
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FRANCISCO JOSÉ PRATES ALEGRETTI

ChicuxBot – Genetic Algorithm Configured
Behavior Network Multi-Agent for Quake II

Thesis presented in partial fulfillment of the
requirements for the degree of Master in
Computer Science

Prof. Dr. Dante Augusto Couto Barone
Advisor

Porto Alegre, September 2006.

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquiria Linck Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PPGC: Prof. Carlos Alberto Heuser
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Alegretti, Francisco José Prates

ChicuxBot – Genetic Algorithm Configured Behavior Network
Multi-Agent for Quake II / Francisco José Prates Alegretti – Porto
Alegre: Programa de Pós-Graduação em Computação, 2006.

64 f.:il.

Dissertação (mestrado) – Universidade Federal do Rio Grande
do Sul. Programa de Pós-Graduação em Computação. Porto
Alegre, BR – RS, 2006. Orientador: Dante Augusto Couto Barone.

1.Redes de Comportamento. 2.Algoritmos Genéticos 3.QuakeII.
4.Inteligência Artificial. I. Barone, Dante Augusto Couto. II. Titulo

ACKNOWLEDGEMENTS

To my father, who never allowed me to give up.

TABLE OF CONTENTS

LIST OF ABREVIATIONS AND INITIALS... 6

LIST OF FIGURES... 7

LIST OF TABLES .. 8

ABSTRACT.. 9

RESUMO.. 10

1 INTRODUCTION .. 11

1.1 Quake II.. 11
1.2 ChicuxBot... 13
1.3 Definition of the Problem.. 14
1.3.1 Importance of the Problem ... 14
1.3.2 Criteria of Success .. 14
1.4 Other Considerations .. 14
1.4.1 Dynamic Systems ... 14

2 BEHAVIOR NETWORKS... 16

2.1 Brief History... 16
2.2 Behavior Networks Algorithm ... 16
2.3 The Configuration Problem.. 18

3 GENETIC ALGORITHMS... 19

3.1 Genetic Algorithms Overview .. 19
3.2 Configuration Options .. 20
3.2.1 Chromosome Structure ... 21
3.2.2 Fitness Function.. 21
3.2.3 Population Initialization ... 22
3.2.4 Population Size... 22
3.2.5 Stop Criteria.. 23
3.2.6 Selection Method.. 23
3.2.7 Crossover .. 23
3.2.8 Elitism... 24
3.2.9 Mutation ... 24
3.2.10 Predation... 24
3.3 Genetic Algorithm of the ChicuxBot ... 25

5

4 IMPLEMENTATION OF THE CHICUX BOT .. 26

4.1 Software Structure .. 26
4.2 Behavior Network of ChicuxBot .. 27
4.2.1 Shooting Module .. 29
4.2.2 Navigation Module ... 30
4.2.3 Dodge Module .. 32
4.3 Genetic Algorithm of ChicuxBot.. 32
4.3.1 Chromosome Structure ... 33
4.3.2 Fitness Function.. 34
4.3.3 Population Initialization ... 34
4.3.4 Population Size... 34
4.3.5 Selection Method.. 35
4.3.6 Crossover .. 35
4.3.7 Mutation ... 35
4.3.8 Elitism... 36
4.3.9 Mating Season .. 36
4.3.10 DNA Exchange Protocol .. 36
4.3.11 Summary of the Genetic Algorithm ... 37
4.4 Navigation Map Trails File... 37

5 RUNNING THE CHICUXBOT... 39

5.1 Background .. 39
5.2 Quake2 Game Server .. 39
5.3 Dedicated Server.. 41
5.4 Executing the ChicuxBot... 41
5.5 Using the Quake2 Viewer ... 42

6 TESTS .. 44

6.1 Test Environment .. 44
6.2 ChicuxBot versus Static Bots.. 44
6.3 ChicuxBot versus Manual Bots .. 45
6.4 ChicuxBot versus Human Players ... 46
6.5 Roulette Configuration ... 47
6.6 Results... 47
6.7 Applications.. 47

7 CONCLUSION.. 49

REFERENCES... 50

GLOSSARY ... 54

APPENDIX...55

LIST OF ABREVIATIONS AND INITIALS

3D Three-Dimensional

AI Artificial Intelligence

BN Behavior Networks

CD Compact Disc

DNA Deoxyribonucleic Acid

GA Genetic Algorithms

GUI Graphical User Interface

IP Internet Protocol

LAN Local Area Network

MIT Massachusetts Institute of Technology

PC Personal Computer

UFRGS Universidade Federal do Rio Grande do Sul

LIST OF FIGURES

Figure 1.1: Screenshot of the Quake2 client user interface. ... 12
Figure 1.2: Levels of the ChicuxBot Architecture ... 13
Figure 3.1: Basic Structure of a Genetic Algorithm... 20
Figure 4.1: Overview of the ChicuxBot Multi-Agent System.. 27
Figure 4.2: Behavior Network used in ChicuxBot. .. 28
Figure 4.3: Algorithm used by the Shooting Module... 30
Figure 4.4: Algorithm used by the Navigation Module ... 31
Figure 4.5: Structure of a chromosome. ... 33
Figure 5.1: Quake2 Dedicated Server... 41
Figure 5.2: ChicuxBot Program Screenshot ... 42
Figure 6.1: ChicuxBot versus Static Bots... 45
Figure 6.2: ChicuxBot versus Manually Configured Bots. .. 46
Figure 6.3: ChicuxBot versus Human Players. .. 46
Figure 6.4: Example of Roulette Configuration. .. 47

LIST OF TABLES

Table 4.1: Characteristics Summary of the Genetic Algorithm 37
Table 4.2: Navigation Map Trails File ... 38
Table 5.1: Quake2 multiplayer server GUI configuration.. 40

ABSTRACT

This work describes the implementation of a multi-agent system using Behavior
Networks configured by Genetic Algorithms. The system uses the computer game
Quake II as the simulated environment for the agents. Behavior Networks are used as
the decision making mechanism. The Genetic Algorithm is used to configure the
parameters of the Behavior Network. Each agent of the system is an independent
program that connects to the game server to perform tasks and to exchange genetic
material in order to evolve. The results obtained indicate a dynamically configured
multi-agent system that can evolve and adapt accordingly throughout the course of the
game.

Key Words: Behavior Networks, Genetic Algorithm, Quake II, Multi-Agent, Artificial
Intelligence.

ChicuxBot – Sistema Multi Agente de Rede de Comportamento
Configurado por Algoritmo Genético para Quake II

RESUMO

Este trabalho descreve a implementação de um sistema multi agente usando Redes
de Comportamento configurada por Algoritmos Genéticos. O sistema utiliza o jogo de
computador Quake II como o ambiente simulado para os agentes. Redes de
Comportamento são utilizadas como o mecanismo de tomada de decisão. Um
Algoritmo Genético é utilizado para configurar os parâmetros da Rede de
Comportamento. Cada agente é um programa independente que se conecta ao servidor
do jogo para realizar tarefas e trocar material genético a fim de evoluir. Os resultados
obtidos mostram um ambiente multi agente dinamicamente configurado capaz de
evoluir e se adaptar apropriadamente conforme o andamento do jogo.

Palavras-Chave: Redes de Comportamento, Algoritmo Genético, Quake II, Multi
Agente, Inteligência Artificial.

1 INTRODUCTION

This text describes a solution to the problem of configuring the global parameters
for a Behavior Network (MAES, 1989b). The solution developed in this work uses
Genetic Algorithms (HOLLAND, 1975) to treat the problem of global parameter
configuration. Behavior Networks (BN) are typically used to control the behavior of a
multi-agent system. In order to develop the solution and verify that Genetic Algorithms
(GA) can be successfully used to configure the global parameters of a BN, the well-
known computer game Quake2 (IDSOFTWARE, 2006) has been chosen as the testing
platform for the experiments.

Games constitute a good domain for the exploration of Artificial Intelligence (AI).
In general, games have well defined rules, which make it easy to measure success and
failure (RICH, 1988). A game can be used as a research platform (LAIRD, 2001) to
investigate, develop and test AI algorithms (ADOBBATI, 2001). In this research, the
computer game Quake2 is used as the simulated environment for the experiments. The
game has a complex and dynamic environment (JACOBS, 2005) that runs in real time.
The software developed for this research implements a multi-agent system. The actions
of an agent is selected by a Behavior Network algorithm. The Behavior Networks are
configured dynamically by Genetic Algorithms.

The result is an automated, computer-controlled player for the deathmatch game
mode of Quake2. This automated player, named ChicuxBot, can adapt to different
opponents during the course of the game, dynamically changing its own behavior
through the configuration of the Behavior Network’s parameters by the Genetic
Algorithm. The evolution of the ChicuxBot shown in lab experiments indicate that
Genetic Algorithms can indeed be successfully used to solve the global parameters
configuration problem.

This chapter introduces Quake2 and the ChicuxBot. The definition of the problem
engaged by this work is presented. The objective of the research is defined. The
importance of the problem is discussed. And criteria for the success of the solution are
established.

The remainder of this document is organized as follows. Chapter 2 describes
Behavior Networks, showing the problem of configuring the global parameters of the
network. The following chapter discusses Genetic Algorithms. Chapter 4 shows how the
implementation of the ChicuxBot was done. The next chapter presents a startup guide
for running the ChicuxBot. Chapter 6 describes the tests conducted and their results.
And finally, chapter 7 contains the conclusions.

1.1 Quake II
Quake2 is a first-person-shooter (WOOD, 2004). The game is entirely three-

dimensional. The players (human and computer controlled alike) have no global view of
the world, but only the perception of their immediate surroundings (LENT, 1999). The
game levels (or maps) are typically in the form of mazes with both open spaces and
enclosed quarters. There are corridors, stairs, elevators, bridges and even water. Since
the player does not have a global view of the map, he must learn to navigate through the

12

levels and search for items and opponents. The player has a health meter that is
decreased every time he is injured, like being shot by another player, falling from an
elevated height or even staying under water for too long. The game player can also pick
up weapons, ammunition and medical kits that heal injuries, restoring the health meter.
Quake2 has been around for quite a while and therefore it can run smoothly on a very
modest computer by today’s standards. The game was released on December 6, 1997. It
requires only a 90 MHz processor and 16 MB RAM to run. Quake2 has a 3D user
interface, implemented in OpenGL (WRIGHT, 2000). The game server itself has no
graphical interface and runs on text mode. This means that more processing power can
be made available to the AI system when needed. Figure 1.1 shows a screenshot of the
Quake2 client Graphical User Interface (GUI). Additionally, the game has open source
code (NORLING, 2001) and there are versions for both Windows and Linux. Therefore,
the game is platform independent and can be customized if required. To simply put it,
this computer game is perhaps one of the best readily available simulation platforms to
develop software agents and it has already been used to do so (LAIRD, 2000).

Figure 1.1: Screenshot of the Quake2 client user interface.

In the 3D first-person-shooter computer game jargon a “bot” is an automated player

(AHN, 2006). Bots are used in multiplayer games to play against human players or even
against other bots. The most popular of these types of games is called a “deathmatch”,
where the objective is to simply kill all the other players and, of course, not get killed.
The winner is the player with the most kills (or “frags”). In order to do so, the player
faces conflicting tasks, like deciding whether to attack an enemy or run away for more
ammunition. Such decision making problems, in which conflicting objectives are
involved, are ideal to be handled with Behavior Networks.

Behavior Networks is an action selection algorithm for autonomous agents (MAES,
1989b). In order to work properly, the Behavior Network must have a number of
different parameters configured. However, the BN algorithm itself does not define how

13

these parameters should be configured. It is up to the user (or programmer) to configure
these settings. In large Behavior Networks this becomes a problem, because it is a
complex, difficult and tedious job to be done by hand. That is why it becomes
interesting to use Genetic Algorithms to automatically configure the parameters of the
Behavior Network. There have been extensions of the BN proposed (RHODES, 1995).
Extended Behavior Networks have already been used in Robot-Soccer (DORER,
1999)(NEBEL, 2003) and in other first-person-shooter games like Unreal Tournament
(PINTO, 2005). However, so far, the global parameter configuration problem remains
untreated.

1.2 ChicuxBot
ChicuxBot is a multi-agent system for Quake2. A bot is a computer-controlled

player of Quake2. ChicuxBot uses Behavior Networks as its decision making
mechanism which, in turn, is configured by Genetic Algorithms. The ChicuxBot multi-
agent system runs several instances of single ChicuxBots. All bots have the same
Behavior Network, but each one is configured differently, according to their genetic
code. As the game runs, the bots increase their fitness points by destroying other bots. A
mating season happens periodically in the Genetic Algorithm (SIMOES, 2000), when
bots exchange genetic material. The genetic material carries the instructions on how to
configure the Behavior Network. Since the best-fitted bots are most likely to pass on
their genetic material to the next generation, the configuration of the ChicuxBot
Behavior Network is improved through time.

Figure 1.2: Levels of the ChicuxBot Architecture

14

The architecture of the ChicuxBot can be divided in two distinct levels. First, there
is the Competence Module level that defines the abilities (or competences) that the bot
has. This level is in the context of a single ChicuxBot. Several competence modules are
combined in a Behavior Network to make a single ChicuxBot.

On the next level, Genetic Algorithms are used to configure the Behavior Network.
In this level, multiple ChicuxBots form a population for the GA. The bots have to
interact with the user for several cycles in order to “learn” the opponent’s behavior and
configure itself to play against that player’s style. Figure 1.2 shows a diagram of the
ChicuxBot architecture levels.

