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ABSTRACT 

Efficient exact factoring algorithms are limited to read-once functions, in which 
each variable appears once in the final Boolean equation. However, those algorithms 
present two main constraints: (1) they do not consider incompletely specified Boolean 
functions; and (2) they are not suitable for binate functions. To overcome the first 
drawback, it is proposed an algorithm that finds read-once formulas for incompletely 
specified Boolean functions, whenever possible. With respect to the second limitation, a 
domain transformation that splits existing binate variables into two independent unate 
variables is presented. Such domain transformation leads to incompletely specified 
Boolean functions, which can be efficiently factored by applying the proposed 
algorithm. The combination of both contributions gives optimal results for a novel 
broader class of Boolean functions named as read-polarity-once functions, where each 
polarity (positive or negative) of a variable appears at most once in the factored form. 
Experimental results over ISCAS'85 benchmark circuits have shown that read-polarity-
once functions are significantly more frequent than read-once functions, for which 
many works have already been devoted in the literature. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords: Boolean function, factoring, logic synthesis, incompletely specified 
functions, read-once function, read-polarity-once function.
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Funções read-polarity-once 

RESUMO 

Algoritmos exatos para fatoração estão limitados a funções Booleanas read-once, 
onde cada variável aparece uma vez na equação final. No entanto, estes algoritmos 
apresentam duas restrições principais: (1) eles não consideram funções Booleanas 
incompletamente especificadas, e (2) eles não são adequados para as funções binate. 
Para superar o primeiro inconveniente, é proposto um algoritmo que encontra equações 
read-once para funções Booleanas incompletamente especificadas, sempre que possível, 
é proposto. Com respeito à segunda limitação, é apresentada uma transformação de 
domínio que divide variáveis binate existentes em duas variáveis unate independentes. 
Tal transformação de domínio conduz a funções Booleanas incompletamente 
especificadas, que podem ser eficientemente fatoradas mediante a aplicação do 
algoritmo proposto. A combinação das duas contribuições dá resultados ótimos para 
uma nova classe de funções Booleanas chamada read-polarity-once, onde cada 
polaridade (positiva ou negativa) de uma variável aparece no máximo uma vez na forma 
fatorada da expressão Booleana. Resultados experimentais sobre circuitos ISCAS'85 
mostrou que funções read-polarity-once são significativamente mais frequentes em 
circuitos reais quando comparado com a classe de funções read-once, a qual muitos 
trabalhos já foram dedicados na literatura. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Palavras-chave: Função Booleana, fatoração, síntese lógica, funções Booleanas 

incompletamente especificadas, funções read-once, funções read-polarity-once. 
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1 INTRODUCTION 

The circuit synthesis design flow is usually divided into three major steps: 
architectural synthesis, logic synthesis and physical synthesis (MICHELI, 1994). The 
architectural synthesis, often called high-level synthesis, consists of transforming an 
algorithmic description of a desired behavior into a hardware format that implements 
that behavior, as in RTL (Register Transfer Level) format. Usually, those algorithmic 
descriptions are represented in a C like format (e.g. System C) or a behavioral HDL 
(Hardware Description Language) (e.g. VHDL and Verilog) format. 

The logic synthesis process has been one of the most commercially successful areas 
of electronic design automation (EDA). This commercial success indicates that all the 
digital devices that we use in our day-to-day life have been designed with a set of logic 
synthesis tools. The logic synthesis task consists of several steps. These steps may be 
different according to the nature of the circuit, e.g. sequential or combinational. The 
goal of logic synthesis is to determine the primitive structure of a circuit, i.e., its gate 
level representation. It is typically divided in three phases: technology independent 
optimizations, technology mapping and technology dependent optimizations. The first 
one applies transformations that do not depend on the technology, but on the functional 
behavior of a Boolean network, e.g. factorization algorithms. Then, the technology 
mapping phase match portions of the circuit to a cell with technology information. The 
technology dependent phase applies optimizations in the mapped circuit, such as cell 
resizing and logic duplication. 

The physical synthesis, or geometrical level synthesis, consists mainly of two major 
tasks: placement of blocks and routing of wires. The former distributes physically the 
cells whereas the later performs the signal interconnections. 

This work addresses the synthesis of Boolean functions in the scope of a digital 
circuit design flow, more precisely in the logic synthesis phase. However, the focus can 
be considered broader since this work proposes a new class of Boolean functions that 
may have application in different areas other than circuit synthesis. 

1.1 Motivation 
The process of factoring Boolean functions is a fundamental operation in 

algorithmic logic synthesis (BRAYTON, 1987; HACHTEL; SOMENZI, 2006). 
Factoring is the process of deriving a parenthesized algebraic equation, or factored 
form, representing a given logic function, usually provided initially in sum-of-products 
(SOP) or product-of-sums (POS) form. For instance, f=a*b+a*c*d+a*c*e can be 
factored into the logically equivalent equation f=a*(b+c*(d+e)). 
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Any given logic function can be represented by different factored equations. The 
task of factoring Boolean functions into shorter, more compact logically equivalent 
formulae is one of the basic operations at the early stages of algorithmic logic synthesis 
(HACHTEL; SOMENZI, 2006). In most design styles, like conventional CMOS gates, 
the electrical implementation of a Boolean function corresponds directly to its factored 
equation in terms of literals and device count. Generating an optimum factored form, 
i.e. the shortest length equation, is an NP-hard problem (GOLUMBIC; MINTZ, 1999). 
Hence, heuristic algorithms have been developed in order to obtain good factored 
solutions (BRAYTON, 1987; STANION; SECHEN, 1994; MINTZ; GOLUMBIC, 
2005; HACHTEL; SOMENZI, 2006; YOSHIDA; FUJITA, 2011). Some well-known 
heuristic algorithms include XFactor (MINTZ; GOLUMBIC, 2005), which provides 
good results but does not guarantee the minimal equations. In (LAWLER, 1964), the 
author claims to provide the exact factoring. However, Lawler’s method is not scalable 
and becomes impractical even for some functions with only 4 variables. Recently, new 
approaches have improved the factoring process for exact solutions, but the scalability 
and runtime still remain the main bottlenecks (YOSHIDA; IKEDA; ASADA, 2006; 
YOSHIDA; FUJITA, 2011; MARTINS ET AL., 2012). 

Efficient exact algorithms exist for a sub-class of functions known as read-once 
(RO) functions (LEE; WANG, 2007; GOLUMBIC; MINTZ; ROTICS, 2008). A 
Boolean function is considered read-once if it can be represented in a factored form 
where each variable appears only once (GOLUMBIC; MINTZ; ROTICS, 2001). 
Reviewing the example above, the function f=a*(b+c*(d+e)) is RO. In Table 1.1 it is 
possible to see a sample of Boolean function gathered from the ISCAS benchmarks. 
The class of RO functions is of special interest in logic synthesis because they are quite 
frequent in circuit applications.  

Table 1.1: The abundance of RO functions in a sample of Boolean function gathered 
from the ISCAS benchmarks. 

  Logic level 2 Logic level 3 Logic level 4 Logic level 5 
Circuit 
name 

No. 
Eqns 

RO eqns No. 
Eqns 

RO eqns No. 
Eqns 

RO eqns No. 
Eqns 

RO eqns 
No. % No. % No. % No. % 

C432 142 79 55 142 91 64 114 19 17 111 18 16 
C499 162 0 0 146 0 0 138 0 0 52 0 0 
C880 430 312 73 278 157 57 257 103 40 247 52 21 
C1355 496 326 66 409 168 41 377 96 25 350 50 14 
C1908 822 810 98 734 569 77 648 283 43 361 0 0 
C2670 1087 979 90 994 644 64 873 282 32 837 168 20 
C3540 1588 1404 88 1550 1119 72 1464 764 52 1334 449 34 
C5315 2108 1789 84 1844 1174 64 1805 396 21 1700 204 12 
C6288 2159 1696 79 2147 603 28 2114 92 4 2143 109 5 
C7552 3404 3290 97 3290 2410 73 3121 328 11 2919 367 14 
Total 12398 10685 86 11534 6935 60 10911 2363 22 10054 1417 14 

Source: PEER; PINTER, 1995. 

However, exact algorithms for RO functions present two important limitations: (1) 
they do not consider incompletely specified Boolean functions; and (2) they are not 
suitable for functions with binate variables (see Subsection 2.2.5). In this context, a 
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question can be raised: “Since RO functions are quite frequent in real circuit 
applications, suppose we extend the boundaries of this class, creating a new class of 
functions, in order to overcome the limitation (1) and (2). How broader is this new class 
with regard to the RO class? How much more frequent are the functions of this new 
class in real circuit applications?” These questions summarize our motivation. 

1.2 Objective 
The objective of this thesis is to transcend the boundaries of the RO class of 

functions. One way of doing that is to create a new broad class of Boolean functions, 
which can deal with binate functions and where factorized forms can be guaranteed 
minimal. An approach is to split the positive and negative phases of binate variables 
into two independent variables. This way, it is possible to represent the positive phase in 
one variable and the negative phase into another variable, being these two variables 
unate and independent each other. This domain transformation leads to ISBF. 
Therefore, it is interesting to develop a method that is able to factorize ISBF into RO 
forms, which are known by resulting minimal forms. The combination of both strategies 
can lead to a novel broader class of functions called read-polarity-once (RPO) 
functions, where each polarity (positive or negative) of a variable appears at maximum 
once in the minimal factored form, e.g. f=(!a*d+c)*(a+b). In this sense, this work aims 
to provide an efficient algorithm that guarantees minimal factored forms for the class of 
RPO Boolean functions. 

1.3 Thesis Organization 
The remaining of this thesis is organized as follows. 

Chapter 2: BOOLEAN LOGIC CONCEPTS — Provides to the reader basic and 
consolidated knowledge that is needed to understand the concepts presented in this 
work. 

Chapter 3: READ-ONCE BOOLEAN FUNCTIONS — Describes the evolutionary 
line of RO factoring algorithms, and presents the two most recent methods that are 
related to the methods proposed herein. 

Chapter 4: FACTORING INCOMPLETELY SPECIFIED BOOLEAN FUNCTIONS 
INTO READ-ONCE EQUATIONS — Presents a complete method for factoring ISBF 
into RO forms, when it is possible. This method, called ISF2RO could also be used in 
other applications, as discussed in Chapter 5. 

Chapter 5: READ-POLARITY-ONCE FUNCTIONS — Defines a new class of 
Boolean functions, where each polarity (positive or negative) of a variable appears at 
maximum once in the minimum factored equation. Results of several experiments are 
also presented and discussed. 

Chapter 6: CONCLUSIONS AND FUTURE WORK — Summarizes the major 
contributions of this work, and discusses some promising future work. 
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2 BOOLEAN LOGIC CONCEPTS 

This chapter introduces notation and preliminaries necessary to the understanding of 
this work. It gives to the reader a brief description of the basis of Boolean algebra. 

2.1 Sets, membership and basic operations 
This section presents basic concepts of set theory. This includes the concepts of 

membership, sets, subsets and associated operation. 

Set: a collection of distinct elements. The usual way of describing a set is by 
defining the characteristics of the elements belonging to the set. For instance, if the set 
A is defined as the set of all positive even elements, the set A is completely defined. 
However, it is not possible to explicitly list all the elements in this set, as the number of 
elements is infinite. This way, the set A could be described as: A = {2, 4, 6, 8, 10, …}. 

Membership: If an element a is member of the set A, this is denoted as a ∈ A. 
One way of describing a set is by listing all elements of the set. One example of it is 

the definition of the binary set B such that B={0, 1}; meaning that 0 ∈ B and 1 ∈ B. 

Subsets: Let A and B be two sets. We say B ⊆ A if all elements in B are also into the 
set A. In this case, we say that B is a subset of A. 

With this very basic definition set, we can now provide several fundamental 
operations between sets, in order to provide new sets. Table 2.1 shows possible 
operations that can be performed over sets. 

Table 2.1: Possible operations over sets. 

Operation Venn Diagram 
Complement: If a universe U is defined, Ac creates a new set that 
contains all elements of a universe U that are not in A: U ∖ A 

 
Union: A ∪ B creates a new set that contains all elements that are 
member of either A or B. 

 
Intersection: A ∩ B creates a new set that contains all elements that 
are members of both A and B. 

 
Symmetric difference: A ∆ B creates a new set that contains all 
elements which are in either of the sets and not in their intersection, 
or more formally: (A ∪ B) ∖ (A ∩ B)  
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The goal of this review is just to present some very basic definitions and operations. 
For more information or formalism, (HALMOS, 1960) is suggested. 

2.2 Boolean functions 
Let B = {0,1}, Y = {0,1,X}. A Boolean function f in n-input variables, x1,…,xn, is a 

function: 

f : Bn → Y 

where x = [x1,…,xn] ∈ Bn is the input of f. A completely specified Boolean function 
(CSF) f is a logic function that allow only values {0,1} in Y. Notice that incompletely 
specified Boolean functions (ISF) differs from completely specified functions in the 
fact that the former may also assume don’t-care (X) values, besides the binary values 0 
and 1 (BRAYTON ET AL., 1984). 

