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ABSTRACT
Asian rust of soybean [  (L.) Merril] is one of the most important fungal diseases of this crop 

worldwide. The recent introduction of  Syd. & P. Syd in the Americas represents a major threat 
 is 

extremely aggressive under favorable weather conditions, causing rapid plant defoliation. Epidemiological studies, under 
both controlled and natural environmental conditions, have been done for several decades with the aim of elucidating 
factors that affect the disease cycle as a basis for disease modeling. The recent spread of Asian soybean rust to major 
production regions in the world has promoted new development, testing and application of mathematical models 
to assess the risk and predict the disease. These efforts have included the integration of new data, epidemiological 
knowledge, statistical methods, and advances in computer simulation to develop models and systems with different 
spatial and temporal scales, objectives and audience. In this review, we present a comprehensive discussion on the 
models and systems that have been tested to predict and assess the risk of Asian soybean rust. Limitations, uncertainties 
and challenges for modelers are also discussed.

Additional keywords: , disease forecasting, disease simulation models, fungal aerobiology.

RESUMO
Modelos e aplicações de avaliação e previsão de risco de epidemias da ferrugem asiática da soja

A ferrugem Asiática da soja [  (L.) Merril] é atualmente uma das mais importantes doenças foliares dessa 
cultura no mundo. A recente introdução de seu agente causal, o fungo  Syd. & P. Syd, nas Américas 

relatadas. A ferrugem Asiática da soja é uma doença extremamente agressiva sob condições ambientais favoráveis, causando 
rápida desfolha nas plantas e danos à produção de grãos. O conhecimento epidemiológico sob condições controladas e 
naturais, os quais visam elucidar os fatores que afetam os processos do ciclo da doença tem sido fundamental para dar base a 
estudos de modelagem da epidemia. Devido à importância e recente expansão da doença para as principais áreas de produção 
de soja no mundo, uma nova atenção tem sido dada ao desenvolvimento, avaliação e aplicação de modelos para avaliação de 
risco e previsão de suas epidemias, valendo-se de avanços recentes no conhecimento epidemiológico, métodos estatísticos 
e simulação por computador. O conhecimento gerado tem permitido a construção de novos modelos para a previsão e 
avaliação de risco de doenças, os quais se diferenciam em relação aos parâmetros estimados, escala espacial ou temporal, 
objetivo e público alvo. Nesta revisão, é apresentada uma discussão detalhada de modelos e sistemas de previsão e avaliação 

Palavras-chave adicionais: , previsão de doenças de plantas, modelos de simulação de 
epidemias, aerobiologia de fungos.

Distribution and epidemiological aspects
Asian soybean rust (ASR) [  (L.) Merril] 

is a fungal disease (  Syd. & P. Syd) 

from 1902, in Japan, and during the last century the disease 

has been reported in several countries in Asia, as well as 

Hartman, 1999). ASR was thought to have spread westerly 
into Africa in the mid 90’s (Levy, 2005). Meanwhile, the 
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disease was reported in Hawaii in 1994 (Killgore & Heu, 
1994). From Africa, the fungus was thought to have spread 
into South America, affecting late-season soybean plants 
in Paraguay and Brazil in 2001 (Yorinori , 2002), and 
in northern Argentina in 2002 (Rossi, 2003). In November 
2004 Asian soybean rust was found in the continental United 
States, the last major soybean production area where it had 
not been previously reported (Schneider , 2005). 

Comprehensive epidemiological studies on Asian 
soybean rust were initiated in the 70s in containment 

have also been studies from Asian countries that examined 
changes in local epidemics, as well as controlled environment 
studies (Tan, 1996). Most of these studies aimed to examine 
environmental and biological factors affecting individual 
disease cycle components and mechanisms that lead to 
yield losses (Kitani & Inouse, 1960, Marchetti , 1976, 
Melching , 1979, Tschanz, 1984). In brief, long dew 
periods and temperatures ranging from 15°C to 29°C appear 
to be optimal for soybean rust development (Marchetti ,
1976, Melching , 1989). Rapid disease establishment 

on yield, has been associated with high rainfall during 
the growing season (Tschanz, 1984, Tan, 1996). With 
the recent expansion of Asian soybean rust in the last 10 
years, further epidemiological studies on single disease 
cycle components have been done in countries where it has 
recently been found. For example, controlled-environmental 
studies in Brazil have shown that the optimal temperature 
for fungal germination ranged between 15 and 25 oC, with a 
minimum wetness period of 6 hours required for infection, and 

duration (Alves , 2006a). Moreover, the latent period was 
a function of temperature, with the shortest period occurring 
below 23 oC (Alves , 2006b). In South Africa, studies 
showed that no rust development occurred for temperatures 
equal to or less than 15 oC and equal to or greater than 30 oC
after infection, and for temperatures that were within this range, 
lesion size was increased when air relative humidity was 95%, 
compared to 85% (Caldwell, 2005). Studies for the relationship 
between urediniospore viability and exposure to solar radiation, 

the proportion of urediniospores that germinated 
decreased with increasing exposure to solar radiation, with no 

2

(Isard , 2006).

