Estudo teórico da formação do cicloaduto 2:1 a partir de reações de cicloadição [3+2] 1,3-dipolar.

Josene M. Toldo¹ (PG)*, Paulo F. B. Gonçalves¹ (PQ). josene.toldo@ufrgs.br

¹Universidade Federal do Rio Grande do Sul, Instituto de Química, Grupo de Química Teórica. Av. Bento Gonçalves, 9500, Porto Alegre-RS.

Palavras Chave: Cicloadição [3+2] 1,3-dipolar, Teoria do Funcional da Densidade, Efeito de Solvente.

Introdução

As reações de cicloadição 1,3-dipolar são uma poderosa ferramenta para a síntese de uma variedade de anéis heterocíclicos de cinco membros. A cicloadição de óxidos de nitrila (BNO) à olefinas, em particular, é de considerável interesse para a obtenção de isoxazolinas, que são intermediários versáteis na síntese de produtos naturais e de materiais com potencial aplicação como cristais líquidos.

Nesse trabalho, a Teoria do Funcional da Densidade (DFT) foi utilizada para estudar o mecanismo da reação cicloadição [3+2] 1,3-dipolar que ocorre, inicialmente, entre o óxido de benzonitrila e o ácido vinilacético, conforme a Figura I. Para tal, foram empregados os funcionais PBE1PBE, B3LYP e CAM-B3LYP, no nível 6-31+G(2d,p). O efeito do solvente foi avaliado através dos modelos PCM e CPCM, com os solventes THF, acetonitrila e formamida. A análise dos Orbitais Moleculares de Fronteira e do recente modelo da distorção e interação do estado de transição,² foram utilizadas para explicar a regioquímica dos produtos obtidos e a formação do bisaduto 2:1, originário de duas sucessivas cicloadições envolvendo o óxido de benzonitrila.

Figura I. Reação de cicloadição [3+2] 1,3-dipolar entre o ácido vinil acético e o óxido de benzonitrila.

Resultados e Discussão

Na primeira etapa da reação, os cálculos evidenciaram a formação do produto 3,5-dissubsituido, largamente favorecida em relação à formação do regiosômero 3,4. Devido ao menor gap HOMO/LUMO, o óxido de nitrila continua a reagir, desta vez, com o cicloaduto formado na primeira etapa da reação, resultando no correspondente bisaduto 2:1 (Figura II). Na segunda etapa da reação, é possível a interação do óxido de benzonitrila com as ambas as faces do monoaduto. Contudo, a entrada do dipolo pela face que contém o grupo substituinte é levemente favorecida. A partir da análise dos orbitais de fronteira e da distorção e interação dos reagentes no TS foi possível explicar a regioquímica observada. Considerando a distorção da geometria do BNO, constatou-se uma pronunciada diminuição de energia do LUMO, e a correta simetria dos orbitais envolvidos na formação das novas ligações, conforme a geometria encontrada para os estados de transição. Ambas as cicloadições são controladas pelo LUMO do óxido de benzonitrila e pelo HOMO do dipolarófilo. A energia de ativação nas duas cicloadições aumenta com o incremento da polaridade do solvente, porém, a possibilidade de formação de uma ligação de hidrogênio no estado de transição é responsável por uma diminuição na energia de ativação. Esse resultado está diretamente vinculado à polaridade do estado de transição.

Figura II. Diagrama de energia dos orbitais moleculares envolvidos na reação.

Conclusões

Utilizando DFT foi possível evidenciar o mecanismo e regioquímica da reação estudada. Embora existam pequenas diferenças energéticas, a previsão dos produtos majoritários e estados de transição mais favoráveis foi a mesma, independentemente do funcional utilizado.

Agradecimentos

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e PROPESQ-UFRGS.