenoble (INPG).

PLANAS, J. et al. Self-Adaptive OmpSs Tasks in Heterogeneous Environments. In: IEEE
27TH IPDPS, 2013. Proceedings. . . [S.l.: s.n.], 2013. p.138–149.

QUINTANA-ORTÍ, G. et al. Solving dense linear systems on platforms with multiple
hardware accelerators. SIGPLAN Not., New York, NY, USA, v.44, n.4, p.121–130,
2009.

QUINTIN, J.-N.; WAGNER, F. Hierarchical work-stealing. In: EURO-PAR: PART I,
16., 2010, Berlin, Heidelberg. Proceedings. . . Springer-Verlag, 2010. p.217–229. (Eu-
roPar’10).

RAVICHANDRAN, K.; LEE, S.; PANDE, S. Work stealing for multi-core HPC clusters.
In: PARALLEL PROCESSING - VOLUME PART I, 17., 2011, Berlin, Heidelberg.
Proceedings. . . Springer-Verlag, 2011. p.205–217. (Euro-Par’11).

REINDERS, J. Intel Threading Building Blocks: outfitting c++ for multi-core pro-
cessor parallelism. Sebastopol, USA: O’Reilly & Associates, Inc., 2007.

RINARD, M. C.; SCALES, D. J.; LAM, M. S. Jade: a high-level, machine-independent
language for parallel programming. Computer, Los Alamitos, CA, USA, v.26, n.6,
p.28–38, June 1993.

ROCH, J.-L.; REVIRE, R.; GAUTIER, T. Athapascan : an api for asynchronous paral-
lel programming user’s guide. [S.l.]: INRIA, 2003. Rapport de recherche. (RT-0276).

ROCH, J.-L.; TRAORé, D.; BERNARD, J. On-Line Adaptive Parallel Prefix Computa-
tion. In: NAGEL, W.; WALTER, W.; LEHNER, W. (Ed.). Euro-Par 2006 Parallel
Processing. [S.l.]: Springer Berlin Heidelberg, 2006. p.841–850. (Lecture Notes in
Computer Science, v.4128).

http://www.openmp.org
http://www.openmp.org


143

SCHEPKE, C. et al. Online Mesh Refinement for Parallel Atmospheric Models. Interna-
tional Journal of Parallel Programming, [S.l.], v.41, n.4, p.552–569, 2013.

SEILER, L. et al. Larrabee: a many-core x86 architecture for visual computing. ACM
Trans. Graph., New York, NY, USA, v.27, n.3, p.18:1–18:15, Aug. 2008.

SHUN, J. et al. Brief Announcement: the problem based benchmark suite. In: ACM
SPAA, 24., 2012, New York, NY, USA. Proceedings. . . ACM, 2012. p.68–70. (SPAA
’12).

SONG, F.; DONGARRA, J. A scalable framework for heterogeneous GPU-based clus-
ters. In: ACM SPAA, 2012, New York, NY, USA. Proceedings. . . ACM, 2012. p.91–
100.

STRATTON, J. A. et al. Parboil: a revised benchmark suite for scientific and com-
mercial throughput computing. [S.l.]: University of Illinois, at Urbana-Champaign,
2012. IMPACT Technical Report. (IMPACT-12-01).

TAKAKEN. Source code for N Queens Problem. Available from Internet: http://
www.ic-net.or.jp/home/takaken/e/queen, Cited Jan. 2014.

TCHIBOUKDJIAN, M.; DANJEAN, V.; RAFFIN, B. Binary Mesh Partitioning for
Cache-Efficient Visualization. IEEE Transactions on Visualization and Computer
Graphics, Los Alamitos, CA, USA, v.16, n.5, p.815–828, 2010.

TCHIBOUKDJIAN, M. et al. A Work Stealing Algorithm for Parallel Loops on Shared
Cache Multicores. In: HPPC WORKSHOP, 4., 2010. Proceedings. . . [S.l.: s.n.], 2010.

TCHIBOUKDJIAN, M.; GAST, N.; TRYSTRAM, D. Decentralized list scheduling. An-
nals of Operations Research, [S.l.], p.1–23, 2012.

THIES, W.; AMARASINGHE, S. An empirical characterization of stream programs and
its implications for language and compiler design. In: PACT, 19., 2010, New York, NY,
USA. Proceedings. . . ACM, 2010. p.365–376. (PACT ’10).

TOMOV, S.; DONGARRA, J.; BABOULIN, M. Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Computing, [S.l.], v.36, n.5-6, p.232–
240, 2010.

TOPCUOGLU, H.; HARIRI, S.; WU, M.-Y. Performance-effective and low-complexity
task scheduling for heterogeneous computing. Parallel and Distributed Systems,
IEEE Transactions on, [S.l.], v.13, n.3, p.260–274, Mar. 2002.

TOSS, J.; GAUTIER, T. A New Programming Paradigm for GPGPU. In: KAKLAMA-
NIS, C.; PAPATHEODOROU, T.; SPIRAKIS, P. (Ed.). Euro-Par 2012 Parallel Pro-
cessing. [S.l.]: Springer Berlin Heidelberg, 2012. p.895–907. (Lecture Notes in Com-
puter Science, v.7484).

TRAORé, D. et al. Deque-Free Work-Optimal Parallel STL Algorithms. In: LUQUE, E.;
MARGALEF, T.; BENíTEZ, D. (Ed.). Euro-Par 2008 – Parallel Processing. [S.l.]:
Springer Berlin Heidelberg, 2008. p.887–897. (Lecture Notes in Computer Science,
v.5168).

http://www.ic-net.or.jp/home/takaken/e/queen
http://www.ic-net.or.jp/home/takaken/e/queen


144

VASUDEVAN, R.; VADHIYAR, S. S.; KALÉ, L. V. G-Charm: an adaptive runtime
system for message-driven parallel applications on hybrid systems. In: IEEE/ACM
SUPERCOMPUTING, 27., 2013, New York, NY, USA. Proceedings. . . ACM, 2013.
p.349–358. (ICS ’13).