ASR Model types and applications
Plant disease forecasting models, usually referred to as 

prediction or disease risk models, have been developed based 
on the epidemiological knowledge obtained from controlled 

the terms “risk prediction” and “risk assessment”, according 
to the temporal and spatial scale that uses the risk.  “Risk 

at the farm level for a single season. “Risk assessment” 

is an epidemiological study to predict future occurrence 
of a disease by using non-experimental approaches, often 
through computer modeling. The study in risk assessment 
is a macroscale, long-term prediction that encompasses 
assessment of potential for entry, establishment, epidemic, 
and/or crop losses in a region or country once an epidemic 
occurs (Yang, 2006). Several mathematical and computer 
models have been developed for predicting Asian soybean 
rust epidemics (Yang , 1991a, Batchelor , 1997, 
Isard , 2005, Del Ponte , 2006, Kim , 2006, 
Pivonia & Yang, 2006) with applicability in risk assessment 
studies and prediction frameworks. Recently, plant 
pathologists, in collaboration with climatologists, have paid 
new attention to the development, testing and application of 
models to assess the risk and predict ASR. This has been 
through using both new and re-analyzed data, as well as 
new methods and technological resources for modeling 
development and information delivery. Currently, methods 
and applications for risk estimation vary among different 
research groups. Differences encompass model type and 
how climatic, meteorological, phenological, geographical 
and other relevant data are stored, processed, and delivered 
to end-users. 

simulation and empirical models. Simulation (process 
driven) models are based on concepts derived from a 
pathosystem and help to improve the understanding of the 
structure and behavior of such a biological system (Teng, 
1985). Empirical models are typically constructed through 
the statistical relationship(s) of explanatory variables 

on individual (e.g. survival, dispersal, infection, latency, 
sporulation) or combined epidemic components (e.g. disease 

foliar pathogens to the combined effects of temperature and 
duration of leaf wetness (Duthie, 1997). These models have 
commonly been used in disease forecasting systems, with 
the reliability of model predictions heavily dependent on the 
quality of the dataset used for model development (Krause 

, 1975). Table 1 summarizes information on twelve 
ASR models found in the literature and that are discussed 
in this review.

Simulation models
Simulation ASR models can be separated into 

two groups: epidemiological and aerobiological models. 
Simulation epidemiological models aim to mimic 
biological processes in the disease cycle to estimate disease 
development considering local inoculum availability. Three 
models of this kind were found with applicability mostly for 
risk assessment studies of potential establishment, epidemic 
development, losses and survival (models 1 to 3, Table 1). 
Aerobiological models are eventually more complex than 
the epidemiological ones and aim to predict transport and 
dissemination of airborne inoculum over long distances. 
These models are used mainly to assess the entry potential 
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TABLE 1 - Mathematical models and their characteristics used for risk assessment and risk prediction of Asian soybean rust 
epidemics that have been published in the literature

1. S = Simulation, E = Empirical
2. RA = Risk assessment, RP = Risk prediction
3. Soybean Rust Aerobiology Prediction System 
4 NOAA ARL HYSPLIT_4 ( )
5. North American Plant Disease Forecast Center 
6. CLIMEX computer model (Southerst & Maywald, 1985).
7. Fuzzy Logic Apparent Infection Rate

(models 4-6, Table 1) and, in some cases, the subsequent 
host infection and colonization after entry (model 7, Table 1).

Epidemiological models

(Yang , 1991a) was developed and validated with 

experiments conducted at the Asian Vegetable Research 
and Development Center (AVRDC) in southern Taiwan 
in the early 80s. SOYRUST is a process-driven computer 
model that simulates daily increase of disease severity in 
two soybean varieties (Yang , 1991a). Rate variables 
estimate leaf area development and disease components, 
including infection, latent period and uredinia senescence. 

and temperature, latent period and uredinia senescence are 

the environmental effect on the epidemic cycle to predict 
epidemic development in daily steps. Local model validation 
was performed using three soybean growing seasons within 
a single year and showed that the model was accurate in 

due to differences in seasonal temperature. Prediction 
accuracy was reduced if growing season temperatures were 
either warmer or colder than regular growing season. 