An element m ∈ Bn is called term. The number of terms in Bn is 2n. We can define 
the on-set fON as the terms m ∈ Bn such that f(m) = 1, the off-set fOFF such that f(m) = 0 
and the don’t-care set fDC, such that f(m) = X. The on-set and the off-set terms are also 
called minterms and maxterms, respectively. A CSF that contains no elements in the off-
set (fOFF = ∅) is defined as constant ONE. In analog way, a CSF that contains no 
elements in the on-set (fON = ∅) is defined as constant ZERO. In this work, Boolean 
function and function are used interchangeably. 

2.2.1 Representing Boolean functions 
There are several ways to represent a Boolean function. The most straightforward 

one is the truth table. In this representation, the value of the output is specified for all 
possible input vectors [x1,…,xn]. For example, let f: B3 → Y be specified by the truth 
table in Table 2.2. It is also possible to represent the same truth table in a bit string, 
that have the most significant bit on the left and the less significant bit on the right: 
f(x1,x2,x3)=110010012. A well-established way of representing Boolean functions is 
the Karnaugh map (KARNAUGH, 1953), and an example demonstrating its use is 
depicted in Figure 2.1. 

Table 2.2: A truth table representation of f(x1,x2,x3)=110010012. 

 

 

 

 

 

 

 

 

x1 x2 x3 f 
0 0 0 1 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Figure 2.1: A Karnaugh map representation of f(x1, x2, x3) = 110010012. 

 

Although being a very simple way of representing Boolean functions, the truth table 
data structure is not scalable in practice, since it uses 2n bits to store the information. 
For functions with more than 20 input variables, representing Boolean functions as truth 
table data structure starts to be infeasible. In order to overcome this limitation, a graph-
based approach has been proposed by (AKERS, 1978): Binary Decision Diagram 
(BDD). 

A BDD is a rooted, directed graph with vertex set V containing two types of 
vertices. A nonterminal vertex v has as attributes an input variable and two children 
low(v), high(v) ∈ V. A terminal vertex v has as attribute a value v ∈ {0,1}. The same 
function represented by the truth Table 2.2 above could be represented by a BDD as it is 
possible to see in Figure 2.2. The dashed edges represent the low child nodes, while the 
non-dashed lines are the high child nodes. 

 
Figure 2.2: Binary decision diagram (BDD) representation of a Boolean function. 

In order to make the BDD a canonical data structure, Bryant (BRYANT, 1986) 
proposed a reduced and ordered binary decision diagram (ROBDD). ROBDD is 
similar to the representation introduced by (AKERS, 1978), but with further restrictions 
on the ordering of decision variables in the graph. A ROBDD representing the same 
function of the BDD of Figure 2.2 could be seen in the Figure 2.3. Notice that ROBDD 
is also a more compact way of representing BDDs. 

 
Figure 2.3: A reduced and ordered binary decision diagram (ROBDD) of a Boolean 

function. 
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In general, BDDs represent only completely specified Boolean functions. In order to 
represent incompletely specified Boolean functions, two BDDs are necessary: one BDD 
to represent both on- and off-set, and another BDD for representing the don’t-care set of 
the function. 

2.2.2 Operations on completely specified Boolean functions 
In this subsection we define some basic Boolean operators for completely specified 

Boolean functions (CSF). After the basic operations definition, the next subsection 
defines how these operators work on incompletely specified Boolean functions (ISF). 

The complement (NEGATION, NOT) of a CSF, f is a CSF, h = f c, (h = !f), such 
that hON = fOFF, and the hOFF = fON. A truth table representation of the NOT operator is 
presented in Table 2.3. 

Table 2.3: Truth table representation of NOT operator. 

f !f 
0 1 
1 0 

 

The union (SUM, OR) of two CSF, f and g is a CSF, h = f ∪ g, (h = f + g), such that 
hON is the union fON and gON. A truth table representation of the OR operator is 
presented in Table 2.4. 

Table 2.4 Truth table representation of OR operator. 

f g h = f + g 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 

The intersection (PRODUCT, AND) of two CSF, f and g is a CSF, h = f ∩ g, (h = f 
* g), such that hON is composed by the terms that are in both fON and gON. A truth table 
representation of the AND operator is presented in Table 2.5. 

Table 2.5 Truth table representation of AND operator. 

f g h = f * g 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 

The symmetric difference (exclusive-or, XOR) between two CSF, f and g is a CSF, 
h = f ∆ g, (h = f ⊕ g), such hON contains all elements which are in either fON or gON but 
not in their intersection. A truth table representation of the XOR operator is presented in 
Table 2.6. 
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Table 2.6 Truth table representation of XOR operator. 

f g h = f ⊕ g 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 

We say that two CSF f and g are equal when f ≡ g. In this case, fON and gON must be 
the same. We define equality between two CSF f and g as follows: 

f ≡ g ↔ f ≡ f ∪ g ≡ g. 

2.2.3 Operations on incompletely specified Boolean functions 
In the following the operations for incompletely specified Boolean functions (ISF) 

are defined. In an analog way, operations over ISF domain are quite related to CSF, 
regardless when a don’t-care term appears. A don’t-care term is a term that we indeed 
do not care about its value. In this sense, the following operations on ISF are defined: 
complement, union, intersection and symmetric difference. 

The complement (NEGATION, NOT) of an ISF, f is a ISF, h = f c, (h = !f) defined 
as the following: 

hON = fOFF (1.1) 

hOFF = fON (1.2) 

hDC = fDC (1.3) 

The union (SUM, OR) of two ISF, f and g is an ISF, h = f ∪ g, (h = f + g) defined as 
the following: 

hON = fON ∪ gON (1.4) 

hOFF = fOFF ∩ gOFF (1.5) 

hDC = U ∖ hON ∖ hOFF (1.6) 

 

The intersection (PRODUCT, AND) of two ISF, f and g is an ISF, h = f ∩ g, (h = f 
* g) defined as the following: 

hON = fON ∩ gON (1.7) 

hOFF = fOFF ∪ gOFF (1.8) 

hDC = U ∖ hON ∖ hOFF (1.9) 

 

The symmetric difference (exclusive-or, XOR) between two ISF, f and g is an ISF, 
h = f ∆ g, (h = f ⊕ g) defined as the following: 

hON = (fON ∪ gON) ∖ (fON ∩ gON) (1.10) 

hOFF = (fOFF ∩ gOFF) ∪ (fON ∩ gON) (1.11) 
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hDC = fDC ∪ gDC (1.12) 

 

Table 2.7: Summary of all binary operations over ISF in truth table data structure. 

f g h = f + g h = f * g h = f ⊕ g 
0 0 0 0 0 
0 1 1 0 1 
0 X X 0 X 
1 0 1 0 1 
1 1 1 1 0 
1 X 1 X X 
X 0 X 0 X 
X 1 1 X X 
X X X X X 

 

Table 2.7 summarizes all binary operations over ISF in a truth table data structure. 
Two ISF f and g are said equal when f ≡ g. More precisely, (fON = gON), (fOFF = gOFF) 
and (fDC = gDC). However, when in an ISF domain, it is needed often to verify if an ISF f 
is equivalent to another ISF g. Equivalence between two ISF is defined as follows: 

f ≈ g ↔ fON ∩ gOFF =∅ and fOFF ∩ gON =∅ 

In order to demonstrate the equivalence operator, let f=11101X1011101X102 and 
g=1110111011X010X02 be two ISF. As it is possible to see in Figure 2.4, there is no 
element in fON that is also in gOFF, as well as no element in fOFF that also belongs to gON. 
In this case we say that f is equivalent to g (f ≈ g). 

  
(a) (b) 

Figure 2.4: Karnaugh map representation of f=11101X1011101X102 (a) and 
g=1110111011X010X02 (b). Dashes mean don’t-care (X) terms. 

2.2.4 Cofactor over Boolean functions 
The cofactor operation is a very basic and significant operation over Boolean 

functions. Let us define cofactor as following. 

Let f : Bn → B be a Boolean function and x = [x1,…,xn] the variables in support of f. 
The cofactor of f with respect to xi is denoted as f(x1,…,xi=c,…,xn) where c ∈ {0, 1} 
(BOOLE, 1854). It is also possible to define as positive cofactor the operation where a 
variable receive the Boolean constant 1. The opposite is defined as negative cofactor, 
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and is when a variable receives the Boolean constant 0. For presentation sake, let 
f(x1,…,xi=c,…,xn) ≡ f(xi=c). 

It is not a simple task to enumerate all methods that take advantage of the cofactor 
operation. One of the most important examples is the Shannon expansion, where a 
function can be represented as a sum of two sub-functions of the original (SHANNON, 
1948): 

f (x1,…,xn) = !xi* f(xi=0) + xi * f(xi=1) (1.13) 

Let us take as example a Boolean function f represented by the logic equation 
(1.14). Let the equation (1.15) and (1.16) represent, respectively, the negative and 
positive cofactor of variable x2 over f. The expansion of f about x2 is defined by 
equation (1.17). Notice that both equation (1.14) and (1.17) represent the same Boolean 
function. 

2.2.5 Unateness 
The unateness behavior is an intrinsic characteristic of Boolean functions. It 

provides the behavior of each variable, as well as the behavior of the entire function. Let 
f be a Boolean function. The unateness behavior of a variable xi in f can be obtained 
according to the following relations: 

α = f(xi=1) (1.18) 
β = f(xi=0) (1.19) 
γ = α + β (1.20) 

don't-care: α ≡ β (1.21) 
positive unate: (α ≡ γ) ^ (α ≠ β) (1.22) 
negative unate: (β ≡ γ) ^ (α ≠ β) (1.23) 
binate: (α ≠ β) ^ (α ≠ γ) ^ (β ≠ γ) (1.24) 

Definition: We say that a Boolean function is unate if all its variables are either 
positive or negative unate. When all variables are positive (negative) unate, we say that 
the entire function is positive (negative) unate. In the case when at least one variable is 
binate, the Boolean function is considered binate. 

Example: Let f be a Boolean function defined by the following equation: 

which can be also represented by the bit string f=11001100111000002. In order to 
discover the unateness behavior of the variable “a”, we need to perform the positive and 
negative cofactors with regard to the variable “a”, as presented in Eq. 1.26 and Eq. 1.27, 
respectively. By applying a bitwise OR between the cofactors, the function γa is 
obtained, as shown in Eq. 1.28. As it is possible to see, the positive and negative 

f = !x1 !x2 !x3 + x1 x2 + x2 x3 (1.14) 

f (x2=0) = !x1 !x3 (1.15) 

f (x2=1) = x1 + x3 (1.16) 

f = !x2(!x1 !x3) + x2(x1+x3) (1.17) 

f = !ab!cd+!abc!d+!abcd+a!bc!d+a!bcd+abc!d+abcd (1.25) 
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cofactors are not equals, as well as the function γa differs from both cofactors. This way, 
we determine that the variable “a” has a binate behavior in f. 

αa = f(a=1) ≡ 11001100110011002 (1.26) 

βa = f(a=0) ≡ 11100000111000002 (1.27) 

  γa = α + β ≡ 11101100111011002 (1.28) 
In a straightforward way, it is possible to discover the unateness behavior of the 

variable “b” in f. The equations Eq. 1.29 and Eq.1.30 represent the positive and negative 
cofactors of “b” in f, respectively. Through the bitwise OR between the cofactors, the 
function γb is obtained, as presented in Eq. 1.31. As it is possible to see, the positive and 
negative cofactors are not equals. However, the function γb (bitwise OR between 
cofactors of “b”) is equivalent to the positive cofactor of “b”. This means that the 
variable “b” has a positive unate behavior in f. The same process is applied to the 
variables “c” and “d”, which have a positive unate behavior in f. For simplicity sake, 
this process was omitted, since it is straightforward from equations Eq. 1.26, 1.27 and 
1.28. 

αb = f(b=1) ≡ 11001100111011102 (1.29) 

βb = f(b=0) ≡ 11001100000000002 (1.30) 

  γb = α + β ≡ 11001100111011102 (1.31) 
In mathematics, a monotonic function (or monotone function) is a function between 

ordered sets that preserves some given order (GRÄTZER, 1971). Monotonic functions 
are divided between monotonically increasing and monotonically decreasing functions. 
Unate Boolean functions are monotonic functions with Boolean domain and image, 
where positive (negative) unate Boolean functions are monotonically increasing 
(decreasing) functions. For more information, (GRÄTZER, 1971) is suggested. 

Unate Boolean functions are of special interest in this work. Some characteristics 
and applications of the unate Boolean functions are presented in Chapter 3. An 
algorithm that split binate variables into two independent unate variables, in order to 
transform a binate function into an unate one, is presented in Chapter 5. This algorithm 
and the application of this task are also discussed. 

2.3 Logic equations 
It is possible to use the set of Boolean operators in order to generate more complex 

structures. One example of complex structure is the algebraic representation of a 
Boolean function, which is simply named equation herein. 

