SiO₂ films on 4H-SiC: reducing interface electrical degradation due to thermal oxidation E. Pitthan ^{1,*}, S. A. Corrêa ¹, R. Palmieri ², G. V. Soares ², H. I. Boudinov ², and F. C. Stedile ^{1,3} - (1) PGMICRO, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil - (2) Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil - (3) Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil e-mail: eduardo.pitthan@ufrgs.br Silicon Carbide (SiC) is an alternative semiconductor to substitute silicon (Si) in device applications that require high-power, high-frequency, and/or high-temperature. In addition, a SiO₂ film can be thermally grown on SiC in a similar way to that on Si, allowing the technology used to produce Si MOS (metal-oxide-semiconductor) devices to be adapted to the case of SiC [1]. However, the oxidation of SiC leads to a higher interface state density in the SiO₂/SiC interface, as compared to SiO₂/Si. Such interfacial defects were indicated as the main causes of the low channel mobilities of SiC transistors [2]. A better understanding of the thermal oxidation of SiC should lead to answers on how to thermally grow SiO₂ layers minimizing the interface electrical degradation. Concerning oxidation parameters, it is already known that longer oxidation times lead to a larger electrical degradation of the SiO₂/SiC structure [3]. In this work, we present an attempt to minimize the electrical degradation in the SiO₂/SiC interfacial region by oxidizing SiC substrates in a minimal oxidation time, using ¹⁸O₂, aiming to form stoichiometric SiO₂ on SiC. X-ray photoelectron spectroscopy (XPS) was used to monitor the formation of this stoichiometric SiO₂ film. To obtain a thicker oxide film, a SiO₂ layer was deposited by sputtering as a further step. The formed structure presented improved properties compared to deposited and to thermally grown SiO₂ films on SiC. Effects of a post-deposition annealing (PDA) in Ar as an attempt to improve the quality of the formed structures were also investigated. Capacitance-voltage and current-voltage measurements in Al/SiO₂/4H-SiC MOS structures were performed to investigate the electrical properties. Amounts and distribution of ¹⁸O in the samples were determined by nuclear reaction analyses and related to the electrical modifications induced by the PDA in Ar and will be also presented. ^[1] V. Presser, and K. G. Nickel, Cr. Rev. Sol. State 33, 1-99 (2008). ^[2] S. Dhar, S. Wang, J. R. Williams, S. T. Pantelides, and L. C. Feldman, MRS Bull. 30, 288-292 (2005). ^[3] H. Watanabe, T. Hosoi, T. Kirino, Y. Kagei, Y. Uenishi, A. Chanthaphan, A. Yoshigoe, Y. Teraoka, and T. Shimura, *Appl. Phys. Lett.* **99**, 021907 (2011).