SOYRUST was further linked to a soybean model, 
SOYGRO, in order to simulate disease effects in the soybean 
yield and assess potential crop losses in some locations in 
the United States (Yang , 1991b). The link between 
these two models is through the estimated disease severity 

1 mechanistic, process-driven S – RP, RA Epidemic and loss

potential

Disease severity

progress (%)

SOYRUST ,

Yang ,

(1991a,b)

2 Analyt ic, process -driven S - RA Establishment

potential

Daily number of

infectious units

Pivonia & Yang

(2006)

3 CLIMEX
6

S - RA Survival potential Disease stress -free

index (0-1)

Pivonia & Yang

(2004)

4 HYSPLIT
4

S – RA, RP Entry potential Spore dispersal and

concentration

Pan (2005)

5 HYSPLIT S - RA Entry potential Spore availability index

(0-7)

Kim (2005)

6 HYSPLIT S - RP Entry and

establishment

potential

spore dispersal,

qualitative disease risks

NAPDFC
5

(2006)

7 Aerobiological process -

driven

S – RA, RP Entry,

establishment and

epidemic potential

Spore dispersal and

disease development

SRAPS
3

Isard

(2005)

8 Non-linear regression E – RP Infection potential Daily values of

probability for infection

(0-4)

Climatic model -

Reis (2004)

9 Non-linear regression E - RP Infection potential Daily infection

efficiency (0-100)

Canteri

(2004)

10 Neural networks E - RP Epidemic

potential

Daily disease severity

(%)

Batchelor

(1997)

11 Fuzzy logic + non linear

regression

E – RA,RP Epidemic

potential

Apparent infection rate

and disease severity

progress (%)

FLAIR
7

Kim (2005)

12 Linear regression E – RA, RP Epidemic

potential

Final or maximum

disease severity (%)

Del Ponte

(2006)
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in SOYRUST, which is used to update the “Leaf Area” 
variable estimated by SOYGRO. From the estimated disease 
severity, a measure of the corrected leaf area variable is 
obtained. This variable directly affects plant photosynthesis 
and, consequently, the yield. At the end of the simulation, 

in the presence or absence of ASR. 
More recently, Pivonia & Yang (2006) adjusted a 

general disease model to predict onset time for four other 
rust diseases than ASR (two from corn and two from wheat) 
by examining the temperature effect at the initial stages of 
an epidemic, in order to assess establishment potential by 
the estimation of daily increase of infection units (model 2, 
Table 1) in susceptible hosts during the exponential phase 
of an epidemic. The general disease model components 

number of spores produced per lesion and proportion of 
spores landing on a potential infection site (Gumpert 

values of spores from an external inoculum source were 
based on literature data for other rusts. This model was used 
for risk assessment through the calculation of the number 

within the United States (for southern to northern locations), 
they observed that a longer period of time would be required 
for ASR to increase from trace to visual detection levels in 

States, the low temperatures in May and June would limit 
disease development, causing a delay in disease incipience 
in northern locations. The model assumes non-limiting 
moisture conditions for rust infections.

Since  is an obligate parasite, 
overwintering survival of the pathogen is critical for 
development of year-to-year epidemics. CLIMEX is a 
computer model used to assess climatic suitability for 
biological processes (Southerst & Maywald, 1985). The 
third model presented was developed by Pivonia & Yang 
(2004), who adjusted the biological parameters in CLIMEX 
to integrate information on the response of 
to environmental conditions in order to determine stress-
free zones for year-round survival of around
the world. Parameters for the estimation of cold, warm or 

11 and 34 ºC, respectively. Stress indices take into account 
the continuous occurrence of those values around the stress 
level. For example, 100% of cold stress would accumulate 
after 9 to 10 weeks with mean minimum temperature of 7 oC
level, and 100% of warm stress would be calculated after 9 to 
10 sequential weeks of constant temperature approximately 
40 oC. Moisture stress would not occur if weekly precipitation 
was as low as 10 mm. If precipitation was lower than 10 
mm, a procedure was created to take relative humidity into 

equation in CLIMEX calculates a stress-free index (0 to 1) 
for a single location, taking into account the three stress 
indices. Values close to 1 suggest higher chance for year-
round spore survival, which means no stress conditions 
developed in most of years. The results allowed determining 
worldwide regions where year-round inoculum survival 
would be most likely and others where ASR epidemics 
would depend on primary inoculum originating from long 
distances (overwintering sources).