1.3 Definition of the Problem
Quake2 is a changing and unpredictable environment (GRAHAM, 2005). Behavior

Networks is an algorithm for action selection fitted for such dynamic environments
(MAES, 1989b) (RHODES, 1995). A BN is composed of competence modules and links
between these modules. Activation Energy flows among the modules according to the
configuration of the network’s global parameters. Behavior Networks presents the
problem of configuring its global parameters. Genetic Algorithms are an appropriate
technique to solve the problem of configuring a Behavior Network. The objective of
this work is to determine if Genetic Algorithms can be successfully used to configure
the global parameters of a Behavior Network using the game Quake2 as a testing
platform.
1.3.1 Importance of the Problem

The global parameters of a Behavior Network have to be properly configured in
order for the technique to work effectively (MAES 1989a, 1991). Since the definition of
Behavior Networks does not specify how this configuration can be done, it is often
adjusted by hand. Or worse yet, the configuration of the global parameters is guessed by
the programmer. Neither way of doing it can guarantee that the optimum configuration
is found. And for large networks, the problem only gets harder. Therefore, without a
proper solution for the configuration problem of the global parameters, the Behavior
Networks algorithm may not reach its optimum efficiency.

1.3.2 Criteria of Success
The solution to the problem of configuring the global parameters of a Behavior

Network will be successful if the performance of a BN configured by the proposed
solution is better than the initial performance. In other words, if several agents with ad
hoc configuration to their BN are put to compete with agents configured by the
proposed solution, the performance of the latter should be significantly better.

1.4 Other Considerations
This section presents some theoretical concepts that are considered taken for

granted in the rest of the text. The most important and complex of these is the concept
of a Dynamic System, which is described in the following subsection.

1.4.1 Dynamic Systems

A dynamic system can be seen as a set of functions (rules and equations) that
specify how variables change through time (WIKIPEDIA, 2005). A system of n
dimensions is defined by a set of n differential equations of the first order.

The state of a dynamic system in a determined instant in time is represented by a
point in the n-dimensional space by the variable values of the system x1, x2, …, xn
(coordinates) in that instant.

15

The set of all the possible states that can be achieved by a certain type of system
defines a phase space. The sequence of states through time defines a curve in the phase
space known as the trajectory. As time increases, the trajectories either occupy the
whole phase space or converge to a set of minor dimension called the attractor.

Mathematically, a dynamic system is described as an initial condition problem.
This means that functions, parameters values and the initial condition are necessary to
evaluate how the system behaves. Opposed to the variables, the parameters do not
change through time.

The dynamic system is deterministic if there exists, for every state, only one
transition of state, that is, they are one-to-one. A dynamic system can also be random
or stochastic if there exists more than one transition of state, that is, one-to-many.

A dynamic system can either be discrete or continuous in time. A discrete system
is defined by a function, z1 = f(z0), that originates the state z1 in the instance of time
immediately after the initial state z0. The calculation process of the new state in a
discrete system is called iteration. On the other hand, a continuous dynamic system is
defined by a flux.

2 BEHAVIOR NETWORKS

This chapter introduces Behavior Networks. The problem of configuring values for
weights and links of the network is explicitly shown. This particular problem is the
main point of interest in this chapter. The text starts with a brief history of the Behavior
Networks algorithm. Then, the basic ideas behind Behavior Networks and the main
components of the algorithm are explained. The inner-workings of the algorithm is
presented. Finally, we focus on the configuration problem of Behavior Networks.

2.1 Brief History
Behavior Networks was published in 1989 by Pattie Maes in an Artificial

Intelligence memo of the Massachusetts Institute of Technology (MIT) (MAES, 1989b).
The memo was entitled “How To Do The Right Thing” and, as the name suggested,
presented a new algorithm to the problem of action selection for autonomous agents.
The basic ideas behind Behavior Networks had already been explored by Maes in a
more complex solution, but with less results, in another paper published in 1989: “The
Dynamics of Action Selection” (MAES, 1989a). Just a couple of years later, Maes
would publish another paper about Behavior Networks, exploring even further her ideas
(MAES, 1991).

Behavior Networks can be traced back to the context of 1986, when Marvin Minsky
published the Society of the Mind (MINSKY, 1986). Minsky states that an intelligent
system is composed by a society of interacting agents. Each mindless agent incorporates
a competence module. Like a society of ants, agents have their specific competence
tasks, like finding a sugar lump, breaking it down to pieces, moving the pieces around
and so on; thus, the society emerges the intelligence of being able to find food and carry
it back to the nest. No one would attribute this intelligence to a single ant, but the ant
colony, however, seems to have some intelligence. Pattie Maes developed Behavior
Networks to solve the problem of how action can be controlled in such a system.

2.2 Behavior Networks Algorithm
Behavior Networks is an action selection algorithm (MAES, 1989b). An agent based

on Behavior Networks is composed of a set of competence modules. Each module
represents a particular behavior of the agent. A competence module can also be referred
to as behavior or action. The manner in which the competence modules are
programmed is not specified by the Behavior Network algorithm, and can be
implemented using any technique desired. In fact, a competence module can even be
implemented by another Behavior Network. Each module implements a specific task to

17

solve a determined problem. In addition to the instructions on how to implement a
specific behavior, a competence module i is composed of:

• ci – Precondition list

• ai – Add list

• di – Delete list

• �i – Activation Level

A competence module can only be executed once its list of preconditions has
become entirely true. The add list contains the items that become true after the behavior
has been executed. A module also has a delete list of predicates that become false after
the action is performed. Activation Level is the amount of activation energy that a
competence module holds in a specific moment in time (MAES, 1989b).

The competence modules of the network are connected via links that spread
activation energy. The links can connect the competence modules to objectives,
environment states or other modules. A module executes once it reaches a certain
activation energy threshold. There are three different types of links that can either
activate or inhibit the system:

• Successor links

• Predecessor links

• Conflicter links

A successor link connects two actions that should be taken in a particular sequence.
For instance, the bot should first find an enemy and only then shoot at it. Formally,
given the competence modules x and y, there is a successor link from x to y if every
proposition in the add list of x is also a precondition of y. A predecessor link works the
other way around, that is, it connects a module to another behavior that makes a
precondition true. For example, the ChicuxBot will only dodge if a fire is shoot at it.
Formally, there is a predecessor link from x to y if every precondition of x is also in the
add list of y. Finally, there is a conflicter link between behaviors that conflict with one
another, that is, an action that would make the precondition of another competence
module false. There is a conflicter link from x to y for every precondition of x that is
also in the delete list of y.

Activation energy flows through the Behavior Network. The energy comes from two
major sources: the goals of the system and the state of the environment. If a Behavior
Network is configured properly, the activation energy will accumulate in the
competence module that holds the best action to be taken in order to achieve the goals
of the system. The Activation Energy Flow can be categorized in the following:

• Activation by State

• Activation by Goals

• Inhibition by Protected Goals

• Activation of Successors

• Activation of Predecessors

18

• Inhibition of Conflicters

The state of the environment can inject activation energy into the system. For
example, a state that represents an opponent player nearby might send activation energy
to the competence module that shoots at the enemy. Goals can also increase the amount
of activation energy in the system. For instance, the goal to kill the enemy can stimulate
the navigation module to execute, so that the ChicuxBot will run around the map in
search of enemies to destroy. Protected goals, on the other hand, can inhibit the system.
Inhibition is the removal of activation energy from modules that would undo the
achieved goal that is to be protected. If the bot has its aim locked at an enemy player
and is ready to fire, it would be unwise to turn around and pursue another objective (like
looking for ammo or health kits) before actually killing the enemy.

As mentioned before, Behavior Networks have global parameters that are used to
configure the action selection behavior of the network (MAES, 1989b). The global
parameters are:

• � Activation Threshold

• � Proposition Energy

• � Goal Energy

• � Protected Goal Energy

Activation Threshold is the amount of activation energy a module must achieve in
order to execute. Preposition Energy is the quantity of activation energy a state injects
into the network when its proposition is true. Goal Energy is the amount of activation
energy a goal feeds into the system. Protected Goals, on the other hand, take activation
energy away from the network.

2.3 The Configuration Problem
Behavior Networks has the problem of configuring values for the weights and links

of the network. As Maes points out in her paper (MAES, 1989b), Behavior Networks
“provide global parameters, which one can use to tune the action selection behavior to
the characteristics of the task environment”. Indeed, it does. But how exactly do we
configure the global parameters? Maes paper does not specify how. For small Behavior
Networks, with few links and modules, parameter configuration can be done by hand.
But for larger networks, this task becomes extremely difficult and inefficient to be done
manually.

Configuring the global parameters of a Behavior Network requires finding the
optimal weight value of each link in the network. And this kind of problem is efficiently
solved by Genetic Algorithms (GOLDBERG, 1989) (MARDLE, 1999) (SINGH, 2005).
As is shown by the experiments and tests conducted with the ChicuxBot, Genetic
Algorithms are appropriate to handle the exact kind of problem that the configuration of
a Behavior Network parameters presents. That is, Genetic Algorithms provide an
efficient solution to the problem of finding the optimum value in a wide-base search.

3 GENETIC ALGORITHMS

Genetic Algorithms is a huge topic and can easily fill up a whole book on its own.
It is assumed that the reader is familiar with the concept of Genetic Algorithms. A
detailed tutorial of the inner-workings of Genetic Algorithms escapes the scope of this
text and, therefore, will not be shown here. What this chapter does present is a study of
the theory and main characteristics behind Genetic Algorithms.

Rather than providing a minute description in exact details of every aspect in each
component of a Genetic Algorithm, the following sections describe the reasoning
behind the possible choices for each configurable item of the algorithm. The text
examines the effects and consequences of the different configuration options for a
Genetic Algorithm. What follows is not an introduction to the concepts of Genetic
Algorithms, but an analysis on how to use the mechanisms made available by the
technique.

The text starts with an introduction to Genetic Algorithms, presenting an overview
of the algorithm. The following section studies the possible configuration options and
development choices for the mechanisms. The final section briefly presents an overview
on how the Genetic Algorithm of the ChicuxBot was implemented. The details of the
particular implementation of the Genetic Algorithm used by the ChicuxBot to configure
its Behavior Network are specified in chapter 4.

3.1 Genetic Algorithms Overview
Genetic Algorithms, as the name suggests, were inspired by Darwin’s Theory of

Evolution. They were proposed by John Holland, in the work entitled “Adaptation in
Natural and Artificial Systems”, published in 1975 (HOLLAND, 1975). The basic idea
of Genetic Algorithms is to use the same mechanism of evolution found in Nature.

The population of the Genetic Algorithm represents a set of solutions to a particular
problem. Each solution is represented by a chromosome. The structure or the encoding
of the chromosome depend on the specific problem being handled by the Genetic
Algorithm. Therefore, the encoding of the chromosomes vary dramatically from one
problem to another.

Each new generation of the population should be better than the older one, that is,
the Genetic Algorithm should be closer to finding the optimum solution to the problem.
Human-beings are the proof that the evolution system works. The basic structure of a
Genetic Algorithm is presented in figure 3.1.

20

Figure 3.1: Basic Structure of a Genetic Algorithm

The Genetic Algorithm starts by initializing the population. Then it executes the
fitness function for all individuals of the population. The fitness function evaluates each
individual of the population, giving it a score according to its fitness. Once the whole
population has been evaluated, the Genetic Algorithm checks if it has a good enough
solution according to a predefined criteria. If the desired criteria has not been met, the
algorithm starts the reproduction process. This process creates a new generation of
individuals. The first step is to select the individuals of the population that will pass
their genes along to the next generation. The manner in which the selection can be done
is analyzed in the next section of this chapter. The selected individuals have their
chromosomes recombined in the crossover process. The crossover produces the new
generation and can either replace the old population partially or in its entirety. During
the crossover, mutation of the genes can occur with a certain degree of probability,
according to the configuration of the Genetic Algorithm.

3.2 Configuration Options
This section contains a description of the main parts of a Genetic Algorithm and is

structured as follows. The two most important elements of a GA are analyzed first.

21

Namely, they are the chromosome structure and the fitness function. Then, the other
remaining major parts of a Genetic Algorithm are described one by one. The
configuration options of a Genetic Algorithm (GOLDBERG, 1989) are:

• Chromosome Structure

• Fitness Function

• Population Initialization

• Population Size

• Stop Criteria

• Selection Method

• Crossover

• Elitism

• Mutation

• Predation

The text starts with the two most important configuration options of any Genetic
Algorithm: encoding of the population and the manner in which the individuals are
evaluated. These two items are the most difficult parts to implement, and they are the
major factors in determining the performance and efficiency of the algorithm. The other
mechanisms of the Genetic Algorithm analyzed are: the initialization of the population,
the definition of the population size, the stop criteria for the algorithm, the selection
method used for reproduction and the crossover process executed to combine the
genetic material of the selected individuals.

3.2.1 Chromosome Structure

The encoding of the population is directly related to the problem being treated. The
structure of the chromosome can change radically from one problem to another. The
definition of the chromosome is one of the two most important factors in determining
the ability of the Genetic Algorithm to find the optimal solution for the problem. If the
population is not encoded properly for the problem at hand, the Genetic Algorithm
might not work at all.

