SiO_{2} films on $\mathbf{4 H - S i C}$: reducing interface electrical degradation due to thermal oxidation

E. Pitthan ${ }^{1, *}$, S. A. Corrêa ${ }^{1}$, R. Palmieri ${ }^{2}$, G. V. Soares ${ }^{2}$, H. I. Boudinov ${ }^{2}$, and F. C. Stedile ${ }^{1,3}$
(1) PGMICRO, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
(2) Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
(3) Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
e-mail: eduardo.pitthan@ufrgs.br

Silicon Carbide (SiC) is an alternative semiconductor to substitute silicon (Si) in device applications that require high-power, high-frequency, and/or high-temperature. In addition, a SiO_{2} film can be thermally grown on SiC in a similar way to that on Si , allowing the technology used to produce Si MOS (metal-oxide-semiconductor) devices to be adapted to the case of SiC [1]. However, the oxidation of SiC leads to a higher interface state density in the $\mathrm{SiO}_{2} / \mathrm{SiC}$ interface, as compared to $\mathrm{SiO}_{2} / \mathrm{Si}$. Such interfacial defects were indicated as the main causes of the low channel mobilities of SiC transistors [2]. A better understanding of the thermal oxidation of SiC should lead to answers on how to thermally grow SiO_{2} layers minimizing the interface electrical degradation. Concerning oxidation parameters, it is already known that longer oxidation times lead to a larger electrical degradation of the $\mathrm{SiO}_{2} / \mathrm{SiC}$ structure [3]. In this work, we present an attempt to minimize the electrical degradation in the $\mathrm{SiO}_{2} / \mathrm{SiC}$ interfacial region by oxidizing SiC substrates in a minimal oxidation time, using ${ }^{18} \mathrm{O}_{2}$, aiming to form stoichiometric SiO_{2} on SiC . X-ray photoelectron spectroscopy (XPS) was used to monitor the formation of this stoichiometric SiO_{2} film. To obtain a thicker oxide film, a SiO_{2} layer was deposited by sputtering as a further step. The formed structure presented improved properties compared to deposited and to thermally grown SiO_{2} films on SiC . Effects of a post-deposition annealing (PDA) in Ar as an attempt to improve the quality of the formed structures were also investigated. Capacitance-voltage and current-voltage measurements in $\mathrm{Al} / \mathrm{SiO}_{2} / 4 \mathrm{H}-\mathrm{SiC}$ MOS structures were performed to investigate the electrical properties. Amounts and distribution of ${ }^{18} \mathrm{O}$ in the samples were determined by nuclear reaction analyses and related to the electrical modifications induced by the PDA in Ar and will be also presented.
[1] V. Presser, and K. G. Nickel, Cr. Rev. Sol. State 33, 1-99 (2008).
[2] S. Dhar, S. Wang, J. R. Williams, S. T. Pantelides, and L. C. Feldman, MRS Bull. 30, 288-292 (2005).
[3] H. Watanabe, T. Hosoi, T. Kirino, Y. Kagei, Y. Uenishi, A. Chanthaphan, A. Yoshigoe, Y. Teraoka, and T. Shimura, Appl. Phys. Lett. 99, 021907 (2011).

