

Evento	Salão UFRGS 2013: SIC - XXV SALÃO DE INICIAÇÃO CIENTÍFICA DA UFRGS
Ano	2013
Local	Porto Alegre - RS
Título	Avaliação das Características Físico-químicas e do Perfil de Liberação In Vitro de Nanocápsulas Poliméricas Contendo Clozapina com Diferentes Revestimentos
Autor	SIMONE MACHADO VIEIRA
Orientador	SANDRA ELISA HAAS
Instituição	Universidade Federal do Pampa

As nanocápsulas poliméricas (NC) apresentam grande potencial como transportadores de fármaco permitindo uma liberação controlada, melhorando a eficiência e reduzindo a toxicidade do fármaco. Neste contexto, a nanoencapsulação da clozapina (CZP) pode ser uma estratégia para diminuir seus efeitos adversos, destacando-se agranulocitose, cardio e hepatotoxicidade, além da possibilidade de vetorizar o fármaco para o cérebro, através da otimização do revestimento de superfície das NC. Esse trabalho objetiva desenvolver e caracterizar suspensões de NC de CZP sem revestimento e com superfície modificada por quitosana (Q) ou polietilenoglicol 6000 (PEG) avaliando a liberação *in vitro* do fármaco a partir das suspensões.

As NC foram preparadas pelo método de precipitação interfacial do polímero préformado. A fase orgânica foi constituída de poli(ϵ -caprolactona), TCM, Lipoid S45 e CZP dissolvidos em acetona, mantidos sob agitação e aquecimento. Esta fase foi vertida na fase aquosa contendo polissorbato 80. Depois de formada a suspensão de NC, a acetona e parte da água são evaporadas obtendo no final um volume de 10 ml com concentração de 1,5 mg/ml de CZP. Para obter as formulações revestidas com PEG, o mesmo foi adicionado à fase aquosa da suspensão (0,007%). Para o revestimento com Q (0,05%), uma solução ácida do polissacarídeo foi adicionado à suspensão de NC pronta, sob agitação constante durante 1 hora. Realizado depois das suspensões prontas adicionando-se uma solução de Q 0,5% a suspensão. Formulações sem CZP foram preparadas e denominadas brancas (Br). As formulações foram caracterizadas através de diâmetro médio das partículas ($D_{[4,3]}$) e SPAN (Mastersizer, Malvern), potencial zeta (Zetasizer, Malvern), pH, microscopia de força atômica, doseamento e taxa de encapsulação (TE) (CLAE-PDA), teste de liberação (saco de diálise) da CZP nas suspensões em meio HCl e tampão fosfato pH 7,4.

Como resultados observou-se que as formulações contendo CZP apresentaram pH superior as formulações sem fármaco (p<0,001). As NCBr e NCCZP apresentaram diâmetros semelhantes de 141 ± 0.005 e 138 ± 0.070 nm respectivamente. A NCCZP-PEG apresentou diâmetro levemente superior (215 ± 0,03 nm) em comparação à mesma sem revestimento (140 ± 0,1 nm). Sobre o revestimento com Q, observou-se na formulação com fármaco a redução do diâmetro para $141 \pm 0,003$ nm quando comparada com NCBr-Q ($211 \pm 0,06$ nm). Todas as formulações apresentaram valores de SPAN inferiores a 1.5. A reversão do potencial zeta foi confirmada com o revestimento de Q, $+7.2 \pm 1.5$ e $+29.3 \pm 0.8$ mV para NCBr-Q e NCCZP-Q. Para as demais formulações, variou de -10,6 a -33,2 mV. As formulações apresentaram doseamento próximo a 100% para todas as formulações. A TE foi superior a 95% para NCCZP e NCCZP-PEG, sendo em torno de 70% para a formulação revestida com QTS. As microscopias mostraram que todas as NC têm formato arredondado e diâmetro parecido com os que foram determinados por Mastersizer. Em meio tampão após 12 horas foi liberado entre 54 e 62% de fármaco para todas as formulações exceto CZP livre onde ocorreu uma maior liberação (65 a 79%), já em meio ácido neste mesmo intervalo de tempo foi liberado uma quantidade de CZP que variou entre 64 a 78% para todas as formulações. Em meio ácido (HCl), a eficiência de dissolução (ED) da CZP livre foi de 24 ± 0,3, valor esse significativamente superior as NCCZP e NCCZP-PEG, mas não da NCCZP-Q. Em tampão pH 7,4, a ED da CZP livre foi de 17 ± 2,0 enquanto que todas as outras formulações apresentaram valores significativamente superiores. Com a nanoencapsulação, independente do tipo de revestimento e do meio de liberação, a CZP apresentou um perfil de liberação nitidamente biexponencial, enquanto que o mesmo não foi observado com fármaco livre.

Como conclusões, foi possível preparar suspensões de NC de CZP com diferentes revestimentos e com diferentes características físico-químicas. A reversão do potencial zeta indica o revestimento das NC com Q. A nanoencapsulação conseguiu controlar a liberação da CZP, sendo que no meio tampão a liberação foi mais lenta do que em meio ácido.