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ABSTRACT 

This work describes the implementation of a multi-agent system using Behavior 
Networks configured by Genetic Algorithms. The system uses the computer game 
Quake II as the simulated environment for the agents. Behavior Networks are used as 
the decision making mechanism. The Genetic Algorithm is used to configure the 
parameters of the Behavior Network. Each agent of the system is an independent 
program that connects to the game server to perform tasks and to exchange genetic 
material in order to evolve. The results obtained indicate a dynamically configured 
multi-agent system that can evolve and adapt accordingly throughout the course of the 
game. 
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ChicuxBot – Sistema Multi Agente de Rede de Comportamento 
Configurado por Algoritmo Genético para Quake II 

RESUMO 

Este trabalho descreve a implementação de um sistema multi agente usando Redes 
de Comportamento configurada por Algoritmos Genéticos. O sistema utiliza o jogo de 
computador Quake II como o ambiente simulado para os agentes. Redes de 
Comportamento são utilizadas como o mecanismo de tomada de decisão. Um 
Algoritmo Genético é utilizado para configurar os parâmetros da Rede de 
Comportamento. Cada agente é um programa independente que se conecta ao servidor 
do jogo para realizar tarefas e trocar material genético a fim de evoluir. Os resultados 
obtidos mostram um ambiente multi agente dinamicamente configurado capaz de 
evoluir e se adaptar apropriadamente conforme o andamento do jogo. 
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1 INTRODUCTION  

This text describes a solution to the problem of configuring the global parameters 
for a Behavior Network (MAES, 1989b). The solution developed in this work uses 
Genetic Algorithms (HOLLAND, 1975) to treat the problem of global parameter 
configuration. Behavior Networks (BN) are typically used to control the behavior of a 
multi-agent system. In order to develop the solution and verify that Genetic Algorithms 
(GA) can be successfully used to configure the global parameters of a BN, the well-
known computer game Quake2 (IDSOFTWARE, 2006) has been chosen as the testing 
platform for the experiments. 

Games constitute a good domain for the exploration of Artificial Intelligence (AI). 
In general, games have well defined rules, which make it easy to measure success and 
failure (RICH, 1988). A game can be used  as a research platform (LAIRD, 2001) to 
investigate, develop and test AI algorithms (ADOBBATI, 2001). In this research, the 
computer game Quake2 is used as the simulated environment for the experiments. The 
game has a complex and dynamic environment (JACOBS, 2005) that runs in real time.  
The software developed for this research implements a multi-agent system. The actions 
of an agent is selected by a Behavior Network algorithm. The Behavior Networks are 
configured dynamically by Genetic Algorithms. 

The result is an automated, computer-controlled player for the deathmatch game 
mode of Quake2. This automated player, named ChicuxBot, can adapt to different 
opponents during the course of the game, dynamically changing its own behavior 
through the configuration of the Behavior Network’s parameters by the Genetic 
Algorithm. The evolution of the ChicuxBot shown in lab experiments indicate that 
Genetic Algorithms can indeed be successfully used to solve the global parameters 
configuration problem. 

This chapter introduces Quake2 and the ChicuxBot. The definition of the problem 
engaged by this work is presented. The objective of the research is defined. The 
importance of the problem is discussed. And criteria for the success of the solution are 
established.  

The remainder of this document is organized as follows. Chapter 2 describes 
Behavior Networks, showing the problem of configuring the global parameters of the 
network. The following chapter discusses Genetic Algorithms. Chapter 4 shows how the 
implementation of the ChicuxBot was done. The next chapter presents a startup guide 
for running the ChicuxBot. Chapter 6 describes the tests conducted and their results. 
And finally, chapter 7 contains the conclusions. 

1.1 Quake II  
Quake2 is a first-person-shooter (WOOD, 2004). The game is entirely three-

dimensional. The players (human and computer controlled alike) have no global view of 
the world, but only the perception of their immediate surroundings (LENT, 1999). The 
game levels (or maps) are typically in the form of mazes with both open spaces and 
enclosed quarters. There are corridors, stairs, elevators, bridges and even water. Since 
the player does not have a global view of the map, he must learn to navigate through the 
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levels and search for items and opponents. The player has a health meter that is 
decreased every time he is injured, like being shot by another player, falling from an 
elevated height or even staying under water for too long. The game player can also pick 
up weapons, ammunition and medical kits that heal injuries, restoring the health meter. 
Quake2 has been around for quite a while and therefore it can run smoothly on a very 
modest computer by today’s standards. The game was released on December 6, 1997. It 
requires only a 90 MHz processor and 16 MB RAM to run. Quake2 has a 3D user 
interface, implemented in OpenGL (WRIGHT, 2000). The game server itself has no 
graphical interface and runs on text mode. This means that more processing power can 
be made available to the AI system when needed. Figure 1.1 shows a screenshot of the 
Quake2 client Graphical User Interface (GUI). Additionally, the game has open source 
code (NORLING, 2001) and there are versions for both Windows and Linux. Therefore, 
the game is platform independent and can be customized if required. To simply put it, 
this computer game is perhaps one of the best readily available simulation platforms to 
develop software agents and it has already been used to do so (LAIRD, 2000). 

Figure 1.1: Screenshot of the Quake2 client user interface. 

 
In the 3D first-person-shooter computer game jargon a “bot” is an automated player 

(AHN, 2006). Bots are used in multiplayer games to play against human players or even 
against other bots. The most popular of these types of games is called a “deathmatch”, 
where the objective is to simply kill all the other players and, of course, not get killed. 
The winner is the player with the most kills (or “frags”). In order to do so, the player 
faces conflicting tasks, like deciding whether to attack an enemy or run away for more 
ammunition. Such decision making problems, in which conflicting objectives are 
involved, are ideal to be handled with Behavior Networks. 

Behavior Networks is an action selection algorithm for autonomous agents (MAES, 
1989b). In order to work properly, the Behavior Network must have a number of 
different parameters configured. However, the BN algorithm itself does not define how 
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these parameters should be configured. It is up to the user (or programmer) to configure 
these settings. In large Behavior Networks this becomes a problem, because it is a 
complex, difficult and tedious job to be done by hand. That is why it becomes 
interesting to use Genetic Algorithms to automatically configure the parameters of the 
Behavior Network. There have been extensions of the BN proposed (RHODES, 1995). 
Extended Behavior Networks have already been used in Robot-Soccer (DORER, 
1999)(NEBEL, 2003) and in other first-person-shooter games like Unreal Tournament 
(PINTO, 2005). However, so far, the global parameter configuration problem  remains 
untreated. 

1.2 ChicuxBot 
ChicuxBot is a multi-agent system for Quake2. A bot is a computer-controlled 

player of Quake2. ChicuxBot uses Behavior Networks as its decision making 
mechanism which, in turn, is configured by Genetic Algorithms. The ChicuxBot multi-
agent system runs several instances of single ChicuxBots. All bots have the same 
Behavior Network, but each one is configured differently, according to their genetic 
code. As the game runs, the bots increase their fitness points by destroying other bots. A 
mating season happens periodically in the Genetic Algorithm (SIMOES, 2000), when 
bots exchange  genetic material. The genetic material carries the instructions on how to 
configure the Behavior Network. Since the best-fitted bots are most likely to pass on 
their genetic material to the next generation, the configuration of the ChicuxBot 
Behavior Network is improved through time. 

 

 
Figure 1.2: Levels of the ChicuxBot Architecture 
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The architecture of the ChicuxBot can be divided in two distinct levels. First, there 
is the Competence Module level that defines the abilities (or competences) that the bot 
has. This level is in the context of a single ChicuxBot. Several competence modules are 
combined in a Behavior Network to make a single ChicuxBot. 

On the next level, Genetic Algorithms are used to configure the Behavior Network. 
In this level, multiple ChicuxBots form a population for the GA. The bots have to 
interact with the user for several cycles in order to “learn” the opponent’s behavior and 
configure itself to play against that player’s style. Figure 1.2 shows a diagram of the 
ChicuxBot architecture levels. 

1.3 Definition of the Problem 
Quake2 is a changing and unpredictable environment (GRAHAM, 2005). Behavior 

Networks is an algorithm for action selection fitted for such dynamic environments 
(MAES, 1989b) (RHODES, 1995). A BN is composed of competence modules and links 
between these modules. Activation Energy flows among the modules according to the 
configuration of the network’s global parameters. Behavior Networks presents the 
problem of configuring its global parameters. Genetic Algorithms are an appropriate  
technique to solve the problem of configuring a Behavior Network. The objective of 
this work is to determine if Genetic Algorithms can be successfully used to configure 
the global parameters of a Behavior Network using the game Quake2 as a testing 
platform. 
1.3.1 Importance of the Problem 

The global parameters of a Behavior Network have to be properly configured in 
order for the technique to work effectively (MAES 1989a, 1991). Since the definition of 
Behavior Networks does not specify how this configuration can be done, it is often 
adjusted by hand. Or worse yet, the configuration of the global parameters is guessed by 
the programmer. Neither way of doing it can guarantee that the optimum configuration 
is found. And for large networks, the problem only gets harder. Therefore, without a 
proper solution for the configuration problem of the global parameters, the Behavior 
Networks algorithm may not reach its optimum efficiency. 

1.3.2 Criteria of Success 
The solution to the problem of configuring the global parameters of a Behavior 

Network will be successful if the performance of a BN configured by the proposed 
solution is better than the initial performance. In other words, if several agents with ad 
hoc configuration to their BN are put to compete with agents configured by the 
proposed solution, the performance of the latter should be significantly better. 

1.4 Other Considerations  
This section presents some theoretical concepts that are considered taken for 

granted in the rest of the text. The most important and complex of these is the concept 
of a Dynamic System, which is described in the following subsection. 

1.4.1 Dynamic Systems 

A dynamic system can be seen as a set of functions (rules and equations) that 
specify how variables change through time (WIKIPEDIA, 2005). A system of n 
dimensions is defined by a set of n differential equations of the first order. 

The state of a dynamic system in a determined instant in time is represented by a 
point in the n-dimensional space by the variable values of the system x1, x2, …, xn 
(coordinates) in that instant.  
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The set of all the possible states that can be achieved by a certain type of system 
defines a phase space. The sequence of states through time defines a curve in the phase 
space known as the trajectory. As time increases, the trajectories either occupy the 
whole phase space or converge to a set of minor dimension called the attractor.  

Mathematically, a dynamic system is described as an initial condition problem. 
This means that functions, parameters values and the initial condition are necessary to 
evaluate how the system behaves. Opposed to the variables, the parameters do not 
change through time. 

The dynamic system is deterministic if there exists, for every state, only one 
transition of state, that is, they are one-to-one. A dynamic system can also be random 
or stochastic if there exists more than one transition of state, that is, one-to-many. 

A dynamic system can either be discrete or continuous in time. A discrete system 
is defined by a function, z1 = f(z0), that originates the state z1 in the instance of time 
immediately after the initial state z0. The calculation process of the new state in a 
discrete system is called iteration. On the other hand, a continuous dynamic system is 
defined by a flux. 

 



2 BEHAVIOR NETWORKS 

This chapter introduces Behavior Networks. The problem of configuring values for 
weights and links of the network is explicitly shown. This particular problem is the 
main point of interest in this chapter. The text starts with a brief history of the Behavior 
Networks algorithm. Then, the basic ideas behind Behavior Networks and the main 
components of the algorithm are explained. The inner-workings of the algorithm is 
presented. Finally, we focus on the configuration problem of Behavior Networks.  

