

Using Aspects to Model Distributed
Real-Time Embedded Systems

Edison Pignaton Freitas1, Marco Aurélio Wehrmeister1, Elias Teodoro Silva Jr.1,
Fabiano Costa Carvalho1, Carlos Eduardo Pereira1,2, Flávio Rech Wagner1

1 Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

2 Dep. Engenharia Elétrica – Universidade Federal do Rio Grande do Sul (UFRGS)
{epfreitas, mawehrmeister, etsilvajr, fccarvalho,

flavio}@inf.ufrgs.br, cpereira@ece.ufrgs.br

Abstract. Distributed Real-time Embedded (DRE) systems have several requirements
directly related to characteristics that are difficult to handle when a pure object-
oriented method is used for their development. These requirements are called non-
functional requirements and refer to orthogonal properties, conditions, and
restrictions that are spread out over the system. Pure object-oriented methods do not
address successfully those concerns, so new technologies, like aspect orientation, are
being applied in order to fulfil this gap. This work presents a proposal to use aspect
orientation in the analysis and design of DRE systems. To support our proposal, we
performed an adaptation of a well-defined method called FRIDA (From
RequIrements to Design using Aspects), which was originally applied to the fault-
tolerant domain. The proposed adaptation includes the use of RT-UML together with
aspect-oriented concepts in design phase, aiming to separate the handling of non-
functional from functional requirements.

Resumo. Sistemas de Tempo-real Embarcados e Distribuídos (TrED) apresentam
diversos requisitos de difícil tratamento quando se utiliza uma metodologia
orientada a objetos para sua modelagem. Estes requisitos são classificados como
não-funcionais e referem-se à propriedades ortogonais, condições e restrições
espalhadas por todo o sistema. Metodologias orientadas a objetos não cobrem
satisfatoriamente tais requisitos, o que motiva a aplicação de novas tecnologias,
como a orientação a aspectos, para cobrir esta lacuna. Este trabalho apresenta uma
proposta de uso de orientação a aspectos para a análise e projeto de sistemas TrED.
Para isto, adaptamos uma metodologia chamada FRIDA (From RequIrements to
Design using Aspects), que foi originalmente aplicada ao domínio de sistemas
tolerantes a falhas. A adaptação proposta inclui o uso de UML-RT juntamente com
conceitos da orientação a aspectos na fase de projeto, visando a separação do
tratamentos dos requisitos não-funcionais dos funcionais.

1. Introduction

The increasing complexity of distributed real-time embedded (DRE) systems requires
new techniques to improve the design in order to allow the system evolution,
maintainability, and reuse of previously developed artifacts. Nowadays, an important
concern involved in DRE system design is how to deal with non-functional
requirements (NFR).

 The main concept when dealing with NFR is the crosscutting concerns, which
really worries system developers. If not properly handled, those concerns are responsible
for tangled code and loss of cohesion. In the literature, it is possible to find several
works addressing this separation of concerns where the crosscutting concerns are
identified as NFR, as in [Chung and Nixon 1995]. In order to handle the separation of
concerns, several works propose guidelines to handle NFR separately from the
functional ones. Among those works stand out subject-oriented programming [Ossher
and Tarr 1999] and aspect-oriented programming [Kiczales 1997]. Both approaches
address the problem at the implementation level, but the development community
realized that the NFR must be taken into account as soon as possible to enhance the
system design. This fact motivates pushing the separation of concerns to the early
phases of the design, as in the Early-Aspects [Rashid et al 2002] approach.

 Real-time systems have a very important NFR, which is the concern about the
time in the execution of their functionality. The complexity related to non-functional
analysis increases when those systems become distributed and embedded. To deal with
these non-functional requirements, many proposals suggest the use of aspects, as in
[Stankovic et al 2003].

 Our work presents an approach to deal with the complexity exhibited by NFR in
DRE systems by adapting the FRIDA (From RequIrement to Design using Aspects)
[Bertagnolli and Lisbôa 2003] method to the DRE domain to be used in conjunction
with RT-UML [OMG 2004]. This approach emphasizes the separation of concerns from
the early phases of system development. The adaptation of the FRIDA toolset to deal
with DRE systems concerns enables a clear specification of system requirements, which
are easier to map into design elements. Additionally, the use of RT-UML together with
aspect-oriented elements is an interesting option in the design phase. Another
noteworthy contribution is the improvement of traceability from requirements to design.

