Denise Maria V. Martinez
denisevmartinez @yahoo.com.br
Departamento de Matematica

Fundagéo Universidade Federal do Rio Grande
96201-900 Rio Grande, RS, Brazil

Edith Beatriz C. Schettini
bcamano @iph.ufrgs.br

Instituto de Pesquisas Hidraulicas
Universidade Federal do Rio Grande do Sul
Cx. Postal 15029

91501-970 Porto Alegre, RS, Brazil

Jorge Hugo Silvestrini

Senior Member, ABCM

jorgehs @pucrs.br

Departamento de Eng. Mecanica e Mecatronica
Pontificia Univ. Catdlica do Rio Grande do Sul

Denise Maria V. Martinez et al

The influence of Stable Stratification
on the Transition to Turbulence in a
Temporal Mixing Layer

The transition to turbulence in a stably stratifidolv is a problem of considerable interest
in fluid dynamics with applications in both geopilgs sciences and engineering. This
transition is controlled by competition between Hegtical shear of the base flow and the
buoyancy forces due to the density stratificatiofhe present work investigates
numerically the effect of stable stratification tre development of a Kelvin-Helmholtz
(KH) instability and the formation of streamwisertices, which are developed after the
saturation of the primary billows of KH. The Dire®umerical Simulation (DNS)
technique was used to solve the complete Navid&eStequations, in the Boussinesq
approximation. Numerical tests were done with diffié¢ Richardson numbers and forced
initial conditions for velocity fluctuations. Theesults showed that high stratification
inhibits the pairing process, reduces the buoyafiay, weakens the vertical motions,
decreases the thickness of the mixing layer andctsffthe formation of streamwise
vortices. The three-dimensional results demondrdteat the streamwise vortices are
clearly formed in non-stratified cases. In the #ffed cases, on the other hand, the
streamwise vortices are weakened, due to the swesadensity gradient, which decrease
the levels of vorticity in the billows of KH, whilerease in the braid zone.

Keywords: Stable stratification, direct numerical simulatiomixing layer, buoyancy force,
transition to turbulence

906190-900 Porto Alegre, RS, Brazil

Introduction

From a fundamental point of view, the transitioritdoulence in
a stably stratified flow is interesting becauselédys a key role in
better understanding the mixing and dynamical E®es in
environmental or industrial problems.

The dynamics of the stably stratified mixing laygicontrolled
by a competition between the vertical shear ofttage flow and the
buoyancy forces due to the density stratificatidhe buoyancy
effects act reducing the growth rate of perturmatiad delaying the
transition to turbulence, while the shear suppkieetic energy to
the flow. The evolution of such flows is commontydied in terms
of a model problem: the mixing layer. The stabkatified mixing
layer develops at the interface of two paralleeatns of fluid
moving horizontally at different velocities and hay different
densities, the upper stream being lighter thariadver one.

Miles (1961) and Howard (1961), based on a linaabikty
analysis, showed that for the Kelvin-Helmholtz (Kidstability to
occur in stratified mixing layer from an infinitemall disturbance,
the Richardson number must be less than 0.25 soanewtithin the
flow. This first instability that occurs in the niirg layer is due to
the inflectional nature of the velocity profile (thialke, 1964): the
vortex sheet initially created is linearly unstaafe rolls up to form
the primary billows of KH.

The second stage of the transition in the mixiygidaccurs due
to the formation of streamwise vortices (known'dks" vortices),
which develop after the primary billows of KH. Thmnsition to
turbulence in the non-stratified mixing layer haib widely studied
in the last two decades (Lasheras and Choi, 19&®eiR and
Moser, 1992; Comte et al., 1992; Moser and Rod®&83; Comte et
al., 1998).

Pierrehumbert and Widnall (1982) found that a gBd@rray of
Stuart vortices, with a similar configuration of Kbrtices, is
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unstable to different three-dimensional (3D) disturces. They
demonstrated that this unstable mode is charaeteliy spanwise
oscillation in phase with primary billows of KH. iEhinstability,
called translative, is well known in the literatues being the
responsible for the beginning of the three-dimemeslity in the non-
stratified mixing layer and, consequently, for tf@mation of
streamwise vortices. The most unstable spanwiseslaagth 4,)
for a translative instability was found to be 2/Btle separation
between KH vortices (streamwise wavelengt.