2.1 Brief History 
Behavior Networks was published in 1989 by Pattie Maes in an Artificial 

Intelligence memo of the Massachusetts Institute of Technology (MIT) (MAES, 1989b). 
The memo was entitled “How To Do The Right Thing” and, as the name suggested, 
presented a new algorithm to the problem of action selection for autonomous agents. 
The basic ideas behind Behavior Networks had already been explored by Maes in a 
more complex solution, but with less results, in another paper published in 1989: “The 
Dynamics of Action Selection” (MAES, 1989a). Just a couple of years later, Maes 
would publish another paper about Behavior Networks, exploring even further her ideas 
(MAES, 1991). 

Behavior Networks can be traced back to the context of 1986, when Marvin Minsky 
published the Society of the Mind (MINSKY, 1986). Minsky states that an intelligent 
system is composed by a society of interacting agents. Each mindless agent incorporates 
a competence module. Like a society of ants, agents have their specific competence 
tasks, like finding a sugar lump, breaking it down to pieces, moving the pieces around 
and so on; thus, the society emerges the intelligence of being able to find food and carry 
it back to the nest. No one would attribute this intelligence to a single ant, but the ant 
colony, however, seems to have some intelligence. Pattie Maes developed Behavior 
Networks to solve the problem of how action can be controlled in such a system. 

2.2 Behavior Networks Algorithm 
Behavior Networks is an action selection algorithm (MAES, 1989b). An agent based 

on Behavior Networks is composed of a set of competence modules. Each module 
represents a particular behavior of the agent. A competence module can also be referred 
to as behavior or action. The manner in which the competence modules are 
programmed is not specified by the Behavior Network algorithm, and can be 
implemented using any technique desired. In fact, a competence module can even be 
implemented by another Behavior Network. Each module implements a specific task to 
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solve a determined problem. In addition to the instructions on how to implement a 
specific behavior, a competence module i is composed of: 

• ci – Precondition list 

• ai – Add list 

• di – Delete list 

• �i – Activation Level 

A competence module can only be executed once its list of preconditions has 
become entirely true. The add list contains the items that become true after the behavior 
has been executed. A module also has a delete list of predicates that become false after 
the action is performed. Activation Level is the amount of activation energy that a 
competence module holds in a specific moment in time (MAES, 1989b). 

The competence modules of the network are connected via links that spread 
activation energy. The links can connect the competence modules to objectives, 
environment states or other modules. A module executes once it reaches a certain 
activation energy threshold. There are three different types of links that can either 
activate or inhibit the system: 

• Successor links 

• Predecessor links 

• Conflicter links 

A successor link connects two actions that should be taken in a particular sequence. 
For instance, the bot should first find an enemy and only then shoot at it. Formally, 
given the competence modules x and y, there is a successor link from x to y if every 
proposition in the add list of x is also a precondition of y. A predecessor link works the 
other way around, that is, it connects a module to another behavior that makes a 
precondition true. For example, the ChicuxBot will only dodge if a fire is shoot at it. 
Formally, there is a predecessor link from x to y if every precondition of x is also in the 
add list of y. Finally, there is a conflicter link between behaviors that conflict with one 
another, that is, an action that would make the precondition of another competence 
module false. There is a conflicter link from x to y for every precondition of x that is 
also in the delete list of y.  

Activation energy flows through the Behavior Network. The energy comes from two 
major sources: the goals of the system and the state of the environment. If a Behavior 
Network is configured properly, the activation energy will accumulate in the 
competence module that holds the best action to be taken in order to achieve the goals 
of the system. The Activation Energy Flow can be categorized in the following: 

• Activation by State 

• Activation by Goals 

• Inhibition by Protected Goals 

• Activation of Successors 

• Activation of Predecessors 
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• Inhibition of Conflicters 

The state of the environment can inject activation energy into the system. For 
example, a state that represents an opponent player nearby might send activation energy 
to the competence module that shoots at the enemy. Goals can also increase the amount 
of activation energy in the system. For instance, the goal to kill the enemy can stimulate 
the navigation module to execute, so that the ChicuxBot will run around the map in 
search of enemies to destroy. Protected goals, on the other hand, can inhibit the system. 
Inhibition is the removal of activation energy from modules that would undo the 
achieved goal that is to be protected. If the bot has its aim locked at an enemy player 
and is ready to fire, it would be unwise to turn around and pursue another objective (like 
looking for ammo or health kits) before actually killing the enemy.  

As mentioned before, Behavior Networks have global parameters that are used to 
configure the action selection behavior of the network (MAES, 1989b). The global 
parameters are: 

• �   Activation Threshold  

• �   Proposition Energy 

• �   Goal Energy 

• �   Protected Goal Energy 

Activation Threshold is the amount of activation energy a module must achieve in 
order to execute. Preposition Energy is the quantity of activation energy a state injects 
into the network when its proposition is true. Goal Energy is the amount of activation 
energy a goal feeds into the system. Protected Goals, on the other hand, take activation 
energy away from the network. 

2.3 The Configuration Problem 
Behavior Networks has the problem of configuring values for the weights and links 

of the network. As Maes points out in her paper (MAES, 1989b), Behavior Networks 
“provide global parameters, which one can use to tune the action selection behavior to 
the characteristics of the task environment”. Indeed, it does. But how exactly do we 
configure the global parameters? Maes paper does not specify how. For small Behavior 
Networks, with few links and modules, parameter configuration can be done by hand. 
But for larger networks, this task becomes extremely difficult and inefficient to be done 
manually.  

Configuring the global parameters of a Behavior Network requires finding the 
optimal weight value of each link in the network. And this kind of problem is efficiently 
solved by Genetic Algorithms (GOLDBERG, 1989) (MARDLE, 1999) (SINGH, 2005). 
As is shown by the experiments and tests conducted with the ChicuxBot, Genetic 
Algorithms are appropriate to handle the exact kind of problem that the configuration of 
a Behavior Network parameters presents. That is, Genetic Algorithms provide an 
efficient solution to the problem of finding the optimum value in a wide-base search. 

  



3 GENETIC ALGORITHMS 

Genetic Algorithms is a huge topic and can easily fill up a whole book on its own.  
It is assumed that the reader is familiar with the concept of Genetic Algorithms. A 
detailed tutorial of the inner-workings of Genetic Algorithms escapes the scope of this 
text and, therefore, will not be shown here. What this chapter does present is a study of 
the theory and main characteristics behind Genetic Algorithms.  

Rather than providing a minute description in exact details of every aspect in each 
component of a Genetic Algorithm, the following sections describe the reasoning 
behind the possible choices for each configurable item of the algorithm. The text 
examines the effects and consequences of the different configuration options for a 
Genetic Algorithm. What follows is not an introduction to the concepts of Genetic 
Algorithms, but an analysis on how to use the mechanisms made available by the 
technique. 

The text starts with an introduction to Genetic Algorithms, presenting an overview 
of the algorithm. The following section studies the possible configuration options and 
development choices for the mechanisms. The final section briefly presents an overview 
on how the Genetic Algorithm of the ChicuxBot was implemented. The details of the 
particular implementation of the Genetic Algorithm used by the ChicuxBot to configure 
its Behavior Network are specified in chapter 4. 

3.1 Genetic Algorithms Overview 
Genetic Algorithms, as the name suggests, were inspired by Darwin’s Theory of 

Evolution. They were proposed by John Holland, in the work entitled “Adaptation in 
Natural and Artificial Systems”, published in 1975 (HOLLAND, 1975). The basic idea 
of Genetic Algorithms is to use the same mechanism of evolution found in Nature. 

The population of the Genetic Algorithm represents a set of solutions to a particular 
problem. Each solution is represented by a chromosome. The structure or the encoding 
of the chromosome depend on the specific problem being handled by the Genetic 
Algorithm. Therefore, the encoding of the chromosomes vary dramatically from one 
problem to another. 

Each new generation of the population should be better than the older one, that is, 
the Genetic Algorithm should be closer to finding the optimum solution to the problem. 
Human-beings  are the proof that the evolution system works. The basic structure of a 
Genetic Algorithm is presented in figure 3.1. 
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Figure 3.1: Basic Structure of a Genetic Algorithm 

 

The Genetic Algorithm starts by initializing the population. Then it executes the 
fitness function for all individuals of the population. The fitness function evaluates each 
individual of the population, giving it a score according to its fitness. Once the whole 
population has been evaluated, the Genetic Algorithm checks if it has a good enough 
solution according to a predefined criteria. If the desired criteria has not been met, the 
algorithm starts the reproduction process. This process creates a new generation of 
individuals. The first step is to select the individuals of the population that will pass 
their genes along to the next generation. The manner in which the selection can be done 
is analyzed in the next section of this chapter. The selected individuals have their 
chromosomes recombined in the crossover process. The crossover produces the new 
generation and can either replace the old population partially or in its entirety. During 
the crossover, mutation of the genes can occur with a certain degree of probability, 
according to the configuration of the Genetic Algorithm. 

3.2 Configuration Options 
This section contains  a description of the main parts of a Genetic Algorithm and is 

structured as follows. The two most important elements of a GA are analyzed first. 
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Namely, they are the chromosome structure and the fitness function. Then, the other 
remaining major parts of a Genetic Algorithm are described one by one. The 
configuration options of a Genetic Algorithm (GOLDBERG, 1989) are: 

• Chromosome Structure 

• Fitness Function 

• Population Initialization 

• Population Size 

• Stop Criteria 

• Selection Method 

• Crossover 

• Elitism 

• Mutation 

• Predation 

The text starts with the two most important configuration options of any Genetic 
Algorithm: encoding of the population and the manner in which the individuals are 
evaluated. These two items are the most difficult parts to implement, and they are the 
major factors in determining the performance and efficiency of the algorithm. The other 
mechanisms of the Genetic Algorithm analyzed are: the initialization of the population, 
the definition of the population size, the stop criteria for the algorithm, the selection 
method used for reproduction and the crossover process executed to combine the 
genetic material of the selected individuals. 

3.2.1 Chromosome Structure 

The encoding of the population is directly related to the problem being treated. The 
structure of the chromosome can change radically from one problem to another. The 
definition of the chromosome is one of the two most important factors in determining 
the ability of the Genetic Algorithm to find the optimal solution for the problem. If the 
population is not encoded properly for the problem at hand, the Genetic Algorithm 
might not work at all. 

It is up to the programmer to define the structure of the chromosomes according to 
the problem. There is no certified method to encode the population. It has to be done by 
hand. Each case is specific and every problem is different. Hence, defining the structure 
of the chromosomes is one of the most critical and difficult parts in the implementation 
of a Genetic Algorithm. It is generally agreed upon that half of the work in 
implementing a Genetic Algorithm is encoding the chromosome. The remaining half of 
the work to be done is defining the Fitness function. 

3.2.2 Fitness Function 

The fitness function determines how good (or fitted) an individual of the population 
is. The fitness function receives a chromosome as its input parameter and returns a score 
value for that genetic material. The closer that particular individual is to the optimum 
solution, the better it should score in the fitness evaluation. 
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Along with encoding the population, the fitness function is the other most important 
part in the implementation of a Genetic Algorithm. And just like the definition of the 
structure of a chromosome, there is no standard method to implement the fitness 
function. Each problem is a different case and will require a different solution. The 
programmer is in charge of developing an efficient fitness function. 

3.2.3 Population Initialization 

The initialization of the population is typically random. The value of each 
chromosome for a single individual is randomly chosen via some probabilistic function. 
The more different gene values that a random initialization function produces, the more 
genetic options the Genetic Algorithm will have to work with. 

According to the particular needs of the problem being handled by the Genetic 
Algorithm, the initialization function can perform validations on the random data 
values. For instance, a problem might require that there are no repeated genes or that the 
values are within a certain range. With randomly initialized data, a validation check is a 
good practice to be performed. 

The initialization function  can also load the genome of a previously saved 
population. The Genetic Algorithm can then continue the evolutionary process for that 
population with new generations. The population can also be started with a seed, for a 
more directed search. And finally, if there is a good guess of where the optimal solution 
is in the search space, the population could be initialized by hand (or again, from a 
seed). 