 The remainder of this paper is organized as follows. In Section 2, the original
FRIDA model is introduced and its adaptation to the DRE domain is presented. A case
study is used in Section 3 to illustrate the use of the method. Section 4 discusses related
work, while final remarks, conclusions, and future work are presented in Section 5.

2. The FRIDA Model

FRIDA is a well-defined method that offers a sequence of phases to support requirement
analysis and system design. The main goal is to deal with the complexity of NFR and to
separate them from the functional ones, beginning from the early phases of system life
cycle. The method is based on aspect-oriented software development.

 Considering NFR in system analysis is a way of avoiding code tangling and the
undesired mixing of different concerns in later phases, which is always present in
systems developed with current object-oriented (OO) methods. The problem with the
OO paradigm is that it is simply unaware of NFR, on other words, there is no specific
element dedicated to handle NFR. OO considers the system just in the functional
dimension, without special concerns with NFR. Using an AO approach, FRIDA tries to
fill this gap by providing a way to consider both functional and non-functional
requirements, handling them with a special focus on the non-functional ones. The

method was developed in the scope of reliable fault-tolerant systems, but its tools are
flexible enough to be adapted to other domains.

 FRIDA is divided in six main phases. Each phase is connected to each other in a
way to provide traceability among project elements and system requirements. Figure 1
presents the whole method. The first phase is dedicated to identifying the system
functional requirements. Use case diagrams and templates are used to elicit those
requirements. In the second phase, the non-functional requirements are identified and
specified. To perform this task, check-lists, lexicons, and conflict resolution rules are
used. A link among classes, actors, and the use cases elicited in the first phase is created
in the third phase. The next phase performs almost the same, but for the non-functional
requirements, representing them visually in the class diagram. In the fifth phase, the
functional requirements of the project, represented by classes, are linked to aspects.
Finally, in the last phase, the source code of classes and aspect skeletons is generated.

2.1. The FRIDA Model Applied to the DRE Domain

FRIDA provides a consistent method to separate non-functional from functional
requirements from the early phases of system development, representing a relevant
contribution to the system analysis and to the mapping of requirements into design
elements (for details see [Bertagnoli and Lisboa, 2003]).

 FRIDA focuses on the fault tolerance domain, with a vocabulary and tools
designed to support the analysis of fault tolerant systems. In order to adapt FRIDA to the
DRE domain, the first step was to identify the concerns related to DRE development.
Some key requirements of this domain are shown in Figure 2. Those requirements are
based mainly on the study present in [BURNS 1997] and in the IEEE glossary [IEEE
2006]. Based on this classification, some FRIDA tools were adapted to consider those
requirements. It is important to highlight that many DRE systems also have fault
tolerance requirements. Considering these issues, every requirement considered in the
original FRIDA model can also be used in the development of a DRE system.

Figure 1. Original FRIDA Method
[Bertagnolli and Lisbôa 2003]

Figure 2. NFRs classification for DRE
Systems

 In order to explain the use of the adapted method, a case study showing the
automation of a wheelchair is considered. The following section describes the case study
and each phase of the adapted method.

3. Case Study

The case study consists of the design of a distributed real-time embedded automation
and control system for an “intelligent” wheelchair to support people with special needs.
Hard real-time requirements (e.g. comply the deadline of collision detection task) must
be accomplished for safety reasons. The whole automation project includes functions
like movement control, collision detection, automatic movement, scheduled movement
(e.g. convey patient to room 11 at 10:00 am). In this paper we will concentrate our
attention in requirements that are related to the movement control.

 The wheelchair can be controlled manually through a joystick or automatically
by pre-defined movements (or by a route) stored in its data base. In both cases, the
movement control system has to monitor the movement in order to avoid collisions and
prevent any system malfunction. In this case, a corrective action must be taken in a short
time.

3.1. Requirements Identification and Specification

This initial phase consists of phases one and two of the original method. The analysis
starts with the identification of the functional requirements to build the use case
diagram. The next step is to fulfill the templates that specify each identified use case.

 At this point, the analysis handles the NFR, using a set of check-lists in order to
elicit the NFR present in the system. Four check-lists for the DRE domain have been
developed, covering the following areas: time, performance, distribution, and
embedded. Each check-list can have sub-check-lists describing how specific and how
generic is the requirement. For instance, a question that appears in the check-list of
“embedded” concerns regards the power consumption constraints like system autonomy.
An example of a full check-list for “timing” concern is presented in Figure 3(a). The
first column lists the non-functional requirements and the inferring questions, while the
second one means relevancy of the requirement, the third column gives its priority and
fourth column gives information about restrictions, conditions, and/or a description of
the requirement. Additionally, other check-lists for each generic NFR presented in
Figure 2 were created. Due to space restrictions, only one check-list is presented.