The simplest equation represents a Boolean variable, e.g. f = a. This equation has 
only one literal. A literal is a variable or its complement (e.g. a or !a). In general, a 
Boolean function can be represented by several different equations. Let us take as 
example the CSF denoted by the bit string: f(x1, x2, x3)=110010012. It is possible to 
represent this function in sum-of-products (SOP) or in product-of-sums (POS) forms, 
as it is possible to see in Figure 2.5a and Figure 2.5b, respectively. We say that a SOP is 
an irredundant sum-of-products (ISOP) when no literal can be deleted from the SOP 
without changing the Boolean function. For instance, the SOP f=!x1 !x2 !x3+!x1 x2 x3+x1 
x2 !x3+x1 x2 x3 represents the same Boolean function as the ISOP f = !x1 !x2 !x3 + x1 x2 + 
x2 x3. Moreover, we can delete literals from the SOP until it reaches an ISOP, without 
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changing function. In an analog way, the same property occours for POS, and is called 
irredundant product-of- sums (IPOS). 

There are some methods that produce more complex equations, known as factoring 
algorithms. Factoring is the process of deriving a parenthesized algebraic equation, or 
factored form, representing a given logic function, usually provided initially in SOP or 
in POS. The main target of factoring algorithms is to find an equation with the minimal 
number of literals as possible. For instance, let the input of a factoring algorithm be the 
SOP equation given by f = !x1 !x2 !x3 + x1 x2 + x2x3. This equation can be factored into 
the logically equivalent one with only 6 literals: f = !x2(!x1 !x3) + x2(x1+x3), while the 
original has 7 literals. Figure 2.6 shows a logic tree of the factored equation. 

 

  
(a) (b) 

Figure 2.5: The same Boolean function represented by an equation in sum-of-products 
(a) and in product-of-sums form (b). 

 

 
Figure 2.6: Arbitrary Boolean function represented by a factored form. 
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3 READ-ONCE BOOLEAN FUNCTIONS 

The classes of read-once functions have interesting special properties 
(KARCHMER ET AL., 1993; BOROS; GURVICH; HAMMER, 1994; BOROS; 
IBARAKI; MAKINO, 1998; GOLUMBIC, 2004). The class of read-once functions is 
of special interest in several areas, including learning theory (ANGLUIN; 
HELLERSTEIN; KARPINSKI, 1993; BSHOUTY; HANCOCK; HELLERSTEIN, 
1995), data bases (KANAGAL; LI; DESHPANDE, 2011) and digital circuit design 
(PEER; PINTER, 1995). In this chapter, the concept and applications of read-once 
Boolean functions will be presented. 

3.1 Definition 
A Boolean function is considered read-once (RO) if it can be represented in a 

factored form where each variable appears only once (GOLUMBIC; MINTZ; ROTICS, 
2001). 

For example, the Boolean function represented by 

f = x1 x2+x1 x3 x4+x1 x3 x5 

is a read-once function since it can be factored into 

f = x1 (x2+x3(x4+x5)) 
where each variable appears only once (GOLUMBIC; CRAMA; HAMMER, 2009). 

If a given function f can be factored in a RO equation, then all variables of f are 
either positive or negative unate. If a function has some binate variable, this variable 
will appear in two phases, contradicting the read-once definition, where each variable 
appears at most once (LEE; WANG, 2007). This is a necessary but not sufficient 
condition, since there are functions composed by only unate variables that cannot be 
factored in a RO equation. For example, the unate function f= x1 x2+ x1 x3+ x2 x3 has f= 
x1(x2+x3)+x2 x3 as the minimal solution, in which variables x2 and x3 appear more than 
once. 

3.2 Previous work 
The class of read-once Boolean functions is known for a long time, and was first 

introduced by Hayes (HAYES, 1975) and was called fanout-free functions. The method 
proposed by Hayes suffers of high complexity, since the algorithm makes intensive calls 
to a procedure to perform equivalence checking of cofactors, which was originally an 
expensive computation. 



 

 

25 

 

Peer and Pinter have also proposed in (PEER; PINTER, 1995) an algorithm to 
synthesize non-repeating literal trees, another name to read-once functions. The main 
drawback of their method is that it runs in non-polynomial time. The main reason is that 
their method requires calling several times a procedure that converts a SOP to POS (and 
POS to SOP) form. This original routine requires a non-polynomial time to run, making 
the method very costly in runtime. 

More recent work was proposed in order to overcome the limitations of the Hayes 
and Peer and Pinter’s methods. Golumbic (GOLUMBIC; MINTZ; ROTICS, 2001) was 
the first to propose a polynomial time factoring algorithm for RO functions, called 
IROF. His method is based on Gurvich work (GURVICH, 1991). Another recent work 
was proposed by Lee (LEE; WANG, 2007) and is based on the Hayes work. His 
method, called herein as JPHI, replaced the equivalence checking of cofactors by a 
property called disappearance, turning the algorithm feasible in polynomial time. Both 
IROF and JPHI methods factorize RO functions in polynomial time. From this point on, 
the focus will be only on these two more recent approaches. 

3.3 IROF method 
In this section the basic idea of Golumbic’s approach to factorize read-once 

functions will be presented. More specific details can be found in the paper 
(GOLUMBIC; MINTZ; ROTICS, 2001). 

The IROF method receives a Boolean function f in an irredundant sum-of-products 
(ISOP) form. The first step is to build an undirected graph G = (V, E), where V = {v0,…, 
vn} represents the set of literals of the ISOP. An edge (vi, vj) ∈ E exists if the literals vi 
and vj appears in the same product in the ISOP. 

Let us take an ISOP f = x1 x2+x1 x3 x4+x1 x3 x5 as example. The first step of IROF 
algorithm is to transform the ISOP into a graph. The resulting graph is depicted in 
Figure 3.1. 

 
 

op = + 

Figure 3.1: The resulting graph for the ISOP f = x1 x2+x1 x3 x4+x1 x3 x5. 

After the graph generation task, the algorithm proceeds to the partition step. Let op 
∈{+, *} be a Boolean operator. Given a graph G and an operator op starting with ‘+’, 
the coGraph_Rec(G, op) step first verifies if G contains only one node. In this trivial 
situation, the method stores the operator op on the node and returns. If G contains more 
than one node, the algorithm proceeds checking if G is connected or not. If G is 
connected, the algorithm complement the graph G and swap the operator op (e.g. if op 
is ‘+’, op’ will be ‘*’), making a recursive call coGraph_Rec(G’, op’), where G’ is the 
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complement of graph G. However, if G is disconnected, the algorithm selects connected 
components from G, and for each connected component H, make a recursive call 
coGraph_Rec(H’, op’). The pseudo algorithm is presented in Figure 3.2 

coGraph_Rec(G, op) { 
 if (G contains only one node vi) { 
  return op, vi; 
 if (G is connected)  
  return partition(G', op'); 
 H = connected components of G; 
 foreach (Hi ∈ H) 
  partition(Hi', op'); 
} 

Figure 3.2: Pseudo algorithm for the coGraph_Rec step. 

 

Let us apply the coGraph_Rec step in the graph G represented by Figure 3.1. Since 
G contains more than one node and is a connected graph, a complemented graph G’ is 
created (Figure 3.3), and a recursive call coGraph_Rec(G’, op’) is called. The method is 
called recursively until there are no elements to be processed. The figures Figure 3.1, 
Figure 3.3, Figure 3.4, Figure 3.5 and Figure 3.6 show a complete example of the IROF 
algorithm. The algorithm successfully recognized the read-once equation f = x1 
(x2+x3(x4+x5)) after the entire flow. 

 

op = * 

Figure 3.3: Complement graph of Figure 3.1. In this step, the coGraph_Rec build the 
partial equation: f=x1*f1(x2, x3, x4, x5). 

 

 

op = + 

Figure 3.4: Complement graph of Figure 3.3. The node x1 was removed. In this step, the 
coGraph_Rec build the partial equation: f1=x2+f2(x3, x4, x5). 
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op = * 

Figure 3.5: Complement graph of Figure 3.4. The node x2 was removed. In this step, the 
coGraph_Rec build the partial equation: f2=x3*f3(x4, x5). 

 

 

op = + 

Figure 3.6: Complement graph of Figure 3.5. The node x3 was removed. In this step, the 
coGraph_Rec build the equation: f3 = x4 + x5. 

The IROF algorithm was the first method to factorize RO functions in a polynomial 
time. The IROF algorithm can be implemented in a time complexity O(n|f|), where |f| 
denotes the length of the ISOP equation of a function f, and n is the number of variables 
in f (GOLUMBIC; MINTZ; ROTICS, 2001). Despite the efficiency of the IROF 
algorithm, it cannot be modified to deal with incompletely specified Boolean functions, 
since it depends on an ISOP as input. Moreover, if the entire function is not read-once, 
the IROF method is not able to recognize subfunctions that are read-once. The JPHI 
method is able to find read-once subfunctions, even if the input function were not read-
once. Furthermore, it is possible to modify the JPHI method to accept incompletely 
specified Boolean functions as input. JPHI method will be described in the next section. 

3.4 JPHI method 
This section will introduce the factoring algorithm for RO functions proposed by 

Lee (LEE; WANG, 2007), called herein as John P. Hayes Improved (JPHI). The goal of 
this section is to give a brief introduction about the method, and more details can be 
found in the paper. 

The JPHI method receives a Boolean function f in an irredundant sum-of-products 
(ISOP) form. We will consider ISOPs where all variables are positive unate, without 
losing generality. If a function has a negative unate variable, it is possible to substitute a 
positive unate variable for this negative unate variable. For example, the function g(x1, 
x2) = x1 + !x2 can be viewed as f(x1, !x2) = x1 + x2. 
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The JPHI method is highly based on cofactors. The basic idea is to tie variables 
when their cofactors are equal. Let us take as example the function f = x1 x2 x3 x4 + x1 x2 
x3 x5 + x4 x6 + x5 x6. The negative cofactor list is presented in Figure 3.7. 

f (x1 = 0) = x4 x6 + x5 x6 

f (x2 = 0) = x4 x6 + x5 x6 

f (x3 = 0) = x4 x6 + x5 x6 

f (x4 = 0) = x1 x2 x3 x5 + x5 x6 

f (x5 = 0) = x1 x2 x3 x4 + x4 x6 

f (x6 = 0) = x1 x2 x3 x4 + x1 x2 x3 x5 

Figure 3.7: Equations of negative cofactors of f = x1 x2 x3 x4 + x1 x2 x3 x5 + x4 x6 + x5 x6. 

As it is possible to see, the negative cofactors of variables x1, x2 and x3 have the 
same equation. In this way, we can tie these variables through an AND operator, e.g. ϕ= 
x1x2x3, since the equations are from negative cofactors (Figure 3.8). When positive 
cofactors are equal, then the variables are tied through OR operators. After replacing f 
by ϕ, the algorithm continues dealing with ϕ until reaching a RO form. 

x1

x2

x3

x4

x5

x6

g f

 
Figure 3.8: Partial decomposition after tying variables into ϕ=x1 x2 x3. 

The JPHI method uses the disappearance property to accelerate the JPH’s method 
(HAYES, 1975). The disappearance property can be defined as follows: Let xi and xj be 
two distinct variables of f and c be a Boolean constant. If xj disappears in the function 
f(xi = c) and xi disappears in the function f(xj = c), then f(xi = c) ≡ f(xj = c). A formal 
proof is given in (LEE; WANG, 2007). 

In order to explore the disappearance property, a matrix can be build. This matrix 
has rows and columns labeled by f(xi = c) and xj. The first step to build the matrix is to 
list the cofactors. The matrix is then filled with element 1 or 0 in position (f(xi = c), xj) 
according to whether xj appears in f(xi = c). If xj appears f(xi = c), 1 is filled into (f(xi = 
c), xj); otherwise, 0 is filled into (f(xi = c), xj). This matrix has 0s on the diagonal 
because xi always disappears in f(xi = c). Through the disappearance property it is not 
more necessary to perform equivalence checking over cofactors, which was the main 
bottle neck of the JPH approach. The matrix based on the Figure 3.7 is depicted in 
Figure 3.9. 
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Figure 3.9: Disappearance matrix of f = x1 x2 x3 x4 + x1 x2 x3 x5 + x4 x6 + x5 x6. Source: 

LEE; WANG, 2007. 

In a straightforward way, the positive cofactor list is evaluated and a disappearance 
matrix for the positive cofactors is built. After examining the adjacency relations among 
variables, it is possible to recognize the function f = (x1x2x3 + x6)(x4 + x5). Figure 3.10 
shows the iterations when recognizing the read-once function f = (x1x2x3 + x6)(x4 + x5). 

 

 
Figure 3.10: Iterations of recognizing f = (x1x2x3 + x6)(x4 + x5). Source: LEE; WANG, 

2007. 

Besides the efficiently approach for recognizing read-once functions, the JPHI 
algorithm can also find read-once subfunctions even if the input function was not a 
read-once one. This is possible since the disappearance property tie variables in 
subfunction regardless tying the entire set of variables. Consider the function 
k=(x1x2x3+x6)(x4+x5)(ab+bc+ac) which is not read-once due to the term (ab+bc+ac). 
JPHI method will produce a partially read-once equation, as it is shown in a circuit 
description in Figure 3.11. Despite the efficiency, the IROF algorithm is not able to 
recognize subfunctions that are read-once. If the same function k were used as input of 
IROF algorithm, it will just return that k is not a read-once function. 