It is up to the programmer to define the structure of the chromosomes according to
the problem. There is no certified method to encode the population. It has to be done by
hand. Each case is specific and every problem is different. Hence, defining the structure
of the chromosomes is one of the most critical and difficult parts in the implementation
of a Genetic Algorithm. It is generally agreed upon that half of the work in
implementing a Genetic Algorithm is encoding the chromosome. The remaining half of
the work to be done is defining the Fitness function.

3.2.2 Fitness Function

The fitness function determines how good (or fitted) an individual of the population
is. The fitness function receives a chromosome as its input parameter and returns a score
value for that genetic material. The closer that particular individual is to the optimum
solution, the better it should score in the fitness evaluation.

22

Along with encoding the population, the fitness function is the other most important
part in the implementation of a Genetic Algorithm. And just like the definition of the
structure of a chromosome, there is no standard method to implement the fitness
function. Each problem is a different case and will require a different solution. The
programmer is in charge of developing an efficient fitness function.

3.2.3 Population Initialization

The initialization of the population is typically random. The value of each
chromosome for a single individual is randomly chosen via some probabilistic function.
The more different gene values that a random initialization function produces, the more
genetic options the Genetic Algorithm will have to work with.

According to the particular needs of the problem being handled by the Genetic
Algorithm, the initialization function can perform validations on the random data
values. For instance, a problem might require that there are no repeated genes or that the
values are within a certain range. With randomly initialized data, a validation check is a
good practice to be performed.

The initialization function can also load the genome of a previously saved
population. The Genetic Algorithm can then continue the evolutionary process for that
population with new generations. The population can also be started with a seed, for a
more directed search. And finally, if there is a good guess of where the optimal solution
is in the search space, the population could be initialized by hand (or again, from a
seed).

3.2.4 Population Size

The population size of a Genetic Algorithm can either be fixed or vary through time.
In a population of fixed size, the number of individuals remains constant throughout the
entire execution of the algorithm. On the other hand, a population of variable size can
increase or decrease the number of individuals in the population. In this case, a control
function is needed to manage the size of the population (MICHALEWICZ, 1994).

The purpose of having a population of variable size is to optimize the performance
of the Genetic Algorithm. The size of the population directly affects the time a GA takes
to execute. The bigger the population, the more processing power the algorithm will
require. Therefore, the larger the population gets, the longer each generation will take to
be processed.

However, as the population increases, so does the search space of the algorithm.
This means that the GA will have better changes of finding the solution with fewer
generations. So, although the time each iteration will take to execute with bigger
populations increases, the algorithm can find the solution with less iterations. Changing
the size of the population affects the time it will take for the Genetic Algorithm to find
the solution.

Besides that, the need for a large or a small population during the execution of
the algorithm can vary through time. In some situations, a big population might be very
useful. For example, when the algorithm needs to broaden its search space, in order to
avoid or get out of local extremes and continue its evolution. In other situations,
however, a large population would only be a waste of time and processing power. For
instance, when there is no need for a large search space and the algorithm is not using
all of the genetic variety it has at its disposal to continue the search.

23

Varying the population size is a configuration that has to be carefully analyzed
and fine-tuned. It is a trade-off between the time each iteration of the algorithm takes to
execute and the total number of iterations needed to be performed in order to find the
desired solution. A well adjusted population size variation control can certainly bring
performance benefits to the Genetic Algorithm.

3.2.5 Stop Criteria

Most Genetic Algorithms specify a stop criteria to determine when the computation
should be terminated. The stop criteria could be the number of iterations the algorithm
has executed (in other words, the number of generations spawned), the time elapsed
since the algorithm started running (establishment of a time limit) or an acceptable
threshold for a good-enough solution, just to name a few.

If the stop criteria is poorly defined and it interrupts the computation prematurely,
the Genetic Algorithm will not be able to find the best solution. On the other hand, if the
stop criteria allows the evolution process to run for too long after the solution is already
found, the Genetic Algorithm will take more time than is necessary to finish its
processing. Or worst yet, if the computation goes on for too long, there is the possibility
that the solution provided by the Genetic Algorithm will downgrade. This could happen,
for example, due to an unfortunate mutation of a key individual or the whole population
can simply start to go down an evolutionary path that will produce a solution that is
worst than the one that is currently available.

3.2.6 Selection Method

The selection method determines how the algorithm chooses which individuals of
the population will take part in the reproduction process and pass their genes along to
the next generation. There are many types of selection methods. This section will
analyze two of the most popular ones: the roulette wheel and the tournament methods.

The Roulette Wheel is probably the most popular technique used as the selection
method for Genetic Algorithms. In this method, the entire population is represented by a
segmented wheel (WHITLEY, 1994). The total number of segments in the wheel
correspond to the number of individuals in the population. Each individual is
represented by a segment according to its fitness value. The most fit an individual is, the
bigger its segment in the wheel will be. To select an individual, the wheel is rolled.
When the wheel stops rolling, the individual who’s segment is facing the marker will be
the winner. In this manner, the most fit individuals will have better chances of passing
their genes along to the next generations. Poorly fitted individuals are unlikely to have
many chances of passing along their genes.

In the Tournament selection method (GOLDBERG, 1990), n individuals are
randomly selected from the population. The most fit individual from this group will
have its genes passed along to the next generation via the crossover procedure. This
process is repeated until enough individuals have been selected to reproduce and create
the new generation.

3.2.7 Crossover

Crossover is the process of reassembling the genetic material of two chromosomes,
producing a new individual. There is an enormous variety of ways in which this process

24

can be done. However, they can all be classified in to just two categories, according to
the way the chromosome is divided for the crossover: one point and multi-point.

In the one point crossover method, the chromosome is broken up in two parts
(WHITLEY, 1994). The exact location where the chromosome is divided yields
different categories of one point crossover methods: the single separation point could be
placed exact in the middle of the chromosome, separating it into equal parts; or the
chromosome could be divided into uneven halves. Furthermore, the point of division
could be selected from a myriad of choices, varying each time for every crossover.

The multi-point crossover establishes several points along the chromosome for it to
be divided (SPEARS, 1991). The number of divisions and the size of each segment can
vary according to the configuration of the particular multi-point crossover
implementation. If compared to the one point method, the multi-point crossover blends
the genetic material more rapidly. Although this widens the chance of creating a better
combination of genes, it also increases the chances of breaking up a good one.

3.2.8 Elitism

Elitism is the preservation of the most fitted individual from one generation to the
next. The genetic code of the selected individual from the previous generation is copied
gene by gene to the chromosome of the new individual in the next generation. In other
words, a clone of the elite individual is made. One or more individuals can be cloned
during the reproduction process, according to a predefine parameter.

The goal of elitism is to preserve the best solutions found in the previous generation
(COSTA, 2004). However, it can have a side effect: elitism can hold or push the
population back to a local maxima.

3.2.9 Mutation

Mutation is the alteration of the genetic code of a particular individual of the
population. This mechanism introduces diversity or, in other words, fresh new genetic
material to the population. This can be particularly useful, for instance, if the evolution
of the GA is stuck at a local maximum and the population does not have enough diverse
genetic material to get out of that local maxima. Mutation of the genetic material can
introduce the gene needed to get the population out of jammed point. And with a little
luck, mutation can provide a shortcut to finding the optimum solution.

On the other hand, mutation can also be disruptive to the evolution process
(WHITLEY, 1994). If the mutation rate is set too high, then the Genetic Algorithm will
not be able to focus on an evolutionary path and will never evolve to nothing. With a
mutation rate too high, the Genetic Algorithm will practically perform a random search.
Mutation can also harm the evolution if it affects a highly fit individual with a change
that downgrades its performance or fitness value. This last case can happen whatever
the rate of mutation is set to (unless it is set to zero, which would be disabled, of
course). Therefore, even with restrained rate settings, mutation can be harmful to the
evolution process. But it can also be the solution to escaping local maxima.

3.2.10 Predation

As it happens to all types of animals in Nature, the population of a Genetic
Algorithm can also have predators (XIAODONG, 2003). A predator eliminates an
individual and it’s respective genetic material from the population. Intuitively, one

25

might think that the predator would always hunt and kill the least fitted individuals of a
population. This maybe true for most of the cases. However this intuitive notion can be
misleading. Typically, the predator will end up catching the slowest, least skilled,
inexperienced or injured prey in the herd. Take, for example, a lion hunting down a
deer. The predator will most likely attack the infants first. Then it would probably go for
an injured adult next. The lion will, probably, go for the easiest ones to catch, that is, the
least fitted ones.

3.3 Genetic Algorithm of the ChicuxBot
As will be described in details in the next chapter (Implementation of the

ChicuxBot), the Genetic Algorithm implemented can work with a population of any
size. The system can start with a population of fixed size and, throughout the course of
the game, more agents can be added to the population. In fact, the ChicuxBot can even
work as a single agent. In this peculiar configuration however, the only evolution of the
system, if any, would come from mutation. The ChicuxBot can also work with only two
agents. In this case, all the features of the Genetic Algorithm would be working, but the
speed of the evolution would be slow. The more agents added to the system, the faster
the improvement can happen.

The reproduction process of the Genetic Algorithm replaces the entire population.
Partner selection of the ChicuxBot is done through the roulette technique. The roulette
can be imagined as a pie chart, where the size of each slice of the pie corresponds to the
value of the fitness of each bot. A slice of the pie is randomly chosen in the mating
phase of the Genetic Algorithm. The bigger slices are more likely to be chosen than the
smaller ones. Therefore, the higher the fitness of a bot, the more chances it will have of
passing on its genetic code to the next generation.

As mentioned before, the Genetic Algorithm of the ChicuxBot uses mutation. This
feature is specially useful in cases where a small population of agents gets stuck at a
local maximum. Mutation provides a mechanism to break free of the local maximum
and start climbing up the hill again.

4 IMPLEMENTATION OF THE CHICUX BOT

This section details implementation and functional aspects of the developed
software. First, it is described how the system is structured and how it interacts with the
Quake2 game server. Then the detailed implementation of the Behavior Network used
by the software agents is shown, explaining the function of each of its components.
Finally, the exact inner workings of the Genetic Algorithm is detailed. The software was
programmed in C++ with Object Oriented methodology.

4.1 Software Structure
ChicuxBot is a multi-agent system. Each agent is composed of a Behavior Network

configured by a Genetic Algorithm. All agents have the same Behavior Network, that is,
every ChicuxBot in the system is running with the exact same competence modules.
The difference between the agents is in the genetic code that configures the behavior of
the network. The agents are controlled by Behavior Networks which, in turn, are
dynamically configured by Genetic Algorithms in real-time during the course of the
game.

The ChicuxBot multi-agent system uses the Quake2 game as its environment. Each
agent in the system is an independent program. The agents connect to the Quake2 game
server via sockets (STALLINGS, 2000). This enables each agent to run on a different
machine and interact through a computer network. The whole system can also run on a
single computer. All communications among the bots happen through the Quake2
server. The bots send messages and exchange genetic material through the console
interface of the Quake2 server. It is the same interface that human players use to send
text messages to one another. In fact, the messages exchanged by the ChicuxBots are
string messages, and can be seen by the other players during the course of the game.

There are different ways to implement a bot for Quake2 (CHAMPANDARD, 2005).
One can modify the game itself by inserting new code. This requires the re-compilation
of the entire game. Another way is to develop a standalone program that connects to the
game server. However, both methods require some knowledge of the inner workings of
the source code from the game server. Since the main motivation for using Quake2 was
saving time and getting an easy-to-use, off-the-shelf environment, it was chosen to use
an interface called Q2 Bot Core (SWARTZLANDER, 2005). This interface does all the
work to communicate with the Quake2 server. Although not as fast nor powerful as the
other two possible approaches, the interface is efficient and quick to use.

27

Each instance of the ChicuxBot uses the Q2 Bot Core interface to connect to the
Quake2 game server. Figure 4.1 shows an overview of all the parts involved in the
system and how they connect. The Quake2 Server is in the center of the figure because
it centralizes all communications between the rest of the parts in the system. ChicuxBots
and human game players alike, connect in the same fashion to Quake2. As long as the
Quake2 server is concerned, there is no difference between a ChicuxBot and a regular
human player. The figure also shows the Quake2 Viewer, an instance of the Quake2
graphical client that provides an overview of the game. An observer can use the Quake2
Viewer to hover around the game maze without being seen or interacting with the other
players. This is useful to get an overview of the match and see what is happening
around in the game.

Figure 4.1: Overview of the ChicuxBot Multi-Agent System

4.2 Behavior Network of ChicuxBot
The Behavior Network implemented in the system is shown in the figure bellow.

The same BN is used for all the agents of the system. The Behavior Net contains three
competence modules that implement all the behavioral functions of the agent. There is a
module for Shooting, one for Navigation and another one for Dodging. Basically, all a
bot has to do is shoot opponent players, navigate around the map, and dodge enemy fire.
Additionally, there are three environment states, represented in figure 4.2 by the gray
filled circles. Each state could be viewed as an environment sensor, that continually
scans the world; once the sensor detects a particular property, the state becomes true.
Finally, there is the overall objective, that is to Kill All enemy players. This objective is
also linked to competence modules. Thus, although the resulting Behavior Network is
very simple, it contains all the necessary functions a Quake2 bot needs to play the game

28

Figure 4.2: Behavior Network used in ChicuxBot.