 After the use of check-lists, it may happen that a given NFR could not be
satisfactorily specified or even could not be identified at all. To refine the identification
and specification of NFRs, a lexicon is used. This lexicon consists of rules organized in
Backus Naur Form (BNF) [Naur, Backus 1969]. An example of a lexicon for timing
requirements can be seen in Figure 3(b). As it was done for check-lists, specific lexicons
for each generic NFR were also created.

 After the identification of NFRs, the next step is to identify conflicts among
them, and thus a matrix with all identified non-functional requirements is built. If a
requirement conflicts with another one, the cell in the matrix that meets both
requirements is checked signalizing the conflict. The priorities defined in the check-lists
are used to solve the identified conflicts. If two or more requirements that are in conflict
have the same priority, the stakeholders must be consulted in order to decide which is
more important.

Rel Pr R/C/D
Time

Timing

Is there any periodic
activity or data sampling? X 8

Joystick data
read

Movement
Control &
Sensoring

Is there any sporadic
activities?

Is there any aperiodic
activity?

Is there any restriction in
relation to the latency to
start an execution of a
system activity?

X 9
Corrective

Action

Is there any specific
instant to start or finish
an execution of a system
activity?

Precision
Is there flexibility in the
time requirements of any
activity?

X 10
No, they
must be

respected

Is it acceptable the
existence of a delay in
any timed activity?

Is it acceptable any
variation in the time
requirements?

X 8
Control

variables not
affected

Is it possible to use old
(not fresh) data?

Is there a limit in the drift
of the logic time in
relation to the physic
time?

X 10 drift< 5
milliseconds

<NFR_generic> ::= <time> | <performance > |
<distribution> | <embedded>

<time> ::= <timing> | <precision >

<timing> ::= <deadline> | <period> | <cost> |
<release_time> | <activation_latency> |
<start_end>

<deadline> ::= an execution must be done until <n>
<time_unit>

<period> ::= each <n> <time_unit>

<cost> ::= consume <n> <time_unit>

<release_time> ::= an activity must be ready to
execute in <n> <time_unit>

<activation_latency> ::= after released, an activity
must execute in <n> <time_unit>

<start_end> ::= an activity starts in <n> <time_unit>|
an activity finishes in <n> <time_unit>

<time_unit> ::= h | min | s | ms | μs | ns | hour | minute
| second | millisecond | microsecond |
nanosecond | day | week | month | year

<n> ::= <n> | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 Figure 3a. Check-list example Figure 3b. Lexicon example

 After the conflicts elimination and also the decision about which NFR will be
considered in the system development, the next step is to fulfill a template for each
NFR, describing their features. The NFR template is shown in Figure 4 with an example
of its use. The column “Item” describes the evaluated NFR feature. The column
“Description” gives the meaning of each entry and the “Case Study” column gives an
NFR example from the wheelchair case study. This example shows the specification of
the “periodicity” feature of the “timing” NFR.

 The final step in this phase is to complete the use case diagram with the
considered NFR. As stated before, this paper focuses on the movement control
subsystem. All the expected functionality of the wheelchair movement control is shown
in Figure 5. As can be observed, some functions have non-functional aspects affecting
their behavior. Those non-functional requirements affect different functions, which will
certainly imply a decentralized handling in the final system (making harder the reuse
and maintainability). In this case study, we consider concerns about timing and
distribution. The first one has two facets: the timing control that handles the execution
of the activities, and the timing parameters that handle all information about time
constraints. The second one deals with the distribution problem, in this case specifically
with the synchronization that must exist in the concurrent accesses to data that are stored
in elements that run in different nodes.

Item Description Case Study

Identifier
An identification that will allow the
traceability of the concern over
the whole project.

NFR-1

Name Crosscutting concern's name. Timing (Periodicity)

Id
en

ti
fi

ca
ti

o
n

Author The responsible for the concern
identification and definition.

Edison Pignaton de Freitas

Classification Class to which the concern
belongs.

Time/Timing/Period

Description Description of how the concern
affects system functionalities.

The system has some activities that must be
executed in regular periods of time. These
activities are: (1) data acquisition from joystick;
(2) data acquisition from movement sensors;
and (3) the control of wheelchair movement.

