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The influence of Stable Stratification 
on the Transition to Turbulence in a 
Temporal Mixing Layer 
The transition to turbulence in a stably stratified flow is a problem of considerable interest 
in fluid dynamics with applications in both geophysical sciences and engineering. This 
transition is controlled by competition between the vertical shear of the base flow and the 
buoyancy forces due to the density stratification. The present work investigates 
numerically the effect of stable stratification on the development of a Kelvin-Helmholtz 
(KH) instability and the formation of streamwise vortices, which are developed after the 
saturation of the primary billows of KH. The Direct Numerical Simulation (DNS) 
technique was used to solve the complete Navier-Stokes equations, in the Boussinesq 
approximation. Numerical tests were done with different Richardson numbers and forced 
initial conditions for velocity fluctuations. The results showed that high stratification 
inhibits the pairing process, reduces the buoyancy flux, weakens the vertical motions, 
decreases the thickness of the mixing layer and affects the formation of streamwise 
vortices. The three-dimensional results demonstrated that the streamwise vortices are 
clearly formed in non-stratified cases. In the stratified cases, on the other hand, the 
streamwise vortices are weakened, due to the streamwise density gradient, which decrease 
the levels of vorticity in the billows of KH, while increase in the braid zone. 
Keywords: Stable stratification, direct numerical simulation, mixing layer, buoyancy force, 
transition to turbulence 
 
 
 
 
 

Introduction 

From a fundamental point of view, the transition to turbulence in 
a stably stratified flow is interesting because it plays a key role in 
better understanding the mixing and dynamical processes in 
environmental or industrial problems.  

The dynamics of the stably stratified mixing layer is controlled 
by a competition between the vertical shear of the base flow and the 
buoyancy forces due to the density stratification. The buoyancy 
effects act reducing the growth rate of perturbation and delaying the 
transition to turbulence, while the shear supplies kinetic energy to 
the flow. The evolution of such flows is commonly studied in terms 
of a model problem: the mixing layer. The stably stratified mixing 
layer develops at the interface of two parallel streams of fluid 
moving horizontally at different velocities and having different 
densities, the upper stream being lighter than the lower one.  

Miles (1961) and Howard (1961), based on a linear stability 
analysis, showed that for the Kelvin-Helmholtz (KH) instability to 
occur in stratified mixing layer from an infinitely small disturbance, 
the Richardson number must be less than 0.25 somewhere within the 
flow. This first instability that occurs in the mixing layer is due to 
the inflectional nature of the velocity profile (Michalke, 1964): the 
vortex sheet initially created is linearly unstable and rolls up to form 
the primary billows of KH. 

The second stage of the transition in the mixing layer occurs due 
to the formation of streamwise vortices (known as ''ribs'' vortices), 
which develop after the primary billows of KH. The transition to 
turbulence in the non-stratified mixing layer has been widely studied 
in the last two decades (Lasheras and Choi, 1988; Rogers and 
Moser, 1992; Comte et al., 1992; Moser and Rogers, 1993; Comte et 
al., 1998).1 

Pierrehumbert and Widnall (1982) found that a periodic array of 
Stuart vortices, with a similar configuration of KH vortices, is 

                                                           
Presented at ETT 2004 – 4th Spring School on Transition and Turbulence 
September 27th - October 1st, 2004, Porto Alegre, RS, Brazil. 
Paper accepted: May, 2005. Technical Editor: Aristeu da Silveira Neto. 

 

unstable to different three-dimensional (3D) disturbances. They 
demonstrated that this unstable mode is characterized by spanwise 
oscillation in phase with primary billows of KH. This instability, 
called translative, is well known in the literature as being the 
responsible for the beginning of the three-dimensionality in the non-
stratified mixing layer and, consequently, for the formation of 
streamwise vortices. The most unstable spanwise wavelength (λy) 
for a translative instability was found to be 2/3 of the separation 
between KH vortices (streamwise wavelength, λx).  

Metcalfe et al. (1987) studied through Direct Numerical 
Simulation (DNS) the evolution of a non-stratified mixing layer 
(Ri=0.0) and investigated a secondary instability induced by 
different initial velocity conditions. They showed that the 
streamwise vortices are characteristic structures of 3D mixing layers 
and its generation depends strongly on the initial condition.  

