

Avaliação da penetração do levofloxacino no tecido prostático em ratos Wistar sadios por microdiálise

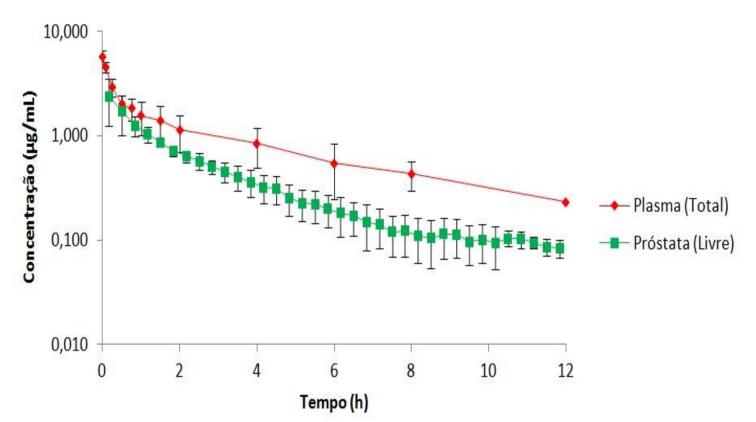
Camila Neris dos Santos¹, Estevan Sonego Zimmermann², Teresa Dala Costa^{1,2}

¹Centro Bioanalítico de Medicamentos, Faculdade de Farmácia, UFRGS; ²PPG em Ciências Farmacêuticas, UFRGS

Introdução

- A prostatite bacteriana, principalmente a crônica, é com frequência uma condição de difícil tratamento, principalmente devido à inadequada penetração dos antimicrobianos na barreira prostática¹
- Levofloxaciono (LEV) é uma quinolona de 3ª geração de uso sistêmico que possuí uma boa atividade contra os principais patógenos responsáveis pelas infecções da próstata²
- A microdiálise (MD) é uma técnica minimamente invasiva baseada nos princípios da diálise. A microdiálise utiliza sondas com uma membrana semipermeável em sua porção terminal que permite acessar a fração livre do fármaco no fluído intersticial de diversos órgãos. Além disso, a MD permite o monitoramento contínuo das concentrações livres teciduais de fármacos, sendo que as amostras obtidas, por serem livres de plasma, podem ser analisadas sem processamento prévio³

Objetivos


- Determinar a recuperação das sondas de microdiálise in vitro e in vivo para o LEV, no tecido prostático
- Avaliar, por microdiálise *in vivo*, a penetração prostática do LEV em ratos Wistar sadios, após a administração de dose única intravenosa do fármaco
- Correlacionar os níveis livres teciduais com os níveis plasmáticos totais

Materiais e Métodos

- Sondas CMA 20 (4 mm, cut off 20 kDa), taxa de fluxo de 1,5 mL/min implantada na próstata dos animais
- Ratos Wistar machos (n = 6) anestesiados com carbamato de etila (1,25 g/kg i.p.), levofloxacino 7 mg / kg i.v. bolus; (CEUA da UFRGS #211609)
- As amostras de sangue (200 μL por coleta) e MD (45 μL a cada 30 min) foram coletados em tempos pré-determinados por 12 h
- A recuperação in vitro do LEV foi determinada através dos métodos de diálise e retrodiálise e a calibração in vivo foi determinada por retrodiálise
- Analisadas através de Cromatografia Líquida de Alta Eficiência (CLAE) com detecção por fluorescência (λ_{em}:292nm e λ_{exc}:494nm) por método previamente validado. Fase móvel: água + 0.4% de trietilamina pH 3,0: metanol: acetonitrila (75/22,5/2,5) e Coluna: Atlantis® T3 5μm (4.6X150mm)
- Os parâmetros farmacocinéticos a partir dos perfis individuais dos animais foram calculados a partir de abordagem não-compartimental⁵
- Análises estatísticas dos parâmetros foi realizada através do teste t de *Student* ($\alpha = 0.05$.)

Resultados

Os valores obtidos para a recuperação *in vitro* do LEV para diálise e retrodiálise foram $21.2 \pm 2.5\%$ e $27.3 \pm 8.1\%$, respectivamente. Não foi observada diferença estatísticamente significativa entre os dois métodos. A recuperação relativa aparente (R_{app}) *in vivo* do LEV, determinada por retrodiálise na próstata, foi de $17.1 \pm 3.8\%$.

Figura 1: Perfil de concentração plasmática total e livres prostática do LEV após dose de 7 mg/Kg administrado i.v. *bolus* (n = 6) (média ± DP)

Conclusão

Através das recuperações obtidas para as sondas de microdiálise foi possível caracterizar o perfil de concentração livre prostático do LEV após administração i.v. de 7 mg/kg. O fator de penetração tecidual (fT) foi de 0,79, inferior ao dado de literatura que indicava uma penetração similar a 1.0⁴. Esse resultado indica que outros mecanismos, além da difusão, atuam no transporte do LEV na barreira prostática. A investigação de carreadores de efluxo para quinolonas na barreira prostática faz parte da continuidade do trabalho.

Tabela 1: Parâmetros farmacocinéticos do LEV determinados por abordagem não-compartimental após dose única de 7 mg/Kg administrado via i.v. bolus.

Parâmetro	Plasma (n=6)	Próstata (n=6)
λ (h ⁻¹)	0,15 ± 0,04	0,26 ± 0,09
t _{1/2} elim. (h)	5,1 ± 1,9	$3,0 \pm 1,1$
ASC _{0-t} (µg h/mL)	$9,2 \pm 3,5$	4,5 ± 1,0
ASC _{0-inf} (µg h/mL)	11,1 ± 4,2	4.8 ± 1.0
CL _{tot} (L/h/Kg)	0.71 ± 0.30	-
Vd _{ss} (L/Kg)	$2,03 \pm 0,56$	-
MRT (h)	3.0 ± 0.4	$3,5 \pm 1,3$
fT		0,79

 $^{^{\}star}$ Não foi observada diferença estatística significativa entre plasma e tecido em relação parâmetros $\, t_{1/2} \, e \, MRT. \,$

$$fT = \frac{ASC_{0-\infty \ tecido \ livre}}{ASC_{0-\infty \ plasma \ livre}}$$

Referências

- 1. NABER, K. G.; WEIDNER, W. Chronic prostatitis an infectious disease? **Journal of Antimicrobial Chemotherapy**, v. 46, p. 157-161, 2000.
- 2. CROOM, K. F.; GOA, K. L. Levofloxacin: a review of its use in the treatment of bacterial infections in the United States. **Drugs**, v. 63, p. 2769-2802, 2003.
- 3. CHAURASIA, C. S. *et al.* Microdialysis principles, application and regulatory perspectives. **The AAPS Journal**, v. 9, p. E48-E59, 2007.
- 4.DRUSANO, G. L. *et al.* A population pharmacokinetic analysis of the penetration of the prostate by levofloxacin. **Antimicrobial Agents and Chemotherapy**, v. 44, p. 2046-2051, 2000. 5. SHARGEL, L.; WU-PONG, S.; YU, A. B. C. **Applied Biopharmaceutics & Pharmacokinetics**.5. ed. New York: McGraw-Hill, 2005. 892 p.