YARKHAN, A.; KURZAK, J.; DONGARRA, J. QUARK Users’ Guide: queueing and
runtime for kernels. [S.l.]: University of Tennessee, 2011. (ICL-UT-11-02).

ZHOU, K. et al. RenderAnts: interactive reyes rendering on gpus. In: ACM SIGGRAPH
ASIA, 2009, New York, NY, USA. Proceedings. . . ACM, 2009. p.155:1–155:11. (SIG-
GRAPH Asia ’09).



145

Part III

Appendixes





147

APPENDIX A RESUMO EM PORTUGUÊS

A.1 Introdução

Nos últimos anos, as industrias de hardware decidiram substituir processadores inefi-
cientes em consumo energético com processadores eficientes no mesmo chip, oferecendo
cada vez mais núcleos (cores) no mesmo die a cada ano. Os microprocessadores atuais
são chips multicore homogêneos contendo de dois a oito núcleos, com mais núcleos em
um futuro próximo. Uma tendência é o surgimento de aceleradores manycore com muitas
unidades de processamento (PU) fortemente acopladas, como placas gráficas (GPU) ou
coprocessadores Intel Xeon Phi para computação de alto desempenho (HPC). Enquanto
os chips multicore maximizam a velocidade seqüencial, aceleradores favorecem o para-
lelismo de execução. Portanto, essas arquiteturas têm PUs heterogêneas em termos de
poder de computação e modelo de programação.

O principal objetivo deste trabalho é investigar os desafios no uso de paralelismo de
tarefas com dependências de dados em arquiteturas multi-CPU com aceleradores. Para
tanto, o XKaapi, desenvolvido no grupo de pesquisa MOAIS (INRIA Rhône-Alpes), é a
ferramenta de programação base deste trabalho. Em um primeiro momento, este trabalho
propôs extensões ao XKaapi a fim de sobrepor transferência de dados com execução atra-
vés de operações concorrentes em GPU, em conjunto com escalonamento por roubo de
tarefas em multi-GPU. Nós estudamos estratégias de escalonamento com predição de de-
sempenho em tempo de execução através de modelos de custo de execução. Desenvolveu-
se um framework sobre o XKaapi de escalonamento que proporciona a implementação de
deferentes algoritmos de escalonamento. Esta tese também avaliou o XKaapi em copro-
cessodores Intel Xeon Phi para execução nativa.

A.2 Contexto

Apesar do uso de várias técnicas para facilitar o fardo de programadores, aplicações
em GPUs dependem do programador para explorar todo o potêncial de tais arquiteturas.
Casos de sucessos como GPUs sugerem que aceleradores desempenham um papel im-
portante em HPC a fim de superar desafios. No entanto, o coprocessador Intel Xeon Phi,
baseado no ISA x86, oferece alto desempenho com transparência para o programador.
Ele fornece modelos de programação bem conhecidos para os processadores de uso geral,
tais como OpenMP e Intel Cilk Plus.

Paralelismo de tarefas parece ser o modelo de programação bem adequado com pa-
ralelismo explícito. Sua associação com dependências de dados oferece uma visão de
memória independente da arquitetura. Além disso, ele permite a redução de sincroniza-
ções que é um aspecto essencial para explorar o paralelismo e melhorar a escalabilidade
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em arquiteturas com aceleradores (HERMANN, 2010; BUTTARI et al., 2009).
No contexto de programação paralela, pouca pesquisa tem sido feita sobre escalona-

mento dinâmico para arquiteturas heterogêneas. Embora o roubo de trabalho seja uma
estratégia de escalonamento eficiente com garantia teórica de desempenho, ele também é
conhecido por ser ineficiente em cache para algumas aplicações devido ao roubo aleatório.

A.3 Ferramentas de Programação

No contexto de processadores multicore, com programação em memória comparti-
lhada, diversas ferramentas têm utilizado paralelismo de tarefas e escalonamento dinâ-
mico por roubo de tarefas (BLUMOFE et al., 1995; REINDERS, 2007; GAUTIER; BES-
SERON; PIGEON, 2007; LEISERSON, 2009). Este modelo de programação favorece
granularidade fina e assincronismo que são essenciais para explorar paralelismo e escala-
bilidade em arquiteturas modernas multicore. No entanto, pouca pesquisa tem sido feita
sobre paralelismo de tarefas com dependências de dados, com exceção de trabalhos com
Athaspascan/KAAPI (GALILEE et al., 1998; GAUTIER; BESSERON; PIGEON, 2007).

Em aceleradores, paralelismo de dados tem sido estudado por várias linguagens de
programação (KIRK; HWU, 2012; GASTER et al., 2012). O paralelismo é expresso atra-
vés da estratégia fork-join em que um aplicativo host envia um bloco computacional para
um acelerador. Além disso, há esforços no uso de dependências de dados para transferên-
cias automáticas como OpenACC e Intel Offload Compiler.

Por outro lado, várias ferramentas de programação têm estudado paralelismo de ta-
refas com dependências de dados sobre arquiteturas heterogêneas (BUENO et al., 2011;
AUGONNET et al., 2009). Eles fornecem um modelo de programação capaz de descrever
uma DAG de tarefas a executar sobre os PUs disponíveis. Estas ferramentas de progra-
mação executam tarefas com base em modelos de custos ou estratégias centralizadas. No
entanto, há poucos estudos sobre os efeitos dos modelos de programação com dependên-
cias de dados com estratégias de escalonamento dinâmicas em arquiteturas heterogêneas
equipadas com aceleradores. HERMANN et al. (2010) estudam a combinação de roubo
de trabalho e particionamento de grafos. Porém, sua abordagem é restrita ao domínio de
aplicações iterativas.

A.4 O Ambiente de Programação XKaapi

Como sucessor de Athapascan/KAAPI, XKaapi tem diferentes características de im-
plementação a fim de executar de forma eficiente em arquiteturas multicore e reduzir a
sobrecarga em algoritmos de grão fino.