Affected Use
Cases

List of the use cases affected by
the concern.

(1) Joystick Sensoring;
(2) Movement Sensoring;
(3) Wheelchair Movement Control

Context Determines when the concern is
expected to affect a use case.

Each time that a new cycle of data reading or
movement controlling starts. S

p
ec

if
ic

at
io

n

Scope
(Global/Partial) The requirement
is global if it affects the whole
system, and it is partial if affects
only a part of the system.

Global

Priority
A number used to decide the
relative importance among non-
functional concerns.

8

D
ec

is
io

n
 a

n
d

E
vo

lu
ti

o
n

Status

A requirement can have one of
the following status:
0 - identified; 1 - analysed;
2 - specified; 3 - approved;
4 - cancelled; 5 - finished;

5

Figure 4. The template used to specify NFR

 The notation used in this work is not standardized by the OMG. It follows ideas
taken mainly from [Araújo et al 2002] and [Stein et al 2002]. In Figure 5, it can be seen
how the non-functional requirements explained above affect the desired system
functionality, represented with the same syntax of a use case with a stereotype applied
over it («non-functional»), indicating that this is a crosscutting concern. In order to
represent how those non-functional requirements crosscut system functions, an arrow
goes from the element representing the non-functional requirements to the affected use
case. This arrow is noted with the stereotype «crosscut».

Movement
Actuator

Navigation
Control

Angle Sensor

Joystick

Speed Sensor

Movement Sensoring
Malfunction

Corrective Action

Movement Control
Malfunction

Corrective Action

Change
Movement Mode

Timing
«non-functional»

Distribution
«non-functional»

Wheelchair
Movement Control

Joystick
Sensoring

Movement
Sensoring

Movement
Actuation

«include»

«include»

«include»

«crosscut»

«extend»

«extend»

«crosscut»

« »crosscut

« »crosscut

« »crosscut

Figure 5. The use case diagram of the wheelchair movement control with NFR.

3.2. Requirement Association with Project Elements

In this phase, the designer maps the requirements (identified and specified in the first
phase) with elements that take part in the system project. There are three main tasks that
have to be performed in this phase:

� Extract from the use case diagram and FR templates the concepts and attributes
that will compose the system functional part. This functional part consists of
classes that will be detailed in the next phase, where a class diagram is created
and populated;

� Extract the aspects from the information contained in the use case diagram and
the NFR templates. This information will define the aspects that will handle each
identified and specified NFR;

� Composition of previously extracted information into a mapping table that will
link the requirements with the project elements. This table is very important to
guarantee the traceability of requirements over the system life cycle.
Additionally, this table relates the functional requirements with non-functional
ones that affect them. Figure 6 shows the organization of the mapping table.

 Non-Functional Requirements

 Timing Distribution ... NFR n Classes responsible
for handling FRs

Joystick
Sensoring X X

JoystickDriver
JoystickInformation

Movement
Control X X

MovementController
MovementActuator

... F
u

n
ct

io
n

al

R
eq

u
ir

em
en

ts

FR n X Class n

Aspects responsible
for handling NFRs Timing TaskSynchronization ... Aspect n

 Figure 6. The mapping table relating FRs to classes and NFRs to aspects.

 The mapping table shown in Figure 6 is organized as follows: non-function
requirements are set in the top row; function requirements are set in the first column
from the left side. Aspects that handle a specific NFR are set in the bottom row in the
corresponding column, while classes that handle a FR are set in the column in the right
side of the table, in the corresponding row. Cells relating FR that are affected by NFR
are marked with an “X”. It is important to highlight that as well as some FR can be
handled by more than one class, NFR can also be handled by more than one aspect.

3.3. System Design

The structure of the system can be built using the information collected, analyzed, and
organized in the previous phases. The class diagram is used to represent system
structure and, as stated above, is populated using the information contained in the
mapping table. Additionally, details of each requirement can be found in the templates
filled in the first phase. Figure 7 presents a class diagram with the modeled elements of
the movement control subsystem.

 The first step for building this diagram is to represent the class hierarchy of the
system. The UML profile for Schedulability, Performance and Time Specification (RT-
UML) [OMG 2004] is used to annotate classes that represent a schedulable resource (i.e.
an active object that has its own executing thread) or another remarkable characteristic
that has to be highlighted in the model (e.g. access policy and resource usage of classes
that represent shared objects, which are accessed concurrently by active objects). One of
the major novelties in our approach is to combine RT-UML stereotypes with aspects in
design phase, taking advantage of a well-defined modeling standard to real-time domain
raising the abstraction level in design by using aspects.