 

 

30 

 

 
Figure 3.11: Iterations of recognizing f = (x1x2x3 + x6)(x4 + x5). Source: LEE; WANG, 

2007. 

The time complexity of the JPHI algorithm is O(n2K), where K denotes the number 
of products in the ISOP equation of a Boolean function f, and n is the number of 
variables in f. In spite of the fact that the JPHI algorithm has higher complexity than the 
IROF algorithm, it is possible to modify the JPHI method in order to factorize 
incompletely specified Boolean functions as read-once solutions. 

3.5 IROF and JPHI comparison 
We will now briefly compare the IROF (GOLUMBIC; MINTZ; ROTICS, 2001) and 

JPHI (LEE; WANG, 2007) methods. Table 3.1 compare the runtime (in seconds) 
required to synthesize an arbitrary benchmark of 9 read-once functions. The table was 
compiled with results regarding papers by Golumbic (IROF) and Lee (JPHI). 

Table 3.1: Comparison regarding runtime (in seconds) required to synthesize an 
arbitrary benchmark of 9 read-once functions. 

 SOP* N** JPH IROF JPHI 

l2_b10 10240 20 4 0.3 0.11 

l4_b3 3072 24 6 0.1 0.08 

l4_b6 7290 24 277 0.21 0.18 

l6_b4 672 20 3 0.02 0.02 

l6_b8a 132 52 >1hr 0.02 0.29 

l6_b8b 24192 52 >1hr 0.74 2.08 

l8_b5 3380 29 >1hr 0.09 0.11 

l10_b3 2160 30 >1hr 0.07 0.16 

l14_b3 6720 42 >1hr 0.2 0.72 

Source: LEE; WANG, 2007. 

*SOP: Number of literals in the SOP equation. 
**N: Number of variables in the SOP equation. 
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In order to create a fairest comparison, both methods were implemented and tested 
over 3503 read-once functions from GenLib44-6 benchmark (SENTOVICH et al., 
1992). This benchmark has functions from 1 to 16 inputs. The functions were grouped 
regarding input count, and then factorized by IROF and JPHI algorithms. The total 
runtime (in ms) to factorize each group of functions is presented in Table 3.2. It is 
possible to see in the table that both algorithms are equivalent in runtime from functions 
up to 8 inputs. From 9 inputs onwards, the runtime of the JPHI algorithm starts to grow 
quickly than the IROF. This behavior was expected, since the time complexity of JPHI 
is greater than IROF algorithm. It is possible to see in Figure 3.12 the average (in ms) 
runtime to synthesize the benchmark of 3503 read-once functions, grouped by number 
of inputs. The platform was a Linux system on Intel Core i5 2400 processor with 2GB 
main memory. 

Table 3.2: Comparison of runtime between IROF and JPHI to synthesize the benchmark 
of 3503 read-once functions, grouped by number of inputs. 

Inputs Functions IROF* (ms) JPHI** (ms) 

1 1 0 4 

2 2 1 1 

3 4 0 1 

4 10 2 5 

5 22 3 4 

6 54 20 16 

7 116 31 41 

8 228 83 81 

9 374 115 144 

10 530 162 188 

11 612 168 247 

12 604 171 305 

13 468 145 310 

14 300 107 297 

15 130 41 184 

16 48 19 100 

 

3,503 1,068 1,928 

*In-house implementation of the IROF algorithm presented in (GOLUMBIC; MINTZ; ROTICS, 2001). 

**In-house implementation of the JPHI algorithm presented in (LEE; WANG, 2007). 
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Figure 3.12: The average (in ms) runtime to synthesize the benchmark of 3503 read-

once functions, grouped by number of inputs. 

 

The IROF algorithm was the first method to factorize RO functions in a polynomial 
time. The IROF algorithm can be implemented in a time complexity O(n|f|), where |f| 
denotes the length of the ISOP equation of a function f, and n is the number of variables 
in f (GOLUMBIC; MINTZ; ROTICS, 2001). As mentioned before, the IROF algorithm 
cannot deal with incompletely specified Boolean functions. Moreover, if the entire 
function is not read-once, the IROF method is not able to recognize subfunctions that 
are read-once. The JPHI method is able to find read-once subfunctions, even if the 
input function were not read-once. Furthermore, it is possible to modify the JPHI 
method to accept incompletely specified Boolean functions as input. JPHI method will 
be described in the chapter 4. Table 3.3 summarizes behavior comparison between 
IROF and JPHI algorithm. 

Table 3.3: behavior comparison between IROF and JPHI algorithm. 

 
Time complexity Fail fast Partial RO Work with ISF* 

IROF O(n|f|) Yes No No 

JPHI O(n2K) No Yes Yes 

n: number of variables in the SOP equation. 
|f|: number of literals in the SOP equation. 
K: number of products in the SOP equation. 
*ISF: Incompletely Specified Boolean Functions 
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4 FACTORING INCOMPLETELY SPECIFIED BOOLEAN 
FUNCTIONS INTO READ-ONCE EQUATIONS 

Efficient algorithms exist to perform factoring of read-once formulas. Most of them 
readily discard functions containing binate variables, as a read-once function is always 
unate. This work will extend the approach proposed by (LEE; WANG, 2007). The 
original Lee’s approach is described in the section 3.4. The modification for treating 
incompletely specified functions is described in this chapter. Several approaches 
(HAYES, 1975; GURVICH, 1991; PEER; PINTER, 1995; LEE; WANG, 2007; 
GOLUMBIC; MINTZ; ROTICS, 2001) have been proposed to identifying read-once 
functions (RO). Golumbic described the current state-of-the-art algorithm. The IROF 
algorithm needs an irredundant-sum-of-product (ISOP) as input and produces read-once 
formulae when this is possible or reports a failure otherwise. Despite the efficiency of 
the IROF algorithm, it cannot be modified to deal with incomplete-specified functions 
(ISF), since it depends on an ISOP as input. This is the reason why the Lee’s approach 
(LEE; WANG, 2007) was chosen to be extended. The original approach proposed by 
Lee was described in the section 3.4. The modification for treating incompletely 
specified functions is described as follows. 

 

Let B={0,1} and Y={0,1,X}. Let f be an incompletely specified Boolean function 
(ISF) of n-input variables x1,x2,…,xn: 

 

f : Bn → Y 
 

where x = [x1,x2,…,xn] ∈ Bn. Notice that ISF differs from completely specified 
functions (CSF) in the fact that the former may also assume don’t-care (X) values, 
besides the binary values 0 and 1. 

Methods for factoring ISF have been proposed in the literature (YOSHIDA; 
FUJITA, 2011; MARTINS ET AL., 2010), but only the Exact Factor approach 
guarantees exactness in the result (YOSHIDA; FUJITA, 2011). However, the method 
can take more than 10 minutes to synthesize any equation with 12 literals, even for RO 
functions (considering the computing platform Linux system on AMD Athlon 64 X2 
4400 processor with 2 GB main memory (YOSHIDA; FUJITA, 2011). 

Definition 4.1: If an ISF has a RO representation, there is at least one proper 
assignment of the don’t-care values that transforms this ISF into a CSF which is 
trivially synthesized through RO algorithms. 
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Unfortunately, to identify such CSF is not a straightforward task. An ISF can present 
a huge number of CSF forms, and only the CSFs that lead to unate functions are of 
interest. Hence, it is necessary that this CSF represents an unate function. However, 
such condition is not sufficient because the CSF must be successfully synthesized by 
RO algorithms. 

 
Figure 4.1: Example of an ISF that can be factorized into a read-once form. 

Let us take as example the ISF f represented by the Karnaugh map depicted in 
Figure 4.1 (the don’t-care terms appear as dashes). As an initial strategy, it is possible 
to apply a two-level minimizer method, like the Quine-McCluskey (MCCLUSKEY, 
1956), in order to transform this ISF into a CSF that can be factorized into a read-once 
equation. However, this is a wrong strategy. Applying a two-level minimizer in the ISF 
f leads us to the SOP: 

f = x3 x4 x5 x6 + x0 x1 x3 + x0 x1 x2 (4.1) 

which is functional represented by the Karnaugh map presented in Figure 4.2. 
Unfortunately, this SOP equation cannot be represented by a read-once formula. A 
naïve approach can assign all don’t-care terms to constant zero or even to constant one. 
Unfortunately, these two resulting functions cannot be represented by read-once 
equations. However, with a proper assignment of the don’t-care terms, we can obtain 
another SOP equation: 

f=x0x1x2+x0x1x3+x0x2x4x6+x0x3x4x6+x1x2x5+x1x3x5+x2x4x5x6+x3x4x5x6 (4.2) 

which can be successfully factorized into a read-once equation presented in Eq. 4.3. 
The correct assignment of the don’t-care terms is depicted in the Figure 4.3. 

f= (x0 + x5) * (x3 + x2) * (x1 + x6 x4) (4.3) 
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Figure 4.2: Karnaugh map for the SOP f = x3 x4 x5 x6 + x0 x1 x3 + x0 x1 x2. This 

function was synthesized by the Quine-McCluskey’s method and cannot be represented 
by a read-once formula. 

 

 
Figure 4.3 Karnaugh map for the SOP f = x0 x1 x2 + x0 x1 x3 + x0 x2 x4 x6 + x0 x3 x4 
x6 + x1 x2 x5 + x1 x3 x5 + x2 x4 x5 x6 + x3 x4 x5 x6. This function was synthesized by 
the ISF2RO method (section 4.1) and can be represented by a read-once formula f= (x0 

+ x5) * (x3 + x2) * (x1 + x6 x4). 
 

As it is possible to see, it is not an easy task assigning the don’t-care terms in order 
to obtain a read-once equation. For example, consider the following ISF: 

f = 11101X1011X00000 (4.4) 
We can assign the two don’t-care (X) in four different ways, as seen in Table 4.1. 
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Table 4.1: Don’t-care assignments and results. 

Assignment ISOP RO 

00 x1*x4+x2*x3 x1*x4+x2*x3 

01 x1*x4+x2*x3+x2*x4 Error 
10 x1*x4+x1*x3+x2*x3 Error 
11 x1*x4+x1*x3+x2*x3+x2*x4 (x1 + x2) * (x3 + x4) 

 
All don’t-care assignments lead to unate functions, but only two of them result in 

RO equations. In this sense, a method to assign the don’t-care terms in a RO driven 
way, called ISF2RO, is proposed. The algorithm is based on the principle discussed in 
(LEE; WANG, 2007), that compares cofactors in order to group variables in a RO 
fashion way. The ISF2RO algorithm is presented in the follow section. 

4.1 ISF2RO method 
In this section some basic data structures used in ISF2RO method will be presented. 

Definition 4.2: An assignment is a data structure used to represent the state when a 
variable xi was assigned to a Boolean constant c. An assignment is represented by a 
tuple <xi,c>. This structure will be used for cofactoring functions. 

Definition 4.3: A logic arrangement is a data structure used to store the information 
necessary to run the algorithm, i.e., the grouping state, as illustrated in Figure 4.4 

 
LogicArrangement 

String expression 
Set<Assignment> on_spec 
Set<Assignment> off_spec 
ISF pos_cube_cof 
ISF neg_cube_cof 

Figure 4.4: LogicArrangement class diagram. 

 
The algorithm, called ISF2RO, receives an ISF f as input. Initially, consider that all 

variables in f are positive unate, without losing generality. The method starts by 
inserting the input variables into the main list of logic arrangements. These logic 
arrangements are cofactored and compared to each other. Let xi be a variable in f. The 
logic arrangement lai of xi is defined as follows: 

 lai.expression = “xi” (4.5) 
 lai.on_spec = { (xi = 1) } (4.6) 
 lai.off_spec = { (xi = 0) } (4.7) 
 lai.pos_cube_cof = f(lai.on_spec) (4.8) 
 lai.neg_cube_cof = f(lai.off_spec) (4.9) 
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The proposed pseudo-algorithm is shown in Figure 4.5. The method starts by filling 
the main list with logic arrangements representing the input variables of the function f, 
as observed in the line 1 in Figure 4.5. The next step consists in finding two logic 
arrangements that have the same cube cofactor function. 

In order to illustrate the idea behind the method, let f=11101X1011X00000. After 
filling the main list with the input variables, the expected list is shown in Table 4.2. 

 

Table 4.2: Expected initial main list. 

LA Exp On Off Positive cube cofactor Negative cube cofactor 

la1 x1 x1=1 x1=0 11101X1011101X10 11X0000011X00000 

la2 x2 x2=1 x2=0 1110111011X011X0 1X101X1000000000 

la3 x3 x3=1 x3=0 11111X1X11110000 10101010X0X00000 

la4 x4 x4=1 x4=0 1111111111XX0000 1100XX0011000000 

 

In Table 4.2, it is possible to see that la1 has the same positive cofactor as la2. 
Similar situation occurs between la3 and la4. Then, according to the lines (8-10, 17-19) 
in Figure 4.5, these logic arrangements could be grouped through an OR operator. 
There are also logic arrangements with equivalents negative cofactors: la1 ≈ la4 and  la2 
≈ la3. Such logic arrangements are grouped by an AND operator in accordance to the 
lines (12-14, 17-19) in Figure 4.5. In Table 4.3, it is possible to see the result of first 
iteration of the proposed algorithm. 