Metcalfe et al. (1987) studied through Direct Nuicedr
Simulation (DNS) the evolution of a non-stratifieixing layer
(Ri=0.0) and investigated a secondary instabilibduced by
different initial velocity conditions. They showedhat the
streamwise vortices are characteristic structur@Damixing layers
and its generation depends strongly on the irgtaldition.

In stratified mixing layers, the 3D process is mooenplex than
in non-stratified mixing layers. This fact is due the greater
number of secondary instabilities that propagat¢him flow. The
instabilities that develop in a 3D stably stratifimixing layer may
be divided in two groups: one that grows within toetex core and
the other that develops in the region between thesc(the braids).
Within the cores two types of instabilities are rfidu The one
discovered by Pierrehumbert and Widnall (1982) ttaés not
depend upon the buoyancy effects and the grawii@ticonvective
instability that is driven by buoyancy effects. Thther that
develops in the region between the cores was pfegtly Klaassen
and Peltier (1991) and verified by Schowalter et (4094) in
laboratory experiments. The instability that growwsthe braids is
called secondary shear instability (Caulfield aettier, 1994).

The gravitational convective instability and tleesndary shear
instability that are restricted to a stratified mix layer are caused
by the streamwise density gradient imposed by tiwyéncy force.
The gravitational convective instability makes abd¢ the sub
layers of density generated during the roll-up leé KH billows.
The secondary shear instability induced by theasti@ise density
gradient develops in the braid region between twelvid-
Helmholtz vortices. The presence of secondary sinssability in a
stratified mixing layer is due to baroclinic voiticgeneration given
by a source terrﬁa—g/poap/ax), which concentrates the vorticity in
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the baroclinic layer (Staquet, 1995). Thus, thesidgngradient
source term contributes as an extra mechanisnihéogéneration or
destruction of local vorticity by means of the bdimic torque
(Caulfield and Peltier, 2000; Cortesi et al., 1998)

The Richardson number effects on the secondary rshea

instability has been studied in some detail by Kéem and Peltier
(1991) by performing stability analyses in the &n@ange. The
strongest growth-rate for this kind of instabiligas found to occur

betweenRi = 0.08 andRi = 0.12, and to approach zero growth rate

at Ri = 0.22, which is close to the critical inviscidlwe, Ri = 0.25,

for the primary KH instability (Miles, 1961). Thefpund that the
most unstable spanwise wavelength is smaller tharstreamwise
one, forRi = 0.0 to 0.04, whereas for higher stratificatidre t
wavelength does not vary significantly.

Schowalter et al. (1994) investigated experimeyttle three-
dimensionalization of a free shear layer for diéfar Richardson
numbers, with forced condition. They noticed that streamwise
vortices were weakened or reinforced by stratiftcgtdepending on
their location. On the top the KH billows, when taidy stratified
regions were formed (heavy fluid abo{gn/dz<0)), strong

streamwise vorticity was measured, while in thédsrghe ribs were
weak.

The present work investigates the nature of tremsitto
turbulence in a stably stratified temporal miximyér through the
direct numerical simulation (DNS). The main objeetof this work
is to analyze the influence of a stable stratifsat on the

Greek Symbols

p (X, y z,t)=Density or active scalar.

o = Reference density.

Ap = Density difference across the shear layer.
4, = Initial vorticity thickness.

4, /U = Advective time scale.

¢ = Density thickness.

a, =The most amplified wavenumber.

Aa =The most unstable wavelength.

A = Fundamental wavelength.

A Ay = Streamwise wavelength, spanwise wavelength.
v = Kinematic viscosity.

Formulation and Numerical Method

Governing Equations

The equations that govern the fluid motion are Mevier-
Stokes equations with the Boussinesq approximatioa, Cartesian

frame of referencel =(0;X,y,z). The momentum equation for
the velocity fieldu , with componentgu,v,w), is given by:

ou

development of the KH instability and in the foriat of E:‘DP‘wXU‘Rlplz +%DZU , (1)
streamwise vortices. In this study it is shown tthet stratification
affects the formation of streamwise vortices, evemen forced 5 ] N ]
conditions are used. The DNS technique is usedoteesthe WhereP =p+(pu®/2)is the modified pressure field.
complete  Navier-Stokes  equations, in the Boussinesq
approximation. Direct numerical simulations are eddemt The continuity equation is:
instruments for the investigation of the dynamids o stably
stratified mixing layer, since they solve entirely the spatial and O.u=0, (2)
temporal scales of the flow.
In the following sections first the governing edqaas and the and the transport equation is:
numerical method are presented. Then, code valiadist cases are
presented comparing the DNS results with resutimfthe linear dp +(u)p = sz. 3)

stability theory. The following section descrilike results from the 5 " RePr

two-dimensional and three-dimensional simulatiofus, different
Richardson number{ = 0; 0.1; 0.2), showing the evolution of the  The variables used in the above equations are moerdional.
mixing layer, with the formation of baroclinic lay@and of the There are two non-dimensional relevant paramethes:Reynolds

streamwise vortices, respectively. Finally the dosions and final
comments are presented

Nomenclature

Ri = Richardson number.
Re = Reynolds number.
R = Ratio of the initial vorticity thickness toetldensity

thickness .
U = Reference velocity.
P = Pressure.
t=Time.

u = Velocity field.

X, Yy, z = Streamwise, spanwise and vertical doate
directions.

u, v, w = Streamwise, spanwise and vertical vgjoci
components.

Pr = Prandtl number.

L, Ly, L, = Streamwise, spanwise and vertical domain lengt

g = Acceleration due to gravity.
n,, Ny, N, = Number of points in the streamwise, spanwigi an
vertical directions.
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and the Richardson numbers. The Reynolds numbseedban the
half velocity difference across the shear layéy &nd on the initial

vorticity thickness @), is defined by:

Us,

Re=—-, 4)
v

where

U
5i = . (5)
(du/ dz)may

The Richardson number is defined by:

Ri= IR0 A”Z‘)‘ ©)
pol

In these equations, the scales of length, vel@ity density are such
that 5, =1, U =1 anddp = 1R. In this mannerRe= 1~ andRi =g

1.
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Initial and Boundary Conditions

The initial conditions are defined in terms of thelocity and
density fields as in Corcos and Sherman (1976) Ratdaik et al.
(1976). At the initial timet(= 0) the density field ig(x, y, z ,t =0)=
o +p (2). In the present case, no density fluctuation ieguoposed
uponp (z) att = 0. The initial profiles of velocity and densigtt =

0 are:

u(zt=0=U erf[‘/zzJ (7)
_o= L TRz

o(zt=0)= Rerf[ 3 ] (8)

With the objective to promote the development o tkH
instability and to unchain the formation of the Kiflows, a field
of perturbations was added to the basic velocitfiler This field is
composed by two waves corresponding to the mostifiedpwave
number @) and its firth sub-harmonia{/2), and a sinusoidal wave
in spanwise direction. The associated most unstelaleelength
given by the linear stability theory is approximgat®, = 75, where

the most amplified wave numbex, =217\, being 0.8892'1,

Michalke, (1964). These perturbations promote, eespely, the
development of the KH instability, the pairing pess and the
formation of streamwise vortices.

The boundary conditions for the temporal mixingelagre:
-periodic: used in the streamwis® @nd spanwisey directions;
and
-free-slip: used in the vertical direction).(This condition imposes
the following restrictions: du/dz=0v/dz=0 and w = 0 for

z=%L,/2.

Numerical Method

Equations (1) to (3) are solved numerically, in themain
shown in Fig. 1, using a sixth-order compact finddference
scheme (Lele, 1992) to evaluate spatial derivatives

18 Fufdz=3viFz=0w=10

peviodia

periods

Figure 1. Schematic view of the domain.
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The compact schemes are implicit ones that relatevalue of the
derivative in a point to the value of the derivatin the neighboring
points.

For the spatial discretization considering a umifenesh, where
the independent variable for each nadeé=(i —1)AE, 1<i< N

and &=xyor z the function values for the nodes
aref; = f(¢&;) and the first derivativef'; = f' (&) is given by:
afi_g*fi+tafiyg=
- - 9
adiz1~fi-1  fivo=fi-a ©)
20E 4NE
The second derivative is given by:
afi_g+f +afiyg =
fiog=26+f_1, fiap=2fi+fip (10)

AE2 4782
The sixth order is obtained with the set of paramsefLele, 1992):

1 14 1

a==, a=—, == for Eq. (9),

3 9 9 a.(9)

a:éy a=1_2, =i for Eqg. (10).
11 11 11

Equations (9) and (10) are valid for the threeigpdirections
(X, ¥,2) in all the mesh points.

The time integration is performed with a third-arttev-storage
Runge-Kutta method (Williamson, 1980). The inteigrabf Eq. (1)
at timest” andt™? is performed through three fractional time steps

p=0, 1, 2, whereu!® =u(M and u(® = y("*)

(P _(P)

At , (11)
apF(p)+BpF(p+l)_Dn(p+1)
oa(P*D o, 12)
where
. 1 o
F =-oxu-Ripi,+—0%U, 13
Pz Re (13)
Y(n+1)
nev =1 Vrpgt, (14)

and ay, B, , are coefficients to each fractional stepgiven by
Williamson (1980):

8
=—, =0;
(2% 15 Bo
5 _-17
ERETY b=
3 _ -5
*= Fo=13

The Eqg. (11) can be split into two steps,
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“_u(P)

u -u -

— =a,F(P+p F (P, (15)
(p+1) _

u u

—t:_D nee (16)

In this conventional fractional method, stppl is obtained by
solving the Poisson equation. Thus, the incompdigicondition
is ensured as follows,

00w
ompPy ==—=. 17
M it (7)
More details about the numerical code can be fanridardeau
et al. (2002) and Silvestrini et al. (2002).
Equation (3) is solved in the same way as Eq. yIjhbking,

,O( p+l) _p( P)

= (p) (p+l1)
T =a,G'" +B,G ,

(18)

where

1
=—(ul)p+——0%p.
(ul)p Repr P

G

Code Verification - Amplification Rate

In order to validate the numerical code the evoluf a small
disturbance was considered in a 2D domain. Theltsesuere
compared with the linear stability theory, where thisturbance is
described by the Taylor-Goldstein equation (Hak@¥?2).

The computational domain used is a square of sider § ,

corresponding to the most amplified wave nurdpes 0.889 5,'1

given by the linear stability theory. The Reynatdsnber is 300, the
Prandtl number is 1 and the Richardson numberdeste 0.0, 0.1
and 0.2, respectively. The initial amplitude of therturbation was
10° U. As the size domain isd only the development of a single

KH billow happened, excluding the possibility ofripey process.
Tests with different computational grids af xn, points were

done (see Tab.l). In these tests the vertical ddfu term,
corresponding to the streamwise velocity was caacelThis
diffusion increases the width of the shear layerrduthe simulation
and implies a variation in time of the base flomgucing variation
of the amplification rate (Medeiros et al., 2002).

As expected, the grid size has a great influencer dlie
amplification rate. In the test with a computatiogigd of N2 = 64x
129 points, it was noticed that the streamwiselu¢isn interferes in
the evolution of the wave amplitude (stratified easwhen
comparing with gricN1 (see Tab.1). Thus, for the stratified cagk (
= 0.1) the gridN2 showed a decrease of the amplification rate d
to the increase in the vertical resolution, withemor of 7% in
relation to the reference value, whereas Rir= 0.2 there is an
increase in the amplification rate. Probably thisws because the
streamwise density gradient is not being well stlve

Figure 2 shows the time evolution of the amplitfoledifferent
Richardson numbers (0; 0.1; 0.2) obtained fromsihmilation with
the grid N3 = 128 x 129 points. Clearly, there is a region of
exponential amplification, which corresponds to thegime
governed by the linear theory.

In this test, the errors found are of - 0.32%Ror~ 0, 3.5% for
Ri = 0.1 and 10.2% foRi = 0.2. The comparison of the simulation
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N3 with the numerical results of Hazel (1972), shownTab.1,
gives good agreement for the temporal growth rdies stably
stratified mixing layer.

Table 1. Comparison of amplification rate with the reference value or

different grids.
Amplification rate

Ri N1 N2 N3 Ref. Value

64x 65 64x 129 |128x 129 [Hazel (1972)
0 0.18732 0.18632 0.1861 0.1861
0.1] 0.19492 0.17057 0.1650 0.1594
0.2] 0.13597 0.16532 0.1329 0.1259

10°

amplitude

— Ri=0
10°® ===+ Ri=0.1
--- Ri=0.2
10™ : :
0 10 20 30 40

time

Figura 2. Amplitude evolution for simulation N3.

Two-Dimensional Visualizations — the Formation of he
Baroclinic Layer

In the following section, results from 2D simulat® are
presented. Here the computational domain
(Ly,L2) = (285 ,285) , with a computational grid of 258 257

points, Re = 300 andRi = 0; 0.1; 0.2. The amplitude of the
perturbation superimposed upon the basic veloaqibtfilp, for the
fundamental and the subharmonic mode, isU1%nd 0.1%U,
respectively.

Firstly, the evolution of a non-stratified mixingayler is
analyzed. The initial vorticity, which is modulatdy a small
perturbation, progressively accumulates in the <aé the KH
billows (Fig. 3). These cores are unstable to phesiion of
wavenumber equal taxy/2. The growth of this subharmonic
perturbation leads to the pairing of the two vasi¢Fig. 3c and Fig.
3d).

Figure 3. Spanwise vorticity fields, for a non-stra
times: (a) 9.52; (b) 19.03; (c) 28.55 and (d) 38.07

tified case, Ri = 0, at

April-June 2006, Vol. XXVIII, No. 2 / 245



Figure 3. (Continued).

In a mixing layer, the primary KH vortices are ntally
isolated from each other, but they are rather occtedleby a thin
braid of spanwise vorticity. In a stably stratifisdxing layer, these
thin vorticity layers are strained in between the Kortices and
intensified by the buoyancy effects (Fig. 4b and. Fb). As the
development of the KH instability on a stably sfrad mixing layer
proceeds, a streamwise density gradient occuretinden the KH
vortices, at the location where the braids formisTétreamwise
density gradient (corresponding to the spanwisepoorant of the
baroclinic torque, in the Boussinesq approximatif@@ds the braid
with vorticity and forms the baroclinic layer. THayer is associated
with a strong density gradient and vorticity fielhe baroclinic
layer, as it is referred to in Staquet (1995), duetsexist in an non-
stratified flow. It forms under the action of buogy effects and
strains between the KH vortices. The componenthefharoclinic
torque along the spanwise direction is showed bétotlve vorticity
equation,

dw
Y4u

ot

aa)y

0X

0
+W—wy
0z

2 2
- Ria_p+i[aﬂ+a “’y]. (19)

0X Rel gx? 972

The density gradient source term contribute as atrae
mechanism for the generation or destruction of llacaticity by
means of the baroclinic torque. This property \sel different
behavior of the stratified mixing layer as oppodedits non-
stratified counterpart. It follows that vorticityae locally increase
beyond its maximum value for the stratified case.

Two secondary instabilities are propagated in ttratied
mixing layer caused by the streamwise density gradithe
gravitational convective instability and the secanyd shear
instability. The first is found within unstable fegs of the KH core,
which consist of heavy and light fluid wrapped inspiral roll.
Wherever heavy fluid is found on top of light fluithe gravitational
convective instability amplifies due to buoyancyckes.

During the roll-up of KH billows, heavy and lightufd are
brought together from the outer-side of the miXenger towards the
center of mixing layer, yielding a strong densitadjent there. In
this way, the secondary shear instability inducedhe streamwise
density gradient concentrates the vorticity in baroclinic layer.
The baroclinic layer is observed to occur in oundations (Fig. 4d
and Fig. 5d).

Figure 4 and 5 show the development of the Kelvairiholtz

instability, in the stratified mixing layer, for éhsame characteristic

times.

These pictures show that when the Richardson nunber

increased the pairing process is inhibited and kted vorticity

exceeds the core's one. The stable stratificatiwough streamwise
variations of the density field, weakens the vattimotions and
reduces the buoyancy flux, as it can be observ&iging.
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In the non-stratified cas®i = 0, it is observed that the vorticity
remaining in the core is substantially greater ttreat in the braids.
On the contrary, when the stratification is higl¢eRi = 0.2) the
vorticity is increased in the braids and the banicliayer is visible,
as can be seen in Fig. 5d.