Each link of the Behavior Network has an associated parameter that defines the
amount of activation energy it carries. In addition to its specific task, each competence
module has a variable that informs the amount of accumulated activation energy. The
modules also have an energy threshold. Once the variable reaches this limit, the module
is executed. As explained before, in Maes original Behavior Networks each module has
an explicit add list of preconditions that have to become true in order for the module to
execute (refer to section 2.2). Since the particular Behavior Network used in this
research would not be too complex, the precondition lists of the competence modules
are implicit in the environment states; that is, if a state has become true, it is because the
precondition has also been fulfilled. The Behavior Network has been implemented in
this peculiar way because it is designed to function in a real-time environment, where an
explicit precondition list is not necessary. The competence modules can be composed of
a different number of links to other modules, objectives or environment states.

To understand the exact inner working of the Behavior Network, consider the
following example: when an enemy player enters the bot’s line of sight, the
Enemy_near environment state will become true; this will send the amount of activation
energy specified by the link from the Enemy_near state to the Shooting competence
module. For every cycle (determined by the Quake2 server and the socket connection
speed), the state will send the same amount of activation energy through the link. The
module will add up activation energy until it reaches the threshold, causing the behavior
to be executed. In this example, the bot will shoot. Notice that the agent will shoot only
once, and then the activation energy variable of the Shooting module will be reset; the
whole process will have to repeat itself for the bot to shoot again.

Depending on the amount of activation energy a link transmits and on the threshold
of each competence module, the agent can show distinct behaviors. For instance, if a bot

29

has a high threshold on the Navigation module and the Idle state transmits a low amount
of activation energy, this particular agent will tend to stand around for some time until it
decides to start moving. On the other hand, if a bot has a low threshold and a high
energy link, it will always be running around the map. These kinds of behaviors are
determined by the activation energy transmission capacity of the links and the threshold
of the modules which, in turn, are configured by the Genetic Algorithm. Therefore, the
Genetic Algorithm directly configures the behavior of the bot.

Both the shooting and navigation modules involve difficult and fairly complex
problems that could greatly benefit from sophisticated solutions. However, since the
main objective of this research is to develop the overall genetically configured Behavior
Network system, simple ad hoc solutions have been used on these modules.
Nevertheless, it is highlighted here that these modules can be easily replaced by more
advanced algorithms later on.

4.2.1 Shooting Module

The shooting module chooses the closest visible enemy to fire upon. The algorithm
developed uses simple trigonometric functions in order to compute the correct angles
the bot must turn in order to precisely shoot the target (SIMONS, 1985). The shooting
module also causes the bot to chase its target if it tries to run away. The algorithm used
by the shooting module is shown in figure 4.3.

The first step of the shooting module is to determine if an enemy is near. Only when
the enemy is in sight that the module will perform the calculations to aim and fire. If
there is an enemy near, the algorithm calculates the two-dimensional distance between
the ChicuxBot and the target. The distance is used to calculate the angle the aim should
turn in order to target the enemy. The angle calculation is performed by the following
equation:

In Equation 4.1, Px and Py are the coordinates of the ChicuxBot; Tx and Ty are the

coordinates of the target. The arccosine function returns the angles in radians. The final
result value will be used to adjust the aim to hit the target.

The next step of the algorithm is to check if the enemy is coming from behind. If it
is, the ChicuxBot should turn around to face the enemy. Then the shooting module
adjusts the aim vertically. The vertical adjustment of the aim is done with pretty much
the same formula of equation 4.1, except that the z axis is used instead of the y axis. In
other words, the same formula is applied to a different plane in the three-dimensional
space of the game. Once the aim is adjusted in both horizontal and vertical planes, the
ChicuxBot can fire. As the flux diagram shows, if an enemy is near, the ChicuxBot will
always shoot.

30

Figure 4.3: Algorithm used by the Shooting Module

4.2.2 Navigation Module

The navigation module works with predefined trails for each map. The trails are
stored in a text file on disc, composed of a number of three dimension coordinates. Each
file must have a main trail and any number of auxiliary trails needed for a particular
map. The bot walks through the main trail while the module is active. If it ever gets off
the main trail (for example, when the shooting module becomes active because of an
approaching enemy), the navigation module will find the closest auxiliary trail which
will lead the bot back to the main trail. Figure 4.4 shows the logic of the navigation
module.

31

Figure 4.4: Algorithm used by the Navigation Module

32

The navigation module starts by finding the trail point the ChicuxBot is closest to.
The trail points for each map are previously loaded on an array of user-defined structs at
runtime. At the beginning of each game, while the level map is being loaded on the
Quake 2 server, the ChicuxBot also loads the particular trail points for the specified
game map.

The closest trail point to the ChicuxBot is found through an iterative search. The
program searches the entire trail array, selecting the trail point that has the smallest
distance to the ChicuxBot. Once the navigation module has found the closest trail point,
it calculates the three-dimensional distance of that point to the current position of the
ChicuxBot. The formula used to calculate the 3D distance is posted bellow:

As is shown above, the formula simply calculates the distance between two points in

a three-dimensional space. In equation 4.2, (Px, Py, Pz) are the coordinate points of the
ChicuxBot and (Tx, Ty, Tz) are the coordinates of the trail point.

Knowing the distance of the ChicuxBot to the trail point, the navigation module can
determine if that point has already been reached. If so, then the ChicuxBot should go to
the next trail point. If not, the navigation module checks if the selected point is not the
end of the trail. If the ChicuxBot has reached the end of the trail, then it should go to the
first trail point and start running the trail all over again. If it is not the end of the main
trail, then the navigation module also checks if it is not the end of an auxiliary trail. If
indeed it is the end of an auxiliary trail, then the ChicuxBot should get back to the main
trail. This is done by finding the second closest point in the trail array to the ChicuxBot.

Having done all the checks and their respective adjustments, the navigation module
has the coordinates for the target trail point the ChicuxBot should move to. It then
calculates the angle that the ChicuxBot has to turn in order to face the destination trail
point coordinates. The calculation of the angle is done with the same basic formula of
equation 4.1 from the shooting module. If the ChicuxBot is facing the trail point
backwards, it turns around to face the point straight ahead. Finally, the ChicuxBot
moves forward.

4.2.3 Dodge Module

Last, but not least, the dodge module makes the bot jump in an attempt to avoid
getting shot. The dodging algorithm simply detects when the ChicuxBot is being
damaged and loosing health. When this is happening, the bot jumps.

4.3 Genetic Algorithm of ChicuxBot
All agents in the system have the same Behavior Network. This means that different

instances of the ChicuxBot have the same competence modules with the same
connections. But each agent has its own DNA. So every distinct agent in the system has
its own set of parameters that configure the links between the competence modules of
the Behavior Network. The parameters configured by the Genetic Algorithm include the

33

activation energy threshold for a given competence module and the amount of energy
that is carried by each one of its links. The DNA of each agent store the configuration
values of its Behavior Network.

The following sections describe the characteristics of the Genetic Algorithm
implemented in the ChicuxBot. The most important part of any GA is the encoding of
the population and the fitness function that evaluates it. Therefore, those two
components of the Genetic Algorithm are described first. The population’s initialization
and size are analyzed next. The selection method, crossover and mutation
characteristics of the Genetic Algorithm of the ChicuxBot are also described in details.

4.3.1 Chromosome Structure

The structure of the agent’s chromosome was implemented as an array of integers.
The software was programmed with object-oriented methodology, so any changes in the
Behavior Net are automatically adapted by the system. There is no need to adjust or re-
program functions or structures by hand in the GA or any other part of the software; all
modifications are automatically handled by the objects. This makes it easy to expand the
BN, adding new links and competence modules, or modifying existing ones. On its
default configuration, as shown in figure 4.2, the BN has three competence modules and
three links between them to the world states. In this case, the chromosome array will
have 6 positions: three for the threshold of each competence module, and three for the
amount of activation energy carried by each link. Figure 4.5 illustrates an agent’s
chromosome. The chromosome values of each agent is initialized randomly.

Figure 4.5: Structure of a chromosome.

34

4.3.2 Fitness Function

In general, the fitness function is one of the most difficult parts to implement in a
Genetic Algorithm (WIKIPEDIA, 2006). But ChicuxBot uses Quake 2 as its
development platform. Quake 2 is a game. Games have well defined rules. In such an
environment, it is easy to measure success or failure. The success of a player in Quake 2
is directly related to its score in the game. Therefore, the fitness function for the GA of a
game is simply the measure of the player’s score. Having a simple and efficient fitness
function is one of the main benefits of using a game as the agents environment.

What measures the quality and efficiency of a player in Quake 2 is the number of
enemies it has killed during the game. The best players are the ones that killed more and
died less. This is exactly what should be measured by the fitness function of the
ChicuxBot.

In Quake 2, every time a player kills an enemy, his frag score is incremented. Each
time the player kills himself (which happens quite frequently with human players by the
way), the frag score is decreased. The fitness function is a count of the numbers of frags
the ChicuxBot has accumulated during the match so far.

4.3.3 Population Initialization

The population of ChicuxBots are initialized randomly. There are no validations that
have to be done on the randomly generated values of the chromosomes. The ChicuxBot
uses a function that returns a pseudorandom number. The seed used for the
pseudorandom number generator is the system time (in seconds) in which the function
is called. The value of each gene in the chromosome is set one by one with a separate
call to the random number generator function. Each individual of the population is
initialized with a different seed.

4.3.4 Population Size

The total population size can vary, as new bots enter the game and others leave. The
system will work with any number of bots, from 1 to n. The total number of bots in the
system is limited by the number of bots supported by Quake 2.

In the case of only one bot present in the game, its DNA will tend to remain
unaltered, because the reproduction process will always result in a clone of the bot. The
only changes to the chromosome in this case, if any at all, will have to come from a
mutation. As more bots are added to the population, the genetic variety increases.

The number of players influences directly the quality of the game and the skills
required to win. If there are only a few players in the match, they can take too much
time to find each other and the game can easily become tedious. This scenario favors the
more skilled player, that knows how to position himself in the map, takes good aim and
shoots precisely upon finding the enemy. On the other hand, if there are too many
players in the map, the game can become crowded. In this case, sheer speed in shooting
and brute force in the choice of weapons becomes more appropriate.

 The ideal number of players depends on which map the match is being fought. For
the map that is used by default in the ChicuxBot (q2dm1), the appropriate number for a
good match is from eight to twelve players. The available map levels have different
sizes and characteristics. There are close quarters maps and there are also levels with

35

wide open areas. This influences in the choice of weapon to be used and the tactics to be
employed.

4.3.5 Selection Method

The ChicuxBot uses the Roulette Wheel selection method. In this technique, each
individual of the population is assigned to a number of segments in the roulette wheel
(WHITLEY, 1994). The total number of segments in the roulette wheel equal to the sum
of the fitness points from the whole population. In other words, the size of the roulette
wheel will equal to the total number of frags in the game. The number of frags each
ChicuxBot has is the number of consecutive segments in the roulette wheel it will have.
Therefore, the percentage of the roulette wheel each individual has will be proportional
to its fitness score.

The spinning of the roulette wheel is implemented by drawing a random number.
The segments of the wheel are numbered from zero to the total number of frags in the
game. The randomly picked number will determine the selected segment. The most fit
individuals will have better chances of being selected and passing along their genes to
the next generation, because they will be assigned to more segments of the roulette
wheel. The more segments one individual has, the more chances it will have of being
selected.

Each instance of the ChicuxBot executes its own roulette wheel. There is no central
system that runs the process. This means that each bot decides which partner it will
mate with, instead of being assigned a partner by a central process. This allows for a
ChicuxBot to select itself to reproduce with. This will result in the cloning of the
particular chromosome of that ChicuxBot.

4.3.6 Crossover

The crossover implemented in the ChicuxBot is of the multi-point type (DEJONG,
1991) (DEJONG, 1992). The algorithm goes through all the genes in the chromosome.
For each gene of the new chromosome, a draw is made to determine if the value will
come from one parent or the other. There is equal probability for the gene value to come
from parent A or parent B. In other words, the process is done by “flipping a coin” to
determine which genes will be passed along to the offspring.

There is a flip for each gene, that is, if gene 1 will come from progenitor A or B, if
gene 2 will come from A or B and so on. In this manner, the crossover may produce an
individual that is an exact copy (or clone) of either of its progenitors, or any mixture of
the two. This allows for the maximum number of combination possibilities.

4.3.7 Mutation

Mutation (TATE, 1993) (CULBERSON, 1994) is the process that changes the value
of a single gene in the chromosome of an individual of the population. In the
ChicuxBot, mutation happens during the mating season. Specifically, mutation happens
in the crossover process. Mutation is configured at a rate of 2% for each gene.

During the reproduction process, every gene is susceptible to suffer mutation. A
specific gene in the chromosome can undergo mutation with the probability determined
by the mutation rate. Therefore, a single chromosome can have multiple genes altered
during the matting process. This means that an agent can have multiple genes altered by
mutation from one generation to the next. Mutation is useful because it introduces new

36

genetic material in the population. This can help the algorithm from getting stuck in a
local maximum.

4.3.8 Elitism

The ChicuxBot software was implemented in a way that “naturally” allows elitism
(CHAKRABORTY, 2003) to happen, as verified by testing. During the reproduction
process, the selection of the partner is done by the roulette wheel technique. Since the
most fitted individuals (the elite) will have bigger segments of the roulette wheel, it is
very likely that the most fit individual will choose itself to reproduce with. When this
occurs, what is in fact happening is the preservation of the best individual and,
therefore, elitism. As shown by testing, this happens quite often, but not necessarily
every time with the same individual, or with the best and most fitted one.