O modelo de programação é similar ao Athapascan, mas determina que tarefas com-
partilham dados através do acesso à mesma região de memória. A API Kaapi++ acres-
centa o conceito de assinatura de tarefa que especifica o número de argumentos e os modos
de acesso. Além disso, o conceito de multi-versionamento do Kaapi++ permite uma clara
separação entre a definição da tarefa e suas implementações.

XKaapi reduz o tempo de execução principalmente por meio do uso de quadros de
ativação e de optimizações no roubo de tarefas. Além disso, a alocação da pilha de dados
e quadros de ativação em um bloco contínuo de memória permite operações em tempo
constante em vez de filas de blocos de memória como no KAAPI. No entanto, o meca-
nismo atual do XKaapi para alocação de pilha não suporta alocação sob demanda quando
a pilha está cheia.
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A versão padrão do XKaapi não tem suporte para sistemas heterogêneos, mesmo que
a API Kaapi++ suporte tarefas multi-versão. HERMANN et al. (2010) relata as primei-
ras experiências com dependências de dados em multi-GPU para aplicações iterativas.
No entanto, sua estratégia não fornece um mecanismo genérico de roubo de tarefas com
escalonamento em multi-GPU.

A.5 Suporte a Arquiteturas Multi-GPU

Ferramentas de programação mais recentes incorporam o suporte para arquiteturas
heterogêneas tais como StarPU e OmpSs. Aparentemente, um modelo de programação
adequado nestas arquitecturas podem ser baseado em paralelismo de tarefas com grão
fino e dependências de dados. Estes aspectos foram estudados por ferramentas de pro-
gramação para arquiteturas multicore pois algoritmos de grão fino foram essenciais para
perder pontos de sincronização e melhorar a localidade de dados (BUTTARI et al., 2009;
HERMANN, 2010).

Nesta contribuição, apresentamos as extensões do XKaapi para a programação de tare-
fas com dependências de dados em arquiteturas heterogêneas. Algoritmos sobre XKaapi
expressam paralelismo através de tarefas com dependências sem detalhes da arquitetura,
e a ferramenta decide em tempo de execução o PU destino (CPU ou GPU). Além disso,
ele oferece anotações para passar dicas de escalonamento.

Nós projetamos uma abordagem assíncrona de operações concorrentes em GPU que
alcançou uma sobreposição entre transferência de dados e execução em GPU quase ideal
usando o DGEMM para single-GPU. Graças a essa sobreposição, a utilização de um algo-
ritmo de roubo de tarefas dinâmico permitiu atingir desempenho como a teoria prevê para
arquiteturas de memória compartilhada, sem custos de comunicação. Assim, a sobrepo-
sição quase permite esconder a heterogeneidade dos acessos à memória em um sistema
multi-GPU.

Além disso, o uso de roubo de tarefas em sistemas multi-CPU e multi-GPU é uma
das principais contribuições sobre escalonamento para tais arquiteturas. Como o roubo
de tarefas clássico é cache-unfriendly (GUO et al., 2010), a resolução deste problema é
fundamental em tais sistemas com espaços de memória disjuntos. Nós fornecemos um
algoritmo de roubo de tarefas com anotações à nível de API e um roubo de tarefas com
localidade de dados baseada na redução local de invalidações na cache. Esta abordagem
é semelhante a estratégias owner-compute rules (OCR) porque a ferramenta usa o modo
de acesso e informações sobre a memória de metadados dos argumentos compartilhados.

Junto com uma estratégia de roubo de tarefas, uma contribuição fundamental é o uso
de tarefas recursivas em CPU para desdobrar paralelismo em outro nível com tarefas de
grão fino. Sabe-se que CPUs são eficientes em tarefas de grão fino e GPUs em tarefas de
grão grosso. Nossos experimentos usando uma versão paralela da fatoração de Cholesky
alcançou resultados significativos de desempenho. Estes resultados nos levam a crer que
os diferentes tamanhos de grão podem ser uma técnica promissora em sistemas heterogê-
neos. Além disso, este conceito pode ser expandido para sistemas exascale e distribuídos
com recursos heterogêneos.

No entanto, a nossa estratégia de escalonamento baseada em roubo de tarefas carece
de decisões sofisticadas a fim de considerar o poder de processamento dos recursos dis-
poníveis. Nós inicialmente assumimos que algumas tarefas de um determinado tipo são
mais eficientes em GPUs do que em CPUs. Os resultados obtidos com anotações de es-
calonamento parecem consistentes com nossa hipótese. Por outro lado, é pouco provável
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atingir resultados semelhantes para tarefas desconhecidas sem observações empíricas.

A.6 Estratégias de Escalonamento para Multi-CPU e Multi-GPU

O escalonamento é uma parte fundamental para o alto desempenho em sistemas para-
lelos, especialmente em arquiteturas heterogêneas. A heterogeneidade de tais arquiteturas
envolve questões que incluem poder de processamento, a taxa de transferência de dados,
contenção de barramento, balanceamento de carga de trabalho, etc. Trabalhos anteriores
abordaram diferentes estratégias, como distribuição estática (DONGARRA et al., 2012;
HORTON; TOMOV; DONGARRA, 2011; SONG; DONGARRA, 2012; TOMOV; DON-
GARRA; BABOULIN, 2010), localidade de dados (BUENO et al., 2012) e modelos de
custo (AGULLO et al., 2011,?, 2010; AUGONNET; THIBAULT; NAMYST, 2010; AU-
GONNET et al., 2011) com base no escalonamento Earliest-Finish-Time (TOPCUOGLU;
HARIRI; WU, 2002).