In stratified mixing layers, the 3D process is more complex than 
in non-stratified mixing layers. This fact is due to the greater 
number of secondary instabilities that propagate in the flow. The 
instabilities that develop in a 3D stably stratified mixing layer may 
be divided in two groups: one that grows within the vortex core and 
the other that develops in the region between the cores (the braids). 
Within the cores two types of instabilities are found. The one 
discovered by Pierrehumbert and Widnall (1982) that does not 
depend upon the buoyancy effects and the gravitational convective 
instability that is driven by buoyancy effects. The other that 
develops in the region between the cores was predicted by Klaassen 
and Peltier (1991) and verified by Schowalter et al. (1994) in 
laboratory experiments. The instability that grows in the braids is 
called secondary shear instability (Caulfield and Peltier, 1994). 

 The gravitational convective instability and the secondary shear 
instability that are restricted to a stratified mixing layer are caused 
by the streamwise density gradient imposed by the buoyancy force. 
The gravitational convective instability makes unstable the sub 
layers of density generated during the roll-up of the KH billows. 
The secondary shear instability induced by the streamwise density 
gradient develops in the braid region between two Kelvin-
Helmholtz vortices. The presence of secondary shear instability in a 
stratified mixing layer is due to baroclinic vorticity generation given 
by a source term( )xρρg 0 ∂∂− , which concentrates the vorticity in 
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the baroclinic layer (Staquet, 1995). Thus, the density gradient 
source term contributes as an extra mechanism for the generation or 
destruction of local vorticity by means of the baroclinic torque 
(Caulfield and Peltier, 2000; Cortesi et al., 1998). 

The Richardson number effects on the secondary shear 
instability has been studied in some detail by Klaassen and Peltier 
(1991) by performing stability analyses in the linear range. The 
strongest growth-rate for this kind of instability was found to occur 
between Ri = 0.08 and Ri = 0.12, and to approach zero growth rate 
at Ri = 0.22, which is close to the critical inviscid value, Ri = 0.25, 
for the primary KH instability (Miles, 1961). They found that the 
most unstable spanwise wavelength is smaller than the streamwise 
one, for Ri = 0.0 to 0.04, whereas for higher stratification the 
wavelength does not vary significantly. 

Schowalter et al. (1994) investigated experimentally the three-
dimensionalization of a free shear layer for different Richardson 
numbers, with forced condition. They noticed that the streamwise 
vortices were weakened or reinforced by stratification, depending on 
their location. On the top the KH billows, when unstably stratified 
regions were formed (heavy fluid above,( )0<∂∂ zρ ), strong 

streamwise vorticity was measured, while in the braids the ribs were 
weak. 

The present work investigates the nature of transition to 
turbulence in a stably stratified temporal mixing layer through the 
direct numerical simulation (DNS). The main objective of this work 
is to analyze the influence of a stable stratification on the 
development of the KH instability and in the formation of 
streamwise vortices. In this study it is shown that the stratification 
affects the formation of streamwise vortices, even when forced 
conditions are used. The DNS technique is used to solve the 
complete Navier-Stokes equations, in the Boussinesq 
approximation. Direct numerical simulations are excellent 
instruments for the investigation of the dynamics of a stably 
stratified mixing layer, since they solve entirely all the spatial and 
temporal scales of the flow. 

In the following sections first the governing equations and the 
numerical method are presented. Then, code validation test cases are 
presented comparing the DNS results with results from the linear 
stability theory.  The following section describes the results from the 
two-dimensional and three-dimensional simulations, for different 
Richardson numbers (Ri = 0; 0.1; 0.2), showing the evolution of the 
mixing layer, with the formation of baroclinic layer and of the 
streamwise vortices, respectively. Finally the conclusions and final 
comments are presented. 

Nomenclature 

Ri  = Richardson number.  
Re = Reynolds number. 
R  = Ratio of the initial vorticity thickness to the density 

thickness . 
U = Reference velocity. 
P = Pressure. 
t = Time.  

     u  = Velocity field. 
x,  y,  z  = Streamwise, spanwise and vertical coordinate 

directions. 
u, v, w = Streamwise, spanwise and vertical  velocity 

components.  
Pr = Prandtl number.  