3.2.4 Population Size 

The population size of a Genetic Algorithm can either be fixed or vary through time. 
In a population of fixed size, the number of individuals remains constant throughout the 
entire execution of the algorithm. On the other hand, a population of variable size can 
increase or decrease the number of individuals in the population. In this case, a control 
function is needed to manage the size of the population (MICHALEWICZ, 1994). 

The purpose of having a population of variable size is to optimize the performance 
of the Genetic Algorithm. The size of the population directly affects the time a GA takes 
to execute. The bigger the population, the more processing power the algorithm will 
require. Therefore, the larger the population gets, the longer each generation will take to 
be processed.  

However, as the population increases, so does the search space of the algorithm. 
This means that the GA will have better changes of finding the solution with fewer 
generations. So, although the time each iteration will take to execute with bigger 
populations increases, the algorithm can find the solution with less iterations. Changing 
the size of the population affects the time it will take for the Genetic Algorithm to find 
the solution. 

Besides that, the need for a large or a small population during the execution of 
the algorithm can vary through time. In some situations, a big population might be very 
useful. For example, when the algorithm needs to broaden its search space, in order to 
avoid or get out of local extremes and continue its evolution. In other situations, 
however, a large population would only be a waste of time and processing power. For 
instance, when there is no need for a large search space and the algorithm is not using 
all of the genetic variety it has at its disposal to continue the search. 
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Varying the population size is a configuration that has to be carefully analyzed 
and fine-tuned. It is a trade-off between the time each iteration of the algorithm takes to 
execute and the total number of iterations needed to be performed in order to find the 
desired solution. A well adjusted population size variation control can certainly bring 
performance benefits to the Genetic Algorithm. 

3.2.5 Stop Criteria 

Most Genetic Algorithms specify a stop criteria to determine when the computation 
should be terminated. The stop criteria could be the number of iterations the algorithm 
has executed (in other words, the number of generations spawned), the time elapsed 
since the algorithm started running (establishment of a time limit) or an acceptable 
threshold for a good-enough solution, just to name a few. 

If the stop criteria is poorly defined and it interrupts the computation prematurely, 
the Genetic Algorithm will not be able to find the best solution. On the other hand, if the 
stop criteria allows the evolution process to run for too long after the solution is already 
found, the Genetic Algorithm will take more time than is necessary to finish its 
processing. Or worst yet, if the computation goes on for too long, there is the possibility 
that the solution provided by the Genetic Algorithm will downgrade. This could happen, 
for example, due to an unfortunate mutation of a key individual or the whole population 
can simply start to go down an evolutionary path that will produce a solution that is 
worst than the one that is currently available. 

3.2.6 Selection Method 

The selection method determines how the algorithm chooses which individuals of 
the population will take part in the reproduction process and pass their genes along to 
the next generation.  There are many types of selection methods. This section will 
analyze two of the most popular ones: the roulette wheel and the tournament methods. 

The Roulette Wheel is probably the most popular technique used as the selection 
method for Genetic Algorithms. In this method, the entire population is represented by a 
segmented wheel (WHITLEY, 1994). The total number of segments in the wheel 
correspond to the number of individuals in the population. Each individual is 
represented by a segment according to its fitness value. The most fit an individual is, the 
bigger its segment in the wheel will be. To select an individual, the wheel is rolled. 
When the wheel stops rolling, the individual who’s segment is facing the marker will be 
the winner. In this manner, the most fit individuals will have better chances of passing 
their genes along to the next generations. Poorly fitted individuals are unlikely to have 
many chances of passing along their genes.  

In the Tournament selection method (GOLDBERG, 1990), n individuals are 
randomly selected from the population. The most fit individual from this group will 
have its genes passed along to the next generation via the crossover procedure. This 
process is repeated until enough individuals have been selected to reproduce and create 
the new generation. 

3.2.7 Crossover 

Crossover is the process of reassembling the genetic material of two chromosomes, 
producing a new individual. There is an enormous variety of ways in which this process 
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can be done. However, they can all be classified in to just two categories, according to 
the way the chromosome is divided for the crossover: one point and multi-point. 

In the one point crossover method, the chromosome is broken up in two parts 
(WHITLEY, 1994). The exact location where the chromosome is divided yields 
different categories of one point crossover methods: the single separation point could be 
placed exact in the middle of the chromosome, separating it into equal parts; or the 
chromosome could be divided into uneven halves. Furthermore, the point of division 
could be selected from a myriad of choices, varying each time for every crossover. 

The multi-point crossover establishes several points along the chromosome for it to 
be divided (SPEARS, 1991). The number of divisions and the size of each segment can 
vary according to the configuration of the particular multi-point crossover 
implementation. If compared to the one point method, the multi-point crossover blends 
the genetic material more rapidly. Although this widens the chance of creating a better 
combination of genes, it also increases the chances of breaking up a good one. 

3.2.8 Elitism 

Elitism is the preservation of the most fitted individual from one generation to the 
next. The genetic code of the selected individual from the previous generation is copied 
gene by gene to the chromosome of the new individual in the next generation. In other 
words, a clone of the elite individual is made. One or more individuals can be cloned 
during the reproduction process, according to a predefine parameter. 

The goal of elitism is to preserve the best solutions found in the previous generation 
(COSTA, 2004). However, it can have a side effect: elitism can hold or push the 
population back to a local maxima.  

3.2.9 Mutation 

Mutation is the alteration of the genetic code of a particular individual of the 
population. This mechanism introduces diversity or, in other words, fresh new genetic 
material to the population. This can be particularly useful, for instance, if the evolution 
of the GA is stuck at a local maximum and the population does not have enough diverse 
genetic material to get out of that local maxima. Mutation of the genetic material can 
introduce the gene needed to get the population out of jammed point. And with a little 
luck, mutation can provide a shortcut to finding the optimum solution. 

On the other hand, mutation can also be disruptive to the evolution process 
(WHITLEY, 1994). If the mutation rate is set too high, then the Genetic Algorithm will 
not be able to focus on an evolutionary path and will never evolve to nothing. With a 
mutation rate too high, the Genetic Algorithm will practically perform a random search. 
Mutation can also harm the evolution if it affects a highly fit individual with a change 
that downgrades its performance or fitness value. This last case can happen whatever 
the rate of mutation is set to (unless it is set to zero, which would be disabled, of 
course). Therefore, even with restrained rate settings, mutation can be harmful to the 
evolution process. But it can also be the solution to escaping local maxima. 

3.2.10 Predation 

As it happens to all types of animals in Nature, the population of a Genetic 
Algorithm can also have predators (XIAODONG, 2003). A predator eliminates an 
individual and it’s respective genetic material from the population. Intuitively, one 
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might think that the predator would always hunt and kill the least fitted individuals of a 
population. This maybe true for most of the cases. However this intuitive notion can be 
misleading. Typically, the predator will end up catching the slowest, least skilled, 
inexperienced or injured prey in the herd. Take, for example, a lion hunting down a 
deer. The predator will most likely attack the infants first. Then it would probably go for 
an injured adult next. The lion will, probably, go for the easiest ones to catch, that is, the 
least fitted ones.  

3.3 Genetic Algorithm of the ChicuxBot 
As will be described in details in the next chapter (Implementation of the 

ChicuxBot), the Genetic Algorithm implemented can work with a population of any 
size. The system can start with a population of fixed size and, throughout the course of 
the game, more agents can be added to the population. In fact, the ChicuxBot can even 
work as a single agent. In this peculiar configuration however, the only evolution of the 
system, if any, would come from mutation. The ChicuxBot can also work with only two 
agents. In this case, all the features of the Genetic Algorithm would be working, but the 
speed of the evolution would be slow. The more agents added to the system, the faster 
the improvement can happen. 

The reproduction process of the Genetic Algorithm replaces the entire population. 
Partner selection of the ChicuxBot is done through the roulette technique. The roulette 
can be imagined as a pie chart, where the size of each slice of the pie corresponds to the 
value of the fitness of each bot. A slice of the pie is randomly chosen in the mating 
phase of the Genetic Algorithm. The bigger slices are more likely to be chosen than the 
smaller ones. Therefore, the higher the fitness of a bot, the more chances it will have of 
passing on its genetic code to the next generation.  

As mentioned before, the Genetic Algorithm of the ChicuxBot uses mutation. This 
feature is specially useful in cases where a small population of agents gets stuck at a 
local maximum. Mutation provides a mechanism to break free of the local maximum 
and start climbing up the hill again. 

 



4 IMPLEMENTATION OF THE CHICUX BOT 

This section details implementation and functional aspects of the developed 
software. First, it is described how the system is structured and how it interacts with the 
Quake2 game server. Then the detailed implementation of the Behavior Network used 
by the software agents is shown, explaining the function of each of its components. 
Finally, the exact inner workings of the Genetic Algorithm is detailed. The software was 
programmed in C++ with Object Oriented methodology. 

4.1 Software Structure 
ChicuxBot is a multi-agent system. Each agent is composed of a Behavior Network 

configured by a Genetic Algorithm. All agents have the same Behavior Network, that is, 
every ChicuxBot in the system is running with the exact same competence modules. 
The difference between the agents is in the genetic code that configures the behavior of 
the network. The agents are controlled by Behavior Networks which, in turn, are 
dynamically configured by Genetic Algorithms in real-time during the course of the 
game. 

The ChicuxBot multi-agent system uses the Quake2 game as its environment. Each 
agent in the system is an independent program. The agents connect to the Quake2 game 
server via sockets (STALLINGS, 2000). This enables each agent to run on a different 
machine and interact through a computer network. The whole system can also run on a 
single computer. All communications among the bots happen through the Quake2 
server. The bots send messages and exchange genetic material through the console 
interface of the Quake2 server. It is the same interface that human players use to send 
text messages to one another. In fact, the messages exchanged by the ChicuxBots are 
string messages, and can be seen by the other players during the course of the game. 

There are different ways to implement a bot for Quake2 (CHAMPANDARD, 2005). 
One can modify the game itself by inserting new code. This requires the re-compilation 
of the entire game. Another way is to develop a standalone program that connects to the 
game server. However, both methods require some knowledge of the inner workings of 
the source code from the game server. Since the main motivation for using Quake2 was 
saving time and getting an easy-to-use, off-the-shelf environment, it was chosen to use 
an interface called Q2 Bot Core (SWARTZLANDER, 2005). This interface does all the 
work to communicate with the Quake2 server. Although not as fast nor powerful as the 
other two possible approaches, the interface is efficient and quick to use. 
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Each instance of the ChicuxBot uses the Q2 Bot Core interface to connect to the 
Quake2 game server. Figure 4.1 shows an overview of all the parts involved in the 
system and how they connect. The Quake2 Server is in the center of the figure because 
it centralizes all communications between the rest of the parts in the system. ChicuxBots 
and human game players alike, connect in the same fashion to Quake2. As long as the 
Quake2 server is concerned, there is no difference between a ChicuxBot and a regular 
human player. The figure also shows the Quake2 Viewer, an instance of the Quake2 
graphical client that provides an overview of the game. An observer can use the Quake2 
Viewer to hover around the game maze without being seen or interacting with the other 
players. This is useful to get an overview of the match and see what is happening 
around in the game. 

 

 
Figure 4.1: Overview of the ChicuxBot Multi-Agent System 

 

4.2 Behavior Network of ChicuxBot 
The Behavior Network implemented in the system is shown in the figure bellow. 

The same BN is used for all the agents of the system. The Behavior Net contains three 
competence modules that implement all the behavioral functions of the agent. There is a 
module for Shooting, one for Navigation and another one for Dodging. Basically, all a 
bot has to do is shoot opponent players, navigate around the map, and dodge enemy fire. 
Additionally, there are three environment states, represented in figure 4.2 by the gray 
filled circles. Each state could be viewed as an environment sensor, that continually 
scans the world; once the sensor detects a particular property, the state becomes true. 
Finally, there is the overall objective, that is to Kill All enemy players. This objective is 
also linked to competence modules. Thus, although the resulting Behavior Network is 
very simple, it contains all the necessary functions a Quake2 bot needs to play the game 
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Figure 4.2: Behavior Network used in ChicuxBot. 