Aerobiological models
Aerobiology is the study of biological processes 

involved in the movement of microorganisms in the 
atmosphere from one geographical location to another 
(Gregory, 1973). Given that spores of  are 
capable of long-distance travel via air currents, aerobiological 
models have been proposed for risk assessment and seasonal 
ASR prediction (Isard , 2005, Pan , 2006). 

a climate-dispersion integrated model system developed 
for simulating long-distance and long-term transportation 
of using climate forecast over one month in 
advance (Pan , 2006). The application is based on the 
atmospheric transport model NOAA ARL HYSPLIT_4 
(HYSPLIT - 

) (NOAA, 2006). The HYSPLIT model simulates 
single trajectories of air parcels, dispersal, concentration and 
deposition of particles, originating from a source geographical 
location and time of year. In Pan and collaborators’ 
model, parameters for strength of inoculum source, spore 
production, survival and deposition were mechanistic and 
empirically estimated, based on the current knowledge on the 
system and physical principals (Pan , 2006). The model 
accounts for the dispersal of spores at multiple altitudes in 
the lower atmosphere and incorporates both dry and wet 
spore deposition processes. To predict spore dissemination 
months ahead, the model used climate prediction data from 
the Experimental Climate Prediction Center (ECPC) of the 
Scripps Institution of Oceanography. This climate prediction 
data was fed into the Pennsylvania State University/National 
Center for Atmospheric Research mesoscale model (MM5) 
that estimates meteorological variables to input into 

application of this ASR aerobiological model was to hindcast 
likely dispersal of  spores from sources in Africa 
into South America in 2002 (Pan , 2004) and to forecast 
dispersal from central to northern soybean production 
regions in South America during March 2004. In July 2004, 

 in Colombia was used to 
predict movement of spores to North America using climate 
forecast data. Spore dispersal maps generated by the model 
showed likely spread of spores to the southern United States 

the disease in November 2004, in several locations in gulf 
coastal states (Pan , 2006). During the 2005 soybean 
growing season in the United States, the model was used 
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B

FIG. 1 - Computer simulation of historical weather data (1997-
2003) for potential deposition areas for   
during  two 15-day period in the month of July (A and B) produced 
from southeastern Alabama if a large amount of spores is produced 
there. Grayscale code is the relative frequency of spore travels 
expressed as CAI (combined availability index), a qualitative index 
(0-7) for possibility of spore deposition. White square indicates 
area of spore’s source. Adapted from Yang ., (2005).

to predict the likeliest within-season movement of spores 

in the southern states. In this application, the model was run 
on a weekly basis with forecasted weather data to predict 
likely movement and concentration of spores into  northern 
regions of the country, as part of a framework to predict the 
seasonal risk of soybean rust in that year (Pan , 2005, 
2006). The quasi-operational prediction in the 2005 growing 
season further indicated that the model could capture the 
general pattern of disease spread in the southeastern states. 
The month-long prediction of spore movement was based on 
the emerging seasonal forecast techniques that predict mean 
conditions (or climate), rather than day-to-day weather (Pan 

, 2006)

used by Pan (2006) were made using a statistical 
approach which analyzed 7 years of climate data in order 
to assess the potential spread of viable spores arising in a 

the United States, as part of a risk assessment framework 
(Kim , 2005). The authors adjusted components in the 
basic aerobiological model to simulate survival of spores 
during transport and the potential entry of viable spores in 
a region (model 4, Table 1). This model ran using hourly 
meteorological data from the years 1997 to 2003 in order to 
calculate a combined availability index (CAI). The higher 
the index for a region, the greater the climatic potential for 
spore availability. An index of 7 indicates deposition of 
viable spores during all years in the simulation (Figure 1). 
The authors suggested that there is the potential for soybean 

however, the frequency and spatial distribution of spores 
was quite variable across years.

A third application was made using the HYSPLIT 
model to predict ASR risks in the United States during 
the 2005 growing season (NAPDFC, 2005). In this, each 
prediction included a description of the factors pertinent to 
the disease status, a general outlook that assessed the risk of 
disease development, and a map showing the spore-laden 

(i.e., a cluster of closely-grouped counties) using multiple, 
centrally-located trajectories. To estimate the risk of ASR, 
researchers combined  biological and meteorological 
elements into a qualitative evaluation of the risk of disease 
development associated with one or a group of sources. The 

“risks” follows the model proposed to forecast tobacco blue 
mold, in which the meaning is described elsewhere (Main 

, 2001). The model allowed then the prediction of entry 
and establishment potential by estimating qualitative risks 
(model 6, Table 1).