      Lx , Ly , Lz  = Streamwise, spanwise and vertical domain  length.  
g = Acceleration due to gravity. 
nx, ny, nz  = Number of points in the streamwise, spanwise and 

vertical  directions.  

 

Greek Symbols 

ρ (x, y  z, t) = Density or active scalar. 
ρ0 = Reference density. 
∆ρ = Density difference across the shear layer. 

iδ = Initial vorticity thickness. 

iδ /U = Advective time scale. 

δd = Density thickness. 
αa   = The most amplified wavenumber. 
λa    = The most unstable wavelength. 
λI    = Fundamental wavelength. 
λx, λy   = Streamwise wavelength, spanwise wavelength. 
ν  = Kinematic viscosity. 

Formulation and Numerical Method 

Governing Equations 

The equations that govern the fluid motion are the Navier-
Stokes equations with the Boussinesq approximation, in a Cartesian 
frame of reference )z,y,x;( 0=ℜ . The momentum equation for 

the velocity fieldu , with components )w,v,u( , is given by:  
 

uiuωu 2∇+−×−−∇=
∂
∂

Re

1
RiP

t zρ , (1) 

 

where )/(pP 22uρ+= is the modified pressure field. 

 
The continuity equation is: 

 
0=∇ u. , (2) 

 
and the transport equation is: 

 

ρρρ 2∇=∇⋅+
∂
∂

RePr

1
)(

t
u . (3) 

 
The variables used in the above equations are non-dimensional. 

There are two non-dimensional relevant parameters: the Reynolds 
and the Richardson numbers. The Reynolds number, based on the 
half velocity difference across the shear layer (U) and on the initial 
vorticity thickness ( iδ ), is defined by: 

 νU
δ

Re i= , (4) 

 
where 

 

max
i )dz/du(

U2=δ . (5) 

 
The Richardson number is defined by: 

 

2
0

i

Uρ δ� ρRg
Ri =   (6) 

 
In these equations, the scales of length, velocity and density are such 
that iδ =1, U =1 and ∆ρ = 1/R.  In this manner, Re = 1/ν and Ri = g 

/ρ0. 
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Initial and Boundary Conditions 

The initial conditions are defined in terms of the velocity and 
density fields as in Corcos and Sherman (1976) and Patnaik et al. 
(1976).  At the initial time (t = 0) the density field is ρ(x, y, z ,t =0)= 
ρ0 +ρ (z). In the present case, no density fluctuation is superimposed 
upon ρ (z) at t = 0. The initial profiles of velocity and density, at t = 
0 are: 


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With the objective to promote the development of the KH 

instability and to unchain the formation of the KH billows,  a field 
of perturbations was added to the basic velocity profile. This field is 
composed by two waves corresponding to the most amplified wave 
number (αa) and its firth sub-harmonic (αa/2), and a sinusoidal wave 
in spanwise direction. The associated most unstable wavelength 
given by the linear stability theory is approximately λa = 7 iδ  where 

the most amplified wave number αa =2π/λa being 0.889 1−−−−
iδ , 

Michalke, (1964). These perturbations promote, respectively, the 
development of the KH instability, the pairing process and the 
formation of streamwise vortices. 

The boundary conditions for the temporal mixing layer are: 
-periodic: used in the streamwise (x) and spanwise (y) directions; 
and 
-free-slip: used in the vertical direction (z). This condition imposes 
the following restrictions: 0=∂∂=∂∂ zvzu  and w = 0 for 

2zLz ±= . 

Numerical Method 

Equations (1) to (3) are solved numerically, in the domain 
shown in Fig. 1, using a sixth-order compact finite difference 
scheme (Lele, 1992) to evaluate spatial derivatives. 

 

 
Figure 1. Schematic view of the domain. 

 
The compact schemes are implicit ones that relate the value of the 
derivative in a point to the value of the derivative in the neighboring 
points.  

