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ABSTRACT

The demand for high processing power together with the actual concern about power
consumption has led the industry towards heterogeneous solutions, which present a good
compromise between these two factors. The challenge involving this approach relies on
how to develop efficient and portable applications to take advantage of the parallelism
available in such architectures.

Some software solutions appeared to help programmers developing code for these
new class of heterogeneous processors. These solutions aim to provide an easy and flex-
ible way to express parallelism in the applications. Some solutions such as CUDA and
OpenCL present a software model and architecture that has proved to be very effective
for general purpose programming on these devices.

Among the architectures that have been used for heterogeneous programming, many-
core processors and CPUs combined with GPGPUs stand out as the most expressive so-
lutions, obtaining the best results. The focus of this work is one specific solution, the
MPPA R©-256 manycore processor, which targets high parallel processing and low power
consumption. This processor integrates 256 calculating cores for general purpose pro-
gramming providing good processing capabilities.

As any other solution for heterogeneous computing available in the market, porting
applications and developing new ones for this processor can be difficulty. As MPPA
processor has unique hardware and software architectures, it increases the complexity of
programming on it.

The focus of this work is to study and analyze the viability of implementing a run-
time to be linked to the MPPA processor, with some high level functions aiming to help
programmers with the task of easily setting up the programming context and necessary
features to produce software in a faster way. This study contemplates the implementation
and tests realized to validate the proposed solution.

Keywords: Heterogeneous computing, manycore processors, MPPA R©-256.
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1 INTRODUCTION

An important number of technological and scientific advances have been lately achieved
in many different areas of the human knowledge because of the computational resources
available worldwide. But the demand for very high processing performance continues
to increase. Some applications such as image processing and analysis, signal process-
ing control, security (cryptography) and telecommunications naturally demand computers
with high calculation capabilities.

As the limits of hardware improvement are starting to be reached, making it impossi-
ble for the hardware components to follow the Moore’s law, the solution adopted by the
industry was to agregate more hardware resources to allow parallel processing. So in-
stead of improving the processor’s performance, the solution found was to integrate more
processors into the systems. In this purpose, clusters and supercomputers appeared as pos-
sibilities to bring more computational power, by agregating more computers. However,
to achieve such processing capabilities, clusters and supercomputers approaches present
high energy consumption, their biggest disadvantage.

The most promising approach to provide both low power consumption and high pro-
cessing power is to integrate several cores into one single chip, with multicore processors
and heterogeneous architectures. The popularity of these processors naturally arose in the
last years, becoming nowadays the standard of the industry even for personal computers,
tablets and smartphones.

The problem is that, in general, the more sophisticated the processor is, the higher is
its energy consumption. Furthermore, we achieved a level where this sophistication and
consequent increased energy demand of these processors no longer brings extraordinary
performance results, but only regular improvements. In an era where computers have
achieved petaflop/s, and breaking the barrier of exaflop/s doesn’t seem to be far, a special
concern for power consumption raises, as it becomes more important to have a balanced
ratio between processing and consumption power than only care about performance.

All this demand for very high processing capabilities comes at a price, and leads to
a global concern about the power consumption related to these architectures. The use of
simpler cores to perform on SIMD (Single Instruction Multiple Data) (FLYNNFLYNN, 19721972)
model, along with a certain number of more sophisticated cores seems to be the natural
tendency for the next years.

This approach of mixing devices with different levels of sophistication and different
target niches has been characterized as heterogeneous computing, which is lately becom-
ing very popular among programmers, and is one of the alternatives to achieve this balance
ratio between performance and consumption. This technique consists in using different
kinds of processors in a system, aiming to provide flexibility and better performances for
applications running on these systems, generally improving energy management.
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Among all the possibilities for heterogeneous computing, Graphic Processing Units
(GPUs) and manycores stand out as the best solutions available on the market, providing
the best processing power versus energy consumption ratios. General Purpose GPUs
(GPGPUs) have efficiently been used for heterogeneous computing as well as manycores
processors, with up to a hundred cores.

These devices used for heterogeneous computing certainly bring more processing
power, but they also bring new challenges for programmers, which have to search for
algorithms which can take full advantage of the hardware resources available on the sys-
tem. When the gains in performance were achieved only by reducing the transistor size,
it was not necessary to change the application’s source code to see the result. But pro-
gramming these new architectures requires from the programmers a new redesign of their
applications to achieve the desired result.

As the industry has been capable of producing processors with hundreds of cores, it
is now the programmers’ responsibility to rewrite old applications and produce new ones
for these extremely parallel devices, which is certainly not an easy task. However, this
new way of thinking doesn’t bring only problems, but brings also new opportunities for
programmers to develop new skills and propose a whole new branch of solutions.

1.1 Objectives of this work

The focus of this work is the MPPA R©-256 manycore processor, developed by the
French company Kalray. This processor was developed targeting mainly high processing
performance and low power consumption. This processor presents a parallel architecture
with 256 processing cores targeting the embedded computing market, in applications such
as transport, data security, image processing, telecommunications, network appliances,
etc.

The objectives of this work are to study and implement a runtime system with high
level functions, to facilitate the programmers’ task when programming MPPA. In other
words, the main goal is to provide some high level functions which will mask the low level
API calls from the programmer. To achieve this goal, a study of the MPPA processor will
be necessary, considering both hardware and software aspects.

The result of this study is to analyze the viability and complexity of implementing this
runtime, containing some basic high level functions aiming to decrease the complexity of
interacting with MPPA for new programmers. Being OpenCL and CUDA worldwide
spread standards framework largely used for heterogeneous computing, the runtime will
be developed aiming to have a programming model that keeps similarities with OpenCL
and CUDA whenever possible.

This study is part of a scientific cooperation work between GPPD team (Grupo de
Processamento Paralelo e Distribuído) of the Instituto de Informática UFRGS (Brazil)
and Nanosim team, Université de Grenoble (France). The MPPA processor, which will
be used to develop this work, is physically located in Grenoble, France. Meanwhile the
tests will be realized accessing the machine remotely, from Porto Alegre, Brazil.
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1.2 Organization

This work is organized in 6 chapters, including this introduction. In chapter 2 it is dis-
cussed heterogeneous computing, presenting the related architectures, examples of com-
mercial devices and today’s most popular development environments for this approach.
Chapter 3 describes the MPPA processor architecture, highlighting some software and
hardware aspects as well as its programming models, operational systems aspects and
software development for MPPA. It is presented, in chapter 4, the scope of this work,
defining its main purpose, the development of a runtime for MPPA processor and pre-
senting aspects of the specification and implementation of the runtime. In chapter 5, we
present an evaluation of the solution built, covering functional and complexity aspects.
Finally, chapter 6 contains a conclusion about what was developed and possible future
work.
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2 HETEROGENEOUS COMPUTING

The term Heterogeneous Computing (KHOKHAR et al.KHOKHAR et al., 19931993) refers to systems that
have different kind of processors in their architecture collaborating to produce better re-
sults of the applications running in such systems. In other words, it is possible to describe
a heterogeneous computing system by having in its architecture processors with distinct
set of instructions, or more formally, processors with distinct ISAs (Instruction Set Archi-
tectures).

These processors can be, for example, CPUs (Central Processing Units), GPUs (Graphic
Processing Units), DSPs (Digital Signal Processor), ASICs (Application-Specific Inte-
grated Circuit) or even FPGAs (Field Programmable Gate Array). The most common and
efficient heterogeneous architectures use GPUs though, being often called as accelerators.
More recently, manycore processors, which also often mix different modules, have also
being successfully used for heterogeneous programming, because of their flexibility and
high processing power.

The main motivation behind the use of heterogeneous architectures relies in their com-
mitment between processing power and energy consumption. In multicore architectures,
the extra cores and cache memories required to fuel their instructions pipeline leads to a
big silicon area and high power consumption, elevating the cost per computation. Clus-
ters turn out to be a very expensive solution, as to achieve high processing power it is
necessary to aggregate a considerable number of machines, which together spend much
more energy than intrachip solutions.

The idea behind heterogeneous architectures is that even if one specific core is not
nearly as capable as a sophisticated CPU core, there are so many cores available that
together they can provide more calculating power spending less energy. Programming
such architectures is not an easy task though, because each kind of processor will perform
some part of the code better than the others, being the programmer often responsible for
designating the tasks to the right hardware. The gain in performance comes mainly by
exploring all the hardware resources available on the system.

The focus on the next sections will be at GPUs and manycore processors, highlighting
the biggest differences between them and exposing aspects of their architectures, devel-
opment environments available and contemplating some commercial examples of each
one.
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2.1 General Purpose Graphic Processing Units (GPGPUs)

In the early days of computing, graphic processing was consuming a lot of CPU time,
which at the time was very expensive. Looking into the code of graphic processing algo-
rithms it was very simple to identify these codes as being very easy to parallelize, because
of its intrinsic characteristics. As spending CPU time wasn’t the best deal back then and
as the operations involved in this kind of applications were to be repeated several times
for different data, the idea of creating a dedicated hardware became desirable.

Graphic Processing Units (GPUs) were born to free the CPU of the graphic tasks as
a specialized hardware for this kind of algorithm. GPUs are strictly related to the SIMD
(Single Instruction Multiple Data) paradigm, which means a same operation will be ap-
plied to lots of distinct data (one usual operation found in graphic processing is, for exam-
ple, matrix multiplication). The idea behind this hardware is that you can take advantage
of the application’s parallelism by performing the same operation at the same time in dif-
ferent hardware resources. As the hardware was very specific, it was not expensive, and
it could contain lots of replicated modules within a chip.

2.1.1 General architecture and GPGPU programming

In opposition to CPUs, which have big memories and control units, the GPUs are hard-
ware containing mainly a same module replied several times, with very small memories,
very simple control units and lots of arithmetic and logic units (ALUs), usually providing
support for floating point operations, very common in graphic processing. Their high pro-
cessing capability comes from the fact that they have much more processing elements than
a CPU, being especially good at dealing with vectors and matrix. Figure 2.1 illustrates the
connection between CPUs and GPUs, showing the differences in the architectural aspects
of each module.

Figure 2.1: Connection between CPU and GPU.

Appearing in the late 90s, GPUs became popular in the beginning of this century, be-
ing very fast adopted as a standard among all computer fabricants in the market, which
from now on would produce computers with separated CPU and GPU modules, usu-
ally interconnected by a PCIe (Peripheral Component Interconnect Express) bus allowing
them to communicate. This bus is used by the CPU to send the control commands and
blocks of data for the GPU, which by its turn executes the task received and send back by
this same bus the result of the operations, as illustrated in figure 2.1.

When they first appeared, GPUs used to have a small memory generally shared be-
tween all threads executing on the device. However, more recent GPUs already have
caches of L1 and L2 levels, aiming to improve the performance. Figure 2.2 exemplifies
a generic memory model for a GPU, having 3 levels of memory: global, cache and local
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memories. Global memory is accessible for all threads, while a cache memory is shared
only among some cores, gathered in processing groups (PG). Local memories (LM) are
related to each core, a specific processing unit (PU).

Figure 2.2: Generic GPU memory models.

Using GPUs was a huge improvement by the time they appeared, allowing the CPU
time to be used mainly with effective processing, and letting the graphic processing tasks
to be done by the GPU. As a dedicated hardware GPUs even improved computing time
of applications by accelerating graphic processing. However, it didn’t take too much time
for programmers to realize that some parts of their programs were very similar to graphic
processing, meaning that the same operation was performed over different data, several
times. Iterative commands, such as for and while are often linked to such behavior.

At the same time, the advances achieved in some areas such as signal processing
and real-time systems were demanding for very high processing power, meaning it was
necessary to find a way to speed up computing. Taking all this into account, programmers
came up with the idea of using GPUs for not only graphic processing but also general
purpose programming, giving birth to what is called today as GPGPU (General Purpose
Graphic Processing Unit) programming model.

In the last ten years GPGPU programming has become more popular among program-
mers. It suits perfectly applications with data parallelism, exploiting the SIMD paradigm,
leading to a high throughput. In the beginning of the GPU era, these hardware used to
be very simple, allowing no personalization and supporting only a few set of functions.
Today, these architectures present a more complex instruction set with a high programma-
bility inside their pipelines, making it easy to use GPUs for general applications.

Another advantage of using GPGPU programming is that GPUs usually present lower
consumption when compared to multicore CPUs. As the hardware is simpler, naturally it
consumes less energy than a CPU running the same task. That is an important character-
istic of GPUs, as the power management is one of the main concerns nowadays.

When talking about GPGPU programming the concept of kernels is often used to
refer to the parts of the code which actually execute on the GPU device. It is syntactically
similar to a standard function, but differentiates from it because of some keywords that
will indicate to the compiler to execute that specific function on the GPU. If we take a
traditional loop as example, the kernel can be seen as the body of the loop, being the
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iteration process intrinsic. So when programming with GPUs, the programmer specifies
the kernel and the data to loop over, being the compiler able to detect that part of code
should execute in parallel in the GPU.

Nowadays, the most popular programming environments to program GPUs are CUDA
(NICKOLLS et al.NICKOLLS et al., 20082008) and OpenCL (MUNSHIMUNSHI, 20092009), and the largest manufactures
of GPUs are NVIDIA (NVIDIANVIDIA, 20132013) and AMD (AMDAMD, 20132013). While CUDA is a pro-
prietary solution, developed only to be used with NVIDIA GPUs, OpenCL is an open
source standard for heterogeneous programming, and can be used with any GPU. GPUs
are still largely used for graphic processing in workstations, videogames, personal com-
puters, and more recently it is possible to find it even on smartphones. Some of the most
powerful supercomputers in the world also take advantage of GPU acceleration (TOP500TOP500,
20132013).

2.1.2 Developing environments

The apparition of GPGPU programming brought also the need of developing pro-
gramming languages which could express parallelism in a simple but still powerful way.
In the beginning it was neither easy nor practical to transform the code for the older ar-
chitectures to run in these new architectures. If programmers are unable to extract the
applications’ parallelism it will not show any improvement of performance when running
in such architectures.

Some frameworks appeared to fill this gap, each one having some specific characteris-
tic which differentiates one from the others. There is no right or better language to chose,
it will strongly depend on the target architecture and on the application. Today’s most
popular frameworks for this purpose are CUDA and OpenCL, which will be presented in
this section.
CUDA (Compute Unified Device Architecture): First issued in 2006, CUDA was in-
troduced by NVIDIA. This parallel computing platform was invented with a new set of
instructions and a new programming model allowing parallel processing to provide GPU
programmers an efficient way to solve many complex computational problems they were
facing.

CUDA is a proprietary solution targeting exclusively NVIDIA devices. With differ-
ent instructions available, CUDA has been successfully used for GPGPU programming,
performing applications such as cryptography and computational biology.

The idea when programming with CUDA is to divide the application into sub prob-
lems that can be solved in parallel, by grids (blocks of threads). If possible, it is also
desirable that this sub problem could also be divided to be solved by a single thread. This
way, each core contributes to the solution of the problem, cooperating with the others to
maximize the throughput, even if the individual performance of each core is not the best.