 

Each link of the Behavior Network has an associated parameter that defines the 
amount of activation energy it carries. In addition to its specific task, each competence 
module has a variable that informs the amount of accumulated activation energy. The 
modules also have an energy threshold. Once the variable reaches this limit, the module 
is executed. As explained before, in Maes original Behavior Networks each module has 
an explicit add list of preconditions that have to become true in order for the module to 
execute (refer to section 2.2). Since the particular Behavior Network used in this 
research would not be too complex, the precondition lists of the competence modules 
are implicit in the environment states; that is, if a state has become true, it is because the 
precondition has also been fulfilled. The Behavior Network has been implemented in 
this peculiar way because it is designed to function in a real-time environment, where an 
explicit precondition list is not necessary. The competence modules can be composed of 
a different number of links to other modules, objectives or environment states. 

To understand the exact inner working of the Behavior Network, consider the 
following example: when an enemy player enters the bot’s line of sight, the 
Enemy_near environment state will become true; this will send the amount of activation 
energy specified by the link from the Enemy_near state to the Shooting competence 
module. For every cycle (determined by the Quake2 server and the socket connection 
speed), the state will send the same amount of activation energy through the link. The 
module will add up activation energy until it reaches the threshold, causing the behavior 
to be executed. In this example, the bot will shoot. Notice that the agent will shoot only 
once, and then the activation energy variable of the Shooting module will be reset; the 
whole process will have to repeat itself for the bot to shoot again.  

Depending on the amount of activation energy a link transmits and on the threshold 
of each competence module, the agent can show distinct behaviors. For instance, if a bot 
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has a high threshold on the Navigation module and the Idle state transmits a low amount 
of activation energy, this particular agent will tend to stand around for some time until it 
decides to start moving. On the other hand, if a bot has a low threshold and a high 
energy link, it will always be running around the map. These kinds of behaviors are 
determined by the activation energy transmission capacity of the links and the threshold 
of the modules which, in turn, are configured by the Genetic Algorithm. Therefore, the 
Genetic Algorithm directly configures the behavior of the bot. 

Both the shooting and navigation modules involve difficult and fairly complex 
problems that could greatly benefit from sophisticated solutions. However, since the 
main objective of this research is to develop the overall genetically configured Behavior 
Network system, simple ad hoc solutions have been used on these modules. 
Nevertheless, it is highlighted here that these modules can be easily replaced by more 
advanced algorithms later on. 

4.2.1 Shooting Module 

The shooting module chooses the closest visible enemy to fire upon. The algorithm 
developed uses simple trigonometric functions in order to compute the correct angles 
the bot must turn in order to precisely shoot the target (SIMONS, 1985). The shooting 
module also causes the bot to chase its target if it tries to run away. The algorithm used 
by the shooting module is shown in figure 4.3. 

The first step of the shooting module is to determine if an enemy is near. Only when 
the enemy is in sight that the module will perform the calculations to aim and fire. If 
there is an enemy near, the algorithm calculates the two-dimensional distance between 
the ChicuxBot and the target. The distance is used to calculate the angle the aim should 
turn in order to target the enemy. The angle calculation is performed by the following 
equation: 

 

 
In Equation 4.1,  Px and Py are the coordinates of the ChicuxBot; Tx and Ty are the 

coordinates of the target. The arccosine function returns the angles in radians. The final 
result value will be used to adjust the aim to hit the target. 

The next step of the algorithm is to check if the enemy is coming from behind. If it 
is, the ChicuxBot should turn around to face the enemy. Then the shooting module 
adjusts the aim vertically. The vertical adjustment of the aim is done with pretty much 
the same formula of equation 4.1, except that the z axis is used instead of the y axis. In 
other words, the same formula is applied to a different plane in the three-dimensional 
space of the game. Once the aim is adjusted in both horizontal and vertical planes, the 
ChicuxBot can fire. As the flux diagram shows, if an enemy is near, the ChicuxBot will 
always shoot.  
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Figure 4.3: Algorithm used by the Shooting Module 

 

4.2.2 Navigation Module 

The navigation module works with predefined trails for each map. The trails are 
stored in a text file on disc, composed of a number of three dimension coordinates. Each 
file must have a main trail and any number of auxiliary trails needed for a particular 
map. The bot walks through the main trail while the module is active. If it ever gets off 
the main trail (for example, when the shooting module becomes active because of an 
approaching enemy), the navigation module will find the closest auxiliary trail which 
will lead the bot back to the main trail. Figure 4.4 shows the logic of the navigation 
module. 
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Figure 4.4: Algorithm used by the Navigation Module 
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The navigation module starts by finding the trail point the ChicuxBot is closest to. 
The trail points for each map are previously loaded on an array of user-defined structs at 
runtime. At the beginning of each game, while the level map is being loaded on the 
Quake 2 server, the ChicuxBot also loads the particular trail points for the specified 
game map. 

The closest trail point to the ChicuxBot is found through an iterative search. The 
program searches the entire trail array, selecting the trail point that has the smallest 
distance to the ChicuxBot. Once the navigation module has found the closest trail point, 
it calculates the three-dimensional distance of that point to the current position of the 
ChicuxBot. The formula used to calculate the 3D distance is posted bellow: 

 
As is shown above, the formula simply calculates the distance between two points in 

a three-dimensional space. In equation 4.2, (Px, Py, Pz) are the coordinate points of the 
ChicuxBot and (Tx, Ty, Tz) are the coordinates of the trail point. 

Knowing the distance of the ChicuxBot to the trail point, the navigation module can 
determine if that point has already been reached. If so, then the ChicuxBot should go to 
the next trail point. If not, the navigation module checks if the selected point is not the 
end of the trail. If the ChicuxBot has reached the end of the trail, then it should go to the 
first trail point and start running the trail all over again. If it is not the end of the main 
trail, then the navigation module also checks if it is not the end of an auxiliary trail. If 
indeed it is the end of an auxiliary trail, then the ChicuxBot should get back to the main 
trail. This is done by finding the second closest point in the trail array to the ChicuxBot.  

Having done all the checks and their respective adjustments, the navigation module 
has the coordinates for the target trail point the ChicuxBot should move to. It then 
calculates the angle that the ChicuxBot has to turn in order to face the destination trail 
point coordinates. The calculation of the angle is done with the same basic formula of 
equation 4.1 from the shooting module. If the ChicuxBot is facing the trail point 
backwards, it turns around to face the point straight ahead. Finally, the ChicuxBot 
moves forward. 

4.2.3 Dodge Module 

Last, but not least, the dodge module makes the bot jump in an attempt to avoid 
getting shot. The dodging algorithm simply detects when the ChicuxBot is being 
damaged and loosing health. When this is happening, the bot jumps. 

4.3 Genetic Algorithm of ChicuxBot 
All agents in the system have the same Behavior Network. This means that different 

instances of the ChicuxBot have the same competence modules with the same 
connections. But each agent has its own DNA. So every distinct agent in the system has 
its own set of parameters that configure the links between the competence modules of 
the Behavior Network. The parameters configured by the Genetic Algorithm include the 
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activation energy threshold for a given competence module and the amount of energy 
that is carried by each one of its links. The DNA of each agent store the configuration 
values of its Behavior Network. 

The following sections describe the characteristics of the Genetic Algorithm 
implemented in the ChicuxBot. The most important part of any GA is the encoding of 
the population and the fitness function that evaluates it. Therefore, those two 
components of the Genetic Algorithm are described first. The population’s initialization 
and size are analyzed next.  The selection method,  crossover and mutation 
characteristics of the Genetic Algorithm of the ChicuxBot are also described in details. 

4.3.1 Chromosome Structure 

The structure of the agent’s chromosome was implemented as an array of integers. 
The software was programmed with object-oriented methodology, so any changes in the 
Behavior Net are automatically adapted by the system. There is no need to adjust or re-
program functions or structures by hand in the GA or any other part of the software; all 
modifications are automatically handled by the objects. This makes it easy to expand the 
BN, adding new links and competence modules, or modifying existing ones. On its 
default configuration, as shown in figure 4.2, the BN has three competence modules and 
three links between them to the world states. In this case, the chromosome array will 
have 6 positions: three for the threshold of each competence module, and three for the 
amount of activation energy carried by each link. Figure 4.5 illustrates an agent’s 
chromosome. The chromosome values of each agent is initialized randomly. 

 

 
Figure 4.5: Structure of a chromosome. 

 



 

 

34 

 

4.3.2 Fitness Function 

In general, the fitness function is one of the most difficult parts to implement in a 
Genetic Algorithm (WIKIPEDIA, 2006). But ChicuxBot uses Quake 2 as its 
development platform. Quake 2 is a game. Games have well defined rules. In such an 
environment, it is easy to measure success or failure. The success of a player in Quake 2 
is directly related to its score in the game. Therefore, the fitness function for the GA of a 
game is simply the measure of the player’s score. Having a simple and efficient fitness 
function is one of the main benefits of using a game as the agents environment. 

What measures the quality and efficiency of a player in Quake 2 is the number of 
enemies it has killed during the game. The best players are the ones that killed more and 
died less. This is exactly what should be measured by the fitness function of the 
ChicuxBot.  

In Quake 2, every time a player kills an enemy, his frag score is incremented. Each 
time the player kills himself (which happens quite frequently with human players by the 
way), the frag score is decreased. The fitness function is a count of the numbers of frags 
the ChicuxBot has accumulated during the match so far.  

4.3.3 Population Initialization 

The population of ChicuxBots are initialized randomly. There are no validations that 
have to be done on the randomly generated values of the chromosomes. The ChicuxBot 
uses a function that returns a pseudorandom number. The seed used for the 
pseudorandom number generator is the system time (in seconds) in which the function 
is called. The value of each gene in the chromosome is set one by one with a separate 
call to the random number generator function. Each individual of the population is 
initialized with a different seed.  

4.3.4 Population Size 

The total population size can vary, as new bots enter the game and others leave. The 
system will work with any number of bots, from 1 to n. The total number of bots in the 
system is limited by the number of bots supported by Quake 2.  

In the case of only one bot present in the game, its DNA will tend to remain 
unaltered, because the reproduction process will always result in a clone of the bot. The 
only changes to the chromosome in this case, if any at all, will have to come from a 
mutation. As more bots are added to the population, the genetic variety increases. 

The number of players influences directly the quality of the game and the skills 
required to win. If there are only a few players in the match, they can take too much 
time to find each other and the game can easily become tedious. This scenario favors the 
more skilled player, that knows how to position himself in the map, takes good aim and 
shoots precisely upon finding the enemy. On the other hand, if there are too many 
players in the map, the game can become crowded. In this case, sheer speed in shooting 
and brute force in the choice of weapons becomes more appropriate. 

 The ideal number of players depends on which map the match is being fought. For 
the map that is used by default in the ChicuxBot (q2dm1), the appropriate number for a 
good match is from eight to twelve players. The available map levels have different 
sizes and characteristics. There are close quarters maps and there are also levels with 



 

 

35 

 

wide open areas. This influences in the choice of weapon to be used and the tactics to be 
employed. 

4.3.5 Selection Method 

The ChicuxBot uses the Roulette Wheel selection method. In this technique, each 
individual of the population is assigned to a number of segments in the roulette wheel 
(WHITLEY, 1994). The total number of segments in the roulette wheel equal to the sum 
of the fitness points from the whole population. In other words, the size of the roulette 
wheel will equal to the total number of frags in the game. The number of frags each 
ChicuxBot has is the number of consecutive segments in the roulette wheel it will have. 
Therefore, the percentage of the roulette wheel each individual has will be proportional 
to its fitness score.  