Nesta contribuição, apresentamos uma comparação de diferentes estratégias de esca-
lonamento com base em modelos de custo e dinâmico por roubo de tarefas para arquitetu-
ras heterogêneas multi-CPU e multi-GPU. Nós projetamos e avaliamos três estratégias de
escalonamento sobre o XKaapi: roubo de tarefas com localidade de dados, Heterogene-
ous Earliest-Finish-Time (HEFT) e distributed Dual Approximation (DDA). Conduzimos
experimentos com quatro algoritmos do PLASMA em uma arquitetura heterogênea com-
posta de 8 GPUs e 12 CPUs.

Nosso HEFT superou o roubo de tarefas em quase todos os casos. Claramente, a prin-
cipal razão para a sua eficiência é o conhecimento tanto da aplicação e da subjacente ar-
quitetura para prever o desempenho. Dessa forma, HEFT reduziu a comunicação e tempo
ocioso dos processadores ao selecionar o “melhor” processador em tempo de execução.
Os modelos de custos, tais como HEFT e DDA, tem as desvantagens de exigir ajuste de
desempenho para a previsão em uma arquitetura específica, e eles não são aplicáveis em
problemas irregulares.

A nossa estratégia de roubo de tarefas com anotações, neste caso com uso de SetArch
para tarefas específicas em GPU, apresentou melhores resultados do que os modelos de
custos para alguns casos. Os quatro algoritmos do PLASMA atingiram resultados sig-
nificativos com essa estratégia, principalmente com DGEMM, Cholesky e QR. O roubo
de tarefas proposto apresentou um volume maior de comunicação, mas foi possível ob-
ter desempenho com a sobreposição de transferências de dados e execução de kernel em
GPU. Esses resultados nos levaram a acreditar que o roubo de tarefas pode ser adequado
para arquiteturas heterogêneas. Ele não exige ajustes para uma arquitectura específica, e
é aplicável a problemas irregulares. No entanto, alcançar o máximo de desempenho sem
qualquer conhecimento de detalhes da arquitetura, principalmente em uma arquitetura
heterogênea.

Conclui-se que as estratégias de programação com base em modelos de custos podem
ser aplicadas considerando um tipo específico de algoritmo paralelo. Esses algoritmos têm
tarefas cuja carga de trabalho é muito regular, e que varia de acordo com o seu tamanho
de entrada. A entrada de tarefa em modelos de desempenho atuais, incluindo o modelo
apresentado, tem como identificador o tamanho da entrada e assume uma certa carga
de trabalho associada. Assim, nenhum outro parâmetro é considerado na previsão de
tempo de execução. Embora tenham sido aplicadas técnicas simples para corrigir erros
de previsão, como correção de tempo antes da execução da tarefa (veja Seção 6.2), uma
decisão de escalonamento em modelos de custos , tais como HEFT, não é questionada.
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Modelos de custos podem ser insensíveis a desequilíbrios de sistema ou de tarefas. Além
disso, otimização do algoritmo projetado é essencial e restrito à arquitetura alvo.

Por outro lado , o uso de roubo de trabalho pode apresentar um desempenho eficiente,
desde que anotações de tarefas sejam fornecidas junto com uma ferramenta de progra-
mação eficiente. Essa estratégia pode ser eficiente em algoritmos irregulares, e reage a
desequilíbrios dinamicamente em tempo de execução com base nos recursos ociosos. Nós
inicialmente previmos que a maioria das tarefas com uma versão GPU proporcionam um
aumento de desempenho em relação a sua versão de CPU. Uma estratégia dinâmica com
localidade de dados pode superar o roubo de tarefas puro. Além disso , o uso da anotação
de escalonamento (SetArch) pode resolver as diferenças de poder de processamento entre
recursos. Nós reconhecemos as limitações dessa abordagem, que incluem conhecimento
prévio do tipo de tarefas (compute-bound ou memory-bound).

Estes dois tipos de estratégias de escalonamento, agrupados por modelo de custo e
escalonamento dinâmico, podem distribuir a carga de trabalho eficientemente em arqui-
teturas heterogêneas. Enquanto os modelos de custo foram concebidos para este arqui-
teturas, escalonamento dinâmico é eficiente em conjunto com heurísticas e anotações do
programador, como sugerido por nossos resultados.

Finalmente, no contexto de ferramentas de programação, podemos concluir que o
nosso framework de programação pode fornecer um suporte básico para diferentes es-
tratégias de escalonamento. Nosso framework, concebido a partir do roubo de tarefas,
também é capaz de expressar estratégias de modelo de custos juntamente com modelos
de desempenho. Fomos capazes de projetar duas estratégias de programação diferentes,
modelos de custos e escalonamento dinâmico, e atingir desempenho significativo. Além
disso, nosso framework para expressar estratégias de escalonamento sobre o XKaapi pos-
sibilita o desenvolvimento de outros escalonadores sem grandes modificações em tempo
de execução .

A.7 Suporte a Coprocessadores Intel Xeon Phi em Modo Nativo

Nesta contribuição, apresentamos os resultados com o uso do modelo de programação
de tarefas com dependências de dados do XKaapi no coprocessador Intel Xeon Phi em
execução nativa. Foram avaliados três conjuntos de benchmarks para avaliar principal-
mente a sobrecarga de tempo de execução e desempenho do XKaapi. Em nosso primeiro
conjunto de experimentos, nós comparamos XKaapi com OpenMP e Intel Cilk Plus, am-
bientes de programação nativos para o Intel Xeon Phi fornecidos pela Intel. Realizamos
experimentos com um Intel Xeon Phi 60-core e quatro Intel Xeon Sandy Bridge com 32
núcleos físicos e 64 threads de hardware. Nosso segundo conjunto foi composto de al-
goritmos de álgebra linear do PLASMA sobre escalonamento dinâmico com XKaapi e
Quark e escalonamento estático do PLASMA. Finalmente, o terceiro conjunto consistiu
em avaliar o XKaapi com quatro benchmarks de paralelismo de tarefas do BOTS.