CUDA’s programming model involves the concepts of grids and blocks. To execute
kernels, the task is divided into several threads, which execute concurrently. A kernel is
executed as a block of threads, physically corresponding to a variable number of cores,
which is given by the user as a parameter in the kernel call. CUDA can handle the number
of cores/blocks available for processing by mapping each kernel to a block on run time,
abstracting the process of delegating a task to a specific core/block. As soon as all threads
of a block finish executing, a new block is launched.
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From the programmer point of view, a grid is divided into equally shaped blocks,
and blocks are composed by threads. A block has a unique identifier and all threads
within a block execute the instruction specified in the kernel command sent by the host
workstation. Threads in one block share the same local memory, and all threads have
access to the global memory. Depending on the way threads, blocks and grids are grouped
it is possible to have one-, two- or three-dimensional computing. This model is illustrated
by figure 2.3, highlighting the hierarchy among grids, blocks and threads.

Figure 2.3: CUDA programming model.

CUDA can provide instructions for not only threads but also blocks. So when a task
needs some kind of thread synchronization, it is desirable all threads to take approxi-
mately the same time to execute, to avoid a thread to wait for a long time. This is exactly
the sort of instructions available in CUDA that help programmers with GPGPU program-
ming. Besides of synchronization primitives and thread grouping, it has also instructions
to manage the device memory.

CUDA is a very established platform, being compatible with the most popular opera-
tional systems, having a SDK (Software Development Kit) with a low and high level API,
full support from NVIDIA and extension to standard computer languages such as C/C++
and Fortran. It is largely spread among programmers for GPGPU and heterogeneous pro-
gramming, presenting generally good performance results. However, CUDA can be only
used with NVIDIA hardware, not being possible to use it among heterogeneous platforms
from other fabricants. Anyway, CUDA presents some very interesting aspects, and in-
spired the community to develop a similar solution, but which could be used for every
platform. This solution is the OpenCL standard.
OpenCL (Open Computing Language): OpenCL (OPENCLOPENCL, 20132013) is a royalty-free
standard first released in November 2008. It was started by Apple and it is maintained
nowadays by the Khronos Group (KHRONOSKHRONOS, 20132013), having some important compa-
nies collaborating with the OpenCL standard development, such as Intel, AMD and even
NVIDIA. OpenCL is a specification latest released in July 2013 (2.0 release) and is al-
ready very popular among GPGPU programmers, being supported by most expressive
GPU and manycore fabricants. OpenCL is also used for heterogeneous programming,
because it can easily address heterogeneous platforms such as CPUs, GPUs and DSPs.
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The OpenCL framework described in (GROUP et al.GROUP et al., 20082008) contains three compo-
nents: a platform layer, a runtime and a compiler. The platform layer allows OpenCL to
discover the device capabilities and to create an execution context, a very important task
as it targets heterogeneous hardware. The runtime allows the host device to manipulate the
context created. Finally the compiler creates executable programs which contain C com-
mands and OpenCL kernels. In the Khronos Group documentation an OpenCL language
is also specified, called OpenCL C, which is used to create kernels in the application’s
source code.

OpenCL programming model involves a host/device communication, being host and
device not necessarily different hardware devices. A traditional OpenCL program con-
tains a host and a device side. The host program executes on the host device issuing ker-
nels to be executed in the target hardware. Kernels are the fundamental concept involving
OpenCL programming and its execution model. They are sent by the host program and
are then queued to be executed on the device, according to the resources available. This
behavior is illustrated by figure 2.4.

Figure 2.4: OpenCL execution model.

The host sends commands to one or more Compute Devices (CDs), which can be
a CPU, GPU, etc. Each CD can be divided into Computing Units (CUs) and each CU
can also be divided into Processing Elements (PEs). Kernels are split into uni-, two-
or three-dimensional ranges that are called work-groups, which are mapped to Compute
Units. Each processing element is one instance of a kernel and can be also called as a
work-item, which belong to a work-group.

There are two main programming models for OpenCL: data and task parallel. In data
parallel model, all work-items execute the same task over different data, operating in a
similar way to the SIMD paradigm. This model is mostly used for programming GPUs,
which are good with SIMD tasks. In the other hand, task parallel model works like a trap-
door to run arbitrary code from the command queue, allowing heterogeneous computing.

Figure 2.5 presents the OpenCL software architecture. The application communicates
with the hardware through a set of tools including an OpenCL library, a Runtime, and an
OpenCL device driver, which are involved in the process of building executable OpenCL
code to run in a target device. The Platform Layer also helps in this process by providing
information about the hardware to the application.
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Figure 2.5: OpenCL software architecture.

In a higher abstraction level it is possible to describe the process of building and exe-
cuting OpenCL program as follow. A source code is built, containing mainly C commands
and kernels (OpenCL directives). The compiler generates the object code, which will be
linked by a runtime library, building the executable file taking into account the target
hardware. The executable contains both C and OpenCL directives, and will be loaded to
the device memory to be executed.

OpenCL presents some similarities and some differences with CUDA. Their program-
ming models are remarkable alike, as well as memory and execution model. Both work
with host-device model, allowing memory management and similar set of instructions,
presenting almost the same software architecture. This convergence is intentional, once
OpenCL has a similar purpose of CUDA.

But they also have some differences. As an NVIDIA proprietary solution, CUDA
targets only NVIDIA GPUs, while OpenCL was developed targeting heterogeneous plat-
forms. Both of them have been successfully used for GPGPU programming, and some
performance comparisons (SU et al.SU et al., 20122012) between them have been made lately. CUDA
usually provides better results especially because of its specificity for NVIDIA devices,
although OpenCL is more flexible, losing some performance to provide portability.

Pocl (Portable Computing Language): The OpenCL framework is a standard, meaning
no real implementation is available. Being just a specification, it is necessary to im-
plement OpenCL to run it on a new device. Companies such as ARM, IBM, Intel and
NVIDIA have their own proprietary implementations of OpenCL. There is also an open
source implementation of OpenCL, the Portable Computing Language (POCLPOCL, 2013a2013a)
with a MIT-license aiming to be an efficient OpenCL implementation and to be easily
adaptable for new target devices.

In November 2013, the most recent stable release of the Pocl implementation is the 0.8
version, but continuous improvement are constantly been done. It uses Clang (CLANGCLANG,
20132013) as an OpenCL front-end language, used to interpret kernels, and LLVM (LLVMLLVM,
20132013) as back-end for the kernel compiler implementation, both also open source projects.
Besides of providing an open source solution, the Pocl project aims to improve portability
of OpenCL programs, avoiding manual optimizations depending on the target device, so
if the hardware has a LLVM back-end, it should be easy to adapt Pocl to the target device.

Pocl can be used for heterogeneous architectures, and aims to exploit all kinds of
parallel hardware resources, such as multicore, VLIW, superscalar and SIMD. The Pocl
implementation does not yet fully supports the OpenCL standard specification, and there
are some recognized bugs, but it is capable of successfully running several known exam-
ples (POCLPOCL, 2013b2013b).
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2.1.3 Commercial GPU examples

As GPUs are not a recent solution many different models are available in a market
containing several fabricants. Among all GPUs fabricants, AMD and NVIDIA stand out
as the most expressive companies with the biggest market shares. Both are extremely
widespread for gaming and GPGPU programming, providing always a healthy competi-
tion for market dominance. AMD solutions include the well known family Radeon mean-
while NVIDIA most known families of GPUs are Tesla and GeForce. The GPUs models
presented here are the most recent ones for each brand, by the actual date of October
2013. Figure 2.6 gives an overview of some of each GPU’s parameters.

Figure 2.6: Commercial GPUs compairison.

Radeon: First launched in 2000, the Radeon family is the most important GPU brand
of AMD. The AMD Radeon HD 7990 Graphics model operates with a clock frequency
of 950 MHz and 4096 stream processors, providing over 8 TFLOPS. There are 6 GB of
DDR memory system available with a 288 GB/s maximum memory bandwidth. Because
of its elevated processing capabilities, the requirements of the host system are very high,
and the typical power consumption is also very high, about 750 W.
Tesla: The Tesla family, by NVIDIA, contemplates several different models of GPU,
being present in the market for over 10 years. The Tesla K20 model has 2496 processing
cores operating in a clock rate of 706 MHz, achieving around 3.5 TFLOPS. It has a
maximum memory bandwidth of 208 GB/s and 5 GB of total memory available on the
board, while the typical power consumption is about 225 W.
GeForce: The GeForce GPU family, also fabricated by NVIDIA, is the biggest concur-
rent of AMD Radeon for gaming. The GeForce GTX Titan presents 2688 calculating
cores, operating in a frequency of 837 MHz, providing 4.5 TFLOPS. There are 6 GB of
DDR memory available, for a maximum bandwidth of 288 GB/s, being the typical power
consumption around 250 W.
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2.2 Manycore architectures

As the limits of hardware were being reached, the solution was to aggregate more than
one core into a single silicon chip, the beginning of the multicore era, which we are still
living. Multicore processors became very popular as soon as they started to appear in the
market, but the market of computers doesn’t restrict itself to personal computers. Some
industries such as telecommunications, aerospatiale, transport, medical and data security
often demand for very high processing, much more than personal computers can provide.
For these niches it was necessary to provide solutions with more computational power,
which can be translated into more cores. So instead of having processors with two, four
or eight cores, why not having a processor with twenty cores, or even a hundred cores?

With this increasing numbers of cores in multicore systems, another terminology ap-
peared to reference these massively parallel devices, the manycore processors. Another
designation also used when referring to manycore can be highly-parallel devices, kind of
describing the purpose of these processors, which clearly target parallel processing. These
terms often refers to processors with at least dozens to hundreds of cores, presenting some
aspects which differentiate them from multicore and GPU architectures.

They are characterized for having lots of cores, which are usually a middle term be-
tween the sophisticated CPUs and the simple GPUs cores, providing a good compromise
between processing power and energy management. Most remarkably, manycore proces-
sors aim to maximize throughput, deemphasizing individual core performance.

2.2.1 General architecture

An important aspect of manycore architectures is the constant presence of a NoC
(Network-on-Chip), responsible for interconnecting the different modules of the entire
system. NoCs are structures used for intrachip communication as a solution to the prob-
lem brought by the amount of cores in the chips. As the tasks, even if parallel, tend
to work in cooperation to solve problems, it is important to provide them some way to
communicate.

The natural solution would be to interconnect all cores among a bus, but as the number
of cores increase, it also increases the capacitance of the bus, leading to much more power
consumption. Another parameter that also gets increased is the distances for the data to
travel in the bus to reach all the receivers, keeping the bus busy for more time, leading to
an important decrease of the communication efficiency.

NoCs are one of the most interesting solutions developed to avoid these problems.
Importing concepts of computers networks and adapting it to the intrachip level, it is
possible to provide an efficient and low power consumption alternative to system buses.
In the other hand, as any network communication, it is vulnerable to high traffic or even
to packet loss, depending on the way it is implemented.

It means the NoC plays a role in performance, when different modules need to ex-
change messages among themselves. The network’s traffic, the protocol used and the
routing algorithm are examples of the NoC’s characteristics which might influence in the
performance. Some variants in NoCs implementation, such as statics or dynamic routing
algorithms, full or half duplex links, multicast and broadcast support and switching algo-
rithms are examples of parameters which will certainly make a difference in the network
performance. Another factor which plays a role in performance is the topology of the
modules.
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A very flexible and fluid way to map threads strongly differentiates manycore from
other architectures. Another characteristic of manycores processors is that, because of the
amount of cores, they usually present some special hierarchy among the processors. The
way this hierarchy is built may vary from processor to processor, but it helps to better
divide the work to be done into the cores.

Of course manycore processors aren’t always the best choice to run an application.
Depending on how the application is built, it may have a better result in a single or dual
core processor, for example. Manycore processors usually operate in a lower frequency
than single cores. It means that it is pointless to have such hardware resources available
to not spend it carefully, taking as most advantage as possible of each core.

2.2.2 Developing environments

As manycore architectures are recent in the market and the fact that each processor
usually presents some unique characteristics, programming them is not very easy. The
alternatives to program these architectures are either to adapt one existing language or to
use some feature provided by their fabricants.

Some fabricants, knowing the difficulties of programming them, also develop a set of
tools to help programmers to develop their codes. But this solution leads to a non portable
source code, meaning that when changing the target hardware, it is necessary to redesign
the application. The other alternative is to adapt known languages and frameworks for this
purpose. Some languages such as TBB, Cilk/Cilk Plus, Dataflow languages and Smyle
OpenCL have been used to program manycore architectures and are briefly presented
here.
TBB (Threading Building Blocks): The TBB (PHEATTPHEATT, 20082008) is a C++ template library
developed by Intel, aiming to facilitate the task of writing code for parallel architectures,
such as multicore and manycore processors. It provides both data structures and spe-
cial algorithms to avoid some intrinsic complications of parallel programming. It treats
the threads as tasks, easily dynamically allocating them to a free core to be performed, re-
specting graph dependencies and abstracting these low level details from the programmer.
An automated management of the processors cache is available to improve performance.
Cilk/Cilk Plus: The Cilk (BLUMOFE et al.BLUMOFE et al., 19951995) programming language, nowadays
developed also by Intel but first started by MIT, was designed to be used for multithreaded
parallel architectures targeting general purpose programming. It is in fact an extension of
the C and C++ languages, being based in the ANSI C standard language and the Cilk Plus
version inspired in the C++ language. The programmer is the responsible for exposing
the application’s parallelism, by using two basic primitives: spawn and sync. The spawn
primitive indicates some task can be executed in parallel without any problem, while the
sync primitive is used for synchronization. As C/C++ extensions, Cilk/Cilk Plus allow
programmers to easily add parallelism to their application’s source code, not requiring
significantly changes.
Dataflow: The Dataflow (UUSTALU; VENEUUSTALU; VENE, 20062006) programming paradigm changes the
way programmers are used to build applications by modeling the program as a directed
graph of the data flowing between operations. In Dataflow oriented languages, an op-
eration can run as soon as all inputs are available, providing this way parallelism to the
application. A very important concept in this model is the idea of state, being a sort of
portrait of the actual system situation, as the program progress over the graph is achieved
by moving from one state to the next. Several languages are available to program in
Dataflow paradigm, such as SigmaC, SISAL, Quartz Composer, LUSTRE, etc.
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Smyle OpenCL: The Smyle OpenCL framework (INOUEINOUE, 20132013) consists in an indepen-
dent implementation of the OpenCL standard, targeting embedded multicore and many-
core systems, developed at the Japanese Ritsumeikan University. The biggest difference
founded in this implementation comparing to the OpenCL standard is that here the threads
and objects are statically mapped to the architecture’s cores, doing it at design time in-
stead of at runtime, aiming to minimize the runtime overhead. The framework developed
was tested and runs fine for the tested applications. However, it is not yet fully tested
for heterogeneous architectures and a complete set of applications, being more a research
than a commercial solution. The target device of this study was the SCC (Single-Chip
Cloud Computer), an Intel experimental processor.