Table 4.3: Grouped logic arrangements after first iteration. 

LA Exp. On Off Positive cube cofactor Negative cube cofactor 

la5 x1+x2 x1=1 {x1=0; x2=0} 11101X1011101X10 0000000000000000 

la6 x3+x4 X3=1 {x3=0; x4=0} 1111111111XX0000 0000000000000000 

la7 x1*x4 {x1=1; x4=1} x1=0 1111111111111111 1100XX0011000000 

la8 x2*x3 {x2=1; x3=1} x2=0 1111111111111111 10101010X0X00000 

 

The algorithm continues grouping logic arrangements whenever it is possible. The 
stopping criteria of the algorithm is defined when a RO equation is recognized, as it is 
possible to see in the line (26) in Figure 4.5. 
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Table 4.4: Grouped logic arrangements after the second iteration. 

Exp. On Off Pos. cube cofactor Neg. cube cofactor 

(x1 * x4) + (x2 * x3) {x1=1; x4=1} {x1=0; x2=0} 1111111111111111 0000000000000000 

(x1 + x2) * (x3 + x4) {x1=1; x3=1} {x1=0; x2=0} 1111111111111111 0000000000000000 

 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
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22 
23 
24 
25 
26 
27 
28 
29 
30 

list = create_logic_arrangements_from_input_variables(f); 
for (;;) { 
 for (i=0; i < |list|-1; i++) { 
  f1 = list[i]; 
  for (j=i+1; j < |list|; j++) { 
   f2 = list[j]; 
   if (f1.pos_cube_cof ≈ f2.pos_cube_cof) { 
    f3.exp = f1.exp + f2.exp; 
    f3.on_spec=min(f1.on_spec,f2.on_spec); 
    f3.off_spec = f1.off_spec ⋃ f2.off_spec; 
   } elsif (f1.neg_cube_cof ≈ f2.neg_cube_cof) { 
    f3.exp = f1.exp * f2.exp; 
    f3.on_spec = f1.on_spec ⋃ f2.on_spec; 
    f3.off_spec = min(f1.off_spec, f2.off_spec); 
   } 
   if (f3 != null) { 
    f3.pos_cube_cof = cubeCof (f, f3.on_spec); 
    f3.neg_cube_cof = cubeCof (f, f3.off_spec); 
    temp_list.add(f3); 
   } 
  } 
  if (|temp_list| == 0) 
   return FAILURE; 
  ro_instances = find_read_once_expressions(temp_list); 
  if (|ro_instances| != 0) 
   return ro_instances; 
  list = list ⋃ temp_list; 
  clear(temp_list); 
 } 
} 

Figure 4.5: ISF2RO pseudo-algorithm. 

 

After the second iteration (Table 4.4), two new logic arrangements can be found 
with the following equations: 

f = (x1 * x4) + (x2 * x3) (4.10) 
f = (x1 + x2) * (x3 + x4) (4.11) 



 

 

39 

 

Since both (Eq. 4.10) and (Eq. 4.11) are RO equations, the test in the line (26) in 
Figure 4.5 will return both solutions. 

The worst case time complexity of ISF2RO algorithm is O(22n
), where n is the 

number of variables in f. However, our empirical results are encouraging. The worst 
runtime observed in our results for functions up to 16 inputs was 500 seconds. The 
runtime is still lower than Exact Factor (YOSHIDA; FUJITA, 2011), even being able of 
dealing with more input variables. The Exact Factor algorithm takes 600 seconds to 
factorize an equation with 12 literals, while ours ISF2RO algorithm finds minimal 
equations for functions of 16 literals in less than 500 seconds. 

In order to show the time complexity of the algorithm, an ISCAS85 benchmark of 
functions was synthesized. The functions obtained from the benchmark (72423 in total) 
were grouped regarding input count, from 3 up to 16 input variables. The worst case 
runtime for each group is depicted in Figure 4.6. The vertical axis is presented in 
logarithm scale. This way, it is easy to observe that the algorithm has an exponential 
time complexity. However, for this benchmark of functions, the worst case runtime was 
20 seconds to synthesize a function with 16 inputs. The runtime which ISF2RO 
algorithm takes to factorize a function in 16 literals is still lower than the runtime of the 
Exact Factor algorithm (YOSHIDA; FUJITA, 2011) while factoring functions with 
only 12 literals. 

 

 
Figure 4.6: Worst case runtime (in ms) to synthesize functions from ISCAS’85 

benchmark grouped by input count. 
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5 READ-POLARITY-ONCE FUNCTIONS 

Efficient exact algorithms exist for a sub-class of functions known as read-once 
functions (GOLUMBIC; MINTZ; ROTICS, 2001; LEE; WANG, 2007). A Boolean 
function is considered read-once (RO) if it can be represented in a factored form where 
each variable appears only once, e.g. f=a*(b+c*(d+e)). The class of RO functions is of 
special interest in logic synthesis, since they are quite frequent in circuit applications 
(PEER; PINTER, 1995). 

However, exact algorithms for RO functions present two important limitations: (1) 
they do not consider incompletely specified Boolean functions (ISF); and (2) they are 
not suitable for functions with binate variables. In order to overcome the first constraint, 
I proposed an algorithm (ISF2RO) to find RO formulas for ISF, whenever possible 
(section 4.1). With respect to the second limitation, I propose a domain transformation, 
called here as a unatization process, that splits existing binate variables into two 
independent unate variables. Such domain transformation leads to ISF, which can be 
factored efficiently by the ISF2RO algorithm (section 4.1). 

The combination of both contributions gives exact factoring results for a novel 
broader class of functions called read-polarity-once (RPO) functions, where each 
polarity (positive or negative) of a variable appears at maximum once in the factored 
expression. For instance, RO algorithms fail when factoring f=!a*b*d+b*c+a*c, since 
the variable a is binate. The proposed RPO algorithm can factorize such function into an 
exact expression f=(!a*d+c)*(a+b), which presents only 5 literals. 

Moreover, a study was made about the occurrence of RPO functions in circuits 
considering some ISCAS'85 benchmarks (IWLS, 2005). Experimental results have 
shown that RPO functions are significantly more frequent than RO functions. The entire 
flow comprising the unatization of RPO functions and the factoring of ISF in RO 
expressions has been validated. The implementation was able to efficiently find optimal 
solutions of functions up to 8 binate variables (i.e., up to 16 literals). 

The remainder of this chapter is organized as follows. Section 5.1 presents 
definitions for the RPO class. Section 5.2 presents the proposed domain transformation, 
i.e., the unitization process of RPO functions. In section 5.3 is presented the complete 
algorithm to perform the factoring of ISF in RPO equations. Experimental results are 
shown in section 5.4. 

5.1 Definition 
Definition 5.1: A Boolean function is called read-polarity-once (RPO) if each 

polarity (positive or negative) of a variable appears at maximum once in the minimum 
factored equation (CALLEGARO et al., 2012). 
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Lemma 5.1: a positive (negative) unate variable contributes with at least one 
positive (negative) literal in a factored form. 

Lemma 5.2: a binate variable contributes with at least two literals (one positive and 
one negative) in a factored form. 

Theorem 5.1: a function represented by an RPO equation is in minimum form, if 
each unate variable contributes with exactly one literal and each binate variable 
contributes with exactly two literals (one positive and one negative). 

Proof: straightforward by lemmas 5.1 and 5.2. 

Corollary: The proposed algorithm gives optimal results in literal count for RPO 
functions as it uses at most one literal per unate variable and at most two literals (one 
positive and one negative) per binate variables, while generating an RPO expression. 

Definition 5.2: The RPO class is a superset of the RO class. 

Corollary: Every RO function is also a RPO function, while a RPO function is not 
necessarily a RO function. For instance, f = a*(b+c*(d+e)) is both RO and RPO 
function, while f = (a+b)*(!a+!b) is only a RPO function. 

The class of RPO functions is slightly different from the class of RO functions. The 
RPO class contains binate functions as elements (of the class), while the RO class 
contains only unate functions. Figure 5.1 shows a comparison between the universe of 
RO and RPO functions. 

 
Figure 5.1: Comparison between the universe of read-once and read-polarity-once 

functions. 
According to definition 5.1, if a function can be factored in a RPO expression, each 

polarity (positive or negative) of a variable appears at maximum once in the factored 
equation. Thus, an interesting point of investigation is if it is possible to separate the 
positive and negative literals, and transform the function into an unate function. Another 
point, equally interesting, is if that resulting transformation could be treated successfully 
by RO factoring algorithms. 

In this sense, I propose a domain transformation (unatization) that splits existing 
binate variables into two independent unate variables. This domain transformation leads 
to ISF, which can be factored efficiently by the algorithm proposed in chapter 4. The 
combination of both contributions provides exact results for the class of RPO functions. 

5.2 Unatization process 
The unatization process is a fundamental step when recognizing read-polarity-once 

functions. This step could be seen as the major contribution of this work. Without the 
unatization process, the factoring flow herein presented would not exist. The starting 
point to obtain optimal equations for read-polarity-once functions was the very basic 
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idea of the domain transformation, where binate variables were split into two 
independent unate variables. The idea behind this process is that, if an unate function 
could be represented in a read-once form, this form will result in minimal literal count. 
By returning to an original domain of variables name, the resulting form will also still in 
optimal form regarding literal count. This is correct since each unate variable will 
appears once in the equation, while binate variables will appear twice (one literal to the 
positive and another one to the negative polarity). 

Although been a critical step when recognizing read-polarity-once functions, it is 
important to notice that the unatization process can also be applied in other logic 
synthesis methods. It is possible to apply the unatization process on arbitrary Boolean 
functions in order to take advantage of methods that are specific designed for unate 
functions, e.g. unate recursive paradigm on ESPRESSO (BRAYTON, 1987). Another 
application example is the functional decomposition methods (BERTACCO; 
DAMIANI, 1997; MISHCHENKO; STEINBACH; PERKOWSKI, 2001), where the 
idea of splitting binate variables could result in better decomposed circuits. 

Definition 5.3: The unatization method receives as input an ISF and split all binate 
variables into two independent unate variables. 

Akers (AKERS, 1961) proposed a similar domain transformation that modifies a 
Boolean function into a logically passive function. However, the transformation 
proposed by Akers is devoted to find a single SOP representation (out of the many 
possible SOP representations). According definition 4.1, the specific SOP 
representation has to be chosen wisely to derive a RO expression. Our transformation 
into ISF exploits a broader space of solutions, where a given completely specified 
function satisfying the ISF can lead to a RO function (while others cannot). 

Definition 5.4: Let f be an ISF, where fON represents the on-set of f and fDC represents 
the don’t-care set of f. 

The pseudo-algorithm for the unatization process is shown in Figure 5.2. The basic 
idea behind the process is to split the binate variables into independent unate variables. 
Let xi be a binate variable of f. In order to unatize xi, a variable not_xi is inserted into f, 
as shown in the line 4 in Figure 5.2. It is important to notice that both variables xi and 
not_xi cannot have the same value at the same time. When a Boolean constant c is 
assigned to input xi, the complemented value has to be assigned to input not_xi. In this 
sense, the lines in the truth table where both variables are assigned to the same constant 
are set to don’t-care (see lines 5-6 in Figure 5.2), as these lines represent impossible 
input conditions. The next step is to guarantee that both variables (xi and not_xi) became 
positive unate after the domain transformation. 

Table 5.1: Two states that must be fixed in the unatization process. 

f(xi=1) f(xi=0) 

0 X 

X 1 
 

The fix_positive_unate method is based on the definition of unateness shown in 
subsection 2.2.5. Let xi be the variable to be fixed, Y={0,1,X} and {tpi,tni}∈Y be a term 



 

 

43 

 

in the line i of the truth table when f(xi=1) and f(xi=0), respectively (Table 5.1). The 
following two states must be fixed: 

tpi =0 and tni = X (5.1) 

tpi =X and tni = 1 (5.2) 
In Equation (5.1), if tni receives the value 1 the function becomes binate. The same 

happens in Equation (5.2) if tpi receives the value 0. In order to avoid both situations, 
the method fix_positive_unate (see lines 14 to 25 in Figure 5.2) properly assign values 
to the don’t-care terms that are responsible for these cases. 
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unatization(fON, fDC) { 
 for (int i = 0; i < n; i++) 
  if (is_binate(xi)){ 

  createVariable(not_xi); 
  XNOR = !( xi ^ not_xi); 
  fDC = fDC + XNOR; 
  fix_positive_unate(fON, fDC, xi); 
  fix_positive_unate(fON, fDC, not_xi); 
 } 
} 

} 
 
fix_positive_unate(fON, fDC

, xi) { 
 PD = positive_cofactor(fDC

, xi); 
 ND = negative_cofactor(fDC

, xi); 
 PC = positive_cofactor(fON

, xi); 
 NC = negative_cofactor(fON

, xi); 
 state_0x = !PD * !PC * ND; 
 fDC = fDC * !state_0x; 
 fON = fON * !state_0x; 
 state_x1 = PD * !ND * NC; 
 fDC = fDC * !state_x1; 
 fON = fON + state_x1; 
} 

Figure 5.2: Pseudo-algorithm for the unatization process. 

