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Abstract

The importance of real-time systems has enormously
increased in the last decade. Application areas that typi-
cally need real-time models include railroad systems, in-
telligent vehicle highway systems, avionics, multimedia
and telephony. To assure that such systems are correct,
additionally to prove that they provide the required func-
tionality, time constraints must be satisfied. There are al-
ready formal specification methods for real-time systems,
but most of them are difficult to use by software devel-
opers, that are usually not very familiar with mathemat-
ical notation but rather specify systems using the object-
oriented paradigm. In this paper we propose a formal
approach to specify and analyze real-time systems that
has an object-oriented flavor. This approach is based on
Object-Based Graph Grammars (OBGGs), a formal de-
scription technique suitable for the specification of asyn-
chronous distributed systems, and intuitive even for non-
theoreticians. We extend OBGGs to enable explicit mod-
eling of time constraints, and define the semantics of the
specifications via transition systems. Finally, we translate
timed OBGGs to Timed Automata, a formal notation that
is wide spread in the area of real-time systems modeling
and allows the automatic verification of properties.

Keywords: Real-time computing, Formal specifica-
tion and verification, Graph grammars, Timed automata.

1. INTRODUCTION

One of the goals of software engineering is to aid
the development of correct and reliable software systems.
Formal specification methods play an important role in
accomplishing this goal [7]. Besides providing means
to prove that a system satisfies the required properties,
formal methods contribute to its understanding, revealing
ambiguities, inconsistencies and incompletions that could
hardly be detected otherwise.

The use of a formal specification method is even more
important in the design of real-time systems, frequently
used in critical security environments. A real-time system
is a system in which performance depends not only on the
correctness of single actions, but also on the time at which
actions are executed [27, 26]. Application areas that typ-
ically need real-time models include railroad systems, in-
telligent vehicle highway systems, avionics, multimedia
and telephony. To assure that such systems are correct,
additionally to prove that they provide the required func-
tionality, we have to prove that the time constraints are
satisfied.

1.1. FORMAL SPECIFICATION OF REAL-TIME SYS-
TEMS

There are many formal approaches to model real-time
systems. Timed Automaton [1, 4] is one of the most
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prominent methods for real-time specification. A timed
automaton extends a usual automaton by adding several
clocks to states and time restrictions to transitions (and
states). It enables us to specify both the discrete behavior
of control and the continuous behavior of time. Process
calculi models including time [21, 2, 6] have also been
proposed, adding a set of timing operators to process alge-
bras. They offer a level of abstraction based on processes:
a system is viewed as a composition of (interacting) pro-
cesses. Timed Petri nets [28] and time Petri nets [5] are
extensions of the classical Petri nets adding time values to
transitions/tokens or time intervals to transitions, respec-
tively.

Although the models discussed above may be ade-
quate for some aspects of a system, they stress the rep-
resentation of the control structure, lacking a comprehen-
sive representation of data structure and its distribution
within a system. Object-oriented models provide such
abstraction by joining descriptions of data and processes
within one object. Distribution and concurrency ap-
pear naturally by viewing objects as autonomous entities.
Object-oriented approaches are widely accepted for spec-
ification and programming. Thus, various Unified Mod-
eling Language (UML)-based approaches have already
been proposed to model time information. HUGO/RT
[18] is an automated tool that checks if a UML state ma-
chine interacts according to the scenarios specified by a
sequence diagram (extended with time constraints). For
this verification, state machines are compiled into Timed
Automata and sequence diagrams into Observer Timed
Automaton. After the translations, the model-checker Up-
paal [3] is called to check if the Observer Timed Automa-
ton describes a reachable behavior of the system. Di-
ethers and Hunh [9] propose a similar approach through
the Vooduu tool. Nevertheless, these tools restrict the
specification of a real-time system. First of all, because
they are based on UML state machines and therefore do
not offer clocks or priorities, useful concepts for real-time
modeling. Besides, even though the proposals intent to be
faithful to the UML informal specification, following its
semantic requirements, the translation of state machines
is not based on a formal semantic. In [20] a transla-
tion of timed state machines into a real-time specification
language TRIO was proposed, but TRIO is not directly
model checkable.