(©

Figure 4. Spanwise vorticity fields, stratified cas
9.52; (b) 19.03; (c) 28.55 and (d) 38.07.

(d)

e, Ri=0.1,in times: (a)

(€Y

(©

(d)

Figure 5. Spanwise vorticity fields, stratified cas e, Ri = 0.2, in times: (a)

9.52; (b) 19.03; (c) 28.55 and (d) 38.07.
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0.05 0.1 0.15 0.2

buoyancy flux

(€Y

-0.05 0

0.05 0.1 0.15 0.2

buoyancy flux

(b)

-0.05

N0 1) b

-2

-3

0.05 0.1 0.15 0.2

buoyancy flux
(©)

(@ w), at different times, Re = 300. (a) Ri =0; (b)

-0.05 0

Figure 6. Buoyancy flux,
Ri=0.1; (c) Ri=0.2.

The spreading of the buoyancy flygw’) (Fig. 6) is due to the
buoyancy effects. In the non-stratified case, thisrao buoyancy
force and the density is a perfect passive schigr 6a). At time t =
28.55 the vortices are dislocated in relation te #ftenter of the
domain (Fig. 6b), producing negative values of(jtie’ ). Figure 6b
and Fig. 6¢ show that there is a strong decreadedjuoyancy flux
caused by increasing the Richardson number. Thistidrreduction

of the buoyancy flux as the Richardson number as®e causes the 0

reduction of fluid entrainment into KH vortices addlays pairing
process of the large structures.

Therefore, the stable stratification has a stahiizffect on the
growth of the primary KH instability (Fig. 4 andd=i5), resulting in

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyri
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a decrease of the overall fluid entrainment, a cédo the mixing
process and a decrease of the thickness of thegniayer. Figure
7 shows the time evolution of the thickness of itfiging layer for
different Richardson numbers.

To quantify the effect that a stable stratificatimuoyancy
forces) has on the development of KH instabilibye time evolution
of the kinetic energy was calculeted. The kinetiergy per unit
area is given by

LyL
K= T (e () 2+ (w)?)xcz, (20)
L,L, 00
where the ensemble average of the streamwise tyelsci
1k
(u) =— Judx. (21)
Ly 0

Figure 8 shows the evolution of the kinetic eneigydifferent
Richardson numbers. The peak of the maximum kirgtiergy is
attained for the first pairing (non-stratified asidatified cases), and
then it oscillates and increases near the secomitigpéor the non-
stratified case. It seems clear from Fig. 8 that thaximum KH
vorticity amplitude is limited by the presence ofsaong stable
stratification Ri = 0.1) in the flow and that the time at which the
maximum energy is reached is considerably delayéeénwthe
stratification is increased. These characterisiies consistent with
the expectation that the wave needs to execute agdinst the
gravitational potential in order to grow.

Three-Dimensional Visualizations - The Formation of

Streamwise Vortices

The computational domain is a parallelepipedic lafxside 14
q along the longitudinalxj and vertical ) directions and of side
10.59 along the spanwisey)( direction. All the three-dimensional
tests were carried out with the resolution (128,12®) along thex;
y, 2 directions, respectively.

The spanwise length of the domalig, is 2/3 ofL,. This choice
was made to force the most amplified mode in thengjse
direction predicted by Pierrehumbert and WidnalDg82). The
parameters used in the tests are the Reynolds muRée 200, the
Richardson numbeRi = 0 (non-stratified case), 0.1 and 0.2 (strong
stratification) and Prandtl number, Pr = 1.

7 .
=== Ri=0
===+ Ri=0.1
— Ri=0.2

6 ‘; -‘

i 1
1~ ’ L}
[T ! ||
o 24 A -~
& 5} ; Va0
=] . vht "
= i G v oo
= ' n RV
= ' b
E '
o i
o .
0 '
A i
o '
c '
x '
(5] '
é '

20 30 40 50
time
Figure 7. The effect of the bulk Richardson number on the evolution of the

thickness of the mixing layer, Re = 300.
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=== Ri=0.1 Kmax=0.75 !
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:
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Figure 8. The effect of the bulk Richardson number on the evolution of

the wave kinetic energy, Re = 300.