4.3.9 Mating Season

The Genetic Algorithm of the ChicuxBot uses the concept of the mating season
(SIMÕES, 2000). This concept was introduced by the researcher Eduardo do Valle
Simões in his PhD thesis, published in the year 2000. This mechanism is needed
because the ChicuxBot runs on a real-time environment. The matting season is triggered
by the user. In order for the reproduction process to start, the command mateSeason has
to be issued by the Chicuxbot player. The command can be typed from the game’s
command prompt. The mateSeason command is treated as regular text message by the
Quake 2 server, but it is recognized and executed by the instances of the ChicuxBot
connected to the game. Once the command is issued, the bots start executing the DNA
Exchange Protocol (refer to the next subsection for details of the protocol).

The reproduction process of the Genetic Algorithm replaces the entire population.
All the agents take active place in the process. Each bot has a three digit identification
number that is incremented by one to identify its offspring. Since all the individuals are
replaced by their offspring, the population size remains constant (as long as no new bots
are added to the game, which may be done freely at any time).

4.3.10 DNA Exchange Protocol

In order to evolve and find the optimum configuration for the Behavior Net, the GA
must exchange genetic material with other agents. This is done through the Quake2
server, that allows text messages to be sent from one player to all the others. The bots
have unique identification numbers that are used to distinguish messages in the
reproduction process. All messages are exchanged through the game server, thus
making the program of each agent completely independent from the others.

The numbers of frags a bot has accumulated during a match serves as its fitness.
Every time a matting season begins (defined by the user), each agent announces its
fitness in the game. Once the agent has the fitness of all the others, it then chooses its
mate by the roulette technique. Next, the bot sends its DNA to all the other agents in the
game and, at the same time, searches incoming messages for the DNA of its selected
partner. With the complete reception of the desired DNA, the crossover process
executed.

37

4.3.11 Summary of the Genetic Algorithm

The table bellow presents a summary of the main characteristics of the Genetic
Algorithm for the ChicuxBot.

Table 4.1: Characteristics Summary of the Genetic Algorithm

Configuration Value

Population Size: variable

Population Initialization: random

Fitness Function: number of frags

Selection Method: roulette wheel

Crossover: variable multi-point

Elitism: yes

Mutation: 2%

4.4 Navigation Map Trails File
The navigation competence module from the Behavior Network of the ChicuxBot

uses a file stored on the software’s directory. The file contains a set of three-
dimensional coordinates that is used by the ChicuxBot to navigate around the game
map. This file is saved in text mode and can be edited by hand. There should be a
corresponding navigation trails file for each different game map (or maze) that is to be
used with the ChicuxBot.

The file contains navigation information in the form of trails. As the name suggests,
a trail is a path for the bot to walkthrough the mazes. The navigation map file contains
one main trail and any number of auxiliary trails. The main trail is a never ending loop
around the maze. ChicuxBot uses the main trail to run through the map in search of
enemies. When an opponent is found, the ChicuxBot will start chasing the enemy
player. The chase will most likely lead the ChicuxBot out of the main trail. Every time
the ChicuxBot wonders off from the main trail, it uses auxiliary trails to get back on
track. All auxiliary trails must lead to the main trail.

The structure of the navigation map trails file is shown in table 4.2. The file starts
with a header that contains two integer values: the number of nodes of the main trail (in
other words, the size of the main trail) and the total number of nodes in the file. Note
that the difference between these two values will result in the number of nodes of the
auxiliary trails.

The main trail is the next item in the structure of the file. The main trail can be
followed by zero or more auxiliary trails. Both main trail and auxiliary trails are
composed of nodes. Each node contains three values that represent 3D coordinates in
the game maze. The nodes in the file can be separated by blank lines for better
visualization.

38

Table 4.2: Navigation Map Trails File

File Structure Description Field Type

Size of Main Trail Integer Header

Total number of Nodes Integer

Main Trail Nodes Each node contains:

• Coordinate x

• Coordinate y

• Coordinate z

3D Coordinates

(one value per line)

Auxiliary Trail Nodes Each node contains:

• Coordinate x

• Coordinate y

• Coordinate z

3D Coordinates

(one value per line)

Altering the navigation trails would directly change the behavior of the ChicuxBot.
Therefore, during all the tests performed in this experiment, all bots used the same map
trails. The default navigation map trails file provided with the ChicuxBot is for the
Q2DM1 map of Quake2, which is the first deathmatch maze used by the game server.
The ChicuxBot can work on other maps, so long as the appropriate navigation map
trails file is provided. The system automatically retrieves the maze information from the
game server and loads the corresponding file. The naming convention for the file
ChicuxBot uses is “map_name.txt”. For example, the name for the first level of
deathmatch is Q2DM1.txt.

39

5 RUNNING THE CHICUXBOT

This guide shows how to start up the ChicuxBot multi-agent system and connect it
to the Quake2 game server. This chapter is intended for those readers who are not
familiar with Quake2. If you already know how to set up a multiplayer game in Quake2
and connect other players to it, you can safely skip to the next chapter.

5.1 Background
The ChicuxBot is an independent program that can execute by itself. However, to

actually use the ChicuxBot, the Quake2 game must be installed in the system. The game
is self-contained, in the sense that all the files it needs to run are contained inside its
own directory. Quake2 does not install files in any other system directory. So, if the
game isn’t already installed, simply copying the game directory from a CD or another
hard drive will work just fine.

The first step is to start a Quake2 server. The easiest way to do it, is to start the
server through Quake’s graphical user interface. It is easy because the user can start the
server and play the game directly through a single interface, without having to type any
text commands. In this mode, however, both server and client are running at the same
time, on the same machine. This can lead to lag, or poor performance of the game
server. Running the game server itself does not consume too much system resources. In
fact, the Quake2 game server runs on text mode only. The client interface, on the other
hand, renders graphics, sounds and has to read user input. These tasks demand large
amount of system resources. Therefore, the best way to set up a Quake2 multiplayer
game is to start a dedicated server on a separate machine, and have other clients connect
from different machines. But since not everyone has a LAN of PCs at their disposal, this
guide will also be showing how to set up the system on a single machine. Running the
system on a single computer doesn’t even require an active network connection.

5.2 Quake2 Game Server
To start the Quake2 server using the game’s graphical user interface just select the

menu Multiplayer then Start Network Server. The game prompts the user to input the
server configuration. Table 5.1 shows the proper configuration that should be set up on
the game server.

40

Table 5.1: Quake2 multiplayer server GUI configuration

Configuration Value

Initial Map The Edge Q2DM1

Rules Deathmatch

Time Limit 0

Frag Limit 0

Max Players 8

Hostname q2Game

The Initial Map setting specifies the maze that will be used in the game. ChicuxBot
needs the map information for its navigation competence module, in order to be able to
run around the maze during the game. The default map for Quake2 (and also for the
ChicuxBot) is Q2DM1. The actual map information that the game server uses resides
inside the Quake2 directory. The ChicuxBot uses a separate navigation file conveniently
named “q2dm1.txt”, that has trails and navigation information. This file is exclusive to
the ChicuxBot and is not part of the Quake2 installation. A different map can be chosen
through the Quake2 menu. ChicuxBot will automatically search for the appropriate
navigation file in its own directory. If a maze other than the ones supplied with
ChicuxBot is selected, a navigation file should be created and copied to the ChicuxBot
directory. Table 4.2 specifies the structure of the navigation file used by ChicuxBot.

Rules specify the type of game that will be played. There are two options:
deathmatch or cooperative. In deathmatch mode, all players of the game are enemies
and the rule is every player for itself. ChicuxBot was designed to play death matches.
So the Rules configuration should be set to Deathmatch.

The Time Limit setting is the amount of minutes a match should last. Likewise, the
Frag Limit is the maximum number of kills a single player can score. Once the time
limit or the frag limit is reached, the game ends the current match and automatically
starts a new one with a different map.

The maximum number of players during a match have to be set up from start and
cannot change during the course of the game. This happens because the Quake2 server
must know beforehand how many ports it should keep open and listening to, waiting for
other players to join. The Max Players configuration sets the limit of players of the
match. Not all players have to join for the game to start. In fact, the match can start with
just one player. The recommended number of maximum players is eight. This is a good
number if you are not running the dedicated server. More players can be added, but the
server could start to lag. To solve this problem, a dedicated server should be used. More
players can smoothly run on a dedicated server.

Finally, Hostname specifies the name of the match that will appear to other players.
This value can be set to any name the user desires.

41

5.3 Dedicated Server
Setting up a dedicated server is more complex, but it results in much better

performance. The dedicated server runs in text mode only. This uses much less system
resources than the graphical mode. The freed up resources can then be used to actually
serve the game. For the best performance, the Quake2 game server should be run on a
separate and dedicated machine as well. To start a Quake2 dedicated server, the user has
to type the following command:

quake2.exe +set dedicated 1 +set deathmatch 1 +set maxclients 32 +map q2dm1

This command calls the Quake2 executable and instructs it to run as a dedicated
server. It also sets the rules of the game to deathmatch. The maximum number of
players is configured to 32. And, finally, the initial map is configured as q2dm1. Figure
5.1 shows a screenshot of a Quake2 dedicated server.

Figure 5.1: Quake2 Dedicated Server

5.4 Executing the ChicuxBot
Once the Quake2 server is running, instances of the ChicuxBot can start to enter the

game. If the bots will be executing on the same machine as the game server and Quake2
is installed in the default directory (c:/games/quake2), then just double-clicking on the
ChicuxBot icon will work. The program will be launched with its default configuration,
which should work just fine in the described situation. Figure 5.2 shows a screenshot of
the ChicuxBot software window.

42

Figure 5.2: ChicuxBot Program Screenshot

ChicuxBot provides all the mechanisms to work in a distributed environment, if a
more elaborate and efficient configuration is desired. For instance, the Quake2 server
can be running on a dedicated machine, and the various instances of the ChicuxBot can
be distributed across multiple computers. The ChicuxBot software program can be
configured in such cases through the use of command line parameters. The syntax is as
follows.

Syntax: ChicuxBot [-h hostname] [-dir quake2_directory]

Exemple: ChicuxBot -h 127.0.0.1 -dir c:/games/quake2

The options that can be specified are the location of the Quake2 server and the
game installation directory. The [-h] parameter sets the hostname or IP address of the
Quake2 server. This option should be specified when the server is running on a different
computer than the ChicuxBot. The [-dir] option configures the location of the game’s
installation directory. This information is need in order for the ChicuxBot to be able to
find the Quake2 game. In the example provided, the ChicuxBot is being configure to
look for the server on the localhost (an IP address is being used) and to look for the
game installation in the c:/games/quake2 directory.

5.5 Using the Quake2 Viewer
A player can connect to a Quake2 game server that is being used by ChicuxBots in

the same manner that he or she would connect to a normal multiplayer match. That is,
just by double-clicking on the Quake2 icon and following the normal steps through the
graphical menu the game provides. Using this path, however, the user will in fact
become a player and interact with the game.

43

There is the possibility for a user to join the game as an observer. Observers do not
interfere with the game. The other players cannot see the observers and are not affected
by them. An observer can fly freely around the game map. The observer even pass
through walls. This option can be very useful to provide an overview of the game
match. To visualize the game as an observer, enter the following string at the command
prompt:

quake2.exe +connect 127.0.0.1 +set spectator 1

This will launch the Quake2 client with full graphical user interface. Once the game
interface is running, the arrow keys can be used to navigate through the map. The
mouse can also be used to change the angle of view in the level.

44

6 TESTS

This chapter presents the tests conducted and the results they produced. Three
distinct types of test were conducted. The ChicuxBot was tested against static bots,
manually configured bots and human players. The text of this chapter is organized as
follows. The first section starts by describing the environment in which the tests were
conducted. Next, each different type of test is described. Then an example of a roulette
configuration of the Genetic Algorithm is shown from an actual game match. The
results obtained are presented. And finally, the possible applications for the work
developed are discussed.

6.1 Test Environment
The ChicuxBot system was tested against three distinct types of opponents:

randomly initialized bots, manually configured bots and, most importantly, human
players. Both random and manually set bots used the same Behavior Network as the
genetically evolved ChicuxBot. This means that, in essence, all bots used in the tests
had the same basic abilities; what differed them was the manner in which their abilities
were adjusted. It is highlighted that the objective of this experiment is to test if indeed a
Genetic Algorithm can be used to configure a Behavior Network to play Quake 2; the
efficiency of the specific modules of the Behavior Network is not being tested here. In
fact, all modules of the Behavior Network of the ChicuxBot could be changed or
replaced by more efficient ones that it would not affect the outcome of the tests. The
experiment will show if the developed system can improve the configuration of a
Behavior Network.

All tests conducted used Quake2’s default multiplayer configuration on the game
map q2dm1. During the tests, a new generation was spawned every five minutes. The
human players that took part in this experiment were lab colleagues from the university.
All of them were experienced Quake2 players.

6.2 ChicuxBot versus Static Bots
The first test placed five ChicuxBots to play against five static bots. Figure 6.1

presents graphic of the timeline (abscissas) by the number of frags of each bot
(ordinates). This graphic illustrates the performance of the top three ChicuxBots and the
three best static bots.

45

0

5

10

15

20

25

30

5 10 15 20 25 30

Time

Fr
ag

s
ChicuxBot1
ChicuxBot2
ChicuxBot3
StaticBot1
StaticBot2
StaticBot3

Figure 6.1: ChicuxBot versus Static Bots.