Os benchmarks de desempenho em aplicações de álgebra linear mostraram que o uso
de sincronizações mais finas entre as tarefas (dependências de dados) é mais eficiente
do que o modelo fork-join como em OpenMP e Intel Cilk Plus. Paralelismo de grão
fino pode ser cada vez mais essencial na medida que o aumento do número de núcleos
cresce mais rápido do que a capacidade de memória. Embora os 60 núcleos da Intel
Xeon Phi usada compartilham apenas 8GB de memória, o desenvolvimento de aplicações
paralelas sob essas restrições exigem tarefas com grão fino que podem aproveitar melhor
o desempenho.
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Os resultados dessa contribuição levam-nos a inferir que a programação com parale-
lismo de tarefas e dependências de dados seria essencial em aceleradores. Embora, em
alguns casos, parece que a utilização de todo o potencial do coprocessador Intel Xeon Phi
dependeria da utilização de instruções vetoriais (JEFFERS; REINDERS, 2013, p. 249).

A.8 Conclusão

Com os resultados relatados nesta tese esperamos contribuir com o estado da arte
em programação paralela para sistemas paralelos, especialmente arquiteturas multicore
com aceleradores. O objetivo principal desta tese é estudar as questões que envolvem
a programação de tarefas com dependências de dados em arquiteturas multi-CPU com
aceleradores. Para tanto, o XKaapi é a ferramenta de programação base deste trabalho.

A estrutura desta tese reflete a nossa abordagem. Estudamos primeiro as questões
em arquiteturas multi-GPU para assíncronismo e escalonamento. O roubo de tarefas com
heurísticas mostrou resultados significativos, mas não considerou o poder de computa-
ção de diferentes recursos. Em seguida, foi elaborado um framework de programação e
um modelo de desempenho para desenvolver diferentes estratégias de escalonamento no
XKaapi. Finalmente, foi realizado avaliações experimentais sobre o coprocessador Intel
Xeon Phi em execução nativa.

Nossa conclusão é dupla. Em primeiro lugar, concluimos que o paralelismo de tarefas
com dependências de de dados pode ser eficiente em aceleradores, que podem ser GPUs
ou coprocessadores Intel Xeon Phi. As principais vantagens deste modelo de programa-
ção são as sincronizações implícitas e abstração de transferências de dados. Em segundo
lugar, o suporte a diferentes estratégias de escalonamento é essencial. Modelos de cus-
tos proporcionam resultados significativos para cálculos muito regulares, enquanto que o
roubo de tarefas pode reagir a desequilíbrios em tempo de execução. Apesar de sua efi-
ciência teórica, o desempenho do roubo de tarefas depende de heurísticas para considerar
localidade de dados em sistemas heterogêneos.
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APPENDIX B CHOLESKY OVER XKAAPI

This Appendix gives a complete example of the Cholesky factorization designed us-
ing XKaapi. This factorization is an ideal example for heterogeneous architectures since
its compute-bound kernels are efficient and attain substantial performance gains. We de-
scribe the tiled algorithm from the literature and the code for a heterogeneous architecture
composed of multi-CPU and multi-GPU. In addition, we show our parallel Cholesky al-
gorithm with two level parallelism in which the factorization of a diagonal panel POTRF
is split in sub-tiles.

B.1 Tiled Cholesky Algorithm

The Cholesky factorization (or decomposition) is mainly used for the numerical solu-
tion of linear equations Ax = b, where A is symmetric and positive definite. It has the
form A = LLT where L is an m × n real lower triangular matrix with positive diagonal
elements. Assuming a matrix m × n and m = n divided in ntiles × ntiles tiles, Algo-
rithm 9 illustrates the tiled Cholesky factorization as described by AGULLO et al. (2010)
and similar to the tiled version from BUTTARI et al. (2009). The cost to factor a matrix

A is ∼
1

3
n3 requering O(n3) operations.

Algorithm 9: The tiled algorithm for Cholesky factorization.
Input : An m× n lower triangular matrix A with positive diagonal elements with

ntiles × ntiles tiles

1 for k ← 0 to ntiles − 1 do
2 POTRF(Akk)
3 for m← k + 1 to ntiles − 1 do
4 TRSM( Akk, Amk )
5 end
6 for m← k + 1 to ntiles − 1 do
7 SYRK( Amk, Amm )
8 for n← k + 1 to m do
9 GEMM( Amk, Ank, Amn )

10 end
11 end
12 end



154

B.2 XKaapi Data-Flow Version

In this section, we show the implementation of the Cholesky algorithm using the
Kaapi++ API with multi-versioning for heterogeneous architectures. We split the code
in three parts: main and initialization (Figure B.1 on the next page), the parallel Cholesky
algorithm (Figure B.2 on page 156), and a task implementation with CPU and GPU ver-
sion (Figure B.3 on page 157).

XKaapi initialization in Figure B.1 on the facing page (from line 20 to 23) creates
a community group, as though Athapascan (ROCH; REVIRE; GAUTIER, 2003), and
spawns the main task, which is the tree root of the generated DAG. Next, the doit struct
encapsulates the equivalent “main” program of a XKaapi application and perform all data
initializations. XKaapi requires data registering (line 8) and unregistering (line 11) in
order to perform asynchronous operations on multi-GPU. The main task of the Cholesky
algorithm is spawned through the TaskCholesky structure (line 9).

We used the task attribute ka::SetStaticSched() that is a scheduling opti-
mization. It computes true dependencies of the tasks from the stack and creates a list
of successors’ tasks, also named ready task list. Subsequent steal operations in a thread
with a ready task list have lower cost because the runtime does not need to compute true
dependencies at each steal operation. Therefore, it moves the overhead of computing
ready tasks from each steal operation to the task with ka::SetStaticSched() at-
tribute. In the case of the Cholesky algorithm, this attribute can be used since tasks have
regular computations and do not create recursive tasks. Besides, we note that tasks us-
ing ka::SetStaticSched() can not spawn more tasks recursively except for tasks
using this attribute.

