Incorporação de Óxido de Manganês em Estrutura Porosa

Luana V. de Souza¹(PG); Lara M. P. Montenegro¹(PG); Edilson Benvenutti²(PQ); Daniela Bianchini¹(PQ);
luanavohbrecht@yahoo.com.br

¹Universidade Federal de Pelotas (UFPel) - (CCQFA)- Campus Universitário do Capão do Leão, CEP 96.010-900, RS, Brasil; ² Universidade Federal do Rio Grande do Sul (UFRGS) - Instituto de Química, Av. Bento Gonçalves, 9500, CEP 91.501-970, Porto Alegre, RS, Brasil


Introdução

A classe de materiais silicáticos porosos tem a facilidade de incorporação de diferentes tipos de óxidos de metais de transição. Esses materiais possuem uma elevada área superficial, possuindo a sua aplicação como suportes para catalisadores heterogêneos⁴. A proposta deste trabalho é testar diferentes métodos de incorporação de manganês nas estruturas porosas de materiais silicáticos sintetizados pelo método sol-gel⁵. Para a síntese, o surfactante Brometo de Dodeciltrimetilamônio (DDTMABr) foi dissolvido em água Milli-Q, em meio básico (NH₄OH). Após 30 minutos, para a maioria das amostras, adicionou-se ETOH e por fim foi adicionado TEOs para formação da sílica, 2h sob agitação. Para incorporação do Mn, duas metodologias: 1) Incorporação do sal MnCl₂ durante a síntese realizada na presença ou ausência de ETOH e 2) Incorporação do sal MnCl₂ após a síntese realizada na presença de ETOH. Foi realizada a caracterização textural (BET e DFT) e morfológica (MEV).

Resultados e Discussão

O tamanho de poros dos materiais sintetizados, Fig. 1, apresenta um pico próximo a 1,3 nm, evidenciado uma microporosidade em todos os materiais. No entanto, quando o metal é adicionado durante a síntese, com e sem a presença de ETOH, é observado um alargamento na distribuição de poros, com máximos na região de 2,0 a 2,5 nm. Esses resultados indicam que os materiais com a incorporação de Mn possam ser bimodais quanto ao diâmetro de microporos³.

Figura 1. Distribuição do diâmetro de microporos determinada pelo método DFT

<table>
<thead>
<tr>
<th>Amostra</th>
<th>MnSiO₂-c/EtOH</th>
<th>MnSiO₂-s/EtOH</th>
<th>SiO₂ + incor.</th>
<th>SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1* (m²/g)</td>
<td>955 ± 23</td>
<td>785 ± 15</td>
<td>923 ± 17</td>
<td>771 ± 13</td>
</tr>
</tbody>
</table>

*S1: área da superfície específica.

Na Tab. 1, pode-se observar que o material MnSiO₂ sintetizado na presença de etanol possui uma área superficial maior do que a SiO₂, indicando que as espécies de óxidos de manganês retidas na superfície aumentam a superfície específica, isso também é observado quando o metal é incorporado pós síntese. A amostra MnSiO₂ sem etanol durante a síntese, a superfície específica não apresenta diferença significativa comparada a SiO₂².

Figura 2. Micrografias das amostras (10000x).

As micrografias das amostras, Fig. 2, mostram uma morfologia esférica em todos os materiais, inclusive nas amostras sintetizadas sem etanol. É importante observar que para a amostra sintetizada na ausência de etanol, são observadas também estruturas sem morfologia definida.

Conclusões

Silicas esféricas com elevada superfície específica foram sintetizadas pelo método sol-gel. Estas silicas, independentemente da presença ou não de etanol, e do método de inoculação do metal, apresentaram uma larga distribuição de micro poros.

Agradecimentos