2.2.3 Commercial manycore processors examples

Most of manycore processors available nowadays are used mainly in researches, such
as the Polaris processor, developed by Intel, which integrates 80 cores in a single chip.
But it is possible to find some commercial manycores, such as the Intel solutions Larrabee
(SEILER et al.SEILER et al., 20082008) and Xeon Phi (CHRYSOS; ENGINEERCHRYSOS; ENGINEER, 20122012). The Tile64Pro,
manufactured by Tilera (TILERATILERA, 20132013), together with the MPPA processor are also good
examples of commercial manycores available nowadays in the market. Differently from
the GPUs market, very well established and with big players, manycores are still an open
market, full of possibilities. The models presented here are the most recent ones for the
mentioned brands, by the date of October 2013. Figure 2.7 gives an overview comparison
between the different commercial manycores.

Figure 2.7: Commercial manycores comparison.

Larrabee: Larrabee is a hybrid processor developed by Intel, being considered as a first
draft for manycore architectures. It is considered as a manycore processor, but keeps
lots of similarities with GPUs, including a special module for processing 3D graphics. It
is built with a 32 nm technology, with a variable number of x86 cores integrated in the
chip, depending on the model (from 8 to 48 cores), operating at the clock rate of 1 GHz,
producing around 1 TFLOPS.
Xeon Phi: Intel MIC (Many Integrated Core Architecture) is a manycore computer archi-
tecture designed by Intel, which incorporates some previous work of the Larrabee project.
The great advantage of the MIC architecture is the compatibility it presents with previous
Intel devices (Xeon processor’s family), something rare in the manycore world. The Intel
products that actually implement the MIC architecture is named Xeon Phi. The Intel Xeon
Phi 7100 series, more specifically the 7120X model integrates 61 cores into the chip. It
was conceived using a 22 nm technology, operating with clock rate around 1.2GHz pro-
viding 1.2 TFLOPS. The maximum memory bandwidth is about 350 GB/s for a RAM
memory of 16 GB and 30 MB of cache, with typical power consumption of 300 W.



24

TilePro64: Tilera is a semiconductor company specialized in producing scalable many-
core processors. Among its solutions one of the most expressive is the TILEPro64, inte-
grating 64 RISC general purpose processors, each of them having its own cache memory
and implementing cache coherence. They are interconnected through a mesh network
linking all the 64 cores, being each a node of the network with a non-blocking router. The
communication with outside modules can be done by DDR memories, PCIe, Ethernet
and flexible I/O interfaces (which can be software-configured to handle several proto-
cols). The processor is fabricated with a 90 nm technology, operating with a frequency
between 600 MHz to 800 MHz and running GNU/Linux. The typical power consumption
of the processor is about 19 W to 23 W.
MPPA R©-256: The MPPA R©-256 (DINECHIN et al.DINECHIN et al., 20132013) processor produced by Kalray,
a French company specialized in developing manycore processors for high performance
applications, was built with a CMOS 28nm technology and integrates 288 VLIW (Very
Long Instruction Word) cores in a single chip, having 32 cores dedicated to resource man-
agement and 256 calculating cores, dedicated to computational processing. The cores are
divided into 16 clusters of 16 processing elements, totalizing 256 cores. Inside a cluster,
a shared memory paradigm is used, allowing inter process communication.

MPPA operates with a clock rate of 400 MHz and can provide 700 Giga operations
per second and 230 GFLOPS, when extracting the most of its 256 cores. A 4 GB global
memory is available, with 32 MB of internal memory, besides of L1 and L2 caches of
each processor. Also the improvement in power consumption when running typical ap-
plications, comparing to other processors, is about 10 times, having a 5 Watts typical
consumption.

2.3 Final Considerations

Knowing the difficult of efficiently developing software for these new parallel devices,
the Heterogeneous System Architecture Foundation (HSA Foundation) (FOUNDATIONFOUNDATION,
20132013) was created. HSA Foundation is a non-profit consortium formed by some of the
most expressive hardware developers in the world, such as AMD, ARM, Texas Instru-
ments, and more. Their goal is to forward the industry progress in heterogeneous ar-
chitectures to prepare the programming tools to address these architectures, making it
easier for programmers to build parallel applications. They work in building a standard
for heterogeneous computing that could provide high application performance at low en-
ergy cost. Their solution is to produce an interface for parallel computation supporting
a diverse set of high level languages used for general purpose programming, targeting
heterogeneous platforms such as CPUs, GPUs, DSPs and manycores.

The apparition of such organizations such as HAS Foundation demonstrates the dif-
ficulties that have been faced in the late years to produce a portable solution capable of
abstracting hardware details without losing too much performance. The manycores mar-
ket together with heterogeneous computing concepts present a gap of programming tools
and languages. For some, this gap might be seen as a problem, but for others it might also
be seen as a great opportunity for developing new skills and new tools.

The target processor of this study is the MPPA architecture, which is a manycore pro-
cessor presenting relevant similarities with GPUs. It is desirable to offer MPPA program-
mers a library of functions that could allow them to easily develop code. In cooperation
with the Grenoble team this work aims to expand the possibilities of programming MPPA
by mixing the concepts of manycores, OpenCL, Pocl and heterogeneous computing.
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3 MPPA R©-256 PROCESSOR

The MPPA R©-256 manycore processor was conceived and produced by the Kalray
society (KALRAYKALRAY, 2013b2013b) as a solution to high performance computing with low power
consumption, being software programmable. Kalray is a French company specialized in
developing manycore processors for high performance applications.

Knowing the difficulties usually involved in programming manycore architectures,
especially a totally new one, and also the problems in porting applications’ code to new
target devices, Kalray provides a whole set of tools to facilitate MPPA’s learning expe-
rience. Kalray’s global solution includes not only the processor itself but also a SDK
(Software Development Kit), designed boards to MPPA and tools to simulate, execute,
trace and debug applications. These tools allow the user to maximize the performance of
their applications, improving MPPA’s time to market.

3.1 MPPA hardware architecture

The MPPA processor is composed, in a macro level, by four Input/Output subsystems,
16 computing clusters and a NoC (Network-on-Chip), responsible for connecting these el-
ements. There are four Input/Output subsystems, one in each side of the chip, which are
referenced as north, east, west and south. They are fully responsible for any communi-
cation with elements outside the MPPA processor, including the host workstation. Each
I/O subsystem has 4 cores, totalizing 16 cores dedicated to PCIe, Ethernet, Interlaken and
other I/O devices. The 4 cores in a same I/O subsystem share the same address space, and
all of them are directly connect to 2 clusters by the NoC. Figure 3.1 shows a global view
of MPPA hardware architecture, where C represents a cluster.

Figure 3.1: MPPA general view (KALRAYKALRAY, 2013a2013a).
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MPPA is connected to a host CPU by a PCIe interface, similarly to a GPU. The host,
which is actually an x86 CPU running GNU/Linux, sends code to be executed on the
MPPA processor through the I/O subsystems modules. The MPPA then executes the
received task and write the output data in a 4GByte DDR3 RAM memory, which is con-
nected to an I/O subsystem and can be accessed by the host CPU. Each core in the I/O
subsystem has its own 8-way set associative instruction cache memory, with 32KB. They
have also a data cache memory, of 128KB, shared between the four cores.

The communication between clusters and I/O subsystems is assured by two high speed
low latency NoCs (Network-on-Chips), one used for data transmission (the D-NoC) and
the other is used for control (the C-NoC). The D-NoC presents a high bandwidth as it
transfers data between the clusters and I/O nodes, while the C-NoC presents a low band-
width. It was designed this way to avoid controls commands to be stuck because of data
transfers, which tend to be more frequent. These NoCs have a 2D torus topology, in-
tegrating the 16 clusters and the 4 I/O subsystems. Each cluster has a special core for
communication that is associated with a node of the NoC as well as each core in the I/O
subsystems, totalizing 32 nodes (16 clusters plus 16 I/O nodes), disposed as shown in
figure 3.2. One important point to highlight concerning the NoCs is that they provide for
all clusters a direct link with two I/O subsystems, including the insider clusters.

Figure 3.2: NoC’s architecture (DINECHIN et al.DINECHIN et al., 20132013).

MPPA has 16 clusters organized in a matrix of 4x4, totalizing 256 calculating cores.
Each cluster has 16 calculating cores, called processing elements (PE), and 1 resource
manager (RM), also called system core, used for control and communication, besides of
a local shared memory. This memory is a 2MB low latency cache for instructions and
data, and it is shared by all the 16 cores and the RM core in a single cluster, which is a
huge advantage of MPPA processor, enabling a high bandwidth and throughput between
PEs on a same cluster. Each PE has their own 2-way set associative L1 caches for data
and control, both with 8KBytes. For simplicity, the MPPA processor does not implements
cache coherence between L1 caches of its PEs. Figure 3.3 gives an overview of cluster’s
structure.

One important characteristic found in the MPPA processor is its homogeneous ap-
proach considering its 288 cores (256 calculating cores, 16 resource manager cores and
16 I/O subsystem cores), which are all 32 bit VLIW processors. All of them have the
same architecture, including the ones used for resource management, with seven pipeline
stages for high power efficiency. It was a particular choice of Kalray experts because of
its deterministic execution time and low power consumption compared to others possible
choices.
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Figure 3.3: Cluster internal structure (DINECHIN et al.DINECHIN et al., 20132013).

3.2 MPPA software architecture

Besides of hardware aspects, some software aspects are also important to understand
how MPPA processor works. Each core runs its own operational system and depending
on which module this processor belongs to (I/O node or clusters), it can run a RTEMS
or NODEOS operational system. Both are modified Linux operational systems and are
compatible with the POSIX threads (DREPPER; MOLNARDREPPER; MOLNAR, 20032003) library, allowing pro-
grammers to use pthreads calls without any restriction.

The RTEMS (Real-Time Executive for Multiprocessor Systems) operational system
runs on the cores belonging to the I/O subsystems. This operational system is used mainly
for interface management, once it is helps in the communication between host and MPPA
device, but also between I/O node and clusters.

The NODEOS (Node Operational System) runs on the RM core, the one belonging
to the clusters. The main goal is to help with the real execution of the task by the PEs in
each cluster. This operational system is very light weight, once it is stored on the cluster’s
2MB local shared memory, along with data and code from the programs executing.

Besides of these operational systems running on the MPPA processor, we also have the
native operational system running on the host machine, which is a GNU/Linux. Kalray
provides some APIs to allow the different operational systems to interect between them.
These APIs will be detailed later on this chapter.

3.3 Programming models

For programming MPPA processor, there are two possible approaches: dataflow and
shared memory programming models. Each one of them presents some particularities,
being impossible to say if one is better than the other. Because of their specific charac-
teristics it will depend on the application we want to build and the level of abstraction we
search to determine which approach suits better the situation.
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3.3.1 Dataflow programming model

One of the possibilities when programming MPPA processor is to use the dataflow
programming model. This model is characterized for modeling the program as a graph
that specifies the data flowing, being a very different way to program from the imperative
and object oriented languages that most programmers are used to. The MPPA dataflow
programming model fully supports data and task parallelism. One example of program-
ming with dataflow approach in MPPA processor using the Sigma C language is described
in (AUBRY et al.AUBRY et al., 20132013).

For Dataflow programming model, Kalray has developed a set of tools available on a
graphic IDE (Integrated Development Environment) based in C/C++ called MPPA AC-
CESSCORE. It integrates a compiler, a simulator, a profiler and a debug platform that
allows programmers to develop parallel applications without any special background on
the hardware architecture, providing even power consumption information. As Kalray
provides strong suport on the dataflow programming model, it is out of the scope of this
work.

3.3.2 Explicit parallel programming model

Another way to program MPPA processor is using the explicitly parallel programming
model with shared memory paradigm that allows a multithread programming. Using this
model, there are new possibilities that can be used to program MPPA, such as OpenMP
and POSIX threads. Both approaches are fully supported in MPPA, being up to the pro-
grammer to decide which one suits better his application.
OpenMP (Open Multi-Processing): OpenMP (DAGUM; MENONDAGUM; MENON, 19981998) is an API for
shared memory multiprocessing programming. It is managed by the OpenMP ARB tech-
nology consortium (ARBARB, 20132013), a nonprofit organization formed by several important
hardware and software industry, which have the role of defining, producing and approv-
ing the new versions of the OpenMP specification. It is a portable and scalable model
aiming to provide programmers flexible interface for developing parallel applications for
multi-platforms, being possible to use C/C++ and Fortran for programming.

OpenMP in MPPA performs a fork-join model, where a master thread is responsible
for creating a group of threads that will execute in parallel. After each thread completes
its task, they synchronize and end (they join), leaving only the master thread executing
again. MPPA is already prepared to run OpenMP code and no special feature is needed to
do it. The only restriction for OpenMP is the maximum number of 16 threads per cluster,
not being possible to manage threads creation.
POSIX threads: The pthreads (POSIX threads) libraries are a standard thread based API
for C/C++ widely used in multithread applications. The programmer can write programs
in C/C++ and use the GCC compiler with some special directives to build the executable
code. In this programming model, it is recommendable for the programmer to have some
knowledge of the processor’s architecture, to take advantage of the locality factor.

The programmer has total access to the architecture with the MPPA APIs allowing
low level calls. With these APIs it is possible, for example, to send a task from the I/O
node to a specific cluster or to create a communication channel between clusters and I/O
subsystem. Also inside a cluster it is also possible to use the pthreads library without any
restriction, creating as many threads as desirable, and using elements of pthread library
such as the commands join, exit, semaphores, conditional variables and more.

MPPA fully supports POSIX pthreads programming, where a process run in a cluster
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and threads run on cores belonging to this cluster, sharing the cluster’s memory (the 2MB
memory). Inter-processes communication is done through the NoC, using the NoC Inter
Process Communication library. It is possible to have different codes running on each
cluster of MPPA, allowing heterogeneous computing.

When developing code for MPPA processor using the POSIX threads library it is
necessary to split our code into two parts called master and slave. This is necessary
exactly because we have different operational systems running on different modules. The
master code runs on the I/O subsystems while the slave code runs in clusters.

As this model uses a memory shared paradigm, all cores in a cluster share the same
address space, leading to some intrinsic difficulties due to the model, such as false sharing
(TORRELLAS; LAM; HENNESSYTORRELLAS; LAM; HENNESSY, 19941994) and cache coherence which may also apply
when programming MPPA processor. It is entirely up to the programmer to be aware of
such characteristics and take it into account when programming.

Programming with pthreads libraries for MPPA can be a little tricky. As the appli-
cation’s code is written in C/C++, it is totally natural for programmers. However, some
tasks such as sending code to execute on a cluster, passing data between clusters and syn-
chronizing, for example, claim for reasonable knowledge of the APIs’ functions and how
to use it, making it difficult in a first moment.

3.4 MPPA’s execution model

Executing applications built with the POSIX threads explicit parallel programming
model in MPPA brings different possibilities concerning the platforms to be used and the
possibility of using a SIMD and MIMD (Multiple Instruction Multiple Data) (FLYNNFLYNN,
19721972) programming paradigms. It is possible to use MPPA to run in all cores the same
task exploring the SIMD paradigm. But this is a well known approach that GPUs often
obtain better results, because they are specialized hardware to operate under these con-
ditions. In this work the focus will remain in the possibility of using MPPA with the
MIMD paradigm, allowing heterogeneous computing. Over the next paragraph it will
be discussed about MIMD programming in MPPA, as well as compilation aspects and
communication connectors.

3.4.1 MIMD execution model

MPPA processor can easily suit the MIMD paradigm with its execution model. As the
code is divided into master and slave parts, it is likely to have more than one slave in the
application, being possible to have different instructions being executed at the same time
in different PEs of each cluster. The master source file is unique for each application, and
will be responsible for managing the slave side and for some processing. But the slave
side can be composed by more than one file. In other words, the slave side can be seen as
functions, which are sent to the clusters to be executed.

Being possible to send the same slave code to different cluster, or to send different
slave codes to each cluster, the compiled source file is composed by only one master
binary and one or more slave binaries, being called multibinary because of this behavior.
The structures of the master and slave files are very similar, both having their own list of
libraries, functions, a main function, exactly as a C/C++ source code. The difference is
that slave side will typically contain mainly calculating operations while master side will
typically contain more control and communication commands.
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The master-slave model of programming MPPA leads to an intrinsic need of providing
means for different modules to communicate. The master program will need to send data
to the slave, which will perform some operation and send the result back. This process
can happen as many times as necessary during the execution of an application.

The general structure of an MPPA program using the POSIX thread model is very
simple. The master usually creates all the features it need for communication, divide the
work by sending slaves to be executed on the clusters, and wait for them to return the
result. The slave side will also initialize the features it needs for communicating, create
threads to perform the task, waits for all threads to finish, and send back the result. This
is a very generic way to describe MPPA programs, but it often apply to most applications,
with some minor changes.

Data can be transmitted during the creation of a cluster process, through the parame-
ters sent with the mppa_spawn function. But it is often desirable to be able to send and
receive data after sending the task to a cluster, not having to wait until it finishes. For this
purpose the MPPA APIs provide programmers connectors and read/write functions to be
used with them, allowing such transfers to be done. The different connectors available on
MPPA will be detailed later. Inside a cluster, it is also possible to create threads and split
once again the workload. Thread management is fully supported using the MPPA APIs.

3.4.2 Compilation and execution aspects

Focusing on the explicit parallel programming model, and more specifically in the
POSIX threads libraries, there are some relevant information to be discussed for this work
about the compiler and execution tools of MPPA. Aspects of the compilation and how
the application is actually executed in the processor are discussed in detail in the next
paragraphs.

After writing the code of the application, naturally, it is necessary to compile it. To
facilitate the programmers’ adaptation and keep it portable, Kalray choose to use the GCC
compiler (STALLMANSTALLMAN, 20022002), which is a widely known standard compiler. GCC (GNU
Compiler Collection) is an open source compiler of the GNU project, which played an
incredible role in free software development. The advantage of using GCC is that almost
all programmers are pretty familiar with it, being not necessary to dedicate any time in a
new compiler.

Kalray provides a special makefile file that can be used by MPPA programmers, being
necessary only to adapt it with your application name and files, and choosing the right
options as desired, making it very easy to use. The programmer may also choose to use
his own makefile file. The file structure is very similar to a generic makefile, with minor
changes. Flags to indicate whether the code should be compiled for RTEMS or NODEOS
operational systems are necessary. It is important to include the MPPA tool chain files,
which contain the directives of MPPA APIs, libraries and all the needed information to
be linked with the binary files. To facilitate the programmer task, it can also include the
directives to run the application on MPPA or in a simulator.

The Kalray makefile file already contains the call to a linker that is responsible for
linking all the sources, master and slave(s) into one single binary file, called multibinary.
With the applications source code compiled and the multibinary file ready, it is possible
to launch this program to be executed on the supported platforms.
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Kalray provides the possibility of executing MPPA applications in a simulator, which
will closely emulates the behavior of MPPA. It allows multiuser executions, meaning
each user of the MPPA workstation can launch applications to run in the same time.
When using the real processor, one of the I/O subsystems is used together with the DDR
memory, responsible for charging the application to be executed.

3.4.3 Host-MPPA communication

To send a task to the MPPA processor it is necessary to do it through the host worksta-
tion, being necessary to provide the means for them to communicate. The communication
between host and MPPA is done with the help of drivers (host and MPPA side), an API
with low level functions and some connectors. More specifically, the MPPA side is rep-
resented by the I/O subsystem, which is the module responsible for dealing with host
communication. Physically, it is done by a PCI Express interface, very similarly to GPU
connection.

There are two connectors, Buffer and MQueue, available for making this link and they
are manageable by the API functions. The communication between two systems always
involves a sender or transmitter and a receiver, being always unidirectional. To facilitate
the reading, for now on the transmitter process will be called Tx and the receiver process
will be called Rx.
Buffer: The Buffer connector is in fact a buffer in the Rx process where a number N of Tx
processes have access to write. A trigger helps the Rx process to know when something
was written in the buffer. This trigger can be set with the help of the API functions, and
is the only mean the Rx processes has to be aware of new data available.
MQueue: The MQueue connector implements a message passing interface between one
Rx process and one Tx process. It is possible to set the size of the queue, being the
maximum number of messages that can be queued avoiding message loss. The size of the
message can be also defined by the programmer.

3.4.4 I/O Subsystem – Cluster communication

The communication between I/O subsystem and clusters is assured by a set of tools.
The C-NoC and the D-NoC are used as the physical path between them. To link the
physical world with the software, some connectors were developed by Kalray, are they:
Sync, Portal, RQueue and Channel. The difference between these connectors and the
ones presented in the previous section is that for I/O subsystem-cluster communication,
the C-NoC and D-NoC are used, something that not happens with host-MPPA connectors.

Together with an API providing low level functions, these connectors allow the com-
munication cluster-to-cluster and cluster-to-I/O subsystems. Each feature connects with
the NoCs in a special way, creating different modes of communication, for distinct pur-
poses.
Sync: The Sync connector is used exclusively for synchronization and consists in a 64
bit word in the Rx process accessible for a number N of Tx process for reading. It allows
one process to know the state of the other process to perform the synchronization. It is
implemented using only the C-NoC.
Portal: The Portal connector is in fact a memory area in the RX process where a number
N of Tx processes have access to write. When the communication is established, it is
necessary to set a trigger, so the Rx process can be aware when some Tx process makes
a write operation in the memory area. Only the D-NoC is used in this connector, and the
RX process needs to perform asynchronous read operations.
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RQueue: The RQueue connector implements a queued message passing communication.
It is possible to set both the size of the queue and the size of the messages exchanged,
being the maximum size of the message 120 bytes. It links one Rx processes to a number
N of Tx processes and both NoCs are used. A system of credits in the Tx processes is
implemented to managing the blockage of the process if necessary.
Channel: The Channel connector links one specific Rx to one specific Tx process, being
a used for both communication and synchronization. Both D-NoC and C-NoC are used,
being often used to provide a rendez-vous behavior between both processes. It is possible
to use asynchronous operations in the Rx process.

The choice of which one of them should be used will depend on the application and
how it communicates with other modules. Also, using one of them doesn’t eliminate the
possibility of using the others, being possible to mix them in a same application.

3.5 MPPA communication APIs

The MPPA processor involves different operational systems and different hardware
resources in each module. The host-device model implies that host and MPPA proces-
sor need to communicate, running different OS, through some physical feature (PCIe,
Ethernet, etc), but also some software support is needed, to treat hardware events.

Once the host sends to MPPA the application to be executed, it is received in the MPPA
by the I/O subsystems, which often need to send it for the clusters, to be calculated there.
Inside a cluster, it is also necessary to provide tools for the different PEs to communicate
and to ensure the creation and management of the different threads.

It means that these different modules need to communicate and not always use the
same mechanisms for doing it. Being aware of that, Kalray developed a set of functions
to provide all necessary features for MPPA programmers. These functions compose three
different APIs, totalizing more than a hundred functions including memory management,
message passing, threads management, and more.

The PCI Express API assures the communication between host and MPPA. The Pro-
cess Management and Communication API (PM&C) provides the means for I/O subsys-
tem and clusters to communicate. And finally, the NODEOS API supplies the clusters
with the necessary tools for assuring threads management. Figure 3.4 illustrates the dif-
ferent APIs and where they fit in MPPAs architecture.

Figure 3.4: MPPA and different APIs for programming it.
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3.5.1 PCI Express API

The PCI Express API allows the MPPA processor to communicate with the host work-
station. As the applications are launched from the host, it is necessary to provide the tools
for programmers to manage memory access, synchronization, etc. The feature responsi-
ble for assuring this communication is composed by three different modules: a host-side
device driver, a host-side low level communication library and a MPPA communication
library.

The host-side device driver allows direct memory accesses by the host on the 4GB
memory that the I/O subsystems also have access, through a set of special primitives for
memory management by handling interruptions. The host-side low level communication
library is responsible for masking the primitives used by the device driver to implement
a message passing interface for communication, memory management functions, to boot
and to shutdown MPPA, etc. The MPPA communication library is very similar to the host-
side low level communication library, being the differences occasioned by the necessity
that MPPA has of allocating memory. In fact, the device drivers used in MPPA and in the
host are different, leading to different libraries for managing it.

This API has around 30 functions for the tasks of: initialization and boot of the sys-
tem, host-MPPA message passing, dealing with errors, loading and starting applications,
multiple devices support, synchronization, message queue management (MPPA and host
sides) and memory transfers. Being this API the one responsible for launching an ap-
plication from the host to the MPPA processor, it is also responsible for launching an
application to the simulator. To assure the API works fine, it is necessary to install and
load the device drivers to the host and MPPA, besides of linking the host and MPPA sides
with the respective libraries.

3.5.2 Process Management and Communication API

The Process Management and Communication API is responsible for process cre-
ation and for assuring the communication inter-process. It is based on the classic POSIX
threads libraries with synchronous and asynchronous operations, adapted for MPPA en-
vironment, including the NoC and PCI features.

The master side of the application’s code runs on the RTEMS operational system.
In the other hand, the slave side of the application’s code runs on the NODEOS opera-
tional system. It implies in different address spaces, different primitives, different system
calls and interruptions, etc. It means that these two distinct operational systems do not
automatically communicate between them. But master and slave codes need to commu-
nicate, at list two times in an application: for launching the salves in the clusters and for
synchronizing when the slaves finish executing.

Often, the applications exchange messages with data and control between master and
slaves, being necessary to create a communication mean among them. Or, even some-
times, it is necessary to communicate with another cluster, to cooperate for solving a
task. These are some practical examples programmers face when programming parallel
architectures. The Process Management and Communication API aims to provide the
necessary tools to assure this communication.

This API was built following some guide lines to simplify and to make it as natural as
possible for programmers. It was decided to stay very close of the POSIX inter-process
communication, a well known standard. The communication between different modules
is assured by a sort of pipe, identifying a receiver and a sender process. Each pipe is de-
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signed to be either read only or write only, being always an unidirectional link. The com-
munication features available for intercluster communication were presented in sections
3.4.3 and 3.4.4. These communication features are typically used for creating software
barriers, data exchange, massage passing and synchronization.

The API defines types and functions that can be used for both RTEMS and NODEOS
systems, totalizing over 35 functions in the API. For process management, this API pro-
vides the mppa_spawn function, one of the most important functions, being used in the
master side of the application to create multi-clusters programs. Some other functions to
manage the processes identifier are also available, such as in the POSIX libraries.

The rest of the functions provided by the API are mainly used for synchronous and
asynchronous communication between clusters and I/O subsystems. Read and write op-
erations can be performed, for all different communication features, being also possible
to set triggers and signals, deal with errors, etc.

3.5.3 NODEOS API

The NODEOS API was designed to run on the clusters, and to be as much similar as
possible with the POSIX thread standard library, implementing the well known pthread_
functions. The API contains over 60 functions used for setting threads attributes, thread
management, thread mutex (mutual exclusion), thread conditional variables, semaphores,
synchronization and time operations.

The 16 PEs responsible for actually executing the slave code sent by the master share
the 2 MB memory available on each cluster, meaning all of them share also the same
address space. This leads to a concern about memory management inside the cluster,
being one of the functions of this API to provide the necessary tools to outline these
problems. POSIX standard mutex, conditional variables and semaphores are available to
be used carefully by programmers to avoid all sorts of memory problems, such as race
conditions.

The thread management contemplates all functions for creating, finishing and joining
threads. As all PEs share the same memory, the thread creating process is very light in
terms of system requirements. After the mppa_spawn function is called in the master
side, the slave code passed as an argument of the function will be loaded in the PE 0 of
the cluster, chosen to execute the main thread of the slave side. If none thread is created,
the slave code will perform entirely in the PE 0. However if a thread is created in the slave
side, it will be sent to be executed in the first free PE. Figure 3.5 illustrates this behavior.

Figure 3.5: PEs using the POSIX threads standards (KALRAYKALRAY, 2013a2013a).
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3.6 Final considerations

Programming MPPA processor using the POSIX Threads programming model is, in
most cases, not obvious, being necessary to study its hardware and software architectures,
to understand the expected behavior. The details involved in this task, such as different
operational systems, master-slave model, inter-modules communication APIs, take time
to learn, making it harder to start writing code for MPPA rapidly.

Even writing a simple Hello World application may take a while to understand the
necessary structures and API calls the programmer has to make to assure everything works
fine. Going deeper on programming MPPA is even more challenging, as new features and
possibilities may appear, transforming it into a complex task. Even if the API functions
were developed following the industry standards, as the number of functions overpass
a hundred and most of them have a considerable number parameters, it turns out that
programming MPPA with the POSIX threads explicit parallel programming model is not
easy at all, despite the flexibility it provides.

Being aware of the difficulties in starting to program MPPA, the main goal of this work
is to provide a higher level interface, freeing the programmer the task to go deep into the
details of the hardware and software architectures providing a simpler and faster way to
develop code for MPPA. The purpose and implementation of this solution are discussed
in the next chapter.
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4 SPECIFICATION AND IMPLEMENTATION OF A RUN-
TIME FOR MPPA

The MPPA manycore processor is a very recent architecture, with great potential and
also very promising for high performance parallel computing. However, as any other
massively parallel architecture, if the programmers are not able to fully use the hardware
resources available, writing optimized parallel applications, it won’t present any special
gain of performance. Instead of forcing users to learn a new language or a new program-
ming paradigm, it is desirable to provide them the opportunity of choosing the language
and paradigm they feel more comfortable, and which may possibly be the language their
applications are already written, being only necessary to port them.

As the OpenCL framework has being successfully used to program some multicore
and manycore CPUs and for GPGPU programming, it will then serve as an inspira-
tion to develop a runtime for MPPA, aiming to help programmers to develop code for
MPPA. This runtime will fit the explicit parallel programming model, more specifically
the POSIX threads model. OpenCL software architecture and execution model are in-
tended to serve as guide lines for the architecture of the runtime. The objective is to
remain close of OpenCL standard in terms of abstraction and functionality.

The main motivation is given by the fact that the POSIX threads model used together
with C/C++ are a world-wide spread standard that most programmers, if not learned pro-
gramming with it, are at least accustomed to it. But programming it in MPPA may not
be as easy as it is for other architectures, relying on the numerous and essentials MPPA
APIs’ functions. The main goal is then to build a runtime library, with a few number of
functions that could mask these details from the programmer and help them to develop
code for MPPA with only few information about the architecture and MPPA APIs.

It is intended, as the expected results of this work, to verify the limitations and dif-
ficulties to build such library and to evaluate the complexity decrease of programming
MPPA with this library instead of using MPPA API’s calls directly.

4.1 Runtime specification

The runtime to be developed has to be capable, in a first moment, of loading tasks to
MPPA, in the I/O subsystems modules and set up the communication features needed for
communicating with the other modules. After the master code is loaded and executing in
the I/O subsystem, it is desirable to send the slave codes to be executed on the clusters,
with data and parameters. Once the slave code is received in the clusters, it should also
bind the communication features with the ones created in the master and passed as a
parameter to the slaves. Once the slaves’ codes are executing, it is important to provide
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the means to create and manage the threads. During all the execution, master and slave
need to be able to communicate among themselves. Finally, master and slave have to
synchronize, aggregating the results computed by each module.

The activities mentioned in the previous paragraph cover all the main tasks every
single application running on MPPA often has to do. To provide these basic functionalities
we were able to synthesize these common tasks into five main actions, and this runtime
should implement the following functionalities:

• Initialization and communication set up;

• Launching a task in a cluster;

• Assuring communication between master and slaves;

• Redistribute this task into the cores belonging to that cluster;

• Final synchronization to send the results back.

4.1.1 User library function requirements

This work will be then based on the five actions mentioned, which contemplate the
most usual API calls when programming the MPPA processor. Of course complex ap-
plications might use other MPPA API calls, more specific ones, but it is not a goal of
this work to exhaust all functions and built a complete library, but only to analyze the
most essential functionalities, serving as a proof of concept. The five actions presented
in a macro level in the previous section are here explained in a MPPA point of view, with
more details.

The initialization action should be capable of creating all the communication features
for clusters to communicate with the I/O node and prepare the execution context for the
task execution. It must create all the structures and variables needed, letting the clusters
ready to receive a task and perform it.

Next action, for launching a task in a cluster, should provide the users all the support
for launching a job to the MPPA clusters initialized with the previous function. It will
send the name of the function that will be executed in the given cluster, besides of some
arguments, including data and necessary information for the clusters to perform correctly.
It must be possible to indicate which clusters to send the task.

As different modules of MPPA are involved when executing an application, it is nec-
essary to provide them the means to communicate and exchange data and controls. The
communication action should be responsible for providing all the necessary features to
assure this connection between master and slaves.

Once the task is sent to the cluster, it is now desirable to have it divided into smaller
pieces, which can be executed by each PE inside the clusters. The next action should be
responsible for assuring this behavior, providing all the necessary features to create the
threads responsible for calculating each little piece of the whole task. It is similar to the
launching cluster action in terms of parameters. As far as possible, it is also desirable to
choose which PE the function would be executed.

Finally, master-slave synchronization is desired to allow all different clusters to send
back their results and permitting the program to finish correctly. After sending the tasks
to be executed on the clusters, the master code waits for the results from each cluster,
creating a point of synchronization in the code. After the results are received, the program
can properly finish.
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4.1.2 Runtime architecture

The runtime developed will be accessible for the final users to build their applica-
tions. The user can then make calls to the runtime, but it can also make directly calls to
the MPPA APIs. Once the objective was not fully cover all functions in the APIs, only
the most common ones, it will mask some of the APIs calls, but some more complex
applications might need to use the full APIs’ specification.

As the runtime covers all the usual tasks a MPPA application have to perform, it is
entirely possible to build applications only using the runtime library, not being necessary
to use the other API calls, which is the case of the examples that will be presented latter
in this work. This way, the runtime is an intermediate feature between the operational
systems that have access to the MPPA processor and the application itself. The runtime
architecture is presented in figure 4.1, illustrating this behavior.

Figure 4.1: Runtime software architecture.

4.1.3 Runtime API specification

From the five main actions identified in the requirements, it was possible to synthesize
it into 9 functions that will be the visible for the user. They are the interface for the runtime
API. These 9 functions are presented in figure 4.2, and are detailed in the next paragraphs.

Figure 4.2: Runtime API functions’ headers.
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The functions available in the runtime API can be divided into three main types of
functions: communication, master and slave functions. The communication functions are
used by both the master and slaves sides, while master and slave functions are used only
in the master and slave side, respectively.
Communication functions: the communications functions are the ones responsible for
assuring the communication between master and slave(s). They are the functions number
1 and 2 in figure 4.2. In the communication, a buffer is used to allow master and slave to
interact.

The mppa_read_portal function is responsible for reading data from a buffer. It takes
as parameters a descriptor of the communication feature used, the associated buffer and
its size, the destination variable and the identifier of the transmitter. It is used always
when module wants to perform a read operation.

The mppa_write_portal function is responsible for the other side of the communica-
tion, by writing data in the buffer. It is used to any time a module needs to write something
to another module. It takes as parameters the descriptor of the communication feature, the
buffer associated and its size as well as the identifier of the module we want to write in.
Master functions: the master functions are used in the master side mainly to prepare the
context, to launch task to clusters and to allow different clusters to synchronize. They are
the functions number 3, 4 and 5 in figure 4.2.

The init_cluster function is responsible for initializing the master side of the appli-
cation. It should create the necessary features for communication as well as preparing
the execution context in the master side. It takes as parameters a descriptor of the mas-
ter instance and a pointer to the buffer that will be used for communication during the
execution, as well as the buffer size.

The mppa_launch_cluster function is responsible for launching tasks to be executed
on clusters. It takes as parameters the descriptor of the master instance, the identifier of
the clusters we want to send the task, a pointer to the function to be executed on that
cluster and the arguments we want to send.

The sync_clusters function is responsible for synchronizing the different clusters in
execution, performing a barrier. It takes as a parameter the descriptor of the master in-
stance allowing to identify the clusters in use.
Slave functions: the slave functions are the ones used in the slave side. They are mainly
used for preparing the context in the slave side, creating threads of execution, synchroniz-
ing those threads and properly finishing the slave instance. They are the functions number
6, 7, 8 and 9 in figure 4.2.

The init_kernel function is responsible for preparing the execution context in the slave
side. Its task is to receive the arguments sent by the master and creating and binding the
communication features. It takes as parameters the descriptor of the slave instance, a
pointer to where store the master arguments and information (pointer and size) about the
buffer to be used.

The launch_kernel function is called to create threads of execution in the slave. This
function is used to divide the work into the different cores available in the slave side.
It takes as parameters the slave instance descriptor, a pointer to the thread that will be
created, the identifier of the core we want to launch this thread in, the name of the function
to be performed and finally the arguments to be sent for the new thread.

The sync_thread is used to synchronize a thread when it finishes executing. It takes
as a parameter only a pointer to the thread we want to synchronize. It is called each time
a thread ends executing, so it can properly finish.
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The close_portals function is responsible for closing all the connectors created for
master-slave interaction. It should free all the memory allocated for this communication,
as it will no longer be necessary. This function should be called at the end of the slave
code, allowing it to properly end.

4.2 Runtime implementation

With a well defined purpose, the next step in the project consists in implementing the
runtime library discussed in the previous sections. This step consists in taking all the
requirements stated transforming it into code, picking the right data structures, functions
and types to be used in the library. It may also be necessary to adapt some requirements
to fit in MPPA programming models and the MPPA API’s functions available, but always
trying to stay as close as possible from the specification.

Next sections will discuss about the communication features used as well as the data
structures, explaining the choices made. The library implementation, detailing a bit each
of the functions is also presented, highlighting important aspects of MPPA limitations and
possibilities.

4.2.1 Programming environment

All the applications used for tests during the development were written in the C pro-
gramming language, using only standard C commands and MPPA API calls. They where
first developed in C, then ported to the MPPA processor with all APIs calls and then
adapted to use the developed library. Only standard C libraries, such as stdio, string, as-
sert, time were used. The POSIX threads library used is in fact inside the MPPA libraries,
mppaipc.h and mppa/osconfig.h, which contain the MPPA APIs functions, constants and
types’ declarations.

The runtime to be implemented targets C/C++ programming with the explicit parallel
POSIX threads programming model of MPPA. It will contain only standard ANSI C code
and MPPA’s APIs calls, not being necessary any other feature than it already is to compile
and execute it in the processor.

4.2.2 Communication features

MPPA presents distinct possibilities for the different modules to interact between
themselves, are they: MQueue, Buffer, Sync, Portal, RQueue and Channel. These fea-
tures were presented in detail previously in this work, and here our interest relies mainly
in the last four features, which are used for I/O subsystems and clusters communication.

The Sync feature is the most simple, and because of it can’t be used to exchange data,
being only a 64-bit word, used for synchronization. The RQueue feature implements
a message passing interface, with limited size of message (128 bytes), which is a huge
disadvantage for this approach, once the idea is to be able to exchange data. It is most
indicated to exchange controls, which tend to be small messages. Finally the Channel
feature links one specific receiver process to one specific transmitter process, which would
imply in creating and managing different structures for each module, with an unnecessary
overhead.

The Portal feature was in fact the most simple and the one that best fit the require-
ments of this project. The choice of using it instead of any other structure relies on the
fact that it can multiplex several transmitters’ processes to a single receiver process. An-
other important point is that it actually allocates a memory area for the communication,
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being possible to set the size of this area depending on the application, which is a really
interesting approach. Also, for being a memory area, it can be simply seen as bytes in a
low level, allowing the user to decide what type of data he wants to exchange.

After some tests, the portal feature turned out to be also very simple to use, but still
flexible enough to fit the requirements. Choosing it means all the functions in the library
use this kind feature, but it does not prevent the final user of building an application which
uses other communication feature, as they can coexist in a same program.

4.2.3 Data structures

As the library masks some important information from the final user, it is necessary to
store it somewhere, so when it is needed in another part of the program it may be available.
Some data structures were designed to help to concentrate the required information for
each module avoiding also the library functions to contain too many parameters, making
it harder to use. Three data structures were built to help programming this interface: one
for the portal communication, one for describing the master side and one for describing
the slave side.

The first structure was created to concentrate the needed information of the portals.
Each time a read and write operation is done it is necessary to inform which is the por-
tal it should read from or write in. When creating portal communicators, each of them
has a sort of identifier that is used latter to designate the right portal for each operation.
The mppa_aiocb_t and the file_descriptor field allow to correctly identifying the portal
structure targeted. Those are values that are returned by the portal creation functions and
are lately used by the read, write and close portal functions. The structure is presented in
figure 4.3.

Figure 4.3: Portal struct.

Both processes, the slave and the master, have some characteristics which need to
be used to describe them and store important information about them, which might be
frequently used. To allow such behavior, two structures of data were created to serve
as descriptors of the processes there are related, one for each side of the code. As the
master code runs on the I/O nodes, running the RTEMS OS, and the slave code runs on
the NODEOS OS, the names of the structures are: rtems_t and nodeos_t.

The rtems_t structure is used to describe the master process, and contain the necessary
information which will be used by the runtime library functions. It contains four fields:
pid, r_portal, w_portal and clusters. The pid field is a vector of mppa_pid_t, which is
the value returned by the mppa_spawn API call when spawning a cluster. Its size is 16
(one for each cluster) and it stores the pid of the spawned process. The r_portal and
w_portal fields store the information about the read and write portals, respectively. Only
one read portal is necessary, as all clusters write on it, but an array of 16 write portals is
necessary, once it is necessary to identify which cluster we are going to write in. Finally
the clusters field is used to control which clusters are being used or are available, also
being an important field for the synchronization of the different clusters.
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Figure 4.4: RTEMS struct.

The nodeos_t structure is used to describe the slave process, and it is a little bit simpler
than the master process. It has in fact three fields: rank, r_portal and w_portal. The rank
is the number of the cluster that specific slave is running in. The r_portal and w_portal
have the same function of the ones in the master side, holding the necessary information
about the communication features. In the slave side only one write portal is necessary,
once the I/O node is the only node we can write in.

Figure 4.5: NODEOS struct.

4.2.4 Functions implementation

In this section we detail the implementation of each function, highlighting the most
important aspects of each one of them. To provide the 9 functions that are visible for the
user in the runtime API interface, it was necessary to develop 6 more functions that are not
visible for them, but perform important tasks to allow them to correctly be implemented,
totalizing 15 functions. The headers of the additional functions that are not visible are
presented in figure 4.6.

Figure 4.6: Additional functions.

Communication functions: these functions are responsible for creating the portal com-
munication between I/O nodes and clusters. They are also responsible for reading and
writing in the desired buffer. All the additional functions are used for the communication.
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The mppa_create_read_portal function (number 10 in figure 4.6) is responsible for
creating a read portal, by associating a portal structure to a buffer. To create a portal it is
necessary to specify its path, which contains information of which modules are involved
in the communication. It allocates the memory for a portal structure, and opens the uni-
directional channel to receive data. It sets a trigger used for notifying the receiver about
available data in the buffer and it is also responsible for binding the created portal to the
D-NoC, which will be in the interaction. It returns the portal descriptor created. This
function masks 6 MPPA API calls.

The mppa_create_write_portal function (number 11 in figure 4.6) is used to create
a write portal. Creating a write portal is simpler than creating a read portal and it is
only necessary to send the path as a parameter, as it contains the information about the
modules involved in the communication. It creates the portal structure allocating memory
and binding it to D-NoC. This function masks 2 MPPA API calls.

The mppa_read_portal function is visible for the user, and is responsible for reading
from a buffer. It is necessary to inform which portal we want to read from, by sending
the right portal descriptor as parameter. The portal descriptors are stored in the structures
that describe both master and slave instances. It is necessary to send the pointer of the
buffer associated to the communication as well as its size. The function copies the data in
the buffer to a variable, also passed as a parameter. The rank parameter allows to identify
which cluster we have to read from. Internally, the identifier of the cluster is used as an
offset to the buffer, positioning the reader in the right place. Basically this function waits
for the trigger and read the buffer when data is available, masking 2 MPPA API calls.

The mppa_write_portal function is also visible for the user and is responsible for
writing something in the buffer. As in the read function, it is also necessary to specify
the cluster’s identifier, so the write pointer is positioned in the right place for writing in
the buffer. When calling the function, it is necessary to specify the portal we want to
write in and the buffer which actually contains the data we want to write. This function is
responsible for 1 MPPA API call.

The mppa_close_portal function (number 12 in figure 4.6) is used to properly close a
portal structure. It is responsible for freeing the allocated memory for the structures and
guarantying the communication channel returns the right value when finishing, indicating
it ended well. This function masks 1 MPPA API call.

The set_path_name function (number 13 in figure 4.6) is used to set a path name based
on the module involved in the communication. This function generates a unique path for
each module and for each type of portal (read and write). These values need to be unique
as they are the identifiers of the communicators used in the previous functions to create
the portals. The path received as a parameter is a standard path that will be modified
according to the rank, to produce the unique path. It returns a string which contains the
path for each module.

The set_cluster_id function (number 14 in figure 4.6) is responsible for setting a
unique identifier for each cluster, given its rank. It is used by the function set_path_name
to create the unique identifier path.

The copy_buffer function (number 15 in figure 4.6) is very simple, only used for
memory copping. It performs a single instruction which copies a variable to another.
It is used in the read portal function to copy the area in the buffer we want to read to the
variable. This function is responsible for managing the offset in reading, using the rank
parameter for such purpose.



44

Master functions: the master functions are responsible for creating the portal structures
for communication and for launching and synchronizing clusters.

The ïnit_cluster function is responsible for initializing the barrier structure, setting all
clusters to available. It will also be responsible for creating the read portal for the master
side. As we don’t know yet which clusters will be used, it is not yet necessary to create
the write portals.

The mppa_launch_cluster function is responsible for launching a slave to be executed
on a cluster. The cluster’s identifier is passed as a parameter, and it is necessary to spawn
the slave in that cluster. The function tests whether the cluster identifier is within the
range allowed (0 to 15) and if the cluster is available. If it is possible to spawn the slave
to that cluster, the function creates the arguments to pass to the slave. In the arguments
it is necessary to send, besides of user’s arguments, the cluster number and the path of
the master portal to be linked in the slave. It spawns the slave and sets that cluster to
unavailable, finishing by creating the write portal for that cluster in the master side. This
function masks 2 MPPA API calls.

The sync_clusters function is responsible for performing the barrier that will synchro-
nize clusters. It will search in the array for the clusters in use and will wait them to finish.
By the time each cluster finishes, it sets the cluster to available again, and closes the write
portal. Once all clusters have finished, it closes also the read portal in the master side.
This function masks 1 MPPA API call.
Slave functions: the slave functions are used in the slave side and have almost the same
functionality of the master functions, only adapting it to the slave context. They will
create the portal structures needed to provide the communication with the master and also
for managing threads creation.

The init_kernel function will be responsible for, in a first moment, receiving the master
arguments and parsing it (as it contains in fact three parameters – cluster identifier, master
path and master arguments). It will be also responsible for creating the read and write
portals used in the slave side.

The launch_kernel function is called each time the user wants to create a thread.
The number of the core we want to use for that thread is passed as a parameter. After
verifying it contains a valid value (0 to 15), the function is responsible for setting the
pthread_affinity property to spawn it to the right core. It is done by using a mask of 16
bits, each bit indicating one core. We set to ‘1’ the bit in the mask corresponding to the
core we want to use, and to ‘0’ all the other bits. For example, to create a thread on core
4, the mask used will be ‘0000000000010000’, corresponding to the decimal number 16.
The function will try to create the thread in the target core using the pthread_create prim-
itive, but if it is being used a special error message is sent by the core and is treated by the
function, sending it to the next available core. If all cores are in use, the function sleeps
for 0.1 seconds and tries again. This function masks 6 MPPA API calls.

The sync_thread is used to synchronize a thread in the slave. As the user was not
directly responsible for creating the thread, it should also not be directly responsible for
joining the thread. This function is used only to perform a pthread_join call, masking 1
MPPA API call.

The close_portals function is necessary because it is not possible to close the portal
structures when joining the threads in the slave, as it is done in the master side with the
sync_clusters function. It is due to the fact that joining the threads does not end the slave
side, as the main thread continues to execute and might want to send and receive data to
and from the master. It closes read and write portals and allows slave to properly finish.



45

4.3 Final considerations

We were able to fully implement the specification with the help of some additional
functions invisible for the user. The final API containing 9 functions fits all the require-
ments and provides all the functionalities defined in the five actions. A recapitulative of
the developed functions is presented in figure 4.7, with a brief description.

Figure 4.7: API functions.

The functions implemented for the runtime library are responsible for masking over
20 MPPA API calls, synthesized into 15 functions, where only 9 are visible for the user
in the runtime API interface. Each of these function not only replace the MPPA calls, but
also reduces the number of lines in the user’s code, as each of them do a lot of internal
control such as tests, assertions, etc. The structures implemented also facilitate the user’s
task, as all the important information is centralized in one single structure.

Besides of simplifying the common tasks, the runtime library hides from the user
some controls such as managing buffers, setting pthread affinity attribute to run on the
target core, managing arguments exchange between master and slave, etc. These tasks
may also require some effort from users when programming MPPA and are offered by the
runtime library.
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5 EVALUATION

After defining the requirements for the runtime library and implementing it, it is nec-
essary to use it in some applications and test it. In this chapter it will be described the
parameters used to evaluate our solution as well as the applications tests made to validate
the library functions and its performance. Finally, an evaluation of the solution proposed
is done based on the results obtained for each application, taking into account the relevant
aspects for this work.

5.1 Methodology and evaluation criteria

The methodology used to evaluate the correctness and the performance of the library
developed is to execute and compare some parameters of two different versions of the
same application: one version using only the MPPA API calls and one version using the
runtime library. These versions will be referred in the text by Kalray API and Runtime
API, for the version using only the direct MPPA API calls and for the version using the
runtime library developed, respectively. The parameters picked to help to evaluate the
proposed solution are: functionality, execution time and number of functions.
Functionality: it is important to make sure that the output of both versions of the ap-
plication is the same. It means to evaluate whether they are functionally equivalent or
not. This parameter will permit us to be sure the runtime correctly performs its tasks, not
influencing in the result.
Execution time: as using the developed runtime library implies in using another software
layer between the application and MPPA APIs, another parameter involved in evaluating
the solution is the possible overhead caused by this new layer in the software architecture.
In other words, it is necessary to measure the time the application using the runtime library
takes to run and compare it to the application which does not use the library, allowing to
see the overhead caused by the developed library.
Number of functions: the number of functions parameter aims to evaluate the decrease in
complexity involved in the proposed solution. A smaller number of functions implies less
previous knowledge on the details of the processor, such as API specific calls, hardware
and software architectures, etc. We will be looking at the number of specific MPPA
functions necessary to perform each version of the application, which allows us to have an
idea of how much learning effort would be required for someone to build that application.
All functions which are not from the standard C language will be counted. In the original
application, these functions are the MPPA API calls, while in the runtime library we have
developed they are the library API calls.
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These parameters serve as touchable comparators between the two versions of the
same application, allowing us to analyze and conclude about the viability of this imple-
mentation. They will also help us to estimate the decrease of complexity brought by the
runtime library functions.

All the results that involve time are an average value from 10 different executions.
The number of executions used was 10, since the values barely varied, allowing a certain
confiability.

5.2 Application examples

To validate the correctness and effectiveness of the developed function, and verify
if it was really doing what it was meant to do, some applications were needed. It was
necessary to choose applications with some meaning, but at the same time not too much
complex, as the objective of these tests were not the application’s performances itself, but
the fact that the library could work fine and also analyzing the complexity decrease of
programming these applications to MPPA using the library.

The applications choose to test the library are: one application for calculating π with
the Monte-Carlo method, one application to calculate the Mandelbrot set and finally one
for calculating a low pass filter. It was important to pick different applications to test the
flexibility of the solution proposed, instead of restricting it to one single solution.

5.2.1 Calculating π by the Monte-Carlo method

One of the applications that were used to validate the library works fine was the
method of Monte-Carlo to calculate the number π. This application can be easily par-
allelized to produce a more precise result, as a bigger number of points leads to a more
homogeneous random distribution.

The method of Monte-Carlo for calculating π consists in a statistic solving problem
method, based on random numbers. The principle is to inscribe a circle of radius R inside
a square with side length of 2*R, both shapes having their center in the origin. The area
of the circle will be π * R2. The area of the square will be (2 * R)2 = 4 * R2. So the ratio
between the areas of the circle and the square is π/4.

It means that if you generate N random numbers within the square, (N *π)/4 of them
tend to be also inside the circle. If you know the total number of points (N points), and
the number of points inside the circle (M points), it is possible to calculate the number π
as follow:

π = (4 ∗M)/N (5.1)

Figure 5.1 illustrates the behavior of the algorithm, where the random points are gen-
erated and spread in the square. The points inside the circle (to simplify, we take radius
R=1) are marked as red, meanwhile the ones outside the circle are marked as blue. To
simplify, you can use only positive numbers, within the first quadrant, which will provide
the same result.

With a number N big enough to assure a good probability distribution, this method can
provide a good estimative of the π number. It is possible to know whether the generated
point is inside or outside the circle by calculating and analyzing the distance of this point
to the origin, with the help of Cartesian theorems. If bigger than the radius, it is outside
the circle; otherwise, it is inside the circle.
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Figure 5.1: Monte-Carlo method for calculating π.

Four versions of this application were built: one using direct MPPA API calls and
focusing on threads, one also using direct MPPA calls but focusing on clusters, one using
the library and focusing on thread parallelism and finally one using the library focusing
in cluster parallelism.

The first and second versions, referenced respectively as Kalray API - threads and
Kalray API - clusters, are the application in pure C language, ported to MPPA and con-
taining only direct MPPA API calls. The first version uses only one cluster and 15 threads,
and the second version uses the 16 clusters, with one thread in each cluster.

The third and fourth versions, referenced respectively as Runtime API - threads and
Runtime API - clusters, use the functions of the developed library to execute. In the third
version, only one cluster is used to execute and inside this cluster, 15 threads are created
to calculate the algorithm. In the fourth version, instead of creating threads inside the
clusters, the 16 clusters are used, performing each one thread. A little description about
the approaches used is given in the next paragraphs.

In the first and third versions, the Kalray API - threads and Runtime API - threads, the
master sends the task to be executed on the slave side, which will be responsible for cre-
ating as many threads as desired to calculate the π number. Each thread calculates a given
number of points (in our case, one million points), and update a shared variable with the
number of points inside the circle. As they share the same memory space, this communi-
cation has no overhead, once it can be easily done by a global variable, accessible for all
threads. As each thread access a separated memory area for writing the number of points
they have calculated, there are no memory concurrency. The cluster itself is responsible
for calculating and printing the number π, after the threads synchronize.

In the second and fourth versions, the Kalray API - clusters and Runtime API - clus-
ters, the master side sends each cluster the task to perform and wait for the results of the
calculation. Again, one million points were used, but this time it is necessary to send it
through the communication features, once the clusters don’t share the same memory. To
do so, the buffer used in this version is a buffer of integers, and write/read operations are
performed at the end of the calculation to send back the results. After all clusters syn-
chronize, it is possible to process the individual results and converge to one single value
of the number π.
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Figure 5.2 shows the results obtained by executing all versions of the application. The
Kalray API - threads and Runtime API - threads are comparable between themselves, as
they execute the same operations. Equivalently, the Kalray API - clusters and Runtime
API - clusters versions can be compared between themselves as well.

Figure 5.2: Calculating π application results.

It is possible to see from figure 5.2 that all versions produced a similar result, showing
they are functionally equivalent. It is possible to see a little overhead caused by the library,
as both versions using the library took a little bit more time to execute. However, this
overhead was about 0.01 seconds for a total execution time of around 1.3 seconds, not
being very critical. The number of functions in the versions using clusters is drastically
reduced from 28 to 10 functions. In the version using threads it does not happens, as both
use 10 functions. It is due to the fact that in the thread version there is no communication
between master and slave, making the original version simpler.

The two approaches used explore the opposite situations, calculating only with clus-
ters or threads. But it is completely possible to build a hybrid solution, using as many
clusters and as many threads as desired. Both approaches performed perfectly, produc-
ing the expected result, proving the runtime library worked fine for this application. The
solution using clusters evidence it is possible to use a buffer of integers, avoiding the ne-
cessity of converting integers to characters and vice versa, in case the buffer was only for
characters. The communication between clusters and I/O node performed correctly.

5.2.2 Calculating the Mandelbrot set fractal

Another simple application used for testing the functionality of the runtime library
is the Mandelbrot set fractal. As well as the Monte-Carlo method for calculating π, the
Mandelbrot set can be easily parallelized using threads to calculate it.

Fractals are shapes belonging to the non-Euclidian geometry, being used exactly in
situations where the Euclidian geometry can’t be used or can’t be easily explained by
the traditional geometry. They usually can be expressed through an iterative or recurrent
process, not depending on the scale used. The two-dimension Mandelbrot set is one of
the most known examples of fractal shape.
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Basically, it samples complex numbers and evaluate whether the result of a mathe-
matic operation iterated in it tends towards infinity or not. In fact, it analyzes if a complex
number, when applied the quadratic polynomial operation a number N of times, remain
bounded or tend towards infinity, no matter how large N gets. The complex quadratic
polynomial is given by the formula below:

Zn+ 1 = c+ (Zn)2 (5.2)

It means that the next number of the sequence (Zn+1) will be given by the addition
of the complex number c with the previous number of the sequence, starting with Z0 =
0. Taking a number complex c, if the sequence generated is bounded, it belongs to the
Mandelbrot set; however if not bounded, then it does not belong to the Mandelbrot set.
An image file can be generated to analyze if the result of calculating Mandelbrot fractal
is correct. If correct, it should produce an image as Figure 5.3, with 540x540 pixels.

Figure 5.3: Mandelbrot set output.

Again, this application was ported to MPPA, and two versions of the application were
built, helping us in the evaluation. A first version, referenced as Kalray API, using only
direct MPPA API calls and pure C language was used to compare with the one using the
library, referenced as Runtime API. Both versions use threads inside a cluster to execute
the parallel processing, being their master code only responsible for launching the clus-
ters. No master-slave communication was needed in this application, as all calculation is
done in the slave side, which is also responsible for printing the output image.

The number of threads used directly influence the time it spends to calculate the Man-
delbrot fractal. As the number of threads grows, the execution time decreases. Because
of that, two opposite tests were used to verify the parameters: one with 2 threads and
one with 15 threads. Figure 5.4 shows the results obtained. In all executions, the image
produced was the same figure 5.3.
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Figure 5.4: Mandelbrot set application results.

The results obtained in figure 5.4 shows the applications successfully produced the
right image, being functionally equivalent. The time spent in each version is very similar,
but it is possible to identify the overhead caused by the library. In the versions with
15 threads, the overhead was about 0.4 seconds, from a total execution time of 13.87
seconds, around 3% of the total time. In the version with 2 threads, the overhead was of
0.43 seconds, from a total around 55.83 seconds of execution, representing less than 1%
of the time. It is possible to see that the number of functions used reduces considerably.
Both versions have the same number of functions as we only vary the number of threads
used, and not the source code itself.

5.2.3 Calculating a low pass filter

The last application used to validate the developed library is used to calculate the
convolution product between a sample input generated and a low pass filter. The first
version of this application, referenced as Kalray API, was already available for MPPA
users as an example for channel communication, using only MPPA API calls. The second
version of the application, referenced as Runtime API, was ported to use the developed
library, being only necessary to adapt it to use the runtime library functions.

The application is responsible for producing an input signal in the master side, which
is passed to the slave side using the communication features. In the slave side, inside the
cluster, functions are responsible for first calculating the filter coefficients, which will be
then used to calculate the convolution product between signal and filter. It produces an
output signal, which is the signal after passing for the filter, with only low components.

The application uses integers of 2 bytes (int16_t), so the buffer in the runtime library
was declared also as a 2 bytes integer, avoiding the conversion problems it could present
if the buffer was for characters. The output signal is sent back to the I/O node, through
the same kind of buffer (int16_t), to be printed there.