The last ASR aerobiological model to describe 
is called SRAPS (S

) and is an advance on the other models of this 
kind since it aims to simulate the transportation process of 
airborne inoculum and the further disease establishment and 

spread using a geographical perspective (model 7, Table 1). 
The model is modular and includes most of the basic stages 
of the aerobiological processes, such as: spore production, 
release and escape from canopy, spore mortality by exposure 
to solar radiation during atmospheric transport, and wet 
deposition of spores at target regions. In its application, 
the model requires input of information regarding the 
geographical location of inoculum. Preliminary versions 
of SRAPS model have been previously used to assess the 
potential pathways by hindcasting spore movement from 
Africa into South America and from South into North 
America (Isard , 2004). For SRAPS applications in risk 

a geographical information system and is run on a 10  10 km 
grid.  In each grid cell, a degree-day based model estimates 
host development (soybean and alternative hosts) to estimate 
availability of host tissues for infection. Disease progress 
calculation is then initiated once spore deposition is estimated 
within a grid cell that has susceptible hosts. Parameters, 
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FIG. 2 - Relationship between Asian soybean rust incidence on 

(CDVPI) for the location of Pereiras, São Paulo State, Brazil. 
Disease onset occurred when CDVPI accumulated 30 units. Source: 
Reis (data not published).

details and model application are described elsewhere 
(Isard , 2004, 2005). In the 2005 growing season, the 
system was run through the Internet (USDA APHIS, 2005). 
A nationwide network of sentinel plots was established and 
intensively monitored to inform the geographic distribution 
of the early season pathogen in southern soybean regions 
in the United States. Each day, SRAPS-generated maps 
showing deposition of spores, phenological development of 
soybean and kudzu, and disease progression estimated on 
these hosts were available to extension specialists as a basis 
for commentaries and regional recommendations (Isard 

2005).

Empirical models
Six empirical models are described here, and they 

were separated into three kinds according to epidemic 
component estimated: suitability or critical periods for 
infection, disease progress, or maximum disease severity 
levels (models 8 to 13, Table 1). Such empirical models 
were obtained using modeling techniques such as linear and 
non-linear regression, neural networks and fuzzy logic.

Suitability or critical periods for infection
The two empirical models that predict the suitability 

or critical periods of infection for ASR were developed and 
applied in Brazil. They basically follow the principles of 
several models that were developed for other foliar diseases 
(Krause , 1975, Lalancete , 1988, Evans ,
1992).

Reis (2004) proposed a climatic model to 
predict a daily value for the probability of infection by 

 based on literature data regarding the interaction 
of leaf wetness duration-mean temperature during period 
of wetness and infection (Melching , 1989). Reis 

(2004) reanalyzed the original data in order to obtain a 
surface response model that estimates the intensity of lesions 
(lesions.cm-1). The authors developed a “table of critical 
periods” for daily values for probability of infection (DVPI), 
which are a function of the number of lesions predicted to 
develop in a single day according to leaf wetness duration 
and temperature. In its application, the climatic model 
was input into a computerized weather station equipped 
with electronic sensors that measured temperature and leaf 
wetness every 15 minutes (Aura One. Quanta Agro, Passo 
Fundo - RS). The device is then placed within or near 

then be shown on the display whenever cumulative DVPI 

validated across soybean regions in Brazil to determine 
the correlations between CDVPI and the disease’s onset 
and incidence progress - proportion of leaves infected over 
time. In the validation experiments, a trap plot (10 x 10 m) 

detect the presence of local inoculum. Recordings of leaf 
wetness and mean temperature during the wet period were 

was monitored twice a week. Preliminary results indicated 
that there was a high probability for disease occurrence 
when CVDPI values reached values from 30 to 45 across the 
locations. At Pereiras municipality, São Paulo State, disease 
onset occurred when CDVPI reached 30 units (Figure 2). 
For Primavera do Leste, Mato Grosso State and Londrina, 
Paraná State, disease onset was observed when CVDPI 
reached 32 and 45, respectively (data not shown). Efforts 

in order to time fungicide sprayings according to weather 
suitability for Asian soybean rust.

The other Brazilian model follows a similar 
methodology. Canteri (2004) used epidemiological 
data observed by Marchetti (1976) which they 
translated into a mathematical function that estimates 
relative intensity of infection as a function of the number of 
hours of leaf wetness and mean temperature recorded during 
the wet period. The infection-based model was developed 
using non-linear regression approaches that combined the 
Beta function to model temperature response and Richard’s 
model with four parameters to model the response to leaf 
wetness duration. The model was used in a risk assessment 
study with climatology data from 6 years to map epidemic 
potential in Paraná’s soybean regions (Canteri , 2005). 
In the risk prediction application for that State, the model 
is input daily with meteorological (temperature and relative 
humidity over 90% as a surrogate for leaf wetness) and 
altitude data, to generate state-wide risk prediction maps for 
favorability of infection by  for Paraná State 
during the 2004/05 and 2005/06 growing seasons (Fundação 
ABC, 2006) (Figure 3). In this prediction system, risk maps 
are generated daily and results are summarized for periods 
of a week or a month to map regions where a higher climatic 
favorability has been predicted. Further adjustments in the 
system will include the use of the new information obtained 
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2/2/2005 to 2/28/2005 (%)
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FIG.  3 - Risk map for Asian soybean rust in Paraná State, Brazil, 
generated by using a prediction model that uses temperature and 
leaf wetness duration to predict climatic favorability for infection. 
The map above summarizes the frequency of favorable events 
for infection during the month of February 2005. Adapted from 
Fundação ABC (2005).