The approach in [19] adds time information to UML
classes. Attributes of type Timer, for the definition of
clocks for classes, and a notation similar to timed au-
tomata, to analyze and evaluate clocks in UML state
diagrams, are syntactically introduced. A translation
from UML into Promela, the input language of the SPIN
model-checker, is extended to give semantics to the dia-
grams. The main difficulty in using this approach is that,
since Promela does not have built-in time constructors,

clocks and time constrains have to be encoded and, since
the semantics is defined by the Promela code, it might
be quite difficult to understand for users not very familiar
with this language.

The Omega project also aims to model and verify real-
time systems. An extension of a UML subset with time
constructs was proposed in [16], and in [22] part of UML
was mapped into Communication Extended Timed Au-
tomata (input language for the validation tool). Static
properties are described as Observer Automata and dy-
namic properties by UML Observers. This is a very inter-
esting approach, although the user has to learn a variety
of different languages and diagrams to completely specify
and verify a system.

1.2. OUR CONTRIBUTION
In this paper, we propose extending the formal

description technique Object-Based Graph Grammars
(OBGGs) [11, 23] to specify real-time systems. OBGG
is a visual formal specification language suitable for the
specification of asynchronous distributed systems. The
basic idea of this formalism is to model the states of a
system as graphs and describe the possible state changes
as rules (where the left- and right-hand sides are graphs).
The behavior of the system is described via applications
of these rules to graphs modeling the actual states of a sys-
tem. Rules operate locally on the state-graph, and there-
fore it is possible that many rules are applied at the same
time. OBGGs are appealing as specification formalism
because they are formal, they are based on simple but
powerful concepts to describe behavior, and they have a
nice graphical layout that helps non-theoreticians under-
stand an object-based graph grammar specification. Due
to the declarative style (using rules), concurrency arises
naturally in a specification: if rules do not conflict (do
not try to update the same portion of the state), they may
be applied in parallel (the specifier does not have to say
explicitly which rules shall occur concurrently).

OBGGs can be analyzed through simulation [12] and
verification (using the SPIN model-checker) [10]. Com-
positional verification (using an assume-guarantee ap-
proach) is also provided [24]. Moreover, there is an ex-
tension of OBGGs to model inheritance and polymor-
phism [15]. However, OBGGs do not provide explicit
time constructs, and therefore are not suited to model and
analyze real-time systems. Here we propose a mapping
from a timed extension of OBGG specifications to Timed
Automata. This way, we can use the available (Timed
Automata) verification tools to check properties of timed
OBGGs.

Our approach adds time stamps to the messages (al-
lowing to program certain events to happen in the fu-
ture), extends the appealing formal description technique
OBGG, and supports verification of properties written in
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temporal logic. The main contributions of this paper are:
(i) the proposal of a timed extension to OBGG; and (ii) the
translation of the extended OBGG to Timed Automata,
leading to automatic verification of properties. The paper
is organized as follows: Section 2 presents OBGGs and
its timed extension; Section 3 describes the semantics of
timed OBGGs; Section 4 reviews Timed Automata; the
translation of timed OBGGs to Timed Automata is de-
scribed in Section 5; Section 6 analyzes the example; and
final remarks are in Section 7.

2. OBJECT BASED GRAPH GRAMMARS
Object based graph grammar (OBGG) is a formal vi-

sual language suited to the specification of object-based
systems. We consider object-based systems with the fol-
lowing characteristics: (i) a system is composed of var-
ious objects. The state of each object is defined by
its attributes, which may be pre-defined values or refer-
ences to other objects. An object cannot read or mod-
ify the attributes of other objects; (ii) objects are in-
stances of classes. Each class includes the specification
of its attributes and of its behavior; (iii) objects are au-
tonomous entities that communicate asynchronously via
message passing. An OBGG specifies a system in terms
of states and changes of states, where states are described
by graphs and changes of states are described by rules.

Now, the definitions used for the description of Timed
Object-Based Graph Grammars (TOBGGs) are pre-
sented. Each formal definition is preceded by an informal
description of its meaning. The formal definitions are
necessary to follow the translation of TOBGG to Timed
Automata, described in Section 5. For the comprehension
of the other contributions of this paper, it is possible to
skip the formal definitions. Examples of main concepts
can be found in Subsection 2.2.