The left-looking Cholesky implementation with XKaapi is illustrated in Figure B.2
on page 156. Matrix tiles are expressed in ranges by ka::rangeindex structure in
conjunction with a two dimensional range ka::range2d. A ka::range2d contains
the number of rows (A->dim(0)) and columns (A->dim(1)) of a matrix, plus the
leading dimension (A->lda()).

In addition, the XKaapi version makes use of the task attribute ka::SetArch to
specify the target architecture. The ka::ArchHost restricts task execution over CPUs
workers and ka::ArchCUDA restricts execution over CUDA GPUs workers. This task
attribute is useful in cases when the programmer knowns beforehand the task performance
for a specific architecture. In the Cholesky algorithm, it is well established and reported
by other works that the panel decomposition TaskPOTRF is efficient on CPUs and the
BLAS-3 matrix-matrix operations are efficient on GPUs (TaskTRSM, TaskSYRK, and
TaskGEMM) (AGULLO et al., 2010; SONG; DONGARRA, 2012).

Each task of the algorithm in Figure B.2 on page 156 has a task signature to use
XKaapi task multi-versioning. The implementation of TaskTRSM is shown in Figure B.3
on page 157. The TaskTRSM signature is written at line 1 with the number of parameters
and their access modes, in this case read for matrix A and read-write for matrix B. The
CPU version of TaskTRSM at line 6 is a specialization of the TaskBodyCPU structure
that will be executed by CPU workers. On the other hand, the GPU version at line 24 is
a specialization of the TaskBodyGPU structure and will be executed by GPU workers.
We note that the GPU version receives an additional parameter (ka::gpuStream) that
gives the CUDA stream of the current GPU for asynchronous execution.

From the algorithm introduced with data dependencies, the runtime unfolds the paral-
lelism and creates the data-flow graph (DFG) illustrated in Figure B.4 on page 158. We
note that the green tasks (TaskPOTRF), in the critical path, are executed by CPUs.
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Figure B.1 – Initialization and data handling for the Cholesky program. Data is registered
before execution and unregistered at the end.
1 struct doit {
2 void operator()(int argc, char** argv )
3 {
4 /* n is the matrix order, nbsize the block size */
5 double* dA = (double*) calloc(n * n, sizeof(double));
6 ka::array<2,double> A(dA, n, n, n);
7 /* register memory for asynchronous transfers */
8 ka::Memory::Register( A );
9 ka::Spawn<TaskCholesky>(ka::SetStaticSched())( A,

nbsize );
10 ka::Sync();
11 ka::Memory::Unregister( A ); /* unregister memory */
12 free(dA);
13 }
14 };
15
16 int main(int argc, char** argv)
17 {
18 try {
19 ka::Community com = ka::System::join_community(argc,

argv);
20 ka::SpawnMain<doit>()(argc, argv);
21 com.leave();
22 ka::System::terminate();
23 }
24 catch (const std::exception& E) {
25 ka::logfile() << "Catch : " << E.what() << std::endl;
26 }
27 catch (...) {
28 ka::logfile() << "Catch unknown exception: " << std::

endl;
29 }
30
31 return 0;
32 }

B.3 Parallel Diagonal Decomposition

The XKaapi runtime has support for recursive task creation and fine-grain parallelism.
We designed a two-level parallel version of the Cholesky algorithm, similar to the tiled
version of Figure B.2 on the next page, but with a parallel diagonal panel decomposition.
The TaskPOTRF task of Figure B.2 on the following page (line 13) was substituted by
the TaskParallelPOTRF parallel task. It splits the diagonal panel in sub-tiles of size
128× 128 and applies the same algorithm for the tiled Cholesky through host-only tasks
(attribute ka::SetArch(ka::ArchHost)).

Since the panel decomposition TaskPOTRF is on the critical path of the tiled Cholesky
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Figure B.2 – Left-looking Cholesky implementation with XKaapi C++ API (kaapi++). It
shows the task Signature with its parameters and access modes, as well as the parallel
CPU version.
1 struct TaskCholesky: public ka::Task<2>::Signature<
2 /* A and block size nbsize (int) */
3 ka::RPWP<ka::range2d<double> >, int
4 >{};
5
6 template<> struct TaskBodyCPU<TaskCholesky> {
7 void operator()( ka::range2d_rpwp<double> A , int

nbsize )
8 {
9 const int N = A->dim(0);

10
11 for(int k=0; k < N; k+= nbsize ){
12 ka::rangeindex rk(k, k+nbsize);
13 ka::Spawn<TaskPOTRF>( ka::SetArch(ka::ArchHost) )
14 ( A(rk,rk) );
15 for(int m=k+nbsize; m < N; m+= nbsize){
16 ka::rangeindex rm(m, m+nbsize);
17 ka::Spawn<TaskTRSM>( ka::SetArch(ka::ArchCUDA) )
18 ( A(rk,rk), A(rm,rk) );
19 }
20 for(int m=k+nbsize; m < N; m+= nbsize){
21 ka::rangeindex rm(m, m+nbsize);
22 ka::Spawn<TaskSYRK>( ka::SetArch(ka::ArchCUDA) )
23 ( A(rm,rk), A(rm,rm) );
24 for(int n=k+nbsize; n < m; n+= nbsize ){
25 ka::rangeindex rn(n, n+nbsize);
26 ka::Spawn<TaskGEMM>( ka::SetArch(ka::ArchCUDA) )
27 ( A(rm,rk), A(rn,rk), A(rm,rn) );
28 }
29 }
30 }
31 }
32 };

algorithm, we are able to achieve significant performance improvements and reduce the
idle time of GPUs (GAUTIER et al., 2013). DONGARRA et al. (2013) uses a recur-
sive approach to improve the overall performance and sustain numerical quality for LU
factorization with partial pivoting.

B.4 Version with Compiler Annotations

In the previous section, our C++ version of Cholesky is shown using task multi-
versioning. XKaapi also supports source-to-source compilation with annotations through
the KaCC compiler. An incremental version of Cholesky with annotations is illustrated in
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Figure B.3 – Implementation of the TRSM task for the Cholesky algorithm. This task uses
multi-versioning with task signature and CPU and GPU versions.
1 struct TaskTRSM: public ka::Task<2>::Signature<
2 ka::R<ka::range2d<double> >, /* A */
3 ka::RW<ka::range2d<double> > /* B */
4 >{};
5
6 template<> struct TaskBodyCPU<TaskTRSM> {
7 void operator()(
8 ka::range2d_r<double> A, ka::range2d_rw<double> B
9 )

10 {
11 const double* const a = A->ptr();
12 const int lda = A->lda();
13 double* const b = B->ptr();
14 const int ldb = B->lda();
15 const int n = B->dim(0);
16 const int k = (transA == CblasNoTrans ? A->dim(1) :
17 A->dim(0) );
18
19 cblas_dtrsm( CblasRowMajor, CblasRight, CblasLower,
20 CblasTrans, CblasNonUnit, n, k, 1.0, a, lda, b, ldb

);
21 }
22 };
23
24 template<> struct TaskBodyGPU<TaskTRSM> {
25 void operator()( ka::gpuStream stream,
26 ka::range2d_r<double> A, ka::range2d_rw<double> B )
27 {
28 const double* const a = A->ptr();
29 const int lda = A->lda();
30 double* const b = B->ptr();
31 const int ldb = B->lda();
32 const int n = B->dim(0);
33 const int k = (transA == CblasNoTrans ? A->dim(1) :
34 A->dim(0) );
35
36 cublasDtrsm(
37 kaapi_cuda_cublas_handle(), /* CUBLAS handle */
38 CUBLAS_SIDE_RIGHT, CUBLAS_FILL_MODE_LOWER,
39 CUBLAS_OP_T, CUBLAS_DIAG_NON_UNIT,
40 m, n, alpha, A, lda, B, ldb
41 );
42 }
43 };
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Figure B.4 – The resulting data-flow graph (DFG) of a Cholesky factorization.

Figure B.6 on page 160.
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Figure B.5 – Two-level Cholesky version with XKaapi.
1 struct TaskParallelPOTRF: public ka::Task<1>::Signature
2 <
3 ka::RPWP<ka::range2d<double> > /* A */
4 >{};
5
6 template<> struct TaskBodyCPU<TaskParallelPOTRF> {
7 void operator()( ka::range2d_rpwp<double> A )
8 {
9 const int N = A->dim(0);

10 const int lda = A->lda();
11 double* const a = A->ptr();
12 const int nbsize = 128; /* low-level block size */
13
14 if( N > nbsize ){
15 for (int k=0; k < N; k += nbsize) {
16 ka::rangeindex rk(k, k+nbsize);
17 ka::Spawn<TaskPOTRF>( ka::SetArch(ka::ArchHost) )
18 ( A(rk,rk) );
19 for (int m=k+nbsize; m < N; m += nbsize) {
20 ka::rangeindex rm(m, m+nbsize);
21 ka::Spawn<TaskTRSM>( ka::SetArch(ka::ArchHost) )
22 ( A(rk,rk), A(rm,rk) );
23 }
24 for (int m=k+nbsize; m < N; m += nbsize) {
25 ka::rangeindex rm(m, m+nbsize);
26 ka::Spawn<TaskSYRK>( ka::SetArch(ka::ArchHost) )
27 ( A(rm,rk), A(rm,rm));
28 for (int n=k+nbsize; n < m; n += nbsize) {
29 ka::rangeindex rn(n, n+nbsize);
30 ka::Spawn<TaskGEMM>( ka::SetArch(ka::ArchHost)

)
31 ( A(rm,rk), A(rn,rk), A(rm,rn));
32 }
33 }
34 }
35 }
36 else
37 clapack_dpotrf(CblasRowMajor, CblasLower, N, a, lda)

;
38 }
39 };
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Figure B.6 – A Cholesky version with XKaapi compiler.
1 void cholesky( double** A, int NB, int BS )
2 {
3 /* NB is the number of blocks, and BS the block size */
4 for (int k=0; k < NB; k++){
5 #pragma kaapi task readwrite(A[k*NB+k]{ld=BS; [BS][BS]})
6 clapack_dpotrf( CblasRowMajor, CblasLower,
7 BS, A[k*NB+k], BS );
8
9 for (int m=k+1; m < NB; m++){

10 #pragma kaapi task read(A[k*NB+k]{ld=BS; [BS][BS]}) \
11 readwrite(A[m*NB+k]{ld=BS; [BS][BS]})
12 cblas_dtrsm( CblasRowMajor, CblasLeft, CblasLower,
13 CblasNoTrans, CblasUnit,
14 BS, BS, 1., A[k*NB+k], BS, A[m*N+k], BS );
15 }
16
17 for (int m=k+1; m < NB; m++){
18 #pragma kaapi task read(A[m*NB+k]{ld=BS; [BS][BS]}) \
19 readwrite(A[m*NB+m]{ld=BS; [BS][BS]})
20 cblas_dsyrk( CblasRowMajor, CblasLower, CblasNoTrans

,
21 BS, BS, -1.0, A[m*NB+k], BS, 1.0, A[m*NB+m], BS );
22
23 for (int n=k+1; n < m; n++){
24 #pragma kaapi task read(A[m*NB+k]{ld=BS; [BS][BS]}, \
25 A[n*NB+k]{ld=BS; [BS][BS]}) \
26 readwrite(A[m*NB+n]{ld=BS; [BS][BS]})
27 cblas_dgemm( CblasRowMajor, CblasNoTrans,

CblasTrans,
28 BS, BS, BS, -1.0, A[m*NB+k], BS, A[n*NB+k], BS,

1.0,
29 A[m*NB+n], BS );
30 }
31 }
32 }
33 }
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APPENDIX C XKAAPI PERFORMANCE MODEL RESULTS

This Appendix gives the results obtained from our performance model for task and
data transfer in the experimental results of Chapter 6.