 The next step is to represent the NFRs with the respective aspects handling
them. These aspects are represented as classes annotated with the «aspect» stereotype.
One aspect can improve an element by adding new elements (introduction) or by
modifying existing ones (advice). A query expression (for advices, this query is called a
pointcut) identifies which elements are affected by the aspect. In the diagram of Figure
7, the “Timing” aspect affects active object classes (i.e. those classes annotated with
«SAschedRes», that is, the schedulable resources), by adding new attributes and setting
them up. Additionally, the “Timing” aspect improves active objects that have periodic
execution (i.e. those classes that have a message annotated with «SAtrigger» and the
tagged value “RTat=periodic”), by implementing the activation frequency control of the
active object execution.

::SpeedSensorDriver

::MovementSensorDriver
{Abstract}

int Value
readSensor ()

«SAresource»
::JoystickInformation

«JoinPoint» getXPos ()
«JoinPoint» getYPos ()

«SAschedRes»
::Alarm

::AngleSensorDriver

«SAschedRes»
::JoystickDriver

«SAschedRes»
::MovementController

«SAschedRes»
::MovementEncoder

«SAresource»
::MovementInformation

int speed
int angle
«JoinPoint» getAngle ()
«JoinPoint» getSpeed ()
«JoinPoint» setSpeed ()
«JoinPoint» setAngle ()

::MovementActuator

«Aspect»
::TaskSyncronization

«PointCut» set_lock : call (MovementInformation.set*)
«PointCut» get_lock : call (MovementInformation.get*)
«PointCut» position_lock : call (JoystickInformation.*Position)
«Advice» before : set_lock ()
«Advice» before : get_lock ()
«Advice» before : position_lock ()

«Aspect»
::Timing

«Introduction» PeriodicParameters <<SAschedRes>>.*.<<Trigger>>."RTAt = period".releaseParams
«Introduction» AbsoluteTime <<SAschedRes>>.*.taskParameters
«PointCut»
«PointCut» loop_control : within (<<SAschedRes>>.*.<<Trigger>>."RTAt = period".mainTask)
«Advice» after : init_construct ()
«Advice» around : loop_control ()

1

1

1..* 1

1

1

11 1

1

1

1

1 1

1..*

1

«Crosscut»

«Crosscut»

«Crosscut»

«Crosscut»
«Crosscut»

 Figure 7. Class diagram populated with classes and aspects.

 The final step is to connect the aspects with the affected classes. This
information can also be taken from the mapping table by the checked cells in the table.
This relation is characterized by a line connecting the aspect with those affected classes,
annotated with the stereotype «crosscut».

 Observing Figure 7, it is possible to notice that all NFR handling related to real-
time and distribution concerns were encapsulated in separate model elements. In current
OO methods, those concerns would be spread out over several elements in the model

(e.g. attributes and object behaviours). The separation of concerns in aspects and classes
makes easier to find and change the handling of those concerns.

4. Related Work

Even if aspect-orientation is a relatively new concept, there are some proposals to use it
in DRE systems, especially to handle real-time requirements. The majority of the works
in this domain propose the use of aspects in the implementation phase, like the approach
presented in [Tsang et al 2004].

 Another remarkable work in the area is [Stankovic et al 2003]. This work
proposes a set of tools named VEST (Virginia Embedded System Toolkit) that uses
aspects to compose a new DRE system based on a component library. Those aspects
check the possibility of composing components with the information taken from system
models. Results presented in the paper depict the design time reduction to build a DRE
systems using VEST. This work uses the concept of aspects to check and test
dependencies among library components. We propose a different approach in which
aspects are used to directly model non-functional requirements since the analysis phase.

 Some proposals bring the concept of aspects to early phases of a system
development, like [Araújo et al 2002] and [Zhang and Liu 2005]. Those proposals had a
strong influence in the present work. The first one proposes the use of aspects in
requirements analysis and its notation in UML use cases. Another interesting feature of
this proposal is the use of templates to describe NFRs. The second proposal describes a
way to separate functional and non-functional requirements in the system structure. This
is done by the use of stereotypes to represent aspects in class diagrams. In the present
work, both ideas are used in addition to the concepts and tools presented in FRIDA.
However, an important advantage of the current work is the use of RT-UML together
with aspects. This composition brings together the well-defined elements from RT-
UML and the separation of concerns supported by aspects.

5. Conclusions and Future Work

This paper proposes the use of aspect-orientation to develop high quality Distributed
Real-time Embedded systems using an adapted version of the FRIDA method. By
adapting a well-defined method to the DRE domain, like FRIDA, the goal is to provide
efficient tools to analyze and model non-functional requirements of this domain in a
clear way. This separation of concerns from early phases of development allows a better
understanding of system complexity and also a better base to build the system structure.
Another advantage is the improvement of reuse of system components, because the non-
functional handling is not intermixed in functional elements. The use of RT-UML is
advantageous because it enables the application of knowledge from the real-time
community, which is materialized as a UML profile.

 This work does not present a code generation phase as the original FRIDA
method. There is an ongoing work that will provide a code generation tool, however this
tool will not follow the original FRIDA proposal, which creates only code skeletons.
The idea, instead, is to generate source code as complete as possible using aspect- and
object-oriented information provided by UML models. However, the programming
language used to generate the code will not be an AO language, instead of this, it will be

an OO or even a procedural language (depending on the mapping from model to code)
with the modeled aspects woven in the generated source code. On other words, the tool
will weave aspects and generate code from the UML model of DRE application.
Additionally, we plan to incorporate the adapted FRIDA method into a greater project,
named SEEP (Wehrmeister et al. 2005), to incorporate aspect-oriented concepts in the
design method proposed into the referred project.

References
Araújo, J., Moreira, A., Brito, I., Rashid, A. (2002) “Aspect-Oriented Requirements with

UML”, Workshop on Aspect-oriented Modeling with UML, UML 2002, Dresden, Germany.

Bertagnolli, S. C., Lisbôa, M. L. B. (2003) “The FRIDA Model”, In: Analysis Aspect-Oriented
Software, Germany, (Held in conjunction with ECOOP 2003).

Burns, A., Wellings, A. (1997), Real-time systems and programming languages, Addison-
Wesley, 2nd edition.

Chung, L. and Nixon, B.A. (1995) “Dealing with Non-Functional Requirements: Three
Experimental Studies of a Process-Oriented Approach”, In: Proc. of 17th International
Conference on Software Engineering, ACM Press, pp. 25 – 37.

Institute of Electrical and Electronics Engineering (2006), “IEEE Standard Glossary”,
http://standards.ieee.org/catalog/olis/arch_se.html

Kiczales, G., et al., (1997) “Aspect-Oriented Programming”, In: Proc. of European Conference
for Object-Oriented Programming, ECOOP, Lecture Notes in Computer Science 1241,
Springer-Verlag, pp. 220-240.

Naur, P., Backus, J. W. et al, (1969) “Revised Report n the algorithmic Language Algol 60”,
Programming Systems and Languages, Edited by Saul Rosen, New York, McGraw-Hill.

OMG - Object Management Group. (2004), “UML Profile for Schedulability, Performance, and
Time Specification”, http://www.omg.org/cgi-bin/doc?ptc/04-02-01, February 2004.

Ossler, H., Tarr, P. (1999) “Using subject-oriented programming to overcome common
problems in object-oriented software development/evolution”, In: Proc. of 21st International
Conference on Software Engineering, IEEE Computer Society Press, pp. 687-688

Rashid, A., Sawyer, P., Moreira, A., Araujo, J. (2002) “Early Aspects: A Model for Aspect-
Oriented Requirements Engineering”, In: Proc. of IEEE Joint International Conference on
Requirements Engineering, pp. 199-202.

Stankovic, J. A. et al., (2003) “VEST: An Aspect-Based Composition Tool for Real-Time
System”, In: Proc. of 9th IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS, pp. 58-59.

Stein, D., Hanenberg, S., Unland, R. (2002) “A UML-based Aspect-Oriented Design Notation
for AspectJ”, In: Proc. of International Conference on Aspect-Oriented Software
Development, pp.106-112.

Tsang, S. L., Clarke, S., Baniassad, E. (2004) “An Evaluation of Aspect-Oriented Programming
for Java-based Real-Time Systems Development”, In: Proc. of the 7th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC'04).

Wehrmeister, M.A., Becker, L.B., Wagner, F.R., Pereira, C.E. (2005) “On Object-Oriented
Platform-based Design Process for Embedded Real-Time Systems”, In Proceedings of the
8th IEEE (ISORC'05).

Zhang L., Liu, R. (2005) “Aspect-Oriented Real-Time System Modeling Method Based on
UML”. In Proc. 11. IEEE – RTAS 05.