Graph, Graph Morphism. A graph consists of a
set of vertices partitioned into two subsets, of objects
and values (of abstract data types), and a set of edges
partitioned into sets of message and attribute edges.
Values are allowed as object attributes and/or message
parameters. Messages, modeled as (hyper)edges, may
also have other objects as parameters and must have a
single target object. These connections are expressed
by total functions assigning to each edge its source
and target vertices. Figure 1 illustrates a graph for an
object-based system. Values of abstract data type Natural
are allowed, for example, as attributes of the Train object
and as parameters of the OpenGate message. The Train
object also has references to Gate and RSegm objects
as attributes. Message OpenGate has the Train object
as target and as sources a reference to RSgm object and

Train

posNext: Natural
posGate: Natural
wait: Boolean

nextrs

Id Natural

1
OpenGate

nextrs

Id Natural

1
Go

Wait

Traveling

curr

next

gate

1

1

2

1

RSegm

station: Boolean
id: Natural
busy: Boolean

Gate

open: Boolean

1 2
MayGo?

Leaving

t

Open

nextr

Close

Figure 1. Type Graph

Natural values. A graph morphism expresses a structural
compatibility between graphs: if an edge is mapped, the
corresponding vertices, if mapped, must have the same
sources/target vertex; if a vertex is mapped, the attributes
must be the same.

Let f : A → B be a partial function and let f• be
the corresponding total function f• : dom(f) → B,
s.t, f(x) = f•(x), ∀x ∈ dom(f). Let Spec be an al-
gebraic specification, including sort Nat and the usual
operations and equations for natural numbers, and U :
Alg(Spec) → Set be the forgetful functor that assigns
to each algebra the disjoint union of its carrier sets. It is
assumed that the reader is familiar with basic notions of
algebraic specification (see, e.g., [14]).

DEFINITION 1 (GRAPH, GRAPH MORPHISM) Given an
algebraic specification Spec, a graph G = (VG, EG,
sG, tG, AG, a

G) consists of a set VG of vertices parti-
tioned into sets oVG and vVG (of objects and values,
respectively), a set EG of (hyper)edges partitioned into
sets mEG and aEG (of messages and attributes, respec-
tively), a total source function sG : EG → V ∗G, assign-
ing a list of vertices to each edge, a total target function
tG : EG → oVG assigning an object-vertex to each edge,
an attribution function aG : vVG → U(AG), assigning to
each value-vertex a value from a carrier set of AG.

A (partial) graph morphism g : G → H is a tu-
ple (gV , gE , gA), where the first components are partial
functions gV = goV ∪ gvV with goV : oV G → oV H

and gvV : vV G → vV H and gE = gmE ∪ gaE with
gmE : mEG → mEH and gaE : aEG → aEH ; and the
third component is a total algebra homomorphism such
that the diagrams below commute. A morphism is called
total if all components are total. This category of graphs
and partial graph morphisms is denoted here by GraphP
(identities and composition are defined componentwise).

53



Leonardo Michelon, Simone André da Costa
and Leila Ribeiro

Formal Specification and Verification of
Real-Time Systems using Graph Grammars

dom(EG) EH

V ∗
G V ∗

H

Â gE
•
//

_

sG

²²

_

sH

²²

g∗V
//

=

dom(EG) EH

oVG oVH

Â gE
•
//

_

tG

²²

_

tH

²²

g∗V
//

=

dom(vVG) vVH

U(AG) U(AH)

Â gV
•
//

_

aG

²²

_

aH

²²

U(gA)
//

=

OB-Graphs. An OB-graph is a graph equipped with a
morphism type to a fixed graph of types [8]. Since types
constitute the static part of the definition of a class, we
call the graph of types as class graph. Two restrictions
are imposed to a class graph to guarantee that it corre-
sponds to a class in the sense of the object paradigm: the
first is that there are no data values in a class graph (they
are represented by the name of data types); and the sec-
ond imposes that each class can have exactly one list of
attributes. A morphism between OB-graphs is a partial
graph morphism that preserves the typing.

DEFINITION 2 (OB-GRAPHS) Let Spec be a specifica-
tion. A graph C is called a class graph iff (i) AC

is a final algebra1 over Spec, (ii) for each object ver-
tex v ∈ oVC there is exactly one attribute hyperedge
(ae ∈ aEC) with target v. An OB-graph over C is
a pair OGC = (OG, typeOG) where OG is an graph
called instance graph and typeOG : OG → C is a
total graph morphism, called the typing morphism. A
morphism between OB-graphs OGC

1 and OGC
2 is a par-

tial graph morphism f : OG1 → OG2 such that for all
x ∈ dom(f), typeOG1(x) = typeOG2 ◦ f(x). The cat-
egory of OB-graphs typed over a class graph C, denoted
by OBGraph(C), has OB-graphs over C as objects and
morphisms between OB-graphs as arrows (identities and
composition are the identities and composition of partial
OB-graph morphisms).