C.1 History-based Model Results

Figure C.1 shows the results of our performance model for task execution using tasks
with multi-versioning. In this case, it displays the predicted execution time according to
the block sizes applied for each task. These results suggest that CPU time consuming
tasks obtain significant speedup on GPUs such as DGEMM. Besides, BLAS-2 tasks may
not achieve speedup on GPUs such as DPOTRF (from Cholesky), DGETRF and DTSTRF
(from LU).

Figure C.1 – Performance model results in time (left) and speedup (right) for tasks with
CPU and GPU versions. Logarithm scale was used for y axis.
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(b) Speedup of GPU over CPU.
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C.2 Communication Bandwidth Results

The calculated communication bandwidth is illustrated in Figure C.2 on the next page
through a color map with an approximation of bandwidth between resources. It appears
that the distance between processors and the GPUs is relevant for the overall perfor-
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mance. The communication bandwidth can increase between resources interconnected
in the same QPI-PCIe bridge. For instance, the red areas in Figure C.2a (high bandwidth)
were obtained from CPU 0 (cores [0...5]) to GPUs [0...3] and vice versa, which are con-
nected in the same QPI-PCIe bridge according to the system topology (see Section 2.1.5
on page 37). Still, the purple squares appeared from CPU 0 to GPUs [4...7] connected
by different QPI-PCIe bridge, and forcing the use of two QPI-PCIe bridges to route the
transfer.

Figure C.2 – Approximation of communication bandwidth used in the performance
model.
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(b) GPU to CPU map.
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APPENDIX D EXPERIMENTS WITH XKAAPI, OMPSS, AND
STARPU

This Appendix gives more results on XKaapi and other two runtime systems for
multi-GPU systems: OmpSs and StarPU. Our goal is to evaluate the performance of
XKaapi concerning other runtime systems for heterogeneous multi-GPU systems. We
designed a Cholesky factorization (Section D.1) and a blocked matrix multiplication (Sec-
tion D.2) over XKaapi (see Chapter 4 on page 67), StarPU (AUGONNET et al., 2011),
and OmpSs (BUENO et al., 2012). The algorithms of both benchmarks were based on
PLASMA tiled algorithms described in BUTTARI et al. (2009).

StarPU and OmpSs versions of each algorithm were developed in their native pro-
gramming model using library calls and compiler annotations, respectively. On XKaapi
experiments, we implemented and extended the QUARK API (YARKHAN; KURZAK;
DONGARRA, 2011) in XKaapi to support task multi-versioning. Each benchmark calls
a registration function responsible to associate one PLASMA task to a GPU version. At
the task execution, our QUARK version runs the appropriate task implementation if the
target worker is a CPU or a GPU. The algorithms in our experiments are the same and use
the same task granularity, i.e, the same block size.

In each runtime we chose a scheduling strategy that has published results in the liter-
ature. We used as scheduler:

— XKaapi locality-aware work stealing (H2) in order to improve data locality and
reduce data invalidations (see Section 5.5.3 on page 85 for details);

— OmpSs locality-aware scheduler (named affinity by Nano++) described by BUENO
et al. (2012) that reduces the number of transfers between devices;

— StarPU HEFT strategy detailed in AUGONNET et al. (2010) that minimizes the
makespan or the schedule length.

All experiments have been conducted on the heterogeneous, multi-GPU system, named
“Idgraf” composed of 8 GPUs and 12 CPUs. The machine topology is described in Sec-
tion 2.1.5 on page 37. We used as software environment GNU/Linux Debian squeeze
x86/64, the compiler GCC 4.4, CUDA 5.0, and the library ATLAS 3.9.39 (BLAS and
LAPACK). We also used StarPU version 1.0.5, and in OmpSs the Mercurium compiler
version 1.3.5.8 and Nano++ runtime version 0.7a.

In each experiment, we show in the x-axis the number of resources as the number
of CPUs and GPUs for each execution. We employ this notation to clearly distinguish
the number of computing CPUs and GPUs at runtime. Since all three runtime systems
dedicate a CPU to manage a GPU, the number of computing CPUs is the number of total
CPUs minus the number of GPUs.
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D.1 Cholesky

Figure D.1 illustrates performance results of Cholesky factorization on the three run-
time systems. XKaapi outperformed the other tools for all cases with peak performance
of 428.8490 GFlop/s with 5 GPUs and 7 CPUs, almost 1.55 times better than OmpSs.
It seems that StarPU incurred more data footprint than other tools and had poor perfor-
mance on this benchmark. Besides, we believe that StarPU may improve performance
with bigger matrices since it would benefit of data prefetch.

Figure D.1 – Performance results of Cholesky factorization for a matrix size of 10240 ×
10240 and block size 1024× 1024.
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D.2 Blocked Matrix Multiplication

Figure D.2 on the next page shows performance results of blocked matrix multipli-
cation on the three runtime systems. As seen in experiments with Cholesky, XKaapi
outperformed the other tools for all cases with peak performance of 1577.82 GFlop/s with
8 GPUs and 4 CPUs, 1.19 times better than OmpSs. Again, we believe that StarPU high
footprint affected its performance for this benchmark.

D.3 Summary

These experiments have demonstrated that XKaapi is able to attain significant per-
formance results compared to other runtime systems with data-flow programming model
such as OmpSs and StarPU. These results can be explained by XKaapi scheduling by
work stealing and capacity of overlap data transfer with GPU code execution.

OmpSs achieved better performance results than StarPU in our experiments. One pos-
sible explanation is that OmpSs locality-aware scheduling would have lower data footprint
than StarPU on medium-size problems. However, we previously noticed allocation prob-
lems on OmpSs for input sizes bigger than a GPU memory capacity (LIMA et al., 2012).
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Figure D.2 – Performance results of matrix multiplication for a matrix size of 10240 ×
10240 and block size 1024× 1024.
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