For the spatial discretization considering a uniform mesh, where 
the independent variable for each node i is Niii ≤≤∆−= 1,)1( ξξ  

and yx,=ξ or z, the function values for the nodes 

are )(ff ii ξ==== and the first derivative )('f'f ii ξ====  is given by: 
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The second derivative is given by: 
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The sixth order is obtained with the set of parameters (Lele, 1992):  

9

1
,
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Equations (9) and (10) are valid for the three spatial directions 
(x, y, z) in all the mesh points.  

The time integration is performed with a third-order low-storage 
Runge-Kutta method (Williamson, 1980). The integration of Eq. (1) 
at times tn and t(n+1) is performed through three fractional time steps 

p = 0, 1, 2, where )n()( uu =0 and )n()( 13 += uu , 
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and pp βα , , are coefficients to each fractional step p, given by  

Williamson (1980): 

.
12

5
,

;
60

17
,

12

5

0;,
15

8

22

11

00

−==

−==

== βα βα βα
4
3

 

The Eq. (11) can be split into two steps, 
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In this conventional fractional method, step p+1 is obtained by 
solving the Poisson equation. Thus, the incompressibility condition 
is ensured as follows,  

 

t
)p(

∆
u⋅∇=∏∇⋅∇ +1 . (17) 

 
More details about the numerical code can be found in Lardeau 

et al. (2002) and Silvestrini et al. (2002). 
Equation (3) is solved in the same way as Eq. (1) by making, 
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where  

 

ρρ 2∇+∇−=
RePr

1
).( uG .    

Code Verification - Amplification Rate 

In order to validate the numerical code the evolution of a small 
disturbance was considered in a 2D domain. The results were 
compared with the linear stability theory, where the disturbance is 
described by the Taylor-Goldstein equation (Hazel, 1972). 

The computational domain used is a square of side L =7 iδ , 

corresponding to the most amplified wave number αa = 0.889 1−−−−
iδ  

given by the linear stability theory. The Reynolds number is 300, the 
Prandtl number is 1 and the Richardson number tested are 0.0, 0.1 
and 0.2, respectively. The initial amplitude of the perturbation was 
10-6 U. As the size domain is 7iδ  only the development of a single 

KH billow happened, excluding the possibility of paring process.  
Tests with different computational grids of zx nn ×  points were 

done (see Tab.1). In these tests the vertical diffusion term, 
corresponding to the streamwise velocity was canceled. This 
diffusion increases the width of the shear layer during the simulation 
and implies a variation in time of the base flow, inducing variation 
of the amplification rate (Medeiros et al., 2002). 

As expected, the grid size has a great influence over the 
amplification rate. In the test with a computational grid of N2 = 64 × 
129 points, it was noticed that the streamwise resolution interferes in 
the evolution of the wave amplitude (stratified case), when 
comparing with grid N1 (see Tab.1). Thus, for the stratified case (Ri 
= 0.1) the grid N2 showed a decrease of the amplification rate due  
to the increase in the vertical resolution, with a error of 7% in 
relation to the reference value, whereas for Ri = 0.2 there is an 
increase in the amplification rate. Probably this occurs because the 
streamwise density gradient is not being well solved. 

Figure 2 shows the time evolution of the amplitude for different 
Richardson numbers (0; 0.1; 0.2) obtained from the simulation with 
the grid N3 = 128 × 129 points. Clearly, there is a region of 
exponential amplification, which corresponds to the regime 
governed by the linear theory. 

In this test, the errors found are of - 0.32% for Ri = 0, 3.5% for 
Ri = 0.1 and 10.2% for Ri = 0.2. The comparison of the simulation 

N3 with the numerical results of Hazel (1972), shown in Tab.1, 
gives good agreement for the temporal growth rates the stably 
stratified mixing layer. 

 

Table 1. Comparison of amplification rate with the reference value or 
different grids. 

Amplification rate 
Ri N1 

  64 × 65 
N2 

  64 × 129 
N3 

128 × 129 
Ref. Value 
Hazel (1972) 

 0    0.18732    0.18632    0.1861 0.1867 
 0.1    0.19492    0.17057    0.1650 0.1594 
 0.2    0.13597    0.16532    0.1329 0.1259 
 

 
Figura 2. Amplitude evolution for simulation N3. 