Three-dimensional visualizations are presented3fatifferent
Richardson numbers for the same instant of timih isosurfaces of

vorticity modulug w|= 025 , wherew, =2U /6, . The amplitude

of the perturbation (forced) superimposed uponitasic velocity
profile, for the fundamental, the subharmonic gpansvise mode is
1%U, 0.194J and 0.1%J, respectively.

The initial condition is the same for all the nuioal tests. At
time t = 9.52 only the non-stratified mixing layéRi = 0) was
unstable, showing the formation of two longitudinvehvelength,
characterizing the Kelvin-Helmholtz instability ¢Fi9).

At time t = 19.02, for the non-stratified ca$d,= 0, there are
two primary billows KH (spanwise vortices), due tbe KH
instability and fundamental mode, whereas for thatiied case o
roll-up occurs Ri = 0.1) and 2D instability is formed in the vortici
layer Ri = 0.2). This occurs because the stratificatiorec$f the
vertical movements, diminishing the intensity o tscillations and
reducing the kinetic energy, thus delaying the fation of the KH
structures, as it can be verified in the 2D simalatabove and in
Martinez et al. (2004).

Figure 10 shows the results obtainedRor 0; 0.1; 0.2 at times
57.14 and 76.19. In the non-stratified case, attim= 76.19,
streamwise vortices are clearly formed. The twaspaf counter-
rotating streamwise vortices appear between thestidi7.62 and
57.14, one pair for each fundamental wavelengtte Jiheamwise
vortices, or ribs, show a high degree of coherearté are extend
with nearly the same vortical intensity over thempiete braid
region.

In the stratified cases, on the other hand, theorstary
instability dominates the three-dimensionalizatafnthe layer and
the streamwise vortices are now seen to be lesslajmd over the
complete domain. This is due to streamwise dergiggient that
decreases the levels of vorticity in the KH billgvhile increases it
in the braid zone. This effect is easier to sedighly stratified
flows, Ri= 0.2, than in "mildly" stratified flowRi = 0.1.

Figure 10 shows the translative instability acting the
resultant vortex of the pairing process, whereafkfg 0.2 the flow
is still two-dimensional. The three-dimensionaliaatof the mixing
layer is dominated by the initial forcing conditioof the sub
harmonic and spanwise modes. As sub harmonic maaesdefore
the spanwise mode, the formation of the streamwimtices is
delayed. The stratification also delays the pairprgcess and
development of the translative instability. Thistfaan be observed
when comparing the non-stratified case with theti§ied one in
Fig. 9 and 10.
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Ri=0

Ri=0.1

Ri=0.2

Figure 9. Isosurfaces of vorticity modulus att=9 .52 and 19.02, Re = 200,

|w| =05.

Figure 11 shows the isosurface of vorticity moduaistime
104.77 and 114.29, for the two stratified casesiclaned. In the test
with Ri = 0.1 a deformation in the structure of the stww&m
vortices is observed. This deformation, probablyusea by
baroclinic effects, can be originated by the tratigé instability
occurring in the region between the billows andinadts core, as in
the non-stratified case (Caulfield and Peltier, 00

For Ri = 0.2 the stabilizing effect of the stratificatibecomes
strongly visible in the reduction of the amplitudé the 3D
disturbances. It is an indication of the qualitativariation of the
dynamics of the flow, where buoyancy forces inhthi& growth of
the turbulent kinetic energy, mainly the verticpked. This effect
can be observed in Fig. 12, which indicates thaterwhthe
Richardson number increases the buoyancy flux deese

To be able to have the best possible picture of vibrtices
spatial structure the Q criterion was used (Dulsiefl Delcayre,
2000; Jeong and Hussain, 1995). It is well knowet tlegions of
high vorticity often correspond to coherent struetlpcations, or
even sheared zones without any structures. The i@rion is
defined by:

1oy duj
2 aXJ an

1 1
Q- =l -1s) = 507, @2

- 2. . 2 .
where i, j=1,2,3 an(ﬂQ" is the rotation rate anHJ’S" the strain
rate.
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Ri=0.1

Ri=0.2

Figure 10. Isosurfaces of vorticity modulus at t = 57.14 and 76.16, Re =

200, |w| =05 .