This test shows that when the dynamically configured GA bots play against static
bots (with the same BN but no GA; the parameters of the BN are randomly set), after a
certain amount of time, the first tend to have better performance. This happens because
quite often randomly initialized static bots have poor parameter configuration on their
Behavior Network. Although the genetically enhance bots are also initialized randomly,
the Genetic Algorithm selects the best and most fit bots to exchange genetic material.
This results in more adapted offspring with better performance.

Figure 6.1 clearly shows that the performance of the ChicuxBot improves over time.
As new generations of the ChicuxBot were spawn, the Genetic Algorithm optimized the
configuration of the Behavior Network. By the end of the game, the static bots had not
improved their performance at all, while the ChicuxBots score much higher kills.

6.3 ChicuxBot versus Manual Bots
The next test placed ChicuxBot against manually configured bots. This scenario is

shown in figure 6.2. When GA bots are put against bots hard coded by hand (again we
have the same BN, but the parameters of the latter are set manually by the programmer)
the result is always a tie. This happens because both types of agents are equally well
configured and thus have practically the same performance. At first, the hand coded
bots start better off; but as soon as the Genetic Algorithm tunes the Behavior Network’s
parameters, performance starts to rise.

We point out here that this kind of test had this particular result because the
Behavior Network used is small and simple. In a larger, more complex BN, it would be
very difficult to adjust the parameters by hand and, in that case, the Genetic Algorithm
would probably produce a better result.

46

0

5

10

15

20

25

30

5 10 15 20 25 30

Time

Fr
ag

s
ChicuxBot1
ChicuxBot2
ChicuxBot3
ManualBot1
ManualBot2
ManualBot3

Figure 6.2: ChicuxBot versus Manually Configured Bots.

6.4 ChicuxBot versus Human Players
On our last series of tests, we put the ChicuxBot to play against human players. This

match lasted 30 minutes and placed three human players up against seven ChicuxBots.
Figure 6.3 shows the performance of the human players and the best three ChicuxBots.
The ordinates indicate the number of frags each player scored and the abscissas show
the time elapsed.

ChicuxBot is no match for a well-trained human being. However, this is due to the
simplicity of the Behavior Network implemented (and to the low-end capabilities of the
specific BN modules); the bad performance against good human players is not a fault of
the ChicuxBot evolutionary configuration system. According to the human players
subjected to the test, ChicuxBots did get better in the course of the game; as new
generations evolved, the improvement in bot performance was clearly felt by the human
players. The evolutionary configuration capability of the ChicuxBot is also confirmed
by the test against randomly initialized bots shown earlier.

0
5

10
15
20
25
30
35
40

5 10 15 20 25 30

Time

Fr
ag

s

Human1
Human2
Human3
ChicuxBot1
ChicuxBot2
ChicuxBot3

Figure 6.3: ChicuxBot versus Human Players.

47

6.5 Roulette Configuration
To illustrate how the selection mechanism of the Genetic Algorithm works, figure

6.4 shows a pie chart with the percentages of the roulette technique employed by the
ChicuxBot to choose a mate. The figure shows the roulette used by the ChicuxBots
during the fifth mating process (that is, 25 minutes of game time) of the ChicuxBot
versus Humans match (shown on figure 6.3). The bigger the piece of each bot on the
chart, the better the chances it will pass on its genes to the next generation.

Figure 6.4: Example of Roulette Configuration.

6.6 Results
Tests show that according to its chromosomes, different agents will show distinct

behavior. For example, an agent that has a lower threshold for the shooting module will
fire more often. The same happens with an agent that has a stronger link for the
Enemy_near world state. However, a bot will rather run than shoot if it has a low
threshold for the navigation module. This demonstrates that the system has some
flexibility to change its behavior and that these settings can indeed be done by the
Genetic Algorithm.

Since the GA runs in real time during the course of the game, it can adapt according
to changes in game play. This means that the ChicuxBot has the potential to adapt itself
to different players and styles. The use of Genetic Algorithms to configure Behavior
Networks adds adaptability to the solution.

Therefore, analyzing the results, what these tests show is that indeed the ChicuxBot
can dynamically evolve from a random initial setting to an optimum configuration
through the course of the game.

6.7 Applications
The ChicuxBot software itself can be directly be applied for entertainment, serving

as what is popularly called the “Artificial Intelligence” of computer and video games.

ChicuxBot1

ChicuxBot2

ChicuxBot3

ChicuxBot4

ChicuxBot5

ChicuxBot6

ChicuxBot7

48

For multiplayer games, the ChicuxBot naturally suits itself to be a deathmatch bot. But
the ChicuxBot could also be applied to a single player game. This could be done in the
following manner: several ChicuxBots could be used as the “soldiers” or normal
enemies of the current game level. As the user explores the level’s map and interacts
with the bots, the system is learning how the user plays. Then, at the end of the level,
the “Boss” of the level would be the resulting optimized ChicuxBot, configured and
fine-tuned as the player ran through the map during the game. In other words, the
Genetic Algorithm configures the Behavior Network while the user plays through the
level. When the player reaches the boss of the map, this final enemy would be
controlled by the most evolved ChicuxBot of the population (that is, the fittest one).

But perhaps the most important application of this research will be the use of
genetically-configured Behavior Networks in other problem domains. As the tests of
this research indicate, the use of Genetic Algorithms to configure Behavior Networks
not only provide an efficient solution to the global parameter configuration problem, but
also add the functionality of adaptability in a dynamic environment. This could be used
in other applications besides first-person-shooter games.

49

7 CONCLUSION

The use of Genetic Algorithms to configure a Behavior Network, as presented in this
text, provides an efficient solution to the global parameter configuration problem. The
tests conducted show that the implemented system outputs a configuration that is more
efficient than the one it receives as input.

Using a game like Quake2 to implement Genetic Algorithms techniques is very
interesting and especially fun because the agents of the population are literally fighting
to survive. The use of Genetic Algorithms to configure Behavior Networks proves to be
effective. Although the simple BN implemented in this experiment would not require
such a sophisticated parameter setting mechanism (in this case, it could simply be hard-
coded by hand), a larger, more complex BN would greatly benefit from the optimum
solution search power of Genetic Algorithms.

The advantage of using Behavior Networks with Genetic Algorithms is that the
resulting system can adapt itself to play with different types of players. Each person
plays the game in their own particular way. A hard-coded solution that may work well
against some people might not be as efficient for other kinds of players. With the
Genetic Algorithm evolving and configuring a sufficiently complex Behavior Network
in real time during the game, the bot would be capable of adapting itself to cope with
different strategies from different players.

REFERENCES

ADOBATTI, R. et al. Gamebots: A 3D Virtual World Test-Bed For Multi-Agent
Research. In: INTERNATIONAL WORKSHOP ON INFRASTRUCTURE FOR
AGENTS, MAS, AND SCALABLE MAS, ACM AGENTS, 2., 2001. Proceedings…
New York, NY: ACM Press, 2001.

AHN, L.; KEDIA, M.; BLUM, M. Verbosity: a game for collecting common-sense
facts. In: CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS,
CHI, 2006. Proceedings… [S.l.;s.n.], 2006. p. 75-78.

ANDREWS, G. Foundations of Multithreaded, Parallel and Distributed
Programming. Reading: Addison-Wesley, 2000.

AXELROD, R. The Evolution of Strategies in the Iterated Prisioner’s Dilemma. In:
DAVIS, L. (Ed.) Genetic Algorithms and Simulated Annealing. London: Pitman,
1987.

BARONE, D. et al. Sociedades Artificiais: a Nova Fronteira da Inteligência nas
Máquinas. Porto Alegre: Bookman, 2003.

BOULOS, P.; CAMARGO, I. Geometria Analítica: um Tratamento Vetorial. São
Paulo: McGraw-Hill, 1986.

CHAKRABORTY, B.; CHAUDHURI, P. On The Use of Genetic Algorithm with
Elitism in Robust and Nonparametric Multivariate Analysis. Austrian Journal of
Statistics, [S.l.], v.32, n.1&2, p. 13–27, 2003.

CHAMPANDARD, A. First Steps in Game AI: Your Own Bot. Available at:
<http://ai-depot.com/GameAI/Bot-Approaches.html>. Visited on: Apr. 2005.

COSTA, L.; OLIVEIRA, P. An elitist genetic algorithm for multi objective
optimization. In: Metaheuristics: Computer Decision-making Archive. Norwell, MA:
Kluwer Academic, 2004. p. 217-236.

CULBERSON, J. Mutation-Crossover Isomorphisms and the Construction of
Discriminating Functions. Evolutionary Computation, [S.l.], v.2, n.3, p. 279-311,
1994.

DEJONG, K.; SPEARS, W. An Analysis of Multi-Point Crossover. In: Foundations of
Genetic Algorithms. San Mateo, CA: Morgan Kaufmann, 1991. p. 301-315.

51

DEJONG, K.; SPEARS, W. A formal analysis of the role of multi-point crossover in
genetic algorithms. Annals of Mathematics and Artificial Intelligence, [S.l.], v.5, n.1,
1992.

DORER, K. Behavior Networks for Continuous Domains Using Situation-Dependent
Motivations. In: INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL
INTELLIGENCE, IJCAI, 16., 1999. Proceedings… [S.l.]: Morgan Kaufmann, 1999.

GOLDBERG, D. Genetic Algorithms in Search, Optimization, and Machine
Learning. New York, NY, USA: Addison-Wesley, 1989.

GOLDBERG, D. A Note on Boltzmann Tournament Selection for Genetic
Algorithms and Population-oriented Simulated Annealing. 1990. TCGA Report
90003, Department of Engineering Mechanics, University of Alabama.

GRAHAM, R.; MCCABE, H.; SHERIDAN, S. Neural Pathways for Real-Time
Dynamic Computer Games. In: IRISH WORKSHOP ON COMPUTER GRAPHICS, 6.,
2005. Proceedings… [S.l.:s;n], 2005.

HOLLAND, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor:
University of Michigan Press, 1975.

ID SOFTWARE. “Quake II”. Available at:
<http://www.idsoftware.com/games/quake/quake2/>. Visited on: Aug. 2006.

JACOBS, S.; FERREIN A.; LAKEMEYER, G. Controlling Unreal Tournament 2004
Bots with the Logic-based Action Language GOLOG. In: ARTIFICIAL
INTELLIGENCE AND INTERACTIVE DIGITAL ENTERTAINMENT
CONFERENCE, 1., 2005. Proceedings… Menlo Park, CA: AAAI Press, 2005.

LAIRD, J. It Knows What You’re Going To Do: Adding Anticipation to a Quakebot.
In: INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS, 5., 2000.
Proceedings… Montreal, Canada: ACM Press, 2000. p. 385-392.

LAIRD, J. Using a computer game to develop advanced AI. Computer, New York,
v.34, n.7, p. 70-75, July 2001.

LENT, M.; LAIRD, J. Developing an Artificial Intelligence Engine. In: GAME
DEVELOPERS CONFERENCE, 1999. Proceedings… [S.l.:s.n], 1999.

MAES, P. The Dynamics of Action Selection. In: INTERNATIONAL JOINT
CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI, 11., 1989. Proceedings…
Detroit: Morgan Kaufmann, 1989a.

MAES, P. How To Do The Right Thing. Connection Science Journal, [S.l.], n.3, p.
291-323, 1989b.

MAES, P. A bottom-up Mechanism for Behavior Selection in an Artificial Creature. In:
INTERNATIONAL CONFERENCE ON SIMULATION OF ADAPTIVE
BEHAVIOR, 1., 1991. Proceedings… USA: MIT Press, 1991.

52

MARDEL, S.; PASCOE, S. An overview of genetic algorithms for the solution of
optimization problems. Computers in Higher Education Economics Review
(CHEER), v.13, n.1, 1999.

MEYER, T. Building Cost-effective Research Platforms: Utilizing Free | Open-source
Software in Research Projects. Research Projects, Research Letters in the
Information and Mathematical Sciences, [S.l.], v.4, p. 91-99, 2003

MICHALEWICZ, Z.; ARABAS, J.; MULAWKA, J. GAVaPS - A Genetic Algorithm
with Varying Population Size. In: IEEE CONFERENCE ON EVOLUTIONARY
COMPUTATION, 1., 1994. Proceedings…Orlando, FL: IEEE Press, 1994. p.73 – 78

MICHALEWICZ, Z. Genetic algorithms + data structures = evolution programs.
3rd ed. Berlin: Springer-Verlag, 1999. 387 p.

MINSKY, M. The Society of the Mind. New York, NY, USA: Simon & Schuster,
1986.

MIZRAHI, V. V. Treinamento em Linguagem C++ Módulo 1. São Paulo: Makron
Books, 1994.

MIZRAHI, V. V. Treinamento em Linguagem C++ Módulo 2. São Paulo: Makron
Books, 1994.

NEBEL, B.; BABOVICH, Y. Goal-Converging Behavior Networks and Self-Solving
Planning Domains, or: How to Become a Successful Soccer Player. In:
INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE,
IJCAI, 18., 2003. Proceedings… San Francisco, CA: Morgan Kaufmann 2003.

NORLING, E. Learning to notice: Adaptive models of human operators. In:
INTERNATIONAL WORKSHOP ON LEARNING AGENTS, 2., 2001. Proceedings...
Montreal, Canada: [s.n], 2001.

NORTON, P. A Bíblia do Programador. Rio de Janeiro: Campus, 1994. 640 p.

PINTO, H. Designing Autonomous Agents for Computer Games with Extended
Behavior Networks: An Investigation of Agent Performance, Character Modeling and
Action Selection in Unreal Tournament. 2005. Dissertation (Master in Computer
Science) - Instituto de Informática, UFRGS, Porto Alegre.