Two-Dimensional Visualizations – the Formation of the 

Baroclinic Layer 

In the following section, results from 2D simulations are 
presented. Here the computational domain is 

)28,28(),( iix LzL δδ= , with a computational grid of 256 × 257 

points, Re = 300 and Ri = 0; 0.1; 0.2. The amplitude of the 
perturbation superimposed upon the basic velocity profile, for the 
fundamental and the subharmonic mode, is 1%U and 0.1% U, 
respectively. 

Firstly, the evolution of a non-stratified mixing layer is 
analyzed. The initial vorticity, which is modulated by a small 
perturbation, progressively accumulates in the cores of the KH 
billows (Fig. 3). These cores are unstable to perturbation of 
wavenumber equal to αa/2. The growth of this subharmonic 
perturbation leads to the pairing of the two vortices (Fig. 3c and Fig. 
3d). 

 

   
(a) (b) 

Figure 3. Spanwise vorticity fields, for a non-stra tified case, Ri = 0, at 
times: (a) 9.52; (b) 19.03; (c) 28.55 and (d) 38.07  
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(c) (d) 

Figure 3. (Continued). 

 
In a mixing layer, the primary KH vortices are not totally 

isolated from each other, but they are rather connected by a thin 
braid of spanwise vorticity. In a stably stratified mixing layer, these 
thin vorticity layers are strained in between the KH vortices and 
intensified by the buoyancy effects (Fig. 4b and Fig. 5b). As the 
development of the KH instability on a stably stratified mixing layer 
proceeds, a streamwise density gradient occurs in between the KH 
vortices, at the location where the braids form. This streamwise 
density gradient (corresponding to the spanwise component of the 
baroclinic torque, in the Boussinesq approximation) feeds the braid 
with vorticity and forms the baroclinic layer. This layer is associated 
with a strong density gradient and vorticity field. The baroclinic 
layer, as it is referred to in Staquet (1995), does not exist in an non-
stratified flow. It forms under the action of buoyancy effects and 
strains between the KH vortices. The component of the baroclinic 
torque along the spanwise direction is showed below in the vorticity 
equation, 

 


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The density gradient source term contribute as an extra 

mechanism for the generation or destruction of local vorticity by 
means of the baroclinic torque. This property yields a different 
behavior of the stratified mixing layer as opposed to its non-
stratified counterpart. It follows that vorticity can locally increase 
beyond its maximum value for the stratified case. 

Two secondary instabilities are propagated in the stratified 
mixing layer caused by the streamwise density gradient: the 
gravitational convective instability and the secondary shear 
instability. The first is found within unstable regions of the KH core, 
which consist of heavy and light fluid wrapped in a spiral roll. 
Wherever heavy fluid is found on top of light fluid, the gravitational 
convective instability amplifies due to buoyancy forces. 

During the roll-up of KH billows, heavy and light fluid are 
brought together from the outer-side of the mixing layer towards the 
center of mixing layer, yielding a strong density gradient there. In 
this way, the secondary shear instability induced by the streamwise 
density gradient concentrates the vorticity in the baroclinic layer. 
The baroclinic layer is observed to occur in our simulations (Fig. 4d 
and Fig. 5d).  

Figure 4 and 5 show the development of the Kelvin-Helmholtz 
instability, in the stratified mixing layer, for the same characteristic 
times.  

These pictures show that when the Richardson number is 
increased the pairing process is inhibited and the braid vorticity 
exceeds the core's one. The stable stratification, through streamwise 
variations of the density field, weakens the vertical motions and 
reduces the buoyancy flux, as it can be observed in Fig. 6. 

In the non-stratified case, Ri = 0, it is observed that the vorticity 
remaining in the core is substantially greater than that in the braids. 
On the contrary, when the stratification is higher ( Ri = 0.2) the 
vorticity is increased in the braids and the baroclinic layer is visible, 
as can be seen in Fig. 5d. 

 

   
(a) (b) 

  
(c) (d) 

Figure 4. Spanwise vorticity fields, stratified cas e, Ri = 0.1, in  times: (a) 
9.52; (b) 19.03; (c) 28.55 and (d) 38.07. 

 

 

  
(a) (b) 

 

  
(c) (d) 

Figure 5. Spanwise vorticity fields, stratified cas e, Ri = 0.2,  in times: (a) 
9.52; (b) 19.03; (c) 28.55 and (d) 38.07. 
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(a) 

 
(b) 

 
(c) 

Figure 6.  Buoyancy flux, 〈ρ’ w〉, at different times, Re = 300. (a) Ri =0; (b) 
Ri = 0.1; (c) Ri = 0.2. 

 
The spreading of the buoyancy flux 〈ρ’w’ 〉 (Fig. 6) is due to the 

buoyancy effects. In the non-stratified case, there is no buoyancy 
force and the density is a perfect passive scalar (Fig. 6a). At time t = 
28.55 the vortices are dislocated in relation to the z-center of the 
domain (Fig. 6b), producing negative values of the 〈ρ’w’ 〉. Figure 6b 
and Fig. 6c show that there is a strong decrease of the buoyancy flux 
caused by increasing the Richardson number. This drastic reduction 
of the buoyancy flux as the Richardson number increases causes the 
reduction of fluid entrainment into KH vortices and delays pairing 
process of the large structures.  

Therefore, the stable stratification has a stabilizing effect on the 
growth of the primary KH instability (Fig. 4 and Fig. 5), resulting in 

a decrease of the overall fluid entrainment, a reduction the mixing 
process and a decrease of the thickness of the mixing layer.  Figure 
7 shows the time evolution of the thickness of the mixing layer for 
different Richardson numbers. 

To quantify the effect that a stable stratification (buoyancy 
forces) has on the development of KH instability, the time evolution 
of the kinetic energy was calculeted. The kinetic energy per unit 
area is given by 

 

( ) ( )( ) dzdxwuu
LL

K
zL xL

zx
∫ ∫ +−=
0 0
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, (20) 

 
where the ensemble average of the streamwise velocity is 
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u

0

1
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Figure 8 shows the evolution of the kinetic energy for different 

Richardson numbers. The peak of the maximum kinetic energy is 
attained for the first pairing (non-stratified and stratified cases), and 
then it oscillates and increases near the second pairing for the non-
stratified case. It seems clear from Fig. 8 that the maximum KH 
vorticity amplitude is limited by the presence of a strong stable 
stratification (Ri ≥ 0.1) in the flow and that the time at which the 
maximum energy is reached is considerably delayed when the 
stratification is increased. These characteristics are consistent with 
the expectation that the wave needs to execute work against the 
gravitational potential in order to grow. 

Three-Dimensional Visualizations - The Formation of 

Streamwise Vortices 

The computational domain is a parallelepipedic box, of side 14 
δi along the longitudinal (x) and vertical (z) directions and of side 
10.5δi along the spanwise (y) direction. All the three-dimensional 
tests were carried out with the resolution (128, 96, 129) along the (x, 
y, z) directions, respectively.  

The spanwise length of the domain, Lx, is 2/3 of Ly. This choice 
was made to force the most amplified mode in the spanwise 
direction predicted by Pierrehumbert and Widnall (1982). The 
parameters used in the tests are the Reynolds number, Re = 200, the 
Richardson number, Ri = 0 (non-stratified case), 0.1 and 0.2 (strong 
stratification) and Prandtl number, Pr = 1. 

 

 
Figure 7. The effect of the bulk Richardson number on the evolution of the 
thickness of the mixing layer, Re = 300. 
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Figure 8.  The effect of the bulk Richardson number  on the evolution of  
the wave kinetic energy, Re = 300. 

 
Three-dimensional visualizations are presented for 3 different 

Richardson numbers for the same instant of time, with isosurfaces of 
vorticity modulus iωω 25.0= , where ii U δω /2= . The amplitude 

of the perturbation (forced) superimposed upon the basic velocity 
profile, for the fundamental, the subharmonic and spanwise mode is 
1%U, 0.1%U and 0.1%U, respectively. 

The initial condition is the same for all the numerical tests. At 
time t = 9.52 only the non-stratified mixing layer (Ri = 0) was 
unstable, showing the formation of two longitudinal wavelength, 
characterizing the Kelvin-Helmholtz instability (Fig. 9). 

At time t = 19.02, for the non-stratified case, Ri = 0, there are 
two primary billows KH (spanwise vortices), due to the KH 
instability and fundamental mode, whereas for the stratified case o 
roll-up occurs (Ri = 0.1) and 2D instability is formed in the vorticity 
layer (Ri = 0.2). This occurs because the stratification affects the 
vertical movements, diminishing the intensity of the oscillations and 
reducing the kinetic energy, thus delaying the formation of the KH 
structures, as it can be verified in the 2D simulation above and in 
Martinez et al. (2004). 

Figure 10 shows the results obtained for Ri = 0; 0.1; 0.2 at times 
57.14 and 76.19. In the non-stratified case, at time t = 76.19, 
streamwise vortices are clearly formed. The two pairs of counter-
rotating streamwise vortices appear between the times 47.62 and 
57.14, one pair for each fundamental wavelength. The streamwise 
vortices, or ribs, show a high degree of coherence and are extend 
with nearly the same vortical intensity over the complete braid 
region. 

In the stratified cases, on the other hand, the secondary 
instability dominates the three-dimensionalization of the layer and 
the streamwise vortices are now seen to be less developed over the 
complete domain. This is due to streamwise density gradient that 
decreases the levels of vorticity in the KH billow while increases it 
in the braid zone. This effect is easier to see in highly stratified 
flows, Ri = 0.2, than in "mildly" stratified flow, Ri = 0.1. 

Figure 10 shows the translative instability acting on the 
resultant vortex of the pairing process, whereas for R = 0.2 the flow 
is still two-dimensional. The three-dimensionalization of the mixing 
layer is dominated by the initial forcing condition of the sub 
harmonic and spanwise modes. As sub harmonic mode grows before 
the spanwise mode, the formation of the streamwise vortices is 
delayed. The stratification also delays the pairing process and 
development of the translative instability. This fact can be observed 
when comparing the non-stratified case with the stratified one in 
Fig. 9 and 10. 

 
 

Ri = 0 

 
 

Ri = 0.1 

 
 

Ri = 0.2 

 
Figure 9. Isosurfaces of vorticity modulus at t = 9 .52 and 19.02, Re = 200, 

0.5=ω . 

 

Figure 11 shows the isosurface of vorticity modulus at time 
104.77 and 114.29, for the two stratified cases considered. In the test 
with Ri = 0.1 a deformation in the structure of the streamwise 
vortices is observed. This deformation, probably caused by 
baroclinic effects, can be originated by the translative instability 
occurring in the region between the billows and not in its core, as in 
the non-stratified case (Caulfield and Peltier, 2000). 

 For Ri = 0.2 the stabilizing effect of the stratification becomes 
strongly visible in the reduction of the amplitude of the 3D 
disturbances. It is an indication of the qualitative variation of the 
dynamics of the flow, where buoyancy forces inhibit the growth of 
the turbulent kinetic energy, mainly the vertical speed. This effect 
can be observed in Fig. 12, which indicates that when the 
Richardson number increases the buoyancy flux decreases. 

To be able to have the best possible picture of the vortices 
spatial structure the Q criterion was used (Dubief and Delcayre, 
2000; Jeong and Hussain, 1995). It is well known that regions of 
high vorticity often correspond to coherent structure locations, or 
even sheared zones without any structures. The Q criterion is 
defined by: 
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where i, j = 1,2,3 and 
2Ω is the rotation rate  and 

2
S  the strain 

rate. 
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Ri = 0 

    
 

Ri = 0.1 

    
 

Ri = 0.2 

    
Figure 10.  Isosurfaces of vorticity modulus at t =  57.14 and 76.16, Re = 

200, 0.5ω = . 

 
Ri = 0.1 

    
Ri = 0.2 

 

    
Figure 11. Isosurfaces of vorticity modulus at  t =  104.77 and 114.29, Re = 

200, 0.7ω = . 

 

 
 

(a) 
 

 
(b) 

Figure 12. Buoyancy flux w'ρ ' , at Ri = 0; 0.1; 0.2 , Re = 200, at time. (a) 

38.09; (b) 76.19. 

 
Vorticity modulus visualization emphasizes intermediate scale 

vortices, though it may obscure the large structures. The positive Q 
values occur in flow regions where local rotation is predominant, 
especially in regions associated with the vortex cores.  