The last situation that must be observed is when both tpi and tni carry the value X. By 
definition, this situation does not turn the variable xi to a binate behavior. However, 
depending on the assignments of both don’t-care terms, the behavior of the variable xi 
can be transformed into a binate function. This assignment is quite uncommon in the 
ISF2RO algorithm. When such case occurs, the logic arrangement cannot be grouped 
anymore. In order to avoid these cases, sets of pairs of functions to be distinguished 
(SPFD) could be considered to speed-up the algorithm (YAMASHITA; SAWADA; 
NAGOYA, 2000). 

Example: Let a and b be binate variables from f=(a+b)*(!a+!b). In order to unatize f, 
we introduce independent variables to represent the negative unate literals. Hence, by 
introducing variables na and nb, a domain transformation is performed and the function 
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becomes a 4-input function, with most of the terms appearing as don’t-cares, as seen in 
Figure 5.3. This is the first step of the unatization process. 

 

 
Figure 5.3: First step of unatization process: split binate variables. 

The function represented by the truth table shown in Figure 5.3 is not positive unate. 
The second step of the unatization process is to turn all the variables to positive unate 
ones. Let us take as example the variable a. Figure 5.4 shows positive and negative 
cofactors of variable a. The lines in the truth table where the squares appear means that 
these lines must be fixed (Eq. 5.1 and Eq. 5.2) in order to turn the variable a in positive 
unate. 

 
Figure 5.4: Second step of the unatization process: turn the variables into a positive 

unate behavior. 

By computing the cofactors of the function and setting the don’t-care values to force 
the function to become positive unate in all of its variables, a new function is obtained. 
The computation of the cofactors and the new function obtained is presented in Figure 
5.5.  
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Figure 5.5: Cofactors that are set to force the function to become positive unate. 

Notice that two unspecified lines remain unspecified after this process (dashed 
rectangles presented in Figure 5.5). This is related to the unate flexibility of the 
function. Any of the four possible ways to assign these two lines will remain unate 
functions. 

It is also worth to mention that the algorithm does not depend on the truth table data 
structure. In fact, our algorithm is based on reduced and ordered binary decision 
diagram (ROBDD) data structure (BRYANT, 1986). 

The unatization algorithm can be implemented in time complexity of O(n×|m|), 
where n is the number of variables in f and |m| is the number of nodes in the final 
ROBDD. Empirical results have shown that the unatization runtime is irrelevant in the 
entire flow for synthesize RPO functions. The runtime of the ISF2RO algorithm is 
currently the main bottleneck. 

 

5.3 Factoring incompletely specified boolean functions into read-
polarity-once equations 

Finally, it is possible to describe the entire flow of the RPO factoring algorithm, 
called ISF2RPO. The complete algorithm proceeds in two main steps. The first step 
reads an ISF f and computes the polarity of the variables. Every binate variable is split 
into two separate positive unate variables according to the unatization process (section 
5.2).  

The ISF function returned by the unatization process is then used in the second step, 
where the ISF2RO algorithm (section 4.1) performs a search for a RO equation. If 
ISF2RO returns a RO output, the equation is then rewritten considering the original 
variables as they were presented before the domain transformation. An entire flow for 
recognize read-polarity-once functions is described in Figure 5.6. 



 

 

46 

 

 
Figure 5.6: ISF2RPO flow chart. 

 

Example: Let the input of the ISF2RPO algorithm be f=a !b + !a b. The first step of 
the ISF2RPO is to split binate variables into unate ones through the unatization process 
(section 5.2). The ISF g obtained after the unatization process is presented in Figure 5.7. 
Notice that the negative polarities !a and !b are renamed to na and nb, respectively. 

 

 
Figure 5.7: The ISF g obtained after the unatization process of the function f=a !b + !a 

b. 
After the unatization process, the function g is then used as input of the ISF2RO 

algorithm presented in section 4.1. Notice that two unspecified lines remain unspecified 
after the unatization process. This is directly related to the following two different 
equations obtained by the ISF2RO method: (Eq. 5.3) and (Eq. 5.4). Figure 5.8 shows 
how ISF2RO method set the remaining don’t-care terms to produce different equations. 
Notice that both equations are in the minimal form, e.g. in a RO form.  

g = na * b + a * nb (5.3) 

g = (na + nb) * (a + b) (5.4) 
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Figure 5.8: Transformation of the remaining don’t-care terms and how it produces 

different read-once equations. 

The last step of the ISF2RPO flow is to rename variables with their original names. 
The equations Eq. 5.3 and Eq. 5.4 are renamed and are presented in Eq. 5.5 and Eq. 5.6, 
respectively. Notice that both equations are in the minimal form. They are structurally 
distinct and represent the same Boolean function 

The time complexity of the ISF2RPO algorithm is bounded by the complexity of the 
ISF2RO algorithm (see Figure 5.6). Experimental results demonstrate that the RPO 
algorithm can efficiently find optimal solutions in the number of literals for functions up 
to 8 binate variables (i.e., up to 16 unate literals). 

5.4 Experimental Results 
This section presents a study about the occurrence of RPO functions over the set of 5-

input NPN-class, as well as the occurrence of RPO functions over the ISCAS'85 
benchmark circuits (IWLS, 2005). The last experiment was carried out over a 
benchmark of important functions for logic brick design (MOTIANI; KHETERPAL; 
PILEGGI, 2010). 

5.4.1 NPN equivalence class up to 5 inputs 
The first experiment was carried out over the set of all 5-input NPN-class (negation-

permutation-negation) functions, grouped in 616,125 classes by equivalence through 
input permutation, negation of its inputs and/or negation of the output (CORREIA; 
2001). Instead of running the algorithm for all Boolean space of 5 variables (232 
functions), the 5-input NPN-class benchmark was chosen. The benchmark can represent 
the functionality of all Boolean space of 5 variables in a more compact set, without 
losing generality. To run the algorithm for all the 616,125 functions four minutes of 

f = (!a * b) + (a * !b) (5.5) 

f = (!a + !b) * (a + b) (5.6) 
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execution time were needed. The worst case optimization was 800 ms and the average 
case was less than 1ms. The platform was a Linux system on Intel Core i5 2400 
processor with 2GB main memory. 

For the universe of the 5-input NPN-class functions, there are 1,462 functions that 
are classified as RPO, while only 21 functions are classified as RO. This means that 
there are approximately 70x more RPO functions than RO functions, for the set of 5-
input functions. Our results demonstrate that the universe of RPO is quite broader than 
the universe of RO functions, for which many works have been devoted (HAYES, 
1975; GURVICH, 1991; PEER; PINTER, 1995; GOLUMBIC; MINTZ; ROTICS, 
2001; LEE; WANG, 2007). 

Comparative results evaluating the efficiency of the proposed algorithm are shown 
in Table 5.2, considering the set of 1,462 RPO functions. Our algorithm presented better 
results in terms of number of literals than Quick Factor (QF) (SENTOVICH et al., 
1992), Good Factor (GF) (SENTOVICH et al., 1992), ABC (BERKELEY, 2012) and X-
Factor (MINTZ; GOLUMBIC, 2005) tools. The proposed algorithm is still slow when 
compared to existing factoring methods (QF and GF methods). However, it guarantees 
minimal factored forms in literal count (theorem 5.1). It is important to notice that the 
ISF2RPO algorithm (section 5.3) factorize only RPO functions, while the other methods 
are of general factoring purposes. 

Table 5.2: Total number of literals obtained and runtime when factoring process of 
1,462 RPO functions using different approaches. 

 QF GF ABC X-Factor* ISF2RPO (this work) 

Literals 16,086 15,671 15,981 13,253 13,064 

Runtime 1.9s 2.3s 2.0s 7.1s 5.7s 

* Results of an in-house implementation of the X-Factor algorithm. 

5.4.2 ISCAS'85 benchmark suite 
A study about the occurrence of RPO functions over some ISCAS'85 benchmarks 

(IWLS, 2005) was performed. Such analysis has been carried out in order to figure out 
the frequency of RPO functions in comparison to RO functions in mapped circuits. We 
have extracted functions up to 8 inputs from the benchmarks through K-Cuts method 
(MARTINELLO, 2010). These functions were grouped in P-classes, by equivalence 
through input permutations. The term ‘occurrences’ represents the number of functions 
counted before grouping them into P-classes of equivalence. 
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Table 5.3: Analysis of functions up to 8 inputs identified in ISCAS’85 benchmarks. 

 
RO RPO 

Inputs P Classes Occurrences P Classes Occurrences 

2 67% 84% 100% 100% 

3 53% 66% 90% 88% 

4 44% 54% 85% 71% 

5 37% 42% 69% 53% 

6 33% 36% 57% 46% 

7 34% 36% 52% 47% 

8 32% 34% 46% 44% 

 

We have extracted the functions in two ways. Table 5.3 summarizes the results 
regarding all possible functions up to 8 inputs in the circuits. In Table 5.4 the functions 
were extracted from the circuits using an AIG greedy covering algorithm 
(MARTINELLO, 2010). 

Similarly to RO functions, the number of RPO functions decreases as the number of 
variables increases. This is an expected result, since the more inputs the Boolean 
function have, the more complex the function become. 

 

Table 5.4: Functions selected from the ISCAS’85 benchmarks using a greedy covering 
algorithm. 

 
RO RPO 

Inputs P Classes Occurrences P Classes Occurrences 

2 78% 93% 100% 100% 

3 59% 63% 87% 94% 

4 49% 53% 78% 81% 

5 35% 36% 79% 81% 

6 41% 39% 63% 60% 

7 45% 43% 62% 57% 

8 14% 15% 27% 27% 

 

In Table 5.5, it is possible to see the runtime for synthesize all K-cuts functions up to 
K=8. In Table 5.6, it is shown the runtime of the algorithm for synthesizing the 
functions extracted from the covered circuit. 
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Table 5.5: Runtime for synthesizing all K-Cuts functions (K=8). 

Circuit P Classes Time (s) Avg. time (s) 

C1355 680 123.455 0.18 

C17 12 0.01 0.01 

C1908 1224 133.162 0.11 

C2670 6345 284.626 0.04 

C3540 9275 123.945 0.01 

C432 844 3.259 0.01 

C499 432 98.187 0.23 

C5315 11350 806.489 0.07 

C6288 142 0.634 0.01 

C7552 17888 8045.137 0.45 

C880 1691 86.301 0.05 

 

Experimental results over ISCAS'85 benchmarks have demonstrated that RPO 
functions are significantly more frequent in circuit application than RO functions. The 
entire flow to factorize RPO functions was validated and our implementation was able 
to find optimal solutions of functions up to 8 binate variables in a reasonable runtime. 

 

Table 5.6: Total runtime for synthesizing functions selected by a greedy covering 
algorithm. 

Circuit P Classes Time (s) Avg. time (s) 

C1355 16 3.70 0.23 

C17 3 0.01 0.01 

C1908 44 2.37 0.05 

C2670 68 39.53 0.58 

C3540 129 1.29 0.01 

C432 25 0.15 0.01 

C499 10 0.89 0.09 

C5315 108 58.07 0.54 

C6288 38 0.20 0.01 

C7552 130 8.42 0.06 

C880 36 18.08 0.50 
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5.4.3 Patent US7784013 
According to (MOTIANI; KHETERPAL; PILEGGI, 2010), a set of logic functions 

can be added to a cell library to significantly improve specific designs. In one of the 
examples given by Motiani, a set of 12 distinct functions were added to the library. Out 
of the twelve functions added, 6 were RO, 10 were RPO (including the 6 RO that are 
also RPO) and only 2 are not RPO functions, as it is possible to see in Table 5.7. This 
observation highlights the importance of the RPO class for different technologies, 
including the logic brick methodology proposed by (MOTIANI; KHETERPAL; 
PILEGGI, 2010). 

Table 5.7: Set of 12 distinct functions given by Motiani where 10 were RPO functions. 