The spinning of the roulette wheel is implemented by drawing a random number. 
The segments of the wheel are numbered from zero to the total number of frags in the 
game. The randomly picked number will determine the selected segment. The most fit 
individuals will have better chances of being selected and passing along their genes to 
the next generation, because they will be assigned to more segments of the roulette 
wheel. The more segments one individual has, the more chances it will have of being 
selected. 

Each instance of the ChicuxBot executes its own roulette wheel. There is no central 
system that runs the process. This means that each bot decides which partner it will 
mate with, instead of being assigned a partner by a central process. This allows for a 
ChicuxBot to select itself to reproduce with. This will result in the cloning of the 
particular chromosome of that ChicuxBot. 

4.3.6 Crossover 

The crossover implemented in the ChicuxBot is of the multi-point type (DEJONG, 
1991) (DEJONG, 1992). The algorithm goes through all the genes in the chromosome. 
For each gene of the new chromosome, a draw is made to determine if the value will 
come from one parent or the other. There is equal probability for the gene value to come 
from parent A or parent B. In other words, the process is done by “flipping a coin” to 
determine which genes will be passed along to the offspring.  

There is a flip for each gene, that is, if gene 1 will come from progenitor A or B, if 
gene 2 will come from A or B and so on. In this manner, the crossover may produce an 
individual that is an exact copy (or clone) of either of its progenitors, or any mixture of 
the two. This allows for the maximum number of combination possibilities.  

4.3.7 Mutation 

Mutation (TATE, 1993) (CULBERSON, 1994) is the process that changes the value 
of a single gene in the chromosome of an individual of the population. In the 
ChicuxBot, mutation happens during the mating season. Specifically, mutation happens 
in the crossover process. Mutation is configured at a rate of 2% for each gene.  

During the reproduction process, every gene is susceptible to suffer mutation. A 
specific gene in the chromosome can undergo mutation with the probability determined 
by the mutation rate. Therefore, a single chromosome can have multiple genes altered 
during the matting process. This means that an agent can have multiple genes altered by 
mutation from one generation to the next. Mutation is useful because it introduces new 



 

 

36 

 

genetic material in the population. This can help the algorithm from getting stuck in a 
local maximum. 

4.3.8 Elitism 

The ChicuxBot software was implemented in a way that “naturally” allows elitism 
(CHAKRABORTY, 2003) to happen, as verified by testing. During the reproduction 
process, the selection of the partner is done by the roulette wheel technique. Since the 
most fitted individuals (the elite) will have bigger segments of the roulette wheel, it is 
very likely that the most fit individual will choose itself to reproduce with. When this 
occurs, what is in fact happening is the preservation of the best individual and, 
therefore, elitism. As shown by testing, this happens quite often, but not necessarily 
every time with the same individual, or with the best and most fitted one. 

4.3.9 Mating Season 

The Genetic Algorithm of the ChicuxBot uses the concept of the mating season 
(SIMÕES, 2000). This concept was introduced by the researcher Eduardo do Valle 
Simões in his PhD thesis, published in the year 2000. This mechanism is needed 
because the ChicuxBot runs on a real-time environment. The matting season is triggered 
by the user. In order for the reproduction process to start, the command mateSeason has 
to be issued by the Chicuxbot player. The command can be typed from the game’s 
command prompt. The mateSeason command is treated as regular text message by the 
Quake 2 server, but it is recognized and executed by the instances of the ChicuxBot 
connected to the game. Once the command is issued, the bots start executing the DNA 
Exchange Protocol (refer to the next subsection for details of the protocol). 

The reproduction process of the Genetic Algorithm replaces the entire population. 
All the agents take active place in the process. Each bot has a three digit identification 
number that is incremented by one to identify its offspring. Since all the individuals are 
replaced by their offspring, the population size remains constant (as long as no new bots 
are added to the game, which may be done freely at any time). 

4.3.10 DNA Exchange Protocol 

In order to evolve and find the optimum configuration for the Behavior Net, the GA 
must exchange genetic material with other agents. This is done through the Quake2 
server, that allows text messages to be sent from one player to all the others. The bots 
have unique identification numbers that are used to distinguish messages in the 
reproduction process. All messages are exchanged through the game server, thus 
making the program of each agent completely independent from the others. 

The numbers of frags a bot has accumulated during a match serves as its fitness. 
Every time a matting season begins (defined by the user), each agent announces its 
fitness in the game. Once the agent has the fitness of all the others, it then chooses its 
mate by the roulette technique. Next, the bot sends its DNA to all the other agents in the 
game and, at the same time, searches incoming messages for the DNA of its selected 
partner. With the complete reception of the desired DNA, the crossover process 
executed.  
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4.3.11 Summary of the Genetic Algorithm 

The table bellow presents a summary of the main characteristics of the Genetic 
Algorithm for the ChicuxBot. 

 

Table 4.1: Characteristics Summary of the Genetic Algorithm 

Configuration Value 

Population Size: variable 

Population Initialization: random 

Fitness Function: number of frags 

Selection Method: roulette wheel 

Crossover: variable multi-point 

Elitism: yes 

Mutation: 2% 

 

 

4.4 Navigation Map Trails File 
The navigation competence module from the Behavior Network of the ChicuxBot 

uses a file stored on the software’s directory. The file contains a set of three-
dimensional coordinates that is used by the ChicuxBot to navigate around the game 
map. This file is saved in text mode and can be edited by hand. There should be a 
corresponding navigation trails file for each different game map (or maze) that is to be 
used with the ChicuxBot. 

The file contains navigation information in the form of trails. As the name suggests, 
a trail is a path for the bot to walkthrough the mazes. The navigation map file contains 
one main trail and any number of auxiliary trails. The main trail is a never ending loop 
around the maze. ChicuxBot uses the main trail to run through the map in search of 
enemies. When an opponent is found, the ChicuxBot will start chasing the enemy 
player. The chase will most likely lead the ChicuxBot out of the main trail. Every time 
the ChicuxBot wonders off from the main trail, it uses auxiliary trails to get back on 
track. All auxiliary trails must lead to the main trail. 

The structure of the navigation map trails file is shown in table 4.2. The file starts 
with a header that contains two integer values: the number of nodes of the main trail (in 
other words, the size of the main trail) and the total number of nodes in the file. Note 
that the difference between these two values will result in the number of nodes of the 
auxiliary trails.  

The main trail is the next item in the structure of the file. The main trail can be 
followed by zero or more auxiliary trails. Both main trail and auxiliary trails are 
composed of nodes. Each node contains three values that represent 3D coordinates in 
the game maze. The nodes in the file can be separated by blank lines for better 
visualization. 
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Table 4.2: Navigation Map Trails File 

File Structure Description Field Type 

Size of Main Trail Integer Header 

Total number of Nodes Integer 

Main Trail Nodes Each node contains: 

• Coordinate x 

• Coordinate y 

• Coordinate z 

3D Coordinates  

(one value per line) 

Auxiliary Trail Nodes Each node contains: 

• Coordinate x 

• Coordinate y 

• Coordinate z 

3D Coordinates 

(one value per line) 

 

Altering the navigation trails would directly change the behavior of the ChicuxBot. 
Therefore, during all the tests performed in this experiment, all bots used the same map 
trails. The default navigation map trails file provided with the ChicuxBot is for the 
Q2DM1 map of Quake2, which is the first deathmatch maze used by the game server. 
The ChicuxBot can work on other maps, so long as the appropriate navigation map 
trails file is provided. The system automatically retrieves the maze information from the 
game server and loads the corresponding file. The naming convention for the file 
ChicuxBot uses is “map_name.txt”. For example, the name for the first level of 
deathmatch is Q2DM1.txt. 
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5 RUNNING THE CHICUXBOT 

This guide shows how to start up the ChicuxBot multi-agent system and connect it 
to the Quake2 game server. This chapter is intended for those readers who are not 
familiar with Quake2. If you already know how to set up a multiplayer game in Quake2 
and connect other players to it, you can safely skip to the next chapter. 

5.1 Background 
The ChicuxBot is an independent program that can execute by itself. However, to 

actually use the ChicuxBot, the Quake2 game must be installed in the system. The game 
is self-contained, in the sense that all the files it needs to run are contained inside its 
own directory. Quake2 does not install files in any other system directory. So, if the 
game isn’t already installed, simply copying the game directory from a CD or another 
hard drive will work just fine.  

The first step is to start a Quake2 server. The easiest way to do it, is to start the 
server through Quake’s graphical user interface. It is easy because the user can start the 
server and play the game directly through a single interface, without having to type any 
text commands. In this mode, however, both server and client are running at the same 
time, on the same machine. This can lead to lag, or poor performance of the game 
server. Running the game server itself does not consume too much system resources. In 
fact, the Quake2 game server runs on text mode only. The client interface, on the other 
hand, renders graphics, sounds and has to read user input. These tasks demand large 
amount of system resources. Therefore, the best way to set up a Quake2 multiplayer 
game is to start a dedicated server on a separate machine, and have other clients connect 
from different machines. But since not everyone has a LAN of PCs at their disposal, this 
guide will also be showing how to set up the system on a single machine. Running the 
system on a single computer doesn’t even require an active network connection. 

5.2 Quake2 Game Server  
To start the Quake2 server using the game’s graphical user interface just select the 

menu Multiplayer then Start Network Server. The game prompts the user to input the 
server configuration. Table 5.1 shows the proper configuration that should be set up on 
the game server. 
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Table 5.1: Quake2 multiplayer server GUI configuration 

Configuration Value 

Initial Map The Edge Q2DM1 

Rules Deathmatch 

Time Limit 0 

Frag Limit 0 

Max Players 8 

Hostname q2Game 

 

The Initial Map setting specifies the maze that will be used in the game. ChicuxBot 
needs the map information for its navigation competence module, in order to be able to 
run around the maze during the game. The default map for Quake2 (and also for the 
ChicuxBot) is Q2DM1. The actual map information that the game server uses resides 
inside the Quake2 directory. The ChicuxBot uses a separate navigation file conveniently 
named “q2dm1.txt”, that has trails and navigation information. This file is exclusive to 
the ChicuxBot and is not part of the Quake2 installation. A different map can be chosen 
through the Quake2 menu. ChicuxBot will automatically search for the appropriate 
navigation file in its own directory. If a maze other than the ones supplied with 
ChicuxBot is selected, a navigation file should be created and copied to the ChicuxBot 
directory. Table 4.2 specifies the structure of the navigation file used by ChicuxBot. 

Rules specify the type of game that will be played. There are two options: 
deathmatch or cooperative. In deathmatch mode, all players of the game are enemies 
and the rule is every player for itself. ChicuxBot was designed to play death matches. 
So the Rules configuration should be set to Deathmatch.  

The Time Limit setting is the amount of minutes a match should last. Likewise, the 
Frag Limit is the maximum number of kills a single player can score. Once the time 
limit or the frag limit is reached, the game ends the current match and automatically 
starts a new one with a different map.  

The maximum number of players during a match have to be set up from start and 
cannot change during the course of the game. This happens because the Quake2 server 
must know beforehand how many ports it should keep open and listening to, waiting for 
other players to join. The Max Players configuration sets the limit of players of the 
match. Not all players have to join for the game to start. In fact, the match can start with 
just one player. The recommended number of maximum players is eight. This is a good 
number if you are not running the dedicated server. More players can be added, but the 
server could start to lag. To solve this problem, a dedicated server should be used. More 
players can smoothly run on a dedicated server. 