In the Q criterion, a balance between the rotation rate and strain 
rate was done. This implies that positive Q isosurfaces isolate areas 
where the strength of rotation overcomes the strain. In Fig. 13, it can 
be observed a comparison between isosurfaces of vorticity modulus 
and Q-isosurfaces for the non-stratified case, at time t = 76.19, and 
for the stratified cases at times t = 104.77 (Ri = 0.1) and t = 114.29 
(Ri = 0.2). 

Figure 14 shows spanwise cross-sectional plots of the vorticity 
modulus for a domain of two fundamental streamwise wavelengths 
(λI), for one characteristic time and with forced initial conditions. 
The longitudinal variation of the domain varies is ix δ140 << . At t 

= 76.19, streamwise vortices are clearly formed in a non-stratified 
mixing layer while for the stratified cases only some concentration 
of vorticity may be identified, mainly for Ri = 0.1 at the center of 
the mixing layer. 
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(a) (b) 

 

 
(c) (d) 

 

 
(e) (f) 

Figure 13. (a) Isosurfaces of 2.5ω = , Ri = 0; (b) Q – isosurfaces Q = 1, Ri 

= 0; (c) Isosurfaces of 0.7ω = , Ri = 0.1; (d) Q – isosurfaces Q = 0.2, Ri = 

0.1;  (e) Isosurfaces of 0.7ω = , Ri = 0.2; (f) Q – isosurfaces Q = 0.08, Ri = 

0.2. 

 
At a later time, t=104.77, Fig. 15 shows intense streamwise 

vortices for the two stratified cases considered. While their vorticity 
is lower than the non-stratified case, the formation mechanism 
seems to be related to the secondary shear instability. 

Comparing the spanwise cross-sectional plots in Fig.14a for an 
non-stratified flow with those from Fig.14b and Fig.14c, we can 
remark how the entrainment process significantly influences the 
stratification: the vertical extent of the active region, roughly 
corresponding to that occupied by entrained fluid, has narrowed. 
This is also apparent from the development of the size of the mixing 
layer for different Ri, where entrainment is progressively suppressed 
with increasing stratification. Therefore, in stratified cases the 
longitudinal structures are confined in a shorter vertical length that 
for an non-stratified case, and they are not developed over the whole 
vertical domain. 

 
 
 
 
 
 
 
 
 

 Ri = 0  Ri = 0.1  Ri = 0.2 

         
(a) 

 

         
(b) 

 

         
(c) 

 

         
(d) 

 

         
(e) 

Figure 14. Spanwise cross-sectional plots of vortic ity modulus at x equal 

(a) 2;`(b) 4; (c) 6; (d) 8 and (e) 10 iδ , at time t = 76.19. 
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Ri = 0.1                     Ri = 0.2 

      
(a) 

 

     
(b) 

 

     
(c) 

 

     
(d) 

 

     
(e) 

Figure 15. Spanwise cross-sectional plots of vortic ity modulus at  x equal 

(a) 2;`(b) 4; (c) 6; (d )8 and (e) 10 iδ , at time t = 104.77. 

Conclusions 

The purpose of the present study was to investigate numerically 
the effect of the stable stratification (buoyancy forces) on the 
development of the KH instability and the formation of streamwise 
vortices, which are developed after the saturation of the primary 
billows of KH. The 2D simulations showed that higher stratification 
increasingly inhibits the pairing process, reduces the exchange of 

energy between the KH vortices and the flow, limits the maximum 
KH wave amplitude and reduces the buoyancy flux. The 3D 
simulations, with forced conditions, showed that streamwise 
vortices are clearly formed in a non-stratified mixing layer. The 
streamwise vortices, or ribs, showed a high degree of coherence and 
are spread with nearly the same vortical intensity over the complete 
braid region. On the other hand, in the stratified cases the secondary 
shear instability dominates the three-dimensionalization of the layer. 
This is due to the streamwise density gradient which decreases the 
levels of vorticity in the KH billow while increases in the  braid 
zone. This effect is easier to be seen in highly stratified flows, Ri = 
0.2, than in a "middly" stratified flow, Ri = 0.1. 
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