RHODES, B. Pronomes in Behavior Nets. Cambridge, MA: MIT Media Lab,
Learning and Common Sense Section, 1995. (Technical Report # 95-01).

RICH, E. Inteligência Artificial. São Paulo: McGraw-Hill, 1988.

RUSSEL, S.; NORVIG, P. Artificial Intelligence: A Modern Approach. New Jersey:
Prentice Hall, 1995.

SIMMONS, G. F. Cálculo com Geometria Analítica. São Paulo: McGraw-Hill, 1985.

SIMÕES, E. V. Development of an Embedded Evolutionary Controller to Enable
Collision-Free Navigation of a Population of Autonomous Mobile Robots. 2000.

53

PhD Thesis (Electronic Engineering for the degree of Doctor of Philosophy) - The
University of Kent at Canterbury, England.

SINGH P. K.; JAIN S. C.; JAIN P. K. Comparative study of genetic algorithm and
simulated annealing for optimal tolerance design formulated with discrete and
continuous variables. Journal of Engineering Manufacture, [S.l.], v.219, n.10, p. 735-
760, 2005.

SPEARS, W.; DEJONG, K. An Analysis of Multi-Point Crossover. In: Foundations of
Genetic Algorithms. San Mateo, CA: Morgan-Kaufmann, 1991. p. 301-315.

STALLINGS, W. Data and Computer Communications. Upper Saddle River:
Prentice Hall, 2000.

SWARTZLANDER, B. The Quake 2 Bot Core Homepage. Available at:
<http://www.telefragged.com/Q2BotCore/ >. Visited on: Apr. 2005.

TANENBAUM, A. S. Computer Networks. Upper Saddle River, NJ, USA: Prentice
Hall, 1996.

TATE, D.; SMITH, A. Expected Allele Coverage and the Role of Mutation in Genetic
Algorithms. In: INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS,
5., 1993. Proceedings… San Mateo, CA: Morgan Kaufmann, 1993. p. 31-37.

WIKIPEDIA. Dynamical System. Available at:
<http://en.wikipedia.org/wiki/Dynamical_system>. Visited on: Apr. 2005.

WIKIPEDIA. Genetic Algorithm. Available at:
<http://en.wikipedia.org/wiki/Genetic_algorithm>. Visited on: Apr. 2005.

WHITLEY, D. A Genetic Algorithm Tutorial. Statistics and Computing Journal,
[S.l.], v.4, p. 65-85, 1994.

WOODS, O. Autonomous Characters in Virtual Environments: The technologies
involved in artificial life and their affects of perceived intelligence and playability
of computer games. 2004. 91 f. Dissertation (Master Degree in Computer Science) –
Department of Computer Science, University of Durham.

WRIGHT, R.; SWEET, M. OpenGL SuperBible. 2nd ed. Indianopolis, USA: Waite
Group, 2000.

XIAODONG, L. et al. A real-coded predator-prey genetic algorithm for multi-objective
optimization. In: INTERNATIONAL CONFERENCE ON EVOLUTIONARY MULTI-
CRITERION OPTIMIZATION, 2003, Faro, Portugal. Proceedings… [S.l.:s.n.], 2003.
p. 207-221. (Lecture Notes in Computer Science, v.2632)

GLOSSARY

Frag – the score achieved by killing an enemy player.

Bot – a computer-controlled player in a network game.

Lag – the amount of time a multiplayer game is interrupted due to network stall or
server overload.

Localhost – the computer that is currently running the application.

APPENDIX RESUMO EM PORTUGUÊS

Este capítulo contém um resumo, redigido em português, que apresenta os principais
resultados da Dissertação. Salienta-se que o material deste capítulo é apenas um resumo
e não substitui a leitura do texto completo da Dissertação. A primeira seção apresenta
uma introdução sobre o trabalho desenvolvido. A seguir, descreve-se o sistema
desenvolvido, detalhando a estrutura do software implementado. As tecnologias de
Redes de Comportamento e o Algoritmos Genéticos utilizadas no desenvolvimento do
presente trabalho também são descritas neste capítulo. Em seguida, são analisados os
testes conduzidos e os resultados obtidos. Finalmente, é apresentada uma breve
conclusão sobre o trabalho.

A.1 Introdução
Os jogos constituem um bom domínio para a exploração da Inteligência Artificial.

Em geral, os jogos possuem regras bem definidas, onde é fácil medir o sucesso ou o
fracasso (RICH, 1998). Um jogo pode ser utilizado como uma plataforma de pesquisa
(LAIRD, 2001) para investigar, desenvolver e testar algoritmos de Inteligência Artificial
(ADOBBATI, 2001). Talvez o melhor exemplo seja o jogo de xadrez, que catalisou a
criação de algoritmos que foram utilizados em diversos outros problemas. Neste
trabalho em particular foi utilizado o jogo Quake2, que possui um ambiente dinâmico e
complexo que funciona em tempo real.

Quake2 é um jogo de primeira pessoa completamente tridimensional. Os jogadores
(tanto humanos como os controlados por computador) não possuem visão global do
mundo, mas somente a percepção do ambiente imediatamente à sua volta. As fases do
jogo (ou mapas) apresentam-se tipicamente na forma de labirintos, tanto com espaços
abertos, quanto com ambientes fechados. Os mapas possuem corredores, escadas,
elevadores, pontes e até água. Uma vez que o jogador não possui visão global do mapa,
ele deve aprender a navegar pelas fases e procurar por itens e oponentes. O jogador
possui um medidor de vida que é decrementado cada vez que ele é ferido, seja por levar
um tiro de outro jogados, cair de uma altura elevada ou até mesmo ficar embaixo d’água
por muito tempo. O jogador também pode coletar armas, munição e kits médicos para
curar os seus ferimentos, incrementando o seu medidor de vida. O jogo Quake2 está
disponível há bastante tempo e, por isso, executa suavemente até mesmo em um
computador bem modesto pelos padrões de hoje. O cliente do Quake2 possui uma
interface gráfica 3D mas o servidor do jogo em si não possui interface gráfica e executa
em modo texto. Adicionalmente, o jogo possui código fonte aberto e existem versões

56

tanto para Windows quanto para Linux. Resumindo em poucas palavras, este jogo de
computar é, talvez, uma das melhores plataformas de simulação disponíveis de imediato
para desenvolver agentes de software.

Redes de Comportamento são um mecanismo de seleção de ação para agentes
autônomos (MAES, 1989). Para funcionar corretamente, a Rede de Comportamento
precisa que os seus diferentes parâmetros sejam configurados de forma adequada. No
entanto, o algoritmo das Redes de Comportamento não define como esses parâmetros
devem ser configurados. Cabe ao usuário (ou programador) ajustar esses parâmetros.
Isso torna-se um problema em Redes de Comportamento grandes, pois a configuração
de parâmetros é uma tarefa complexa, difícil e tediosa de ser feita manualmente. Por
isso, torna-se interessante o uso de Algoritmos Genéticos para configurar
automaticamente os parâmetros de uma Rede de Comportamento. O objetivo deste
trabalho é verificar se é possível utilizar com sucesso Algoritmos Genéticos para
configurar Redes de Comportamento, utilizando o jogo Quake2 como plataforma de
testes.

A.2 Descrição do Sistema Multiagente
No jargão dos jogos de computadores em primeira pessoa, um “bot” é um jogador

automático. Bots são utilizados em jogos mutiplayer para jogar contra jogadores
humanos ou até mesmo contra outros bots. O tipo mais popular destes jogos é chamado
de “death match” (ou “partida até a morte”), onde o objetivo é simplesmente matar
todos os outros jogadores. O vencedor é o jogador que infligiu mais mortes (ou “frags”).
A fim de alcançar este objetivo, o jogador enfrenta tarefas conflitantes, como decidir em
atacar um inimigo ou fugir para conseguir mais munição. Tais problemas de tomada de
decisões, em que estão envolvidos objetivos conflitantes, são ideais para serem tratados
por Redes de Comportamento.

Esta seção detalha a implementação e os aspectos funcionais do software
desenvolvido. Primeiro, descreve-se como o sistema está estruturado e como ele
interage com o servidor de jogo do Quake2. A seguir, mostra-se a implementação da
Rede de Comportamento utilizada pelos agentes, explicando-se a função de cada um
dos seus componentes. Finalmente, descreve-se o funcionamento do Algoritmo
Genético dentro do sistema.

A.2.1 Estrutura de Software

Existem diferentes maneiras para implementar um bot para Quake2. Pode-se
modificar o próprio jogo através da inserção de código novo. Esta abordagem requer a
re-compilação do jogo inteiro. Outra maneira é desenvolver um programa independente
que se conecta ao servidor do jogo. Ambos os métodos, no entanto, exigem algum
conhecimento do funcionamento interno do servidor do jogo. Uma vez que a maior
motivação em utilizar o Quake2 era poupar tempo através do uso de um ambiente
pronto e disponível de imediato, optou-se por utilizar uma interface conhecida como Q2
Bot Core. Esta interface realiza o trabalho de comunicação com o servidor do Quake2.
Apesar de não ser tão rápida e poderosa quanto as outras duas abordagens possíveis, a
interface é eficiente e fácil de usar.

Cada agente do sistema é um programa independente. Os agentes conectam-se ao
servidor de jogo do Quake2 através de sockets. Assim, cada agente pode executar em
uma máquina diferente e interagir através de uma rede de computadores. Mas o sistema

57

todo também pode executar em uma única máquina, se assim desejado. Os agentes são
controlados por uma Rede de Comportamentos que, por sua vez, é dinamicamente
configurada por Algoritmos Genéticos em tempo real durante o decorrer do jogo. O
software foi desenvolvido em C++ com a metodologia da Orientação de Objetos.

A.2.2 Rede de Comportamento

Um agente baseado em Redes de Comportamento é composto por um conjunto de
módulos de competência. Cada módulo implementa uma tarefa específica para
solucionar um determinado problema. A forma como esses módulos são programados
não é especificada pela Rede de Comportamento e, inclusive, podem ser implementados
por outra Rede de Comportamentos. Cada módulo representa um comportamento em
particular. Os módulos de competência da rede são conectados via links que espalham a
energia de ativação. Existem três tipos diferentes de links que podem ativar ou inibir o
sistema. Os links podem conectar os módulos de competência a objetivos, estados do
ambiente ou a outros módulos. Um módulo executa quando ele atinge um limiar de
energia de ativação. Em sua definição formal original, um comportamento só pode ser
executado uma vez que a sua lista de pré-condições torne-se completamente verdadeira.
Um módulo também possui uma lista de predicados que tornam-se falsos após a
execução de um determinado comportamento.

A Rede de Comportamento implementada pelo sistema é mostrada na figura abaixo.
A mesma rede de comportamento é usada para todos os agentes do sistema. A Rede de
Comportamento possui três módulos de competência que implementam todas as funções
comportamentais do agente. Existe um módulo para Ataque, Navegação e Desvio.
Basicamente, tudo o que um bot tem a fazer é atirar nos jogadores adversários, navegar
ao redor do mapa e desviar do fogo inimigo. Adicionalmente, existem três estados de
ambiente, representados na figura A.1 por círculos cinza. Cada estado pode ser visto
como um sensor do ambiente, que continuamente sonda o mundo; quando o sensor
detecta uma propriedade em particular, o estado torna-se verdadeiro. Finalmente, tem-se
o objetivo geral que é de Matar Todos os jogadores inimigos. Este objetivo é ligado a
todos os módulos de competência. Dessa forma, a Rede de Comportamentos resultante
possui todas as funções necessárias para um bot de Quake2 jogar uma partida.

58

Figura A.1: Rede de Comportamento utilizada no ChicuxBot

Cada link da Rede de Comportamento é associado a um parâmetro que defino a
quantidade de energia de ativação que ele transmite. Além de sua tarefa específica, cada
módulo de competência possui uma variável que informa a quantidade de energia de
ativação acumulada. Os módulos também possuem um limiar de energia. Quando a
variável atinge esse limite, o módulo é executado. Conforme explicado anteriormente,
na Rede de Comportamento original de Maes, cada módulo possui uma lista de pré-
condições explícita que precisa tornar-se verdadeira para que o módulo possa executar.
Na Rede de Comportamento implementada neste trabalho, a lista de pré-condições dos
módulos está implícita nos estados de ambiente; isto é, se um estado tornou-se
verdadeiro, é por que a sua lista de pré-condições também foi satisfeita. A Rede de
Comportamento foi implementada nesta forma em particular porque foi projetada para
funcionar em um ambiente de tempo real, onde uma lista de pré-condições explícita não
é necessária. Os módulos de competência podem ser compostos por um número
qualquer de links para outros módulos, objetivos ou estados de ambiente.

A fim de demonstrar o funcionamento exato de uma Rede de Comportamento,
ilustra-se o seguinte exemplo: quando um jogador inimigo entra no campo de visão de
um bot, o estado de ambiente Inimigo_próximo vai tornar-se verdadeiro; com isso, é
transmitida a quantidade de energia de ativação especificada pelo link do estado
Inimigo_próximo ao módulo de competência Ataque. Para cada ciclo (determinado pelo
servidor do Quake2 e pela velocidade de conexão dos sockets), o estado vai enviar a
mesma quantidade de energia de ativação através do link. O módulo vai acumular a
energia de ativação até atingir o seu limiar, fazendo com que o comportamento seja
executado. Neste exemplo, o bot vai atirar. Note-se que o agente vai atirar apenas uma
única vez e, então, a variável da energia de ativação do módulo de Ataque vai ser
zerada; todo o processo deve repetir-se novamente para que o bot atire outra vez.