Finally,  Hostname specifies the name of the match that will appear to other players. 
This value can be set to any name the user desires. 
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5.3 Dedicated Server 
Setting up a dedicated server is more complex, but it results in much better 

performance. The dedicated server runs in text mode only. This uses much less system 
resources than the graphical mode. The freed up resources can then be used to actually 
serve the game. For the best performance, the Quake2 game server should be run on a 
separate and dedicated machine as well. To start a Quake2 dedicated server, the user has 
to type the following command: 

quake2.exe +set dedicated 1 +set deathmatch 1 +set maxclients 32 +map q2dm1 

 

This command calls the Quake2 executable and instructs it to run as a dedicated 
server. It also sets the rules of the game to deathmatch. The maximum number of 
players is configured to 32. And, finally, the initial map is configured as q2dm1. Figure 
5.1 shows a screenshot of a Quake2 dedicated server. 

 

 

Figure 5.1: Quake2 Dedicated Server 

 

5.4 Executing the ChicuxBot 
Once the Quake2 server is running, instances of the ChicuxBot can start to enter the 

game. If the bots will be executing on the same machine as the game server and Quake2 
is installed in the default directory (c:/games/quake2), then just double-clicking on the 
ChicuxBot icon will work. The program will be launched with its default configuration, 
which should work just fine in the described situation. Figure 5.2 shows a screenshot of 
the ChicuxBot software window. 
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Figure 5.2: ChicuxBot Program Screenshot 

 

ChicuxBot provides all the mechanisms to work in a distributed environment, if a 
more elaborate and efficient configuration is desired. For instance, the Quake2 server 
can be running on a dedicated machine, and the various instances of the ChicuxBot can 
be distributed across multiple computers. The ChicuxBot software program can be 
configured in such cases through the use of command line parameters. The syntax is as 
follows. 

Syntax: ChicuxBot [-h hostname] [-dir quake2_directory] 

Exemple: ChicuxBot -h 127.0.0.1 -dir c:/games/quake2 

The options that can be specified are the location of the Quake2 server and the 
game installation directory. The [-h] parameter sets the hostname or IP address of the 
Quake2 server. This option should be specified when the server is running on a different 
computer than the ChicuxBot. The [-dir] option configures the location of the game’s 
installation directory. This information is need in order for the ChicuxBot to be able to 
find the Quake2 game. In the example provided, the ChicuxBot is being configure to 
look for the server on the localhost (an IP address is being used) and to look for the 
game installation in the c:/games/quake2 directory.  

 

5.5 Using the Quake2 Viewer 
A player can connect to a Quake2 game server that is being used by ChicuxBots in 

the same manner that he or she would connect to a normal multiplayer match. That is, 
just by double-clicking on the Quake2 icon and following the normal steps through the 
graphical menu the game provides. Using this path, however, the user will in fact 
become a player and interact with the game. 
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There is the possibility for a user to join the game as an observer. Observers do not 
interfere with the game. The other players cannot see the observers and are not affected 
by them. An observer can fly freely around the game map. The observer even pass 
through walls. This option can be very useful to provide an overview of the game 
match. To visualize the game as an observer, enter the following string at the command 
prompt: 

quake2.exe +connect 127.0.0.1 +set spectator 1 

This will launch the Quake2 client with full graphical user interface. Once the game 
interface is running, the arrow keys can be used to navigate through the map. The 
mouse can also be used to change the angle of view in the level.  
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6 TESTS 

This chapter presents the tests conducted and the results they produced. Three 
distinct types of test were conducted. The ChicuxBot was tested against static bots, 
manually configured bots and human players. The text of this chapter is organized as 
follows. The first section starts by describing the environment in which the tests were 
conducted. Next, each different type of test is described. Then an example of a roulette 
configuration of the Genetic Algorithm is shown from an actual game match. The 
results obtained are presented. And finally, the possible applications for the work 
developed are discussed. 

6.1 Test Environment 
The ChicuxBot system was tested against three distinct types of opponents: 

randomly initialized bots, manually configured bots and, most importantly, human 
players. Both  random and manually set bots used the same Behavior Network as the 
genetically evolved ChicuxBot. This means that, in essence, all bots used in the tests 
had the same basic abilities; what differed them was the manner in which their abilities 
were adjusted. It is highlighted that the objective of this experiment is to test if indeed a 
Genetic Algorithm can be used to configure a Behavior Network to play Quake 2; the 
efficiency of the specific modules of the Behavior Network is not being tested here. In 
fact, all modules of the Behavior Network of the ChicuxBot could be changed or 
replaced by more efficient ones that it would not affect the outcome of the tests. The 
experiment will show if the developed system can improve the configuration of a 
Behavior Network. 

All tests conducted used Quake2’s default multiplayer configuration on the game 
map q2dm1. During the tests, a new generation was spawned every five minutes. The 
human players that took part in this experiment were lab colleagues from the university. 
All of them were experienced Quake2 players. 

6.2 ChicuxBot versus Static Bots 
The first test placed five ChicuxBots to play against five static bots. Figure 6.1 

presents graphic of the timeline (abscissas) by the number of frags of each bot 
(ordinates). This graphic illustrates the performance of the top three ChicuxBots and the 
three best static bots. 
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Figure 6.1: ChicuxBot versus Static Bots. 

 

This test shows that when the dynamically configured GA bots play against static 
bots (with the same BN but no GA; the parameters of the BN are randomly set), after a 
certain amount of time, the first tend to have better performance. This happens because 
quite often randomly initialized static bots have poor parameter configuration on their 
Behavior Network. Although the genetically enhance bots are also initialized randomly, 
the Genetic Algorithm selects the best and most fit bots to exchange genetic material. 
This results in more adapted offspring with better performance.  

Figure 6.1 clearly shows that the performance of the ChicuxBot improves over time. 
As new generations of the ChicuxBot were spawn, the Genetic Algorithm optimized the 
configuration of the Behavior Network. By the end of the game, the static bots had not 
improved their performance at all, while the ChicuxBots score much higher kills. 

 

6.3 ChicuxBot versus Manual Bots 
The next test placed ChicuxBot against manually configured bots. This scenario is 

shown in figure 6.2. When GA bots are put against bots hard coded by hand (again we 
have the same BN, but the parameters of the latter are set manually by the programmer) 
the result is always a tie. This happens because both types of agents are equally well 
configured and thus have practically the same performance. At first, the hand coded 
bots start better off; but as soon as the Genetic Algorithm tunes the Behavior Network’s 
parameters, performance starts to rise.  

We point out here that this kind of test had this particular result because the 
Behavior Network used is small and simple. In a larger, more complex BN, it would be 
very difficult to adjust the parameters by hand and, in that case, the Genetic Algorithm 
would probably produce a better result.  
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Figure 6.2: ChicuxBot versus Manually Configured Bots. 

 

6.4 ChicuxBot versus Human Players 
On our last series of tests, we put the ChicuxBot to play against human players. This 

match lasted 30 minutes and placed three human players up against seven ChicuxBots. 
Figure 6.3 shows the performance of the human players and the best three ChicuxBots. 
The ordinates indicate the number of frags each player scored and the abscissas show 
the time elapsed. 

ChicuxBot is no match for a well-trained human being. However, this is due to the 
simplicity of the Behavior Network implemented (and to the low-end capabilities of the 
specific BN modules); the bad performance against good human players is not a fault of 
the ChicuxBot evolutionary configuration system. According to the human players 
subjected to the test, ChicuxBots did get better in the course of the game; as new 
generations evolved, the improvement in bot performance was clearly felt by the human 
players. The evolutionary configuration capability of the ChicuxBot is also confirmed 
by the test against randomly initialized bots shown earlier. 
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Figure 6.3: ChicuxBot versus Human Players. 
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6.5 Roulette Configuration 
To illustrate how the selection mechanism of the Genetic Algorithm works, figure 

6.4 shows a pie chart with the percentages of the roulette technique employed by the 
ChicuxBot to choose a mate. The figure shows the roulette used by the ChicuxBots 
during the fifth mating process (that is, 25 minutes of game time) of the ChicuxBot 
versus Humans match (shown on figure 6.3). The bigger the piece of each bot on the 
chart, the better the chances it will pass on its genes to the next generation. 

Figure 6.4: Example of Roulette Configuration. 

 

6.6 Results 
Tests show that according to its chromosomes, different agents will show distinct 

behavior. For example, an agent that has a lower threshold for the shooting module will 
fire more often. The same happens with an agent that has a stronger link for the 
Enemy_near world state. However, a bot will rather run than shoot if it has a low 
threshold for the navigation module. This demonstrates that the system has some 
flexibility to change its behavior and that these settings can indeed be done by the 
Genetic Algorithm. 

Since the GA runs in real time during the course of the game, it can adapt according 
to changes in game play. This means that the ChicuxBot has the potential to adapt itself 
to different players and styles. The use of Genetic Algorithms to configure Behavior 
Networks adds adaptability to the solution. 

Therefore, analyzing the results, what these tests show is that indeed the ChicuxBot 
can dynamically evolve from a random initial setting to an optimum configuration 
through the course of the game.  

6.7 Applications 
The ChicuxBot software itself can be directly be applied for entertainment, serving 

as what is popularly called the “Artificial Intelligence” of computer and video games. 
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For multiplayer games, the ChicuxBot naturally suits itself to be a deathmatch bot. But 
the ChicuxBot could also be applied to a single player game. This could be done in the 
following manner: several ChicuxBots could be used as the “soldiers” or normal 
enemies of the current game level. As the user explores the level’s map and interacts 
with the bots, the system is learning how the user plays. Then, at the end of the level, 
the “Boss” of the level would be the resulting optimized ChicuxBot, configured and 
fine-tuned as the player ran through the map during the game. In other words, the 
Genetic Algorithm configures the Behavior Network while the user plays through the 
level. When the player reaches the boss of the map, this final enemy would be 
controlled by the most evolved ChicuxBot of the population (that is, the fittest one). 

But perhaps the most important application of this research will be the use of 
genetically-configured Behavior Networks in other problem domains. As the tests of 
this research indicate, the use of Genetic Algorithms to configure Behavior Networks 
not only provide an efficient solution to the global parameter configuration problem, but 
also add the functionality of adaptability in a dynamic environment. This could be used 
in other applications besides first-person-shooter games. 
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7 CONCLUSION 

The use of Genetic Algorithms to configure a Behavior Network, as presented in this 
text, provides an efficient solution to the global parameter configuration problem. The 
tests conducted show that the implemented system outputs a configuration that is more 
efficient than the one it receives as input. 

Using a game like Quake2 to implement Genetic Algorithms techniques is very 
interesting and especially fun because the agents of the population are literally fighting 
to survive. The use of Genetic Algorithms to configure Behavior Networks proves to be 
effective. Although the simple BN implemented in this experiment would not require 
such a sophisticated parameter setting mechanism (in this case, it could simply be hard-
coded by hand), a larger, more complex BN would greatly benefit from the optimum 
solution search power of Genetic Algorithms. 

The advantage of using Behavior Networks with Genetic Algorithms is that the 
resulting system can adapt itself to play with different types of players. Each person 
plays the game in their own particular way. A hard-coded solution that may work well 
against some people might not be as efficient for other kinds of players. With the 
Genetic Algorithm evolving and configuring a sufficiently complex Behavior Network 
in real time during the game, the bot would be capable of adapting itself to cope with 
different strategies from different players. 
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GLOSSARY 

Frag – the score achieved by killing an enemy player. 

Bot – a computer-controlled player in a network game. 

Lag – the amount of time a multiplayer game is interrupted due to network stall or 
server overload. 

Localhost – the computer that is currently running the application. 

 

 



 

APPENDIX  RESUMO EM PORTUGUÊS 

Este capítulo contém um resumo, redigido em português, que apresenta os principais 
resultados da Dissertação. Salienta-se que o material deste capítulo é apenas um resumo 
e não substitui a leitura do texto completo da Dissertação. A primeira seção apresenta 
uma introdução sobre o trabalho desenvolvido. A seguir, descreve-se o sistema 
desenvolvido, detalhando a estrutura do software implementado. As tecnologias de 
Redes de Comportamento e o Algoritmos Genéticos utilizadas no desenvolvimento do 
presente trabalho também são descritas neste capítulo. Em seguida, são analisados os 
testes conduzidos e os resultados obtidos. Finalmente, é apresentada uma breve 
conclusão sobre o trabalho.  