Original Read-polarity-once equations 

f01 = p0p1!p3+p2!p3+p4p5 f01 = ((((p1 * p0) + p2) * !p3) + (p5 * p4)) 

f02 = p0p1!p3+!p3!p4+p1p2!p3 f02 = ((((p2 + p0) * p1) + !p4) * !p3) 

f03 = p1p3p6+p0!p2p5+p3p4p6+!p1!p2!p4 f03 = (!p4 * !p1 + p0 * p5) * !p2 + p6 * p3 * (p4 + p1) 

f04 = !p1!p2p3+!p0!p1p3+p1!p3+p0p2!p3 f04 = ((((p2 * p0) + p1) * !p3) + ((!p1 * p3) * (!p0 + !p2))) 

f05 = p1!p4+!p0!p3+p1!p3+!p2!p4+!p0!p4+!p2!p3 f05 = (((!p0 + p1) + !p2) * (!p3 + !p4)) 

f06 = p0p2+p1p2+p3p4 f06 = (((p1 + p0) * p2) + (p4 * p3)) 

f07 = !p1!p2+p4p5+!p6!p7+p0p3 f07 = (((!p1 * !p2) + (p3 * p0)) + ((!p6 * !p7) + (p4 * p5))) 
f08 = p1p3p4+p0p2p3p4+!p1!p2!p3p4+!p0!p1!p3p4+ 
!p1!p2p3!p4+p1!p3!p4+p0!p1p2!p4 f08 = Non RPO 

f09 = p0!p3!p5+!p0!p1p2+p2p3p4+p1!p4!p5+ 
p1!p3!p5+p0!p4!p5 f09 = (p4 * p3 + !p1 * !p0) * p2 + (!p3 + !p4) * !p5 * (p0 + p1) 

f10 = !p0!p1p2+!p0p1!p3+p0p1p2+p0!p1!p3 f10 = Non RPO 

f11 = !p1!p2!p3+p0!p3+!p1!p2!p4+p0!p4 f11 = (((!p1 * !p2) + p0) * (!p4 + !p3)) 

f12 = !p0!p1p4+!p2p4+p0p2!p3+p1p2!p3 f12 = ((((p1 + p0) * p2) + p4) * ((!p1 * !p0) + (!p3 + !p2))) 
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6 CONCLUSIONS AND FUTURE WORK 

The main contribution of this work was the introduction of the concept of read-
polarity-once functions. Besides introducing the class of RPO functions, several related 
contributions were also introduced: (1) an algorithm for factoring incompletely 
specified functions into read-once equations; (2) a domain transformation that splits 
existing binate variables into two independent unate variables; and (3) a complete 
algorithm for exact factoring the class of read-polarity-once functions. 

The first contribution was the proposal of an algorithm (ISF2RO) that is able to 
factorize incompletely specified Boolean functions into read-once forms, when this is 
possible. To the best of the author’s knowledge, the unique method that guarantees 
exactness in the result is the Exact Factor approach, proposed by (YOSHIDA; FUJITA, 
2011). However, the method is feasible with functions with up to 10 variables. The 
ISF2RO proposed in this work was tested and the results show that it is able to factorize 
functions with up to 16 input variables. 

The second contribution was the proposal of a method for domain transformation 
that splits existing binate variables into two independent unate variables, called 
unatization process. The unatization process is a fundamental step when recognizing 
read-polarity-once functions. However, it can be applied in other logic synthesis 
methods, like functional decomposition methods. 

The third contribution was the development of a complete algorithm for exact 
optimal factoring the class of read-polarity-once functions called ISF2RPO. Such 
algorithm was implemented and compared to existing factoring algorithms. The 
proposed algorithm guarantees minimal factored forms for the class of read-polarity-
once functions. Results show that, out of the set of 612,125 NPN-class functions with 
up to 5-inputs, 1,462 functions were identified as read-polarity-once, while only 21 
functions can be considered read-once. Moreover, results taking into account ISCAS'85 
benchmarks have shown that read-polarity-once functions are quite more frequent in 
circuit application than read-once functions. The read-polarity-once class of functions 
is also important for different technologies, including the logic brick methodology 
proposed (MOTIANI; KHETERPAL; PILEGGI, 2010), as demonstrated by the large 
number of read-polarity-once functions (10 out of 12) given as example in the (United 
States Patent number 7784013). 

It is worthy to highlight that both algorithms were implemented in a tool, called 
SwitchCraft (CALLEGARO et al., 2010). SwitchCraft framework provides a set of 
tools for switch network and logic gate generation. The tool has been applied at Federal 
University of ‘Rio Grande do Sul’ (UFRGS), in Brazil, in undergraduate and graduate 
courses about fundamentals of IC digital design. 
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There is still much work that needs to be carried on. First of all, the runtime of the 
ISF2RO must be improved. A new version of the algorithm based on branch-and-bound 
is already in development. Another point to be carried is with regard to the scalability of 
the ISF2RO method. The current version of the algorithm scales up to 16 variables. I 
believe that will be possible to scale to 32 variables with the new version of the 
algorithm. 
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ANEXO A <FUNÇÕES READ-POLARITY-ONCE> 

A.1 Introdução 
O fluxo de projeto de síntese de circuitos é normalmente dividido em três etapas 

principais: síntese arquitetural, síntese lógica e síntese física (MICHELI, 1994). A 
síntese de arquitetural, muitas vezes chamada de síntese de alto nível, consiste em 
transformar uma descrição algorítmica de um comportamento desejado em um formato 
de hardware que implementa esse comportamento, como no formato RTL (Register 
Transfer Level). Normalmente, essas descrições algorítmicas são representadas em um 
formato semelhante à linguagem C, como (por exemplo, System C) ou formato HDL 
(Hardware Description Language) comportamental (por exemplo, VHDL e Verilog). 

O processo de síntese lógica tem sido uma das áreas de maior sucesso comercial na 
automação de projetos eletrônicos (EDA). Este sucesso comercial indica que todos os 
dispositivos digitais que usamos no nosso dia-a-dia foram projetados com um conjunto 
de ferramentas de síntese lógica. A tarefa de síntese lógica é composta por várias etapas. 
Estas etapas podem ser diferentes de acordo com a natureza do circuito, por exemplo, 
como circuito sequencial ou de combinacional. O objetivo da síntese lógica é 
determinar a estrutura primitiva de um circuito, ou seja, a sua representação em nível de 
portas lógicas primitivas. A síntese lógica é normalmente dividida em três fases: 
otimizações independente de tecnologia, mapeamento tecnológico e otimizações 
dependentes de tecnologia. A primeira aplicam-se transformações que não dependem da 
tecnologia, mas sim do comportamento funcional de uma rede Booleana, por exemplo, 
algoritmos de fatoração. Em seguida, a fase de mapeamento tecnológico combina 
porções do circuito para uma célula informação de tecnologia. A fase dependente de 
tecnologia aplica otimizações no circuito mapeado, tais como redimensionamento de 
células e duplicação lógica. 

A síntese física consiste principalmente em duas tarefas principais: o 
posicionamento de blocos e roteamento dos fios que os conectam. O primeiro distribui 
fisicamente as células enquanto o posterior executa as interligações de sinal. 

Este trabalho aborda a síntese de funções Booleanas no âmbito de um fluxo de 
projeto de circuito digital, mais precisamente na fase de síntese lógica. No entanto, o 
foco pode ser considerado mais amplo, já que este trabalho propõe uma nova classe de 
funções Booleanas que podem ter aplicação em diferentes outras áreas além da síntese 
de circuitos. 

A.1.1 Motivação 
O processo de fatoração de funções booleanas é uma operação fundamental na 

síntese lógica algorítmica (BRAYTON, 1987; HACHTEL; SOMENZI, 2006). 
Fatoração é o processo de derivação de uma equação algébrica, ou forma fatorada, que 
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representa uma determinada função lógica, normalmente descrita inicialmente em forma 
de soma de produtos (SOP) ou produto-de-somas (POS). Por exemplo, 
f=a*b+a*c*d+a*c*e pode ser fatorado em uma equação logicamente equivalente 
f=a*(b+c*(d+e)). 

Qualquer função lógica pode ser representada por diferentes equações fatoradas. A 
tarefa de fatorar funções Booleanas fórmulas menores, mais compactas e logicamente 
equivalentes é uma das operações básicas nos estágios iniciais da síntese lógica 
algorítmica (HACHTEL; SOMENZI, 2006). Na maioria dos estilos de projeto, como 
portas lógicas CMOS convencional, o custo de implementação elétrica de uma função 
Booleana corresponde diretamente à sua equação fatorada em relação a número de 
literais e contagem de dispositivos (transistores). A geração de uma forma fatorada 
exata, ou seja, a equação de menor comprimento é um problema NP-difícil 
(GOLUMBIC; MINTZ, 1999). Assim, algoritmos heurísticos foram desenvolvidos a 
fim de obter boas soluções fatoradas (BRAYTON, 1987; STANION; SECHEN, 1994; 
MINTZ; GOLUMBIC, 2005; HACHTEL; SOMENZI, 2006; YOSHIDA; FUJITA, 
2011). Alguns algoritmos heurísticos conhecidos incluem XFactor (MINTZ; 
GOLUMBIC, 2005), que proporciona bons resultados, mas não garante as equações 
mínimas. Em (LAWLER, 1964), o autor pretende fornecer um algoritmo para fatoração 
exata. No entanto, o método de Lawler não é escalável e torna-se impraticável mesmo 
para funções com apenas quatro variáveis. Recentemente, novas abordagens têm 
melhorado o processo de fatoração de soluções exatas, mas a escalabilidade e tempo de 
execução continuam a serem os principais gargalos (YOSHIDA; IKEDA; ASADA, 
2006; YOSHIDA; Fujita, 2011; MARTINS ET AL, 2012). 

Algoritmos exatos e eficientes existem para uma subclasse de funções Booleanas 
conhecidas como read-once (RO) (LEE; WANG, 2007; GOLUMBIC; MINTZ; 
ROTICS, 2008). Uma função Booleana é considerada RO se ela pode ser representada 
por uma forma fatorada onde cada variável apareça apenas uma vez (GOLUMBIC; 
MINTZ; ROTICS, 2001). Como no exemplo acima mencionado, a função 
f=a*(b+c*(d+e)) é RO. 

No entanto, algoritmos exatos para funções RO apresentam duas limitações 
importantes: (1) eles não consideram funções booleanas incompletamente especificadas 
(ISBF), e (2) eles não são adequados para as funções com variáveis binate (ver 
Subseção 2.2.5). Neste contexto, uma questão pode ser levantada: “Uma vez que as 
funções RO são importantes em aplicações reais de circuitos, suponhamos que 
estendem os limites desta classe, criando uma nova classe de funções, a fim de 
ultrapassar a limitação (1) e (2 ). O quanto mais abrangente seria esta nova classe no 
que diz respeito à classe RO? Quanto mais importante serão as funções dessa nova 
classe em aplicações reais de circuitos?” Essas perguntas resumem a motivação desta 
dissertação. 

A.1.2 Objetivos 
O objetivo desta dissertação é a de transcender os limites da classe RO de funções. 

Uma maneira de fazer isso é criar uma nova e ampla classe de funções Booleanas, que 
pode lidar com funções binate e onde formas fatoradas são mínimas. Uma abordagem é 
a de dividir as fases positivas e negativas de variáveis binate em duas variáveis 
independentes. Desta forma, é possível representar a fase positiva em uma variável e a 
fase negativa em outra variável, sendo essas duas variáveis unate e independentes umas 
das outras. Esta transformação leva a um domínio de funções Booleanas 
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incompletamente especificadas (ISBF). Assim, é importante que se desenvolva um 
método que seja capaz de fatorar ISBF em formas RO, que são conhecidos por resultar 
em formas fatoradas mínimas. A combinação de ambas as estratégias podem levar a 
uma nova classe mais ampla de funções chamadas funções read-polarity-once (RPO), 
onde cada uma das polaridades (positiva ou negativa) de uma variável aparece no 
máximo uma vez na forma fatorada mínima, como por exemplo, f=(!a*d+c)*(a+b). 
Neste sentido, este trabalho tem como objetivo fornecer um algoritmo eficiente que 
garanta formas fatoradas mínimas para a classe de funções Booleanas RPO. 
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A.2 Funções Read-Polarity-Once 
Existem algoritmos exatos para uma subclasse de funções conhecidas como funções 

read-once (GOLUMBIC; MINTZ; ROTICS, 2001; LEE; WANG, 2007). Uma função 
Booleana é considerada read-once (RO), se ela pode ser representada numa forma onde 
cada variável apareça uma única vez, por exemplo, f=a*(b+c*(d+e)). A classe de 
funções RO é de especial interesse na síntese lógica, uma vez que eles são bastante 
frequentes em aplicações de circuitos (PEER; PINTER, 1995). 

No entanto, algoritmos exatos para funções RO apresentam duas limitações 
importantes: (1) eles não consideram funções Booleanas incompletamente especificadas 
(ISF), e (2) não são adequados para as funções com variáveis binate. A fim de superar a 
primeira restrição, um algoritmo (ISF2RO) será aqui proposto para encontrar fórmulas 
RO para ISF, sempre que possível. No que diz respeito à segunda limitação, uma 
transformação de domínio será aqui proposta, que será chamada como um processo 
unatization, que divide variáveis binate em duas variáveis unate independentes. Esta 
transformação leva a domínio ISF, que pode ser fatorada de forma eficiente pelo 
algoritmo ISF2RO proposto. 