Figure 5.5 shows the comparison between the two versions of the application. As the
output consists in an array of more than a hundred components, it is not showed here, but
both applications produced the same result.
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Figure 5.5: Low pass filter application results.

From figure 5.5 it is possible to conclude that both versions have achieved the same
results, producing the same array in the output, proving their functionality. The time of
execution is very different from one version to the other, being the original version around
5 times faster. It is due to the fact that the original application uses a channel commu-
nication, with dedicated link between master and slave, speeding up the communication
overhead the library introduces. The number of functions, however, is reduced from 36 to
11 functions, evidencing the runtime API functions provide a simpler interface.

As the application was first built using the channel communication, it was interesting
to verify that the library worked fine using portal instead of channel. Another impor-
tant point was to verify that the buffer used in the library can be of any type, including
characters, integers and even structures, giving it more flexibility.

5.3 Final considerations

With the example applications presented on the previous sections we could in a first
moment verify that the runtime library developed was working fine, as all the examples
produced the same result using the implemented library and in their original versions. It
was possible to see that the execution time was close in both versions, with the overhead
caused by the library being very small or even negligible due the total execution time.

It was possible to verify that in most cases the number of functions needed from
the MPPA API was bigger than the number of functions needed when using the runtime
library. Decreasing the number of functions implies in easier and faster development for
the final user. As a consequence of decreasing the number of functions used, it was also
possible to observe in these applications that the runtime library decreases the number
of lines in the source code by 10% to 30%, depending on how much communication the
application uses. As more communication is used, more evident are the runtime library
gains in source code lines, as the communication functions are alone responsible for more
than 10 MPPA API calls.

The developed library stay closer to what is well known in the C language, masking
MPPA structures and API calls, which might not seem very natural for programmers at
a first moment. Providing functions with a more recognizable face help them to quickly
code applications, not having to spend hours reading documents and looking into exam-
ples to build a simple program.

Because of that, choosing solutions which can decrease the complexity of the project,
being faster to learn, can contribute to improve the project pay back, always providing a
comparable if not similar level of performance. Going further on the concepts of software
development, programmers always look for a way to build reusable and portable code,
avoiding to be obliged to rewrite the code if some change occurs. A high level library can
avoid such situations by masking the MPPA API calls. So if a specific function changes,
it could be absorbed by the more high level function and be transparent for the final user.



53

6 CONCLUSION

The industry trends towards heterogeneous computing and manycore architectures are
an important indicator that providing tools for developing and porting applications to these
processors is a growing market. However, programming manycore architectures are not
an easy task, as there is no consolidate solution in the market targeting all architectures
available. It appears as a great opportunity for companies to focus on new and efficient
solutions and for developers to build and improve their applications’ performance.

Developing code for MPPA processor is not trivial, as there is a lot of information that
need to be taken into account. Among the aspects necessary for programmers to learn
about MPPA before programming we can highlight: the hardware architecture of the
processor, its programming model (master-slave model, different operational systems)
and the numerous functions in the MPPA APIs. It is necessary to provide higher level
primitives to abstract these details from the programmers.

This work contributed, in a first place, for the whole group to improve their expertise
about the MPPA processor and how to program it, as it was necessary to study the pro-
cessor and understand its behavior. Another contribution is the actual runtime solution,
which is ready for use, and can be used for developing applications for MPPA using the
POSIX threads libraries and master-slave paradigm. An application written in C can be
easily ported to run on MPPA by adapting it with the runtime library developed.

We can also conclude, from the results obtained in this work, that investing time and
human resources in developing a higher abstraction layer for MPPA is a good idea, once
it decreases the complexity of programming MPPA reducing the number of specific func-
tions used, almost at no overhead cost. Using the runtime library prevents the programmer
of having to deeply study software and hardware details of the processor. Of course it is
still necessary to have some knowledge in the global architecture, the master-slave model,
etc. However, details such as how master and slave communicate, how to set a task to a
specific core, how to synchronize threads, are invisible for the final user, allowing them to
get quickly started developing applications to run on MPPA. An improvement of the cur-
rent solution or even a solution going towards the OpenCL and Pocl models is a promising
idea as an extension of this work.

It is possible to observe also that using the runtime library to build applications de-
creases the flexibility the programmer has over the application, specially regarding the
communication aspects. Another limitation of this work is that the applications used to
test don’t represent the whole universe of applications in the parallel world, as many appli-
cations need to cooperate using inter-cluster communication, which was not in the scope
of the runtime implemented.

As this work served as a proof of concept, with a positive result, a possible future work
would be to implement a more complex and complete library for the runtime. It could
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contemplate more specific functions, especially regarding the communication aspects. A
possibility is to aggregate more functions to help in synchronizing threads and clusters
and using different types of communication.

The solution proposed used only the portal feature for communication among the
different possibilities. This choice was made thinking on the requirements defined in
the beginning of the project. But providing the users the possibility of choosing another
communication type could be very interesting, mainly because it would be possible to mix
them. For example, an application could use the Sync feature for synchronization, the
Rqueue feature for control and flags exchange (with message passing), and data exchange
with portal and channel.

Another possibility would be to explore aspects of the cluster-to-cluster communi-
cation, which are not in the scope of this work. This is an interesting idea, as many
applications may need to use all different clusters, but still working in a colaborative way.
It would require functions to inter-cluster communication and synchronization. A library
with cluster-to-cluster communication would reach a new branch of applications.

Finally, the solution proposed contemplates exclusively the Process Management and
Communication API and the NODEOS API. Another alternative would be to develop
also high level primitives for the PCI Express API, providing tools for the user to easily
communicate with the host machine. It could be interesting in applications where the
host needs to communicate with other networks, including the Internet, or when other
hardware could be integrated to a system, such as a GPU or a DSP.
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Abstract. The recent increase in the number of manycore processors available
in the market, due to its high computing power and low power consumption, has
been raising new challenges in the parallel computing area. One example of
these processors is the Kalray MPPA R©-256 manycore processor that provides
massively parallel processing. The main challenge is how to efficiently program
taking advantage of the high parallelism level manycore processors can sup-
ply. Aiming to provide portable and flexible support for programming manycore
processors, one emerging solution is the OpenCL framework, a standard spec-
ification targeting heterogeneous hardware platforms that allows programmers
to easily express parallelism. One available implementation of OpenCL is the
Portable Computing Language (pocl), an easily-portable open source imple-
mentation. The idea behind this work is to analyze the viability of adapting the
pocl language for MPPA R©-256 processor.

1. Introduction
In the past few years the hardware industry has been facing several problems to keep
the same improvements of performance we had in the years before. In the same way,
the scientific advances achieved in several areas of the human knowledge are requiring
more and more computational power. Factors, such as power consumption and reliability,
which were not considered very important, are now being the main directives of projects.

The solution adopted by the hardware industry to improve performance is to use
parallel architectures by integrating several cores within a single chip. Since the beginning
of the 21th century, the multicore processors are becoming more numerous, and attending
different types of applications like smartphones, image and audio applications, signal
processing, and more. Some of the most interesting advantages of using this approach are
speeding-up processing and low power consumption.

On the other hand, the generalization of embedded multicore system solutions has
also brought new challenges for programmers, raising the complexity of programming
due to the inherent applications’ parallelism and the memory architecture used (shared or
distributed). Programmers are now expected to think parallel and build solutions which
take the most advantage of the hardware resources they have in hands.

This article focuses in one specific manycore processor, the Kalray MPPA R©-256,
a proprietary Multi-Purpose Parallel Architecture. This processor is one of the solutions
proposed by Kalray for high performance computing and low power consumption, and
supports two different programming models: dataflow model and POSIX model.

One of the emerging possibilities for programming in shared memory architec-
tures is the OpenCL framework, a standard specification which aims to allow program-



mers to easily express parallelism. As its name suggests, OpenCL is an open, royalty-free
standard which was created to execute across heterogeneous platforms, such as multicore
CPUs, GPUs and DSPs. The Portable Computing Language (pocl) is an open source MIT-
licensed implementation of the OpenCL standard, which aims to provide easy adaptation
for heterogeneous hardware.

The main goal of this study is to analyze the constraints existing to adapt pocl
language to the MPPA R©-256 processor. The MPPA processor, the OpenCL framework
and the pocl language will be presented and discussed in this paper highlighting their
relevant characteristics for general comprehension and for the purpose of this study.

In section 2 it will be discussed today’s parallel processing architectures, empha-
sizing NUMA and GPGPUs architectures, which have some similar characteristics with
MPPA processor. Section 3 briefly describes MPPA processor architecture, highlighting
its most relevant aspects. It will be presented, in section 4, the OpenCL framework and
the pocl language. Section 5 gives an initial approach to analyze the viability to adapt
and use pocl to program MPPA processor. Finally, in section 6, it will be presented the
expected schedule for developing the studies’ activities.

2. Parallel processing architectures

The most traditional and natural programming model is to build sequential programs,
where the instructions are executed one after another. They were the first approach used
in computer science and are very easy to understand. Nevertheless, executing a program
sequentially has been proven to waste processing time, especially during peripherals ac-
cess. Because of the CPU time wasted, programmers started to search for solutions that
could eliminate this loss. The first solution was to overlap I/O operations and processing.
With the help of a scheduler and context switching it was possible to execute one pro-
cess while another one was blocked waiting for I/O operations. This mechanism is called
Multitasking.

However having several processes running, sharing common resources and some-
times cooperating with each other, also brought the necessity of providing tools to allow
processes to efficiently exchange data. So the next step taken, also done in software, was
to use threads. Threads are different execution flows of a same process, which run in the
same memory context. As long as switching between threads does not involve a change
in the execution context, they are described as light-weight processes.

But these solutions were not, in fact, executing simultaneously in a given time.
The parallelism until this time was logical and not physical. With the apparition of mul-
ticore processors, it became possible to have two processes (or threads) executing at the
same time, using different hardware resources.

The parallel architectures were rapidly absorbed by the users and the industry, be-
coming more and more common. When the hardware parallelism became true, it brought
also new possibilities to programmers. It was now possible to execute one same instruc-
tion for multiple input data or even executing different instructions for multiple input data
in parallel. These situations mentioned before can be described respectively by the SIMD
(Single Instruction Multiple Data) and the MIMD (Multiple Instruction Multiple Data)
paradigms [Flynn 1972].



Based on those two paradigms, new classes of machines appeared. The SIMD
machines became very popular for processing video applications, due to the applications
inherent parallelism. They originated the GPUs (Graphic Processing Units). The MIMD
machines are today’s multicore processors, used for general processing purpose.

Different classes of MIMD machines exist, and are classified according to its
memory access. It is found three main classes of MIMD machines, which are: UMA
(Uniform Memory Access) machines, NUMA (Non-Uniform Memory Access) machines
and NORMA (Non-Remote Memory Access) machines.

UMA and NUMA machines have both shared memory and a unique address space,
and the different between them is that UMA machines share the same physical memory
(with uniform access), while NUMA machines have the memory physically spread on the
system (implying in non-uniform access). NUMA will be discussed on more details in
section 2.1.

NORMA machines are composed by a set of nodes interconnected by a network.
Each node is a complete computer system and no process is allowed to access memory
modules of other processors. The consequence is that NORMA machines have multi-
ple address spaces and distributed memory. The message passing paradigm is used to
program this kind of architecture. NORMA machines are out of our study scope.

The MPPA R©-256 manycore processor, target processor for this study, presents
some similarity with both NUMA machines and GPUs. That is the reason why this study
will focus on these two classes of multicore processors, besides of manycore architectures.

2.1. NUMA architectures

NUMA (Non-Uniform Memory Access) architectures are characterized for having differ-
ent accesses times depending on the data location on memory, once the memory is spread
on the system. The memory is not a single module, but is now divided in several modules.
A global view of a general NUMA architecture is shown in Figure 1. Even though, the
natural programming paradigm is shared memory, meaning a CPU can access a mem-
ory belonging to another module, because all cores still share the same address space.
Currently, the most widely used programming languages for programming NUMA ma-
chines are OpenMP [Dagum and Menon 1998], Pthreads [Drepper and Molnar 2003],
TBB [Pheatt 2008], Cilk [Blumofe et al. 1995] and StreamIt [Thies et al. 2002].

Two new concepts are very important to understand the NUMA structure: lo-
cal and remote access. A local access occurs when a CPU tries to access the memory
within its own module while a remote access occurs when a CPU tries to access mem-
ory addresses belonging to another module besides its own. This leads to an important
characteristic of NUMA machines: the NUMA factor. It represents the ratio in latency
between access times in remote and local accesses (a 10 NUMA factor means a remote
access takes 10 times longer than a local access). These two concepts are exemplified in
Figure 1.

Local accesses are faster than remote accesses, once the last one needs to pass
for the Communication Network to get the data. A very important point linked to local
and remote access is the performance achieved by a NUMA machine running a specific
application: reducing the number of remote accesses will increase the performance, as it



will take less time to execute. That is why it is important to store data and instructions in
the memory module associated with the CPU the program will be executed at. In other
words, it is very desirable to exploit locality when using NUMA machines. This usually
can be done with support from the operational systems, both by the scheduler and by
using system calls.

Figure 1. General NUMA architecture.

Usually each core in a NUMA machine has its own cache memory, to speed up
memory access and reduce execution time. But cache memories are local, and other cores
don’t have access to it. It leads us to a common problem that programmers face when
programming NUMA machines: the cache coherence problem. It refers to the consistency
of data stored in the main shared memory address space and local cache memories. It is
possible that some piece of data is present in the cache memory of two or more processors
at the same time. When one of these copies is changed, it may not be carried to the main
memory right away, making other cores caches inconsistent, which might be a problem in
some cases. Some architectures provide hardware support to guarantee cache coherence,
but some don’t provide any support. In this case, programmers have either to do it by
software themselves, or they can ignore the problem, but being aware of it.

Another difficulty related to NUMA machines and cache memories is the false
sharing problem. It happens when two processor from different modules share the same
cache line, without necessarily sharing common data in that line. So every time a write
operation is performed, it invalidates the others cores cache line, even if this operation was
not done in the data used by the other cores. It increases memory accesses, as each oper-
ation will invalidate the cache line, and the cores will be forced to re-read the cache line
for each new operation. Because of the difficulties mentioned above, it is very complex
to write efficiency programs for NUMA machines.



2.2. GPGPUs architectures

In the early years of computing, all processing was done by the CPU, including graphics’
processing. With the apparition of multicore architectures and using the SIMD paradigm
it was possible to create dedicate hardware to accelerate graphic processing, once these
class of application had an inherent parallelism (the same instruction must be performed
over lots of data). This was the beginning of GPUs’ industry, which has being developing
very fast since the beginning of the 21th century.

When comparing CPUs and GPUs architectures it is remarkable that CPUs have
most of its silicon surface area dedicated to memory (cache) and control, while GPUs
have smaller memories and control units, but usually have several arithmetic and logic
units (ALUs). This is the main factor which allows GPUs to massively process a given
input, extracting its parallelism. Control task is facilitated in GPUs because it executes
the same operation for all input elements.