A.1 Introdução 
Os jogos constituem um bom domínio para a exploração da Inteligência Artificial. 

Em geral, os jogos possuem regras bem definidas, onde é fácil medir o sucesso ou o 
fracasso (RICH, 1998). Um jogo pode ser utilizado como uma plataforma de pesquisa 
(LAIRD, 2001) para investigar, desenvolver e testar algoritmos de Inteligência Artificial 
(ADOBBATI, 2001). Talvez o melhor exemplo seja o jogo de xadrez, que catalisou a 
criação de algoritmos que foram utilizados em diversos outros problemas. Neste 
trabalho em particular foi utilizado o jogo Quake2, que possui um ambiente dinâmico e 
complexo que funciona em tempo real.  

Quake2 é um jogo de primeira pessoa completamente tridimensional. Os jogadores 
(tanto humanos como os controlados por computador) não possuem visão global do 
mundo, mas somente a percepção do ambiente imediatamente à sua volta. As fases do 
jogo (ou mapas) apresentam-se tipicamente na forma de labirintos, tanto com espaços 
abertos, quanto com ambientes fechados. Os mapas possuem corredores, escadas, 
elevadores, pontes e até água. Uma vez que o jogador não possui visão global do mapa, 
ele deve aprender a navegar pelas fases e procurar por itens e oponentes. O jogador 
possui um medidor de vida que é decrementado cada vez que ele é ferido, seja por levar 
um tiro de outro jogados, cair de uma altura elevada ou até mesmo ficar embaixo d’água 
por muito tempo. O jogador também pode coletar armas, munição e kits médicos para 
curar os seus ferimentos, incrementando o seu medidor de vida. O jogo Quake2 está 
disponível há bastante tempo e, por isso, executa suavemente até mesmo em um 
computador bem modesto pelos padrões de hoje. O cliente do Quake2 possui uma 
interface gráfica 3D mas o servidor do jogo em si não possui interface gráfica e executa 
em modo texto. Adicionalmente, o jogo possui código fonte aberto e existem versões 
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tanto para Windows quanto para Linux. Resumindo em poucas palavras, este jogo de 
computar é, talvez, uma das melhores plataformas de simulação disponíveis de imediato 
para desenvolver agentes de software.  

Redes de Comportamento são um mecanismo de seleção de ação para agentes 
autônomos (MAES, 1989). Para funcionar corretamente, a Rede de Comportamento 
precisa que os seus diferentes parâmetros sejam configurados de forma adequada. No 
entanto, o algoritmo das Redes de Comportamento não define como esses parâmetros 
devem ser configurados. Cabe ao usuário (ou programador) ajustar esses parâmetros. 
Isso torna-se um problema em Redes de Comportamento grandes, pois a configuração 
de parâmetros é uma tarefa complexa, difícil e tediosa de ser feita manualmente. Por 
isso, torna-se interessante o uso de Algoritmos Genéticos para configurar 
automaticamente os parâmetros de uma Rede de Comportamento. O objetivo deste 
trabalho é verificar se é possível utilizar com sucesso Algoritmos Genéticos para 
configurar Redes de Comportamento, utilizando o jogo Quake2 como plataforma de 
testes. 

A.2 Descrição do Sistema Multiagente 
No jargão dos jogos de computadores em primeira pessoa, um “bot” é um jogador 

automático. Bots são utilizados em jogos mutiplayer para jogar contra jogadores 
humanos ou até mesmo contra outros bots. O tipo mais popular destes jogos é chamado 
de “death match” (ou “partida até a morte”), onde o objetivo é simplesmente matar 
todos os outros jogadores. O vencedor é o jogador que infligiu mais mortes (ou “frags”). 
A fim de alcançar este objetivo, o jogador enfrenta tarefas conflitantes, como decidir em 
atacar um inimigo ou fugir para conseguir mais munição. Tais problemas de tomada de 
decisões, em que estão envolvidos objetivos conflitantes, são ideais para serem tratados 
por Redes de Comportamento. 

Esta seção detalha a implementação e os aspectos funcionais do software 
desenvolvido. Primeiro, descreve-se como o sistema está estruturado e como ele 
interage com o servidor de jogo do Quake2. A seguir, mostra-se a implementação da 
Rede de Comportamento utilizada pelos agentes, explicando-se a função de cada um 
dos seus componentes. Finalmente, descreve-se o funcionamento do Algoritmo 
Genético dentro do sistema.  

A.2.1 Estrutura de Software 

Existem diferentes maneiras para implementar um bot para Quake2. Pode-se 
modificar o próprio jogo através da inserção de código novo. Esta abordagem requer a 
re-compilação do jogo inteiro. Outra maneira é desenvolver um programa independente 
que se conecta ao servidor do jogo. Ambos os métodos, no entanto, exigem algum 
conhecimento do funcionamento interno do servidor do jogo. Uma vez que a maior 
motivação em utilizar o Quake2 era poupar tempo através do uso de um ambiente 
pronto e disponível de imediato, optou-se por utilizar uma interface conhecida como Q2 
Bot Core. Esta interface realiza o trabalho de comunicação com o servidor do Quake2. 
Apesar de não ser tão rápida e poderosa quanto as outras duas abordagens possíveis, a 
interface é eficiente e fácil de usar. 

Cada agente do sistema é um programa independente. Os agentes conectam-se ao 
servidor de jogo do Quake2 através de sockets. Assim, cada agente pode executar em 
uma máquina diferente e interagir através de uma rede de computadores. Mas o sistema 
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todo também pode executar em uma única máquina, se assim desejado. Os agentes são 
controlados por uma Rede de Comportamentos que, por sua vez, é dinamicamente 
configurada por Algoritmos Genéticos em tempo real durante o decorrer do jogo. O 
software foi desenvolvido em C++ com a metodologia da Orientação de Objetos. 

A.2.2 Rede de Comportamento 

Um agente baseado em Redes de Comportamento é composto por um conjunto de 
módulos de competência. Cada módulo implementa uma tarefa específica para 
solucionar um determinado problema. A forma como esses módulos são programados 
não é especificada pela Rede de Comportamento e, inclusive, podem ser implementados 
por outra Rede de Comportamentos. Cada módulo representa um comportamento em 
particular. Os módulos de competência da rede são conectados via links que espalham a 
energia de ativação. Existem três tipos diferentes de links que podem ativar ou inibir o 
sistema. Os links podem conectar os módulos de competência a objetivos, estados do 
ambiente ou a outros módulos. Um módulo executa quando ele atinge um limiar de 
energia de ativação. Em sua definição formal original, um comportamento só pode ser 
executado uma vez que a sua lista de pré-condições torne-se completamente verdadeira. 
Um módulo também possui uma lista de predicados que tornam-se falsos após a 
execução de um determinado comportamento. 

A Rede de Comportamento implementada pelo sistema é mostrada na figura abaixo. 
A mesma rede de comportamento é usada para todos os agentes do sistema. A Rede de 
Comportamento possui três módulos de competência que implementam todas as funções 
comportamentais do agente. Existe um módulo para Ataque, Navegação e Desvio. 
Basicamente, tudo o que um bot tem a fazer é atirar nos jogadores adversários, navegar 
ao redor do mapa e desviar do fogo inimigo. Adicionalmente, existem três estados de 
ambiente, representados na figura A.1 por círculos cinza. Cada estado pode ser visto 
como um sensor do ambiente, que continuamente sonda o mundo; quando o sensor 
detecta uma propriedade em particular, o estado torna-se verdadeiro. Finalmente, tem-se 
o objetivo geral que é de Matar Todos os jogadores inimigos. Este objetivo é ligado a 
todos os módulos de competência. Dessa forma, a Rede de Comportamentos resultante 
possui todas as funções necessárias para um bot de Quake2 jogar uma partida.  
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Figura A.1: Rede de Comportamento utilizada no ChicuxBot 

 

Cada link da Rede de Comportamento é associado a um parâmetro que defino a 
quantidade de energia de ativação que ele transmite. Além de sua tarefa específica, cada 
módulo de competência possui uma variável que informa a quantidade de energia de 
ativação acumulada. Os módulos também possuem um limiar de energia. Quando a 
variável atinge esse limite, o módulo é executado. Conforme explicado anteriormente, 
na Rede de Comportamento original de Maes, cada módulo possui uma lista de pré-
condições explícita que precisa tornar-se verdadeira para que o módulo possa executar. 
Na Rede de Comportamento implementada neste trabalho, a lista de pré-condições dos 
módulos está implícita nos estados de ambiente; isto é, se um estado tornou-se 
verdadeiro, é por que a sua lista de pré-condições também foi satisfeita. A Rede de 
Comportamento foi implementada nesta forma em particular porque foi projetada para 
funcionar em um ambiente de tempo real, onde uma lista de pré-condições explícita não 
é necessária. Os módulos de competência podem ser compostos por um número 
qualquer de links para outros módulos, objetivos ou estados de ambiente.  

A fim de demonstrar o funcionamento exato de uma Rede de Comportamento, 
ilustra-se o seguinte exemplo: quando um jogador inimigo entra no campo de visão de 
um bot, o estado de ambiente Inimigo_próximo vai tornar-se verdadeiro; com isso, é 
transmitida a quantidade de energia de ativação especificada pelo link do estado 
Inimigo_próximo ao módulo de competência Ataque. Para cada ciclo (determinado pelo 
servidor do Quake2 e pela velocidade de conexão dos sockets), o estado vai enviar a 
mesma quantidade de energia de ativação através do link. O módulo vai acumular a 
energia de ativação até atingir o seu limiar, fazendo com que o comportamento seja 
executado. Neste exemplo, o bot vai atirar. Note-se que o agente vai atirar apenas uma 
única vez e, então, a variável da energia de ativação do módulo de Ataque vai ser 
zerada; todo o processo deve repetir-se novamente para que o bot atire outra vez. 



 

 

59 

 

 

Dependendo da quantidade de energia de ativação que um link transmite e no limiar 
de cada módulo de competência, o agente pode apresentar comportamentos distintos. 
Por exemplo, se um bot possui um limiar elevado para o módulo de Navegação e o 
estado Ocioso transmite uma quantidade baixa de energia de ativação, este agente em 
particular terá a tendência de ficar parando por um tempo antes de decidir começar a 
mover-se. Por outro lado, se um bot possui um limiar baixo e um link de ativação com 
bastante energia, o bot vai tender a correr o tempo todo pelo mapa. 

Tanto o módulo de navegação quanto o módulo de ataque envolvem problemas 
difíceis e bastante complexos que beneficiar-se-iam muito de soluções sofisticadas. No 
entanto, uma vez que o objetivo principal desta pesquisa é desenvolver o sistema de 
Rede de Comportamento controlada por Algoritmo Genético, foram adotadas para estes 
módulos soluções ad hoc simples. Entretanto, é salientado que os módulos podem ser 
facilmente substituídos por algoritmos mais sofisticados posteriormente. 

O módulo de Ataque escolhe o inimigo visível mais próximo para atirar. O algoritmo 
desenvolvido utiliza funções trigonométricas simples para computar os ângulos corretos 
que o bot deve virar para atingir precisamente o seu alvo. O módulo de ataque também 
faz com que o bot persiga o seu alvo, caso ele tente fugir. 

O módulo de Navegação funciona com trilhas pré-definidas para cada mapa. As 
trilhas são armazenadas em um arquivo texto no disco, composto por um número 
determinado de coordenadas tridimensionais. Cada arquivo possui uma trilha principal e 
qualquer número adicional de trilhas auxiliares necessárias para um mapa em particular. 
O bot percorre a trilha principal enquanto o módulo de navegação estiver ativo. Se o bot 
sair da trilha principal (por exemplo, quando o módulo de ataque for ativado em função 
de um inimigo que se aproxima), o módulo de navegação encontrará a trilha auxiliar 
mais próxima para levar o bot de volta à trilha principal. 

Finalmente, o módulo de Desvio faz com que o bot pule para esquivar-se do fogo 
inimigo.  

A.2.3 Algoritmo Genético 

Todos os agentes do sistema possuem a mesma Rede de Comportamento (ou seja, os 
mesmo módulos com as mesmas conexões), mas cada agente possui o seu própria DNA 
(isto é, o seu próprio conjunto de parâmetros que configura as ligações entre os módulos 
da Rede de Comportamentos). Os parâmetros configurados pelo Algoritmo Genético 
incluem o limiar de energia de ativação para um determinado módulo de competência, 
assim como a quantidade de energia que é transmitida por cada uma de suas ligações. 

A estrutura dos cromossomos do agente foi implementada como um vetor de 
números inteiros. O software foi programado sob o paradigma da orientação a objetos, 
então qualquer mudança na Rede de Comportamento é automaticamente assimilada pelo 
sistema. Não é necessário re-programar manualmente as funções ou estruturas, nem 
qualquer outra parte do software; todas as modificações são automaticamente tratadas 
pelos objetos. Dessa forma, torna-se extremamente fácil expandir a Rede de 
Comportamento, incluindo novas ligações ou módulos de competência, ou modificando 
os módulos já existentes. Na sua configuração padrão, conforme mostrado na figura 
A.1, a Rede de Comportamento possui três módulos de competência e três ligações 
entre eles aos estados do mundo. Neste caso, o vetor do cromossomo possuirá 6 
posições: três para o limiar de cada módulo de competência e mais três para a 
quantidade de energia de ativação transmitida por cada elo. A figura A.2 mostra a 
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estrutura do cromossomo de um agente. Os valores do cromossomo de cada agente são 
inicializados randomicamente.  

 

 
Figura A.2: Estrutura de um Cromossomo 

 

O tamanho total da população pode variar, conforme novos bots entram no jogo e 
outros saem. O sistema funciona com qualquer número de bots, de 1 a n. No caso de 
apenas 1 bot estar presente no jogo, seu DNA vai tender a permanecer o mesmo, 
inalterado, pois o processo de reprodução vai sempre resultar em um clone do bot. As 
únicas mudanças ao cromossomo, neste caso, seriam advindas de mutação. 

Para evoluir e encontrar a configuração ótima para a Rede de Comportamento, o 
Algoritmo Genético deve trocar o material genético com outros agentes. Este processo é 
feito através do servidor do Quake2, que permite a troca de mensagens de texto de um 
jogador para todos os demais. Os bots possuem um número de identificação único para 
a distinção das mensagens durante o processo de reprodução. Todas as mensagens são 
trocadas através do servidor do jogo, tornando o programa de cada agente independente 
de todos os demais.  

O número de frags que um bot acumulou durante uma partida serve como a sua 
aptidão. Cada vez que o período de acasalamento é iniciado (definido pelo usuário), 
cada agente anuncia a sua aptidão no jogo. Quando o agente possui a aptidão de todos 
os demais, ele escolhe um parceiro através da técnica da roleta. A seguir, o bot envia o 
seu DNA para todos os demais agentes do jogo e, ao mesmo tempo, procura pelas 
mensagens com o DNA do parceiro escolhido. Uma vez que é recebido todo o DNA do 
parceiro desejado, o processo de cruzamento é realizado. A determinação de quais genes 
serão passados para a prole é feita através de sorteio, com a mesma probabilidade de 
transmissão dos genes de cada um dos progenitores. Dessa forma, o processo de 
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reprodução pode produzir um indivíduo que é uma cópia exata de qualquer um dos deus 
progenitores, ou qualquer mistura dos dois. 

Durante o processo de reprodução, um gene específico do cromossomo de um bot 
pode sofrer mutação. A mutação ocorre a uma taxa de 2% para cada gene. Um agente 
pode ter múltiplos genes alterados durante o processo de acasalamento. A mutação é útil 
pois introduz material genético novo na população, o que pode ajudar o algoritmo a sair 
de um máximo local. 

O processo de reprodução do Algoritmo Genético substitui a população inteira. 
Todos os agentes têm participação ativa no processo. Cada bot possui um número de 
identificação de três dígitos que é incrementado por um para identificar a sua prole. 
Uma vez que todos os indivíduos são substituídos pela prole, o tamanho da população 
permanece constante (desde que nenhum bot novo seja adicionado ao jogo, o que pode 
ser feito livremente a qualquer momento). Durante o processo de reprodução, a seleção 
do parceiro é feita através da técnica da roleta. Nesta técnica, existe a probabilidade do 
indivíduo escolher a si mesmo para reproduzir-se. Quando isto ocorre, o que está de fato 
acontecendo é a preservação do melhor indivíduo da população e, portanto, elitismo. 
Testes demonstram que isso ocorre com certa freqüência, mas não necessariamente 
todas as vezes com o mesmo indivíduo, ou sequer com o melhor e mais apto.  

A.3 Testes 
O ChicuxBot foi testado com três tipos distintos de adversários: bots 

randomicamente inicializados, bots configurados manualmente e, principalmente, 
jogadores humanos. Tanto os bots configurados manualmente quanto os randômicos 
possuem a mesma Rede de Comportamentos utilizadas pelo ChicuxBot. Na sua 
essência, isto quer dizer que todos os bots utilizados nos testes possuem as mesmas 
habilidades básicas; o que os difere é a maneira com que as suas habilidades foram 
ajustadas. Salienta-se que o objetivos destes experimentos é verificar se, de fato, um 
Algoritmo Genético pode ser utilizado para configurar uma Rede de Comportamento 
para o jogo Quake2; a eficiência dos módulos específicos da Rede de Comportamento 
não está sendo coberta por estes testes. De fato, todos os módulos da Rede de 
Comportamento do ChicuxBot poderiam ser trocados ou substituídos por módulos mais 
eficientes que o resultado dos testes ainda seria o mesmo. 
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Figura A.3: ChicuxBot versus Bots Estáticos 



 

 

62 

 

 

 

O primeiro teste colocou cinco ChicuxBots para jogar contra cinco bots estáticos. A 
figura A.3 representa um gráfico com a linha do tempo (abscissas) pelo número de frags 
de cada bot (ordenadas). Este gráfico ilustra o desempenho dos três melhores colocados 
entre os ChicuxBots e os bots estáticos. 

Este teste mostra que quando bots configurados dinamicamente por Algoritmo 
Genético são postos a jogar contra bots estáticos (com a mesma Rede de 
Comportamento, mas sem Algoritmo Genético; os parâmetros da Rede de 
Comportamento são ajustados randomicamente), após uma certa quantidade de tempo, 
os primeiros tendem a apresentar um desempenho melhor. Isto acontece porque 
freqüentemente bots estáticos, que foram inicializados randomicamente, apresentam 
uma configuração de parâmetros inadequada para a sua Rede de Comportamento. 
Apesar dos bots adaptados geneticamente também serem inicializados randomicamente, 
o Algoritmo Genético seleciona os bots mais aptos para trocar material genético, 
resultando em uma prole mais adaptada e com desempenho melhorado. 

O teste seguinte colocou o ChicuxBot contra bots configurados manualmente. Este 
cenário é mostrado na figura A.4. Quando bots genéticos são colocados a jogar contra 
bots configurados manualmente (novamente os bots possuem a mesma Rede de 
Comportamento, mas os parâmetros desta são configurados manualmente pelo 
programador), o resultado é sempre um empate. Como ambos os tipos de agente são 
igualmente bem configurados, ambos apresentam praticamente o mesmo desempenho. 
No início, os bots configurados manualmente começam melhores; mas assim que o 
Algoritmo Genético consegue ajustar os parâmetros da Rede de Comportamento, o 
desempenho começa a melhorar. Salienta-se aqui que, este tipo de teste apresentou este 
resultado em particular porque foi utilizada uma Rede de Comportamento bastante 
simples; em uma rede maior e mais complexa, seria muito difícil ajustar os parâmetros 
manualmente e, neste caso, o Algoritmo Genético muito provavelmente produziria o 
melhor resultado. 
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Figura A.4: ChicuxBot versus Bots Configurados Manualmente 

 

Na última série de testes, o ChicuxBot foi colocado a jogar contra jogadores 
humanos. Esta partida durou trinta minutos e colocou três jogadores humanos contra 
sete ChicuxBots. A figura A.5 mostra o desempenho dos jogadores humanos contra os 
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três melhores ChicuxBots. As ordenadas indicam o número de frags que cada jogador 
pontuou. As abscissas mostram o tempo decorrido. 

O ChicuxBot não é páreo para um jogador humano bem treinado. No entanto, este 
resultado é devido à simplicidade dos módulos implementados para a Rede de 
Comportamento; o mau desempenho contra bons jogadores humanos não é falha do 
sistema de configuração evolucionária do ChicuxBot. De acordo com os jogadores 
humanos submetidos ao teste, o desempenho dos ChicuxBots de fato melhorou durante 
o decorrer do jogo; à medida que as novas gerações evoluíram, a melhora no 
desempenho do bot foi claramente sentido pelos jogadores humanos. A capacidade de 
configuração evolucionária do ChicuxBot também é confirmada pelo teste contra bots 
inicializados randomicamente demonstrado anteriormente. 

0
5

10
15
20
25
30
35
40

5 10 15 20 25 30

Human1
Human2
Human3
ChicuxBot1
ChicuxBot2
ChicuxBot3

 
Figura A.5: ChicuxBot versus Jogadores Humanos 

 

Os testes mostram que, conforme seus cromossomos, agentes diferentes apresentam 
comportamentos distintos. Por exemplo, um agente que tenha um limiar baixo no 
módulo de ataque vai atirar com mais freqüência. O mesmo acontece com um agente 
que possui um elo mais forte para o estado de ambiente Inimigo_próximo. No entanto, 
um bot vai preferir correr a atirar se tiver um limiar baixo para o módulo de navegação. 
Portanto, fica saliente que o sistema possui flexibilidade para mudar o seu 
comportamento e que esses ajustes podem, de fato, ser feitos pelo Algoritmo Genético. 
Uma vez que o Algoritmo Genético execute em tempo real durante o decorrer do jogo, 
ele pode adaptar-se a mudanças durante a partida. 

Analisando os resultados, os testes mostram que, de fato, o ChicuxBot consegue 
evoluir dinamicamente de uma configuração inicial randômica para uma configuração 
melhor durante o decorrer do jogo. 

A.4 Conclusão 
O uso de Algoritmos Genéticos para configurar uma Rede de Comportamento 

prova-se efetivo. Apesar da Rede de Comportamento simples implementada nos 
experimentos não exigir um mecanismo de configuração tão avançado (neste caso, a 
configuração poderia ter sido configurada manualmente), uma Rede de Comportamento 
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maior e mais complexa beneficiar-se-ia do poder de busca da solução ótima dos 
Algoritmos Genéticos.  

A vantagem de utilizar Redes de Comportamento com Algoritmos Genéticos é que o 
sistema resultante pode adaptar-se para lutar contra diferente tipos de jogadores. Cada 
pessoa joga de seu próprio modo particular. Uma solução configurada rigidamente pode 
funcionar bem contra algumas pessoas, mas pode não ser tão eficiente contra outros 
jogadores. Com o Algoritmo Genético evoluindo e configurando em tempo real uma 
Rede de Comportamento suficientemente complexa, o bot seria capaz de adaptar-se a 
estratégias distintas de diversos jogadores. 