59

Dependendo da quantidade de energia de ativação que um link transmite e no limiar
de cada módulo de competência, o agente pode apresentar comportamentos distintos.
Por exemplo, se um bot possui um limiar elevado para o módulo de Navegação e o
estado Ocioso transmite uma quantidade baixa de energia de ativação, este agente em
particular terá a tendência de ficar parando por um tempo antes de decidir começar a
mover-se. Por outro lado, se um bot possui um limiar baixo e um link de ativação com
bastante energia, o bot vai tender a correr o tempo todo pelo mapa.

Tanto o módulo de navegação quanto o módulo de ataque envolvem problemas
difíceis e bastante complexos que beneficiar-se-iam muito de soluções sofisticadas. No
entanto, uma vez que o objetivo principal desta pesquisa é desenvolver o sistema de
Rede de Comportamento controlada por Algoritmo Genético, foram adotadas para estes
módulos soluções ad hoc simples. Entretanto, é salientado que os módulos podem ser
facilmente substituídos por algoritmos mais sofisticados posteriormente.

O módulo de Ataque escolhe o inimigo visível mais próximo para atirar. O algoritmo
desenvolvido utiliza funções trigonométricas simples para computar os ângulos corretos
que o bot deve virar para atingir precisamente o seu alvo. O módulo de ataque também
faz com que o bot persiga o seu alvo, caso ele tente fugir.

O módulo de Navegação funciona com trilhas pré-definidas para cada mapa. As
trilhas são armazenadas em um arquivo texto no disco, composto por um número
determinado de coordenadas tridimensionais. Cada arquivo possui uma trilha principal e
qualquer número adicional de trilhas auxiliares necessárias para um mapa em particular.
O bot percorre a trilha principal enquanto o módulo de navegação estiver ativo. Se o bot
sair da trilha principal (por exemplo, quando o módulo de ataque for ativado em função
de um inimigo que se aproxima), o módulo de navegação encontrará a trilha auxiliar
mais próxima para levar o bot de volta à trilha principal.

Finalmente, o módulo de Desvio faz com que o bot pule para esquivar-se do fogo
inimigo.

A.2.3 Algoritmo Genético

Todos os agentes do sistema possuem a mesma Rede de Comportamento (ou seja, os
mesmo módulos com as mesmas conexões), mas cada agente possui o seu própria DNA
(isto é, o seu próprio conjunto de parâmetros que configura as ligações entre os módulos
da Rede de Comportamentos). Os parâmetros configurados pelo Algoritmo Genético
incluem o limiar de energia de ativação para um determinado módulo de competência,
assim como a quantidade de energia que é transmitida por cada uma de suas ligações.

A estrutura dos cromossomos do agente foi implementada como um vetor de
números inteiros. O software foi programado sob o paradigma da orientação a objetos,
então qualquer mudança na Rede de Comportamento é automaticamente assimilada pelo
sistema. Não é necessário re-programar manualmente as funções ou estruturas, nem
qualquer outra parte do software; todas as modificações são automaticamente tratadas
pelos objetos. Dessa forma, torna-se extremamente fácil expandir a Rede de
Comportamento, incluindo novas ligações ou módulos de competência, ou modificando
os módulos já existentes. Na sua configuração padrão, conforme mostrado na figura
A.1, a Rede de Comportamento possui três módulos de competência e três ligações
entre eles aos estados do mundo. Neste caso, o vetor do cromossomo possuirá 6
posições: três para o limiar de cada módulo de competência e mais três para a
quantidade de energia de ativação transmitida por cada elo. A figura A.2 mostra a

60

estrutura do cromossomo de um agente. Os valores do cromossomo de cada agente são
inicializados randomicamente.

Figura A.2: Estrutura de um Cromossomo

O tamanho total da população pode variar, conforme novos bots entram no jogo e
outros saem. O sistema funciona com qualquer número de bots, de 1 a n. No caso de
apenas 1 bot estar presente no jogo, seu DNA vai tender a permanecer o mesmo,
inalterado, pois o processo de reprodução vai sempre resultar em um clone do bot. As
únicas mudanças ao cromossomo, neste caso, seriam advindas de mutação.

Para evoluir e encontrar a configuração ótima para a Rede de Comportamento, o
Algoritmo Genético deve trocar o material genético com outros agentes. Este processo é
feito através do servidor do Quake2, que permite a troca de mensagens de texto de um
jogador para todos os demais. Os bots possuem um número de identificação único para
a distinção das mensagens durante o processo de reprodução. Todas as mensagens são
trocadas através do servidor do jogo, tornando o programa de cada agente independente
de todos os demais.

O número de frags que um bot acumulou durante uma partida serve como a sua
aptidão. Cada vez que o período de acasalamento é iniciado (definido pelo usuário),
cada agente anuncia a sua aptidão no jogo. Quando o agente possui a aptidão de todos
os demais, ele escolhe um parceiro através da técnica da roleta. A seguir, o bot envia o
seu DNA para todos os demais agentes do jogo e, ao mesmo tempo, procura pelas
mensagens com o DNA do parceiro escolhido. Uma vez que é recebido todo o DNA do
parceiro desejado, o processo de cruzamento é realizado. A determinação de quais genes
serão passados para a prole é feita através de sorteio, com a mesma probabilidade de
transmissão dos genes de cada um dos progenitores. Dessa forma, o processo de

61

reprodução pode produzir um indivíduo que é uma cópia exata de qualquer um dos deus
progenitores, ou qualquer mistura dos dois.

Durante o processo de reprodução, um gene específico do cromossomo de um bot
pode sofrer mutação. A mutação ocorre a uma taxa de 2% para cada gene. Um agente
pode ter múltiplos genes alterados durante o processo de acasalamento. A mutação é útil
pois introduz material genético novo na população, o que pode ajudar o algoritmo a sair
de um máximo local.

O processo de reprodução do Algoritmo Genético substitui a população inteira.
Todos os agentes têm participação ativa no processo. Cada bot possui um número de
identificação de três dígitos que é incrementado por um para identificar a sua prole.
Uma vez que todos os indivíduos são substituídos pela prole, o tamanho da população
permanece constante (desde que nenhum bot novo seja adicionado ao jogo, o que pode
ser feito livremente a qualquer momento). Durante o processo de reprodução, a seleção
do parceiro é feita através da técnica da roleta. Nesta técnica, existe a probabilidade do
indivíduo escolher a si mesmo para reproduzir-se. Quando isto ocorre, o que está de fato
acontecendo é a preservação do melhor indivíduo da população e, portanto, elitismo.
Testes demonstram que isso ocorre com certa freqüência, mas não necessariamente
todas as vezes com o mesmo indivíduo, ou sequer com o melhor e mais apto.

A.3 Testes
O ChicuxBot foi testado com três tipos distintos de adversários: bots

randomicamente inicializados, bots configurados manualmente e, principalmente,
jogadores humanos. Tanto os bots configurados manualmente quanto os randômicos
possuem a mesma Rede de Comportamentos utilizadas pelo ChicuxBot. Na sua
essência, isto quer dizer que todos os bots utilizados nos testes possuem as mesmas
habilidades básicas; o que os difere é a maneira com que as suas habilidades foram
ajustadas. Salienta-se que o objetivos destes experimentos é verificar se, de fato, um
Algoritmo Genético pode ser utilizado para configurar uma Rede de Comportamento
para o jogo Quake2; a eficiência dos módulos específicos da Rede de Comportamento
não está sendo coberta por estes testes. De fato, todos os módulos da Rede de
Comportamento do ChicuxBot poderiam ser trocados ou substituídos por módulos mais
eficientes que o resultado dos testes ainda seria o mesmo.

0

5

10

15

20

25

30

5 10 15 20 25 30

ChicuxBot1
ChicuxBot2

ChicuxBot3
StaticBot1

StaticBot2
StaticBot3

Figura A.3: ChicuxBot versus Bots Estáticos

62

O primeiro teste colocou cinco ChicuxBots para jogar contra cinco bots estáticos. A
figura A.3 representa um gráfico com a linha do tempo (abscissas) pelo número de frags
de cada bot (ordenadas). Este gráfico ilustra o desempenho dos três melhores colocados
entre os ChicuxBots e os bots estáticos.

Este teste mostra que quando bots configurados dinamicamente por Algoritmo
Genético são postos a jogar contra bots estáticos (com a mesma Rede de
Comportamento, mas sem Algoritmo Genético; os parâmetros da Rede de
Comportamento são ajustados randomicamente), após uma certa quantidade de tempo,
os primeiros tendem a apresentar um desempenho melhor. Isto acontece porque
freqüentemente bots estáticos, que foram inicializados randomicamente, apresentam
uma configuração de parâmetros inadequada para a sua Rede de Comportamento.
Apesar dos bots adaptados geneticamente também serem inicializados randomicamente,
o Algoritmo Genético seleciona os bots mais aptos para trocar material genético,
resultando em uma prole mais adaptada e com desempenho melhorado.

O teste seguinte colocou o ChicuxBot contra bots configurados manualmente. Este
cenário é mostrado na figura A.4. Quando bots genéticos são colocados a jogar contra
bots configurados manualmente (novamente os bots possuem a mesma Rede de
Comportamento, mas os parâmetros desta são configurados manualmente pelo
programador), o resultado é sempre um empate. Como ambos os tipos de agente são
igualmente bem configurados, ambos apresentam praticamente o mesmo desempenho.
No início, os bots configurados manualmente começam melhores; mas assim que o
Algoritmo Genético consegue ajustar os parâmetros da Rede de Comportamento, o
desempenho começa a melhorar. Salienta-se aqui que, este tipo de teste apresentou este
resultado em particular porque foi utilizada uma Rede de Comportamento bastante
simples; em uma rede maior e mais complexa, seria muito difícil ajustar os parâmetros
manualmente e, neste caso, o Algoritmo Genético muito provavelmente produziria o
melhor resultado.

0

5

10

15

20

25

30

5 10 15 20 25 30

ChicuxBot1
ChicuxBot2

ChicuxBot3
ManualBot1

ManualBot2
ManualBot3

Figura A.4: ChicuxBot versus Bots Configurados Manualmente

Na última série de testes, o ChicuxBot foi colocado a jogar contra jogadores
humanos. Esta partida durou trinta minutos e colocou três jogadores humanos contra
sete ChicuxBots. A figura A.5 mostra o desempenho dos jogadores humanos contra os

63

três melhores ChicuxBots. As ordenadas indicam o número de frags que cada jogador
pontuou. As abscissas mostram o tempo decorrido.

O ChicuxBot não é páreo para um jogador humano bem treinado. No entanto, este
resultado é devido à simplicidade dos módulos implementados para a Rede de
Comportamento; o mau desempenho contra bons jogadores humanos não é falha do
sistema de configuração evolucionária do ChicuxBot. De acordo com os jogadores
humanos submetidos ao teste, o desempenho dos ChicuxBots de fato melhorou durante
o decorrer do jogo; à medida que as novas gerações evoluíram, a melhora no
desempenho do bot foi claramente sentido pelos jogadores humanos. A capacidade de
configuração evolucionária do ChicuxBot também é confirmada pelo teste contra bots
inicializados randomicamente demonstrado anteriormente.

0
5

10
15
20
25
30
35
40

5 10 15 20 25 30

Human1
Human2
Human3
ChicuxBot1
ChicuxBot2
ChicuxBot3

Figura A.5: ChicuxBot versus Jogadores Humanos

Os testes mostram que, conforme seus cromossomos, agentes diferentes apresentam
comportamentos distintos. Por exemplo, um agente que tenha um limiar baixo no
módulo de ataque vai atirar com mais freqüência. O mesmo acontece com um agente
que possui um elo mais forte para o estado de ambiente Inimigo_próximo. No entanto,
um bot vai preferir correr a atirar se tiver um limiar baixo para o módulo de navegação.
Portanto, fica saliente que o sistema possui flexibilidade para mudar o seu
comportamento e que esses ajustes podem, de fato, ser feitos pelo Algoritmo Genético.
Uma vez que o Algoritmo Genético execute em tempo real durante o decorrer do jogo,
ele pode adaptar-se a mudanças durante a partida.

Analisando os resultados, os testes mostram que, de fato, o ChicuxBot consegue
evoluir dinamicamente de uma configuração inicial randômica para uma configuração
melhor durante o decorrer do jogo.

A.4 Conclusão
O uso de Algoritmos Genéticos para configurar uma Rede de Comportamento

prova-se efetivo. Apesar da Rede de Comportamento simples implementada nos
experimentos não exigir um mecanismo de configuração tão avançado (neste caso, a
configuração poderia ter sido configurada manualmente), uma Rede de Comportamento

64

maior e mais complexa beneficiar-se-ia do poder de busca da solução ótima dos
Algoritmos Genéticos.

A vantagem de utilizar Redes de Comportamento com Algoritmos Genéticos é que o
sistema resultante pode adaptar-se para lutar contra diferente tipos de jogadores. Cada
pessoa joga de seu próprio modo particular. Uma solução configurada rigidamente pode
funcionar bem contra algumas pessoas, mas pode não ser tão eficiente contra outros
jogadores. Com o Algoritmo Genético evoluindo e configurando em tempo real uma
Rede de Comportamento suficientemente complexa, o bot seria capaz de adaptar-se a
estratégias distintas de diversos jogadores.