GPUs are modules which are usually connected on a system bus of a conventional
computer. From this information it is important to highlight that for using GPUs it is nec-
essary to send and receive blocks of data between CPU and the GPU. This data exchange
between CPUs and GPUs is usually done by PCI express bus. The memory hierarchy in
GPUs usually presents global, cache and local memories. Global (or device) memory is
accessible for all processing groups. Cache memory is usually a L1 cache and is shared by
all processing units (PUs) in a same group. Finally, local memory refers to the registers,
and each processing unit has its own local memory. The traditional memory hierarchy is
shown in Figure 2.

Figure 2. Memory hierarchy in GPUs.

Due to the increasing demand for tremendous computational power in some ap-
plications like signal processing and real-time systems, soon programmers came up with
the idea of using GPUs to improve CPU processing, and not only to process graphics.
This was the beginning of GPGPUs (General Purpose Graphic Processing Units) pro-
gramming model. The paradigm used to program GPU, which is closely related to the
SIMD paradigm, is the stream processing paradigm [Buck et al. 2004].



Another important concept when programming GPUs is the notion of kernels.
Kernels are the part of a program that actually execute on a device (GPU). A kernel is
syntactically similar to a standard C function. The key difference is a set of additional
keywords and the execution model. For example, a kernel can be seen as the body of a
loop where each iteration is affected to a program unit.

The two main frameworks used nowadays for GPGPU programming are CUDA
[Nickolls et al. 2008] and OpenCL. CUDA is a proprietary solution, developed and main-
tained by Nvidia, which targets only Nvidia GPUs. OpenCL is currently the open dom-
inant framework for general purpose programming and is maintained by the non-profit
technology consortium Khronos Group [Khronos 2013].

2.3. Manycore architectures
With the increasing number of cores in multicore systems, another terminology appeared
to describe processors with several cores: the manycore processors. These processors are
the hardware purpose to sustain Moore’s law in the near future. It refers usually to proces-
sors with at least dozens to hundreds cores. It differs from multicore architectures, mainly
because of its intrinsic parallelism, showing some similarity with both GPUs and multi-
core CPUs. Manycore processors aim to maximize throughput, deemphasizing individual
core performance.

Manycore approach clearly targets very high parallel processing, being also re-
ferred as a highly-parallel device. The software running on manycore architectures is
desirable to be parallel, to take advantage of the hardware resources available. Another
important characteristic in this family of processor it is the usual presence of a NoC
(Network-on-Chip) which allows the cores to communicate with each other.

Another difference between multicore and manycore architectures is in the way
they map threads to their cores. While multicore architectures show a certain affinity
when mapping threads to cores, manycore architectures mapping is more flexible and
fluid. It leads to the biggest challenge faced when programming manycore processors,
which is to build efficient parallel programs. Multi-threaded programming is inherently
harder than single-threaded development, and it is also vulnerable to race conditions or
synchronization errors that deliver unpredictable results and can be hard to debug.

Finally, manycore processors are becoming popular in a moment where power
consumption is one of the main directives in the hardware development industry. That is
why this is a key factor for this kind of architecture. Provide low power consumption in
manycore systems is a very challenging task for hardware designers.

3. The MPPA R©-256 processor
The MPPA R©-256 manycore processor [Dupont de Dinechin et al. 2013a] was conceived
and produced by the Kalray society [Kalray 2013] as a solution to high performance com-
puting with low power consumption. Kalray is a French company specialized in devel-
oping manycore processors for high performance applications. It was built with a CMOS
28nm technology and integrates 288 cores in a single chip, having 32 cores dedicated to
resource management and 256 calculating cores for computational processing.

Kalray provides some numbers which show its high computational capacity and
low power consumption. The MPPA R©-256 processor can operate 500 Giga operations



per second and 230 GFLOPS, extracting the most of its 256 cores. Also the improvement
in power consumption when running typical applications, comparing to other processors,
is about 10 times, having a 5 Watts typical consumption. The next subsection will discus-
son more details the internal architecture of MPPA and its programming models.

3.1. MPPA internal architecture

One important characteristic found in the MPPA processor is its homogeneous approach
considering its 288 cores, which are all VLIW (Very Long Instruction Word) processors.
All of them have the same architecture, including the ones used for resource management.
It was a particular choice of Kalray experts because of its deterministic execution time and
low power consumption compared to others possible choices.

The MPPA’s 256 calculating cores are divided into 16 groups of 16 cores, and each
group is referred as a cluster. Each cluster has 17 cores: 16 calculating cores, called pro-
cessing elements (PE), and 1 resource management (RM) core used for control, besides
of a local shared memory. This memory is a 2MB low latency cache for instructions and
data, and it is shared by all the 16 cores in a single cluster. This organization is a huge
advantage of MPPA processor, enabling a high bandwidth and throughput between PEs
on a same cluster. Each PE has its own L1 cache, and for simplicity, the MPPA processor
does not implements cache coherence between L1 caches of its PEs.

We also find in the MPPA processor four Input/Output subsystems, one in each
side of the chip, being referenced as north, east, west and south. Each I/O subsystem has
4 cores, totalizing 16 cores dedicated to PCI express, Ethernet, Interlaken and other I/O
devices. The 4 cores inside a I/O subsystem share the same address space, and all of them
connect directly to 2 clusters.

Figure 3. NoCs architecture, integrating clusters and I/O subsystems.

The communication of the clusters is assured by two high speed low latency NoCs
(Network-on-Chips), one used for data transmission (the D-NoC) and the other is used for
control (the C-NoC). These NoCs have a 2D torus topology, integrating the clusters and



the I/O subsystems. Each cluster is associated with a node of the NoC as well as each
I/O subsystem, disposed as shown in Figure 3, extracted from [Dupont de Dinechin et al.
2013b]. One important point to highlight concerning the NoCs is that they provide for all
clusters a direct link with two I/O subsystems, including the insider clusters.

Today, the MPPA processor is being used connected to a host CPU, very similarly
to a GPU connection. The host CPU sends code to be executed in the MPPA processor
using the I/O subsystem. The MPPA then process the operations and write the output data
in a 2GByte RAM memory, which is connected to an I/O subsystem and can be accessed
by the CPU. All the transfers within the I/O subsystems and the MPPA clusters are done
by the NoCs. For programming the MPPA processor, there are two different approaches:
dataflow and shared memory programming models, which are discussed hereafter.

3.2. Dataflow programming model

One of the possibilities when programming MPPA processor is to use the dataflow pro-
gramming model. This model is characterized for modeling the program as graph that
specifies the data flowing, being a very different way to program from the imperative lan-
guages that most programmers are used to. One example of dataflow programming in the
MPPA processor using the Sigma C language is described in [Aubry et al. 2013].

For Dataflow programming model, Kalray has developed a set of tools available on
a graphic IDE based in C/C++ called MPPA ACCESSCORE IDE. It integrates a compiler,
a simulator, a profiler and a debug platform that allows programmers to develop parallel
applications without any special background on the hardware architecture. The dataflow
programming model, despite its advantages, is not yet very natural for most programmers,
which are accustomed to the POSIX programming model.

3.3. POSIX programming model

Another way to program MPPA processor is to use the POSIX programming model. The
pthreads (POSIX threads) libraries are a standard thread based API for C/C++, widely
used in multithread applications. The paradigm used in this programming model is shared
memory, so all cores in a same cluster share the same address space. Given the similarities
MPPA presents with NUMA architectures, difficulties mentioned in section 2.1 (such as
false sharing, cache coherence, locality, and others) when programming NUMA machines
may also apply when programming MPPA processor.

In this programming model, it is recommendable for the programmer to have some
knowledge of the processor’s architecture, to take full advantage of the locality factor.
MPPA supports pthreads programming, where a process run in a cluster and threads run
on cores belonging to this cluster, sharing the cluster’s memory. Inter-processes commu-
nication is done through the NoC, using the NoC IPC library. In this context it is also
possible to use C/C++ and OpenMP to program MPPA processor.

4. The OpenCL framework
In the last few years, the hardware resources available for programmers have become more
heterogeneous, including multicore CPUs, GPUs and DSPs (Digital Signal Processors).
It was desirable then to create a solution in software which could be able to run under
the different hardware, without having to change the applications’ source code. In this



context an emerging solution is the OpenCL (Open Computing Language) framework,
which aims to be a standard for programming heterogeneous platforms.

OpenCL [Khronos 2013] is a royalty-free standard started by Apple and main-
tained, nowadays, by the Khronos Group. Several expressive enterprises also collaborate
with OpenCL standard development, such as Intel, AMD, Nvidia and others. OpenCL
is a specification OpenCL is in its third release (OpenCL 1.2) from November 2011 and
is becoming very popular among GPGPU programmers lately, being supported by most
expressive GPUs fabricants.

The OpenCL framework described in [Munshi 2009] contains three components:
a platform layer, a runtime and a compiler. The platform layer allows OpenCL to discover
the device capabilities and to create an execution context. The runtime allows the host de-
vice to manipulate the context created. Finally the compiler creates executable programs
which contain OpenCL kernels. In the Khronos Group documentation an OpenCL lan-
guage is also specified, called OpenCL C, which is used to create kernels in the applica-
tion’s source code. The OpenCL architecture is composed by four models: programming
model, platform model, execution model and memory model.

The OpenCL programming model involves a host/device communication. Never-
theless the host and the device don’t need necessarily to be different hardware devices,
being possible that both are on the same hardware. In a multicore processor, for example,
it is possible to designate one core to be the host and the other to be the device. Anyway,
its traditional programming model suits perfectly MPPA processor’s connectivity, which
is done in this exactly way nowadays, very similarly to a GPU connection.

Figure 4. Platform model for OpenCL.

OpenCL presents a platform model very similar with GPUs, where we found a
host who issues commands to one or more Compute Devices (CDs). Each CD can be
divided into Computing Units (CUs) and each CU can also be divided into Processing
Elements (PEs), as shown in Figure 4.

The execution model of OpenCL involves two parts: the host program and the
kernels. Kernels are sent by the host program and are queued to be executed on the device.
Each instance of a kernel corresponds to a work-item, and can be organized into work-
groups. There are two main programming models for OpenCL: data and task parallel. In
data parallel model, all work-items execute the same program while task parallel model
works like a trap-door to run arbitrary code from the command queue.



The memory model found in OpenCL, shown in Figure 5, is somehow similar
to GPU memory model explained on section 2.2. There are four hierarchical memories:
global, constant, local and private memory. Global memory is accessible by all work-
items belonging to any work-group, for read and write operations. Constant memory is
a region of global memory that remains constant during the execution of a kernel. The
local memory is a shared memory within a work-group while the private memory is not
visible by any other work-item, being private for each work-item. The host has no access
to local and private memories meanwhile the device has access to all memories.

Figure 5. OpenCL memory model.

In a high abstraction level it is possible to describe the process of building and
executing OpenCL program as follow. A source code is built, containing mainly C com-
mands and kernels (OpenCL directives). The compiler generates the object code, which
will be linked by a runtime library, building the executable file taking into account the tar-
get hardware. The executable contains both C and OpenCL directives, and will be loaded
to the device memory to be executed.

Figure 6 presents the OpenCL software architecture. The application communi-
cates with the hardware through a set of tools including an OpenCL library, a Runtime,
and an OpenCL device driver, which are involved in the process of building executable
OpenCL code to run in a target device. The Platform Layer also helps in this process by
providing information about the hardware to the application.

OpenCL presents similarities and differences with CUDA. As a Nvidia proprietary
solution, CUDA targets only Nvidia GPUs, while OpenCL was developed targeting het-
erogeneous platforms. Both of them have been used for GPGPU programming, and have
similarities concerning their architecture and memory model. Performance comparison
between them have been made lately and CUDA usually provides better results especially
because of its specificity, although OpenCL is more flexible, losing some performance to
provide portability [Su et al. 2012].



Figure 6. OpenCL software architecture.

Being just a specification, it is necessary to implement OpenCL to run it on a
new device. Companies such as ARM, IBM, Intel and Nvidia have their own proprietary
implementations of OpenCL. There is also an open source implementation of OpenCL,
the Portable Computing Language [Pocl 2013] with an MIT-license aiming to be easily
adaptable for new target devices.

The pocl implementation is nowadays in version 0.7. It uses Clang [Clang 2013]
as an OpenCL front-end language, used to interpret kernels, and LLVM [LLVM 2013]
as back-end for the kernel compiler implementation, both belonging to the same project,
which is an open source project. The project aims to provide portability for pocl, so if
the hardware has a LLVM back-end, it should be easy to adapt pocl to the target device.
Pocl can be used for heterogeneous architectures, and aims to exploit all kinds of parallel
hardware resources, such as: multicore, VLWI, SIMD and others.

5. Adapting pocl for MPPA R©-256 processor
A possibility to program today’s manycore processors is to adapt the existent frameworks.
Our main goal in this study is to focus on OpenCL framework because it aims to provide
portability and efficiency when programming through heterogeneous platforms beyond
being a royalty free solution. Manycore MPPA processor is also very promising for high
performance parallel computing, and an OpenCL implementation targeting this processor
could bring a powerful tool to develop massively parallel and portable programs. It would
give programmers one more possibility when programming MPPA processor, making it
even more versatile.

The idea of combining both MPPA and pocl came up naturally. So the main goal
of this work is to analyze the viability of adapting the pocl language to develop programs
for the MPPA processor. It is intended, as the expected results of this work, to verify the
limitations and difficulties to accomplish such adaptation. To achieve such objective, the
purpose is to develop a runtime which will be linked with programs built using the pocl
language for the MPPA processor. The choice of pocl was mainly based in the fact that it
is an open source solution.

The runtime to be developed has to be capable, in a first moment, of loading
OpenCL kernels for MPPA, in its resource management (RM) core of the I/O controllers.



This RM core should then redistribute the tasks to be executed in the different clusters of
MPPA. The cluster’s RM core, in its turn, will then be responsible for receiving the task to
be executed and for creating work units for each processing core in that cluster. Finally,
it should wait for all cores to finish processing, synchronizing and sending the results
back to the I/O controller RM, which should then make it available in the MPPA global
memory. Basically, the proposed runtime should provide the following functionalities:

• Initialization;
• Launching a task in a cluster;
• Redistribute this task into the cores belonging to that cluster;
• Final synchronization to send the results back.

To provide these functionalities, it will be necessary to study and modify the func-
tion calls that the OpenCL (pocl) library makes. The communication between the host
CPU and MPPA processor will be also the runtime responsibility. It is, in fact, the exactly
purpose of the runtime, to be a tool which will automate the communication between
MPPA and the host CPU.

This work is part of a scientific cooperation between GPPD team (Grupo de Pro-
cessamento Paralelo e Distribuído) of the Instituto de Informática UFRGS and Nanosim
team, Université de Grenoble (France). The machine used to develop this work is located
in Grenoble, France, meanwhile the tests will be realized accessing the machine remotely,
from Porto Alegre, Brazil.

6. Project schedule

The activities to be done aiming to accomplish our goal of adapting pocl implementation
for MPPA processor have been sliced into smaller steps and the expected schedule is
presented in Table 1.

Table 1. Project schedule.
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