A combinação de ambas as contribuições dá resultados exatos para a fatoração de 
uma nova classe de funções chamadas de funções read-polarity-once (RPO), onde cada 
uma das polaridades (positiva ou negativa) de uma variável aparece no máximo uma 
vez na expressão. Por exemplo, os algoritmos para RO falham ao fatorar 
f=!a*b*d+b*c+a*c, uma vez que a variável ‘a’é binate. O algoritmo RPO proposto 
pode fatorar essa função em uma expressão exata: f=(!a*d+c)*(a+b), que apresenta 
apenas 5 literais. 

Além disso, um estudo foi feito sobre a ocorrência de funções RPO em circuitos 
considerando benchmarks ISCAS'85 (IWLS, 2005). Os resultados experimentais 
mostraram que funções de RPO são significativamente mais frequentes do que as 
funções RO. Todo o fluxo compreendendo o processo de unatization de funções RPO e 
a fatoração de funções ISF em expressões RO foi validado. A implementação foi capaz 
de encontrar soluções exatas de forma eficiente para funções de até 8 variáveis binate 
(ou seja, até 16 literais). 

A.2.1 Definição de funções Read-Polarity-Once 
Definição 5.1: Uma função Booleana é chamada de read-polarity-once (RPO), se 

cada uma das polaridades (positiva ou negativa) de uma variável aparece, no máximo, 
uma vez na equação fatorada mínima (CALLEGARO et al, 2012). 

Lema 5.1: uma variável unate positiva (negativa) contribui com, pelo menos, um 
literal positivo (negativo) em uma forma fatorada. 

Lema 5.2: uma variável binate contribui com pelo menos dois literais (um positivo e 
um negativo) em uma forma fatorada. 

Teorema 5.1: a função representada por uma expressão RPO está na forma mínima, 
se cada variável unate contribui com exatamente um literal e cada variável binate 
contribui com exatamente dois literais (um positivo e um negativo). 

Prova: Direta dos lemas 5.1 e 5.2. 

Corolário: O algoritmo proposto fornece resultados exatos na contagem de literais 
para funções RPO, pois ele usa no máximo um literal por variável unate e no máximo 
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dois literais (um positivo e um negativo) por variáveis binate, gerando uma expressão 
RPO. 

Definição 5.2: A classe RO é um subconjunto da classe RPO. 

Corolário: Cada função RO também é uma função RPO, enquanto que uma função 
RPO não é necessariamente uma função RO. Por exemplo, f = a*(b+c*(d+e)) é tanto 
uma função RO quanto RPO, enquanto que f = (a+b)*(!a+!b) é apenas uma função 
RPO. 

A definição da classe de funções de RPO é ligeiramente diferente da classe de 
funções de RO. A classe RPO contém funções binate como elementos (da classe), 
enquanto que a classe RO contém apenas funções unate. A Figura A.1 mostra uma 
comparação entre o universo de funções RO e funções RPO. 

 
Figura A.1: Comparação entre o universo de funções read-once e read-polarity-once. 

De acordo com a Definição 5.1, se a função pode ser fatorada numa expressão RPO, 
cada polaridade (positiva ou negativa) de uma variável aparece, no máximo, uma vez na 
forma fatorada. Assim, um aspecto interessante para investigação é se é possível separar 
os literais positivos e negativos, e transformar a função a uma função unate. Outro 
ponto, igualmente interessante, é se essa transformação resultante pode ser tratada com 
sucesso por algoritmos de fatoração RO. 

É possível descrever todo o fluxo do algoritmo de fatoração RPO, chamado 
ISF2RPO. O algoritmo completo procede em duas etapas principais. A primeira etapa lê 
um ISF f e calcula a polaridade das variáveis. Cada variável binate é dividida em duas 
variáveis unate positivas de acordo com o processo de unatization (seção 5.2). 

A função ISF devolvida pelo processo unatization é então utilizado na segunda 
etapa, em que o algoritmo ISF2RO (secção 4.1) realiza a fatoração para uma equação 
RO. Se o algoritmo ISF2RO retorna uma saída RO, a equação é então reescrita 
considerando as variáveis originais que foram apresentadas antes a transformação de 
domínio. Um fluxo inteiro para reconhecer as funções read-polarity-once é descrito na 
Figura A.2. 

 
Figura A.2: Fluxograma do algoritmo ISF2RPO. 
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A.2.2 Resultados experimentais 
Esta seção apresenta um estudo sobre a ocorrência de funções RPO sobre o conjunto 

de funções de 5 entradas da classe NPN, bem como a ocorrência de funções RPO em 
circuitos ISCAS'85 (IWLS, 2005). 

A.2.2.1 Classe de equivalência NPN de 5 entradas 
O primeiro experimento foi realizado sobre o conjunto de todas as classes de 

funções NPN (negação - permutação - negação) de 5 entradas. Estas funções são 
agrupadas em 616.125 classes de equivalência através permutação de entradas, negação 
de entradas e / ou negação de saída (CORREIA; 2001). O benchmark pode representar a 
funcionalidade de todo o espaço Booleano de cinco variáveis (232 funções) em um 
conjunto mais compacto, sem perder generalidade. Para executar o algoritmo para todas 
as 616.125 funções foram necessários quatro minutos de tempo de execução. O pior 
caso foi a otimização de 800ms e o caso médio foi inferior a 1ms . A plataforma de 
execução é um sistema Linux em processador Intel Core i5 2400 com 2GB de memória 
principal. 

Para o universo das funções NPN de 5 entradas , existem 1.462 funções que são 
classificadas como RPO , enquanto que apenas 21 funções são classificadas como RO . 
Isto significa que existem cerca de 70 vezes mais funções RPO do que funções RO, para 
o universo das funções NPN de 5 entradas . Nossos resultados demonstram que o 
universo da RPO é muito mais amplo do que o universo de funções RO, ao quais muitas 
obras foram dedicadas (HAYES, 1975; GURVICH, 1991; PEER; PINTER, 1995; 
GOLUMBIC; MINTZ; ROTICS, 2001; LEE; WANG, 2007). 

Os resultados comparativos obtidos avaliando a eficiência do algoritmo são 
apresentados na Tabela A.2.1, considerando o conjunto as 1.462 funções RPO. Nosso 
algoritmo apresentou melhores resultados em termos de número de literais que as 
ferramentas Quick Factor (QF) (SENTOVICH et al., 1992), Good Factor (GF) 
(SENTOVICH et al., 1992), ABC (BERKELEY, 2012) and X-Factor (MINTZ; 
GOLUMBIC, 2005). O algoritmo proposto ainda é lento quando comparado aos 
métodos existentes de fatoração (QF e GF). No entanto, ele garante formas fatoradas 
mínimas em relação à contagem de literais (Teorema 5.1). 

Tabela A.2.1: Número total de literais obtidos e tempo de execução, ao fatorar 1.462 
funções RPO considerando diversas abordagens. 

 QF GF ABC X-Factor* ISF2RPO 
(este trabalho) 

Literais 16,086 15,671 15,981 13,253 13,064 

Tempo 1.9s 2.3s 2.0s 7.1s 5.7s 

 

A.2.2.1 Benchmark de circuitos ISCAS’85 
Um estudo sobre a ocorrência de funções RPO sobre circuitos do benchmark 

ISCAS'85 (IWLS, 2005) foi realizado. A análise foi realizada, a fim de descobrir a 
frequência de funções RPO, em comparação com funções RO em circuitos mapeados. 
Foram extraídas funções até 8 entradas dos circuitos através do método K-Cuts 
(MARTINELLO, 2010). Estas funções foram agrupadas em P-classes, por equivalência 
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através de permutações de entrada. O termo 'ocorrências' representa o número de 
funções contadas antes do agrupamento em P-classes. 

Tabela A.2.2: Análise de funções até 8 entradas identificadas em circuitos ISCAS’85. 

 
RO RPO 

Entradas P-Classes Ocorrências P-Classes Ocorrências 

2 67% 84% 100% 100% 

3 53% 66% 90% 88% 

4 44% 54% 85% 71% 

5 37% 42% 69% 53% 

6 33% 36% 57% 46% 

7 34% 36% 52% 47% 

8 32% 34% 46% 44% 

 

As funções foram extraídas de duas maneiras. A Tabela A.2.2 resume os resultados 
em relação a todas as funções possíveis de até 8 entradas nos circuitos. Na Tabela A.2.3 
foram extraídas as funções dos circuitos que utilizam um algoritmo de cobertura guloso 
de AIGs (MARTINELLO, 2010). 

Da mesma forma que as funções de RO, o número de funções RPO diminui à 
medida que o número de variáveis aumenta. Este é um resultado esperado, já que 
quanto maior o número de entradas, maior é a complexidade de implementação da 
função Booleana. 

Tabela A.2.3: Funções selecionadas de circuitos ISCAS’85 utilizando um algoritmo de 
cobertura gulosa. 

 
RO RPO 

Entradas P Classes Ocorrências P Classes Ocorrências 

2 78% 93% 100% 100% 

3 59% 63% 87% 94% 

4 49% 53% 78% 81% 

5 35% 36% 79% 81% 

6 41% 39% 63% 60% 

7 45% 43% 62% 57% 

8 14% 15% 27% 27% 

 

Na Tabela A.2.4, é possível ver o tempo de execução para sintetizar todos os K-cuts 
(para K = 8). Na Tabela A.2.5, mostra-se o tempo de execução do algoritmo para 
sintetizar as funções extraídas do circuito coberto. 
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Tabela A.2.4: Tempo de execução para a síntese de todos os K-Cuts (K=8). 

Circuit P Classes Time (s) Avg. time (s) 

C1355 680 123.455 0.18 

C17 12 0.01 0.01 

C1908 1224 133.162 0.11 

C2670 6345 284.626 0.04 

C3540 9275 123.945 0.01 

C432 844 3.259 0.01 

C499 432 98.187 0.23 

C5315 11350 806.489 0.07 

C6288 142 0.634 0.01 

C7552 17888 8045.137 0.45 

C880 1691 86.301 0.05 

 

Os resultados experimentais sobre circuitos ISCAS'85 demonstraram que as funções 
RPO são significativamente mais frequentes do que funções RO. Todo o fluxo para 
fatorar funções RPO foi validado, onde nossa implementação foi capaz de encontrar as 
soluções exatas para funções de até 8 variáveis binate em um razoável tempo de 
execução. 

Tabela A.2.5: Tempo de execução para a síntese de funções selecionadas através da 
algoritmos de cobertura gulosa. 

Circuit P Classes Time (s) Avg. time (s) 

C1355 16 3.70 0.23 

C17 3 0.01 0.01 

C1908 44 2.37 0.05 

C2670 68 39.53 0.58 

C3540 129 1.29 0.01 

C432 25 0.15 0.01 

C499 10 0.89 0.09 

C5315 108 58.07 0.54 

C6288 38 0.20 0.01 

C7552 130 8.42 0.06 

C880 36 18.08 0.50 
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A.3 Conclusões 
 

A principal contribuição deste trabalho foi a definição do conceito de funções read-
polarity-once (RPO). Além da definição da classe de funções RPO, várias contribuições 
relacionadas também foram apresentadas: (1) um algoritmo para fatoração de funções 
incompletamente especificadas em equações read-once (RO), (2) uma transformação de 
domínio, que divide variáveis binate em duas variáveis unate independentes e (3) um 
algoritmo completo para a fatoração exata de funções da classe RPO. 

A primeira contribuição foi a proposta de um algoritmo (ISF2RO) que é capaz de 
fatorar funções Booleanas incompletamente especificadas em formas RO, sempre que 
possível. O único método conhecido que garante a exatidão do resultado é a abordagem 
Exact Factor, proposto por (YOSHIDA; Fujita, 2011) . No entanto, o método só é 
viável para funções com até 10 variáveis. O método ISF2RO aqui proposto é capaz de 
fatorar funções com até 16 variáveis de entrada. 

A segunda contribuição foi a proposta de um método para a transformação de 
domínio que divide variáveis binate em duas variáveis unate independentes, chamado 
processo de unatization. O processo de unatization é um passo fundamental ao 
reconhecer funções RPO. No entanto, ele pode ser aplicado em outros métodos de 
síntese de lógica, como métodos de decomposição funcional. 

A terceira contribuição foi o desenvolvimento de um algoritmo completo para a 
fatoração exata de funções da classe RPO, chamado ISF2RPO. Tal algoritmo foi 
implementado e comparado com algoritmos de fatoração existentes. O algoritmo 
proposto garante formas fatoradas mínimas para a classe de funções RPO. Os resultados 
mostram que, para o conjunto de 612.125 funções da classe NPN com até 5 entradas, 
1.462 funções RPO foram identificadas, enquanto que para a classe RO apenas 21 
funções foram identificadas. Além disso, os resultados levando em conta circuitos 
ISCAS'85 mostraram que as funções RPO são muito mais frequentes em relação às RO. 

Vale a pena ressaltar que ambos os algoritmos foram implementados em uma 
ferramenta, chamada Switchcraft (CALLEGARO et al, 2010). O ambiente Switchcraft 
fornece um conjunto de ferramentas para a geração de redes de chaves e de portas 
lógicas. A ferramenta foi utilizada e aplicada em aula na Universidade Federal do Rio 
Grande do Sul (UFRGS) no Brasil, em cursos de graduação e pós-graduação. 