in recent studies in Brazil for the effect of temperature and 
leaf wetness duration on infection (Alves , 2006). 

Disease development
Two other techniques have been applied to develop 

ASR models using the extensive disease data from Taiwan, 
apart from the SOYRUST simulation model. They are neural 
networks and fuzzy logic.

Batchelor (1997) developed a neural network 
model using the data from epidemics recorded in growing 
seasons in 1980 (model training) and then validated that 
model with data from 1981 growing seasons in that country 
in order to predict ASR severity in a single day (model 
10, Table 1). Neural networks are sophisticated pattern 
recognition systems capable of learning relationships in 
patterns of information and, once trained, they can be used 
to classify new disease patterns according to the knowledge 
on the existing patterns (Ripley, 1996). For ASR, Batchelor 

created 7 input variables: 1) planting date, 2) days to 

of plants on the evaluation date, 5) cumulative days of 
relative humidity greater than 90%, 6) cumulative degree-
days for rust development, and 7) cumulative degree-days 
for crop development. Two models, using three- or four-
input variables, respectively, had the best results with a 

R2) of 0.85. The three-input 
variable model had the lowest mean prediction error and a 

were: (i) day disease was observed, (ii) cumulative degree-
day for rust development and (iii) cumulative degree-day 
for soybean development. For the four-variable model, an 
additional variable, cumulative daily relative humidity over 

increase in prediction accuracy was observed. Using the 

1981 Asian soybean rust data (model validation), 84% of the 
cases were within deviations (observed minus predicted) of 
20%, and 54% of the cases were within  10% actual disease 
severity. The authors suggested the potential application of 
neural networks for predicting Asian soybean rust, given 
that their results were comparable to the SOYRUST model 
and that the variables used in the neural network model were 
based on degree-days, which have a biological meaning, –ie. 
severity levels are expressed as a function of host, pathogen, 
environment and time.

Kim (2005) developed a fuzzy logic-based 
model using the Taiwan data to estimate the apparent 
infection rate, an input variable found in the logistic 
population growth model (van der Plank, 1963). Their model, 
named FLAIR ( ), used 
a dataset for training some functions and decision rules 
within the context of fuzzy logic. Twelve decision rules 
were determined using the previous knowledge regarding 
the epidemiological knowledge of Asian soybean rust. 

manner: 1) “if mean night-time temperature is very low, 
then apparent infection rate is very low”, 2) “if maximum 
daily temperature is high, then the apparent infection rate is 
low”. A fuzzy logic model describes the variables and their 
states in natural language terminology, such as “very low” 

a quantitative value is included in the system and converted 

in Kim (2005). In the model validation, the authors 
assumed that initial infection occurred 14 days after planting 
and initial severity values were heuristically estimated for 
each case in the validation dataset. The authors found that 
in cases when mean seasonal temperature was higher than 
25 oC, or lower than 20 oC, Asian soybean rust epidemics 
deviated from a logistic pattern, resulting in failure of 
the model to correctly simulate disease severity during 
those periods. The rules created in this model did not use 
measurements of leaf wetness, but night-time temperature 
as a surrogate variable. This variable did not seem to affect 
the model performance, which was not much of a surprise 
given that moisture was not a limiting factor for epidemics 
in Taiwanese experiments (Yang , 1991, Batchelor 

, 1997). The authors suggested that a population dynamics 
model using estimations of the apparent infection rate by 
the FLAIR model satisfactorily simulated disease progress 
as 85% of disease variation in the validation dataset was 
explained, and this approach showed potential for disease 
prediction, conditional on the availability of a model that 
accurately estimates initial disease severity levels (Kim 

, 2005). 

Maximum disease severity
The last model to describe was developed by Del 

Ponte (2006) who used linear regression to examine 
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natural epidemics in 21 locations from 2003 a 2005 in Brazil. Adapted from Del Ponte (2006).

A B

during epidemic development after ASR was detected. They 
examined data from 34 naturally occurring epidemics in 
experimental plots that were located at 21 sites from southern 
to northern soybean regions in Brazil over three growing 
seasons (2002/03 to 2004/05). The authors found that use of 

temperature variables had poor predictive ability (Figure 4).  
The rainfall models explained 85 to 93% of the variation in 

second-order linear model using only accumulated rainfall 
for the 30-day period following disease detection, and the 

same variable and also the number of rainy days for the 
same period, had highest R2, as well as lowest prediction 

when actual disease severity was < 30%, while the second-
order linear model had predictions with lower deviations 
from the actual disease severity. Low values for maximum 
disease severity were found for locations in southern regions 
of Brazil (latitude > 230), where relatively longer dry periods 
were recorded, and where minimum temperature was lower 
during the growing season, compared to northern locations. 
This work showed a capacity for predicting epidemic 
potential, where the epidemic prediction is based on a 
function of rainfall over a 30-day period following disease 
detection. The results observed by Del Ponte (2006) on 

previous reports from China, where an empirical model 
based on the number of rainy days and accumulated rainfall 
for the month of September (using 7 years of epidemic data) 
was developed to predict a soybean rust index at one single 
location in Wuhan province (Tan , 1996). 

The rainfall models developed by Del Ponte 
(2006) have been applied in both risk assessment and 

prediction studies. For the former, the model was used to 

locations in soybean regions in the United States. Fifty years 
of weather data were used to determine the frequency of 
moderate (>25% disease severity) and severe (>50% disease 
severity) epidemics across the locations, for two scenarios of 
disease detection time during the growing season (late June 
or late July). Results, using climate data for July and August, 
considered the most critical months, indicated a distinct 
climatic suitability for epidemic across different regions. 
Rainfall patterns in the main soybean regions (northern 
locations) seem not to be suitable for severe epidemics, such 
as those observed in central-western Brazil, although the 
disease can develop to light and moderate levels every year 
if inoculum is available early to mid-season, a condition that 
may not happen every year, because spores need to migrate 
from southern to northern locations (Del Ponte ,

of concern have a frequency of one-in-eight or ten years, 
which was the case for some locations in the risk assessment 
study, then Asian soybean rust may not be considered a 
major production concern for the region. 

During the 2005 season in the United States, the 
rainfall models developed by Del Ponte and collaborators 
were used for seasonal and large-scale predictions of soybean 
rust, in combination with results from an aerobiological 
model (Pan 
the past 15 days (NOAA, 2005) was combined with the 15-
day rain forecast (giving a cumulative 30-day period) from 
MM5 models and used to produce risk maps for suitability of 
climate conditions in the United States to determine regions 
where it is more favorable for soybean rust to develop if the 
disease was found (Pan , 2005). A risk interpretation 
was made by specialists using information from maps of 
spore concentration and climatic suitability (Figure 5). 
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FIG. 5 - Seasonal risk prediction framework for Asian soybean 
rust epidemics in the United States, 2005 year. A. Maps for spore 

B. Maps 
for climatic suitability for soybean rust epidemics during a 30-day 

C. Risk for disease establishment was 
estimated higher for regions where both higher climatic favorability 
and higher spore concentration was predicted (or an inoculum 

southern United States by the end of 2005 season (source: PIPE 
- http://www.sbrusa.net). 
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May 7 to August 1st 2005

Climatic suitability for soybean rust epidemics
June 18 to July 17 2005

scale: log (#spores)/m3

<-5 -4  -3 -2  -1 A

B

C

Soybean rust in the US. 2005

spore dispersal area by models 

Data source: NOAA Climate Prediction Center

very low   low   moderate  higt   very higt

Risk information was made available to plant pathologists, 
specialists and risk interpretations to the public during the 
season (Del Ponte & Yang, 2005).

Uncertainties and challenges for the future
In spite of the great efforts to increase our 

understanding of the Asian soybean rust pathosystem, there 

overcome in order to make the most accurate risk assessment 
and risk predictions. They relate mainly to inoculum 

in epidemiological knowledge, and built-in limitations to 
a model and its validation. Although it seems plausible to 
extensively monitor early-season inoculum using trap plots 

dimension the actual number of inoculum sources across the 
regions in order to input these into aerobiological models. 
For example, within some locations several alternative hosts 
may harbor  spores, and many of the events 
associated with either local or long-distance spore dispersal 
(release, transport, survival and viability) are not satisfactorily 
understood. Further research is necessary to understand 
factors such as solar radiation, ultra-violet light, temperature 
and rain and how they may affect aerobiological processes. 
Recent studies on the mortality of  spore by 
the effect of solar radiation are very useful for improving 
predictions of spore movement based on aerobiological 
models (Isard 
improved understanding of the role of alternative hosts such 
as kudzu. Kudzu is a widely distributed weed across southern 
United States, and there is an inconsistency in the relative 
susceptibility of kudzu to , the reasons for which 
are still not fully understood. Also, increased understanding 
of environmental and landscape factors related to inoculum 
build-up and further local or long-distance disease spread 
in a region requires further investigation and seems to be 
one of the most critical pieces of information, especially for 
models that predict risk in regions where inoculum cannot 
survive or was not found. To overcome problems related 
to inoculum uncertainties, it remains crucial to monitor the 
inoculum by the use of spore samplers or trap plots. Besides 
the usefulness for alerting researchers to the presence of 
inoculum, the extensive data on inoculum monitoring will 
surely help to validate current models. 

Regarding empirical infection-based models that 
take into account only the environmental effect on one 
component of an epidemic, a potential problem is that a 
high climatic favorability for infection may be estimated 
when inoculum is absent. However, further validation 
of such models will demonstrate the usefulness of the 

inoculum is not limiting. A true seasonal disease risk 
prediction should be based on weather and climate 

weather forecasts. Moreover, spatial variations and biased 

estimations of the actual leaf wetness duration, using 
sensors or empirical and physical models, may affect the 
accuracy of the prediction. Numerical long-term forecast 
(one to four weeks) for precipitation by mesoscale models 
are being tested to warn of regional disease outbreaks. 
Such rainfall models estimating monthly periods of 
weather favorability may indicate regions at higher 
risk of epidemic build-up, since there is information of 
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disease onset from regional surveys. Interpretations of 
rainfall model predictions should be made from a higher 
spatial scale, representing an estimated risk for regional 

although the model can be used at the farm level once 
there is information on rainfall for the site.

When selecting and evaluating models to input into a 
risk prediction or assessment framework, one needs to know 
model details, how they were constructed, variables needed 
and on which scale and in which locations they should 
be applied to minimize prediction error. Fundamentally, 
empirical models developed with data from one region 
should be tested and validated for another region, before 
implementing broad use. However, a model constructed 
from a dataset collected over a large geographic region for a 
longer period of time would provide more reliable prediction, 
and so could be used in risk assessment of an exotic and new 
disease to an area. This assessment can be made for single 
or combined components, such as entry, establishment, 
epidemic and loss potential (Yang, 2006). Model validation 
may be, in turn, more critical for seasonal risk prediction at 
lower spatial and time scales when information will be used 
for the farmer’s decision.

According to Isard  (2005), the use of 
aerobiological models to forecast aerial movement of 
an invasive species is in its infancy and will require the 
integration of biological knowledge, monitoring techniques 
and information technology. The efforts and advances in the 
development of a general aerobiological framework will 
be important to predict invasive species (including Asian 
soybean rust), enabling a rapid and comprehensive response to 
complex processes. Some of the limitations of such complex 

inaccurate estimations are made for single components. 
For example, wrong estimations for spore strength and 
dispersal from a source by aerobiological models may lead 
to over-predicting infections in a target region. However, an 
aerobiological framework, besides prediction application, is 
considered an important tool to identify knowledge gaps and 
point toward the future epidemiological research that might 
lead to more accurate predictions. Moreover, as observed, 

 spore data may become available in the coming 
years, Pan  (2006) showed how validation of aerobiological 
models against actual spore concentration would improve 
model formulations, serving as a useful guide for early warning 
and detection of ASR, especially for regions where primary 
inoculum comes from distant regions. 

In spite of the uncertainties, incredible advances 
in science and the use of cutting-edge technologies for 
plant disease prediction have been made in recent years to 
develop, enhance and apply models to predict and assess 
the risk of ASR. Advances such as aerobiological models 
and use of climate forecasts would not have been possible 
without the integration of a multi-disciplinary team of 
researchers, including plant pathologists, meteorologists, 
climatologists and computer specialists. Efforts for 

monitoring disease patterns (over years), spore trapping 
and further biological research will continue to provide 
valuable information for enhancing models that are 
currently being applied in the leading  soybean-producing 
countries – the United States and Brazil. Although the 
situation in the two countries is contrasting in terms of 
the impact of this disease on production, the previous 
and ongoing collaborative efforts among researchers 
and modelers from both countries have been of extreme 
value. Brazil provides a unique situation to observe 
disease patterns every year under very distinct conditions, 
and it can learn from North American experience in risk 
assessment and prediction to improve current models. Such 
interactions and information will help to keep improving 
our understanding of the factors affecting epidemics from 

information about ASR risks to the various receivers.
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