Ri=0.1

Ri=0.2

Figure 11. Isosurfaces of vorticity modulus at t =
200, |w| =0.7.
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104.77 and 114.29, Re =

_B.
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buoyancy flux
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Figure 12. Buoyancy flux (p'w'), at Ri = 0; 0.1; 0.2, Re = 200, at time. (a)
38.09; (b) 76.19.

Vorticity modulus visualization emphasizes interiagel scale
vortices, though it may obscure the large strustuféae positive Q
values occur in flow regions where local rotatisnpredominant,
especially in regions associated with the vortexeso

In the Q criterion, a balance between the rotataia and strain
rate was done. This implies that positive Q isame$ isolate areas
where the strength of rotation overcomes the sttaifig. 13, it can
be observed a comparison between isosurfaces t€itsomodulus
and Q-isosurfaces for the non-stratified caseina t = 76.19, and
for the stratified cases at times t = 104.R7£ 0.1) and t = 114.29
(Ri=0.2).

Figure 14 shows spanwise cross-sectional plothefvorticity
modulus for a domain of two fundamental streamwis@elengths
(A), for one characteristic time and with forced ialittonditions.
The longitudinal variation of the domain varie®is x <149, . At t
= 76.19, streamwise vortices are clearly formeé inon-stratified
mixing layer while for the stratified cases onlym® concentration
of vorticity may be identified, mainly foRi = 0.1 at the center of
the mixing layer.
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Ri=0.2

|

'
:

1 ]}

(e) ®

Figure 13. (a) Isosurfaces of |w |: 2.5 ,Ri=0; (b) Q —isosurfaces Q =1, Ri

= 0; (c) Isosurfaces of |w| = 0.7, Ri = 0.1; (d) Q — isosurfaces Q = 0.2, Ri =

0.1; (e) Isosurfaces of |w| = 0.7, Ri = 0.2; (f) Q — isosurfaces Q = 0.08, Ri =
0.2.

d
At a later time, t=104.77, Fig. 15 shows intenseashwise @

vortices for the two stratified cases consideredil&\their vorticity
is lower than the non-stratified case, the formmatimechanism
seems to be related to the secondary shear ingtabil

Comparing the spanwise cross-sectional plots inlEafor an
non-stratified flow with those from Fig.14b and Higc, we can
remark how the entrainment process significantiffuences the
stratification: the vertical extent of the activegion, roughly
corresponding to that occupied by entrained flbak narrowed.
This is also apparent from the development of the af the mixing
layer for differentRi, where entrainment is progressively suppressed
with increasing stratification. Therefore, in sifiatl cases the
longitudinal structures are confined in a shortertical length that
for an non-stratified case, and they are not dg@eslmver the whole
vertical domain.

S
o

—~
@
—

Figure 14. Spanwise cross-sectional plots of vortic ity modulus at x equal
() 2;°(b) 4; (c) 6; (d) 8 and (e) 10 5, ,attime t=76.19.
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Ri=0.1

Ri=0.2

—~
O
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(e

Figure 15. Spanwise cross-sectional plots of vortic ity modulus at x equal
(a) 2;°(b) 4; (c) 6; (d )8 and (e) 10 5, ,attime t =104.77.

Conclusions

The purpose of the present study was to investigateerically
the effect of the stable stratification (buoyanaycés) on the
development of the KH instability and the formatioinstreamwise
vortices, which are developed after the saturatibrihe primary
billows of KH. The 2D simulations showed that higltratification
increasingly inhibits the pairing process, reduttes exchange of

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyri
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energy between the KH vortices and the flow, lintits maximum
KH wave amplitude and reduces the buoyancy fluxe BD
simulations, with forced conditions, showed thateamwise
vortices are clearly formed in a non-stratified img layer. The
streamwise vortices, or ribs, showed a high degfe®herence and
are spread with nearly the same vortical intermityr the complete
braid region. On the other hand, in the stratifiades the secondary
shear instability dominates the three-dimensioattin of the layer.
This is due to the streamwise density gradient kvliecreases the
levels of vorticity in the KH billow while increasein the braid
zone. This effect is easier to be seen in highigtified flows,Ri =
0.2, than in a "middly" stratified flowRi= 0.1.
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