The operational behavior of the system described by
a graph grammar is determined by the application of
grammar rules to the graphs that represent the states of
the system (starting from an initial state).

Rule. A rule of an object-based grammar consists of (the
numbers in parenthesis at the end of each item correspond
to conditions in Definition 3):

• a finite left-hand side L: describes the items that must
be present in a state to enable the application of the
rule. The restrictions imposed to left-hand sides of
rules are:

1An algebra in which each carrier set is a singleton.

– There must be exactly one message vertex,
called trigger message – this is the message
handled/deleted by this rule (cond. 2).

– Only attributes of the target object of the trigger
message should appear – not all the attributes
of this object should appear, only those neces-
sary for the treatment of this message (cond.
3).

– Values of abstract data types may be variables
that are instantiated at the time of the appli-
cation of the rule. Operations defined in the
abstract data type specification may be used
(cond. 6 and 7).

• a finite right-hand side R: describes the items that
will be present after the application of the rule. It
may consist of:

– Objects and attributes present in the left-hand
side of the rule as well as new objects (created
by the application of the rule). The values of
attributes may change, but attributes cannot be
deleted (cond. 4 and 5).

– Messages to all objects appearing in R.

• a condition: this condition must be satisfied for the
rule to be applied. This condition is an equation over
the attributes of left- and right-hand sides.

DEFINITION 3 (RULE) Let C be a class graph, Spec be
a specification and X be a set of variables for Spec. A
rule is a pair (r,Eq) where Eq is a set of equations over
Spec with variables in X and r = (rV , rE , rA) : L→ R
is a C-typed OB-graph morphism s.t.

1. L and R are finite;

2. a message is deleted: ∃!e ∈ mEL, called trigger(r),
trigger(r) 6∈ dom(rE);

3. only attributes of the target of the message may ap-
pear in L: (aEL = ∅) ∨ ((∃!e ∈ aEL) ∧ tL(e) =
tL(trigger(r)));

4. attributes of existing objects may not be deleted nor
created: ∀o ∈ oVL.(∃e ∈ aEL.t

L(e) = o ⇒ ∃e′ ∈
aER.t

L(e′) = rV (o));

5. objects may not be deleted:∀o ∈ oVL.o ∈ dom(rV );

6. the algebra of r is a quotient term algebra over the
specification SpecNat including a set of equations
Eq and variables in X;

7. attributes appearing in L may only be variables of
X: ∀v ∈ vVL.a

L(v) ∈ X;
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8. the algebra homomorphism component of r (rA) is
the identity (rules may not change data types).

We denote byRules(C) the set of all rules over a class
graph C.

Object-Based Graph Grammar (OBGG). An object-
based system is composed of:

• a type graph: a graph containing information about
all the attributes of all types of objects involved in
the system and messages sent/received by each kind
of object.

• a set of rules: these rules specify how the objects will
behave when receiving messages. For the same kind
of message, we may have many rules. Depending on
the conditions imposed by these rules (on the values
of attributes and/or parameters of the message), they
may be mutually exclusive or not. In the latter case,
one of them will be chosen non-deterministically to
be executed. The behavior of an object when receiv-
ing a message is specified as an atomic change of
the values of the object attributes together with the
creation of new messages to any objects.

• an initial graph: this graph specifies the initial val-
ues of the attributes of the objects, as well as mes-
sages that must be sent to these objects when they
are created. The messages in this graph can be seen
as triggers of the execution of the object.

DEFINITION 4 (OBJECT-BASED GRAPH GRAMMAR)
An object-based graph grammar, short OBGG, is a
tuple (Spec,X,C, IG,N, n) where Spec is an algebraic
specification, X is a set of variables, C is a class graph,
IG is a C-typed graph, called initial or start graph, N is
a set of rule names, n : N → Rules(C) assigns a rule to
each rule name.

2.1. TIMED OBGG
Originally, the Graph Grammar formalism does not

include the concept of time. Here we incorporate time
to the model in order to model real-time systems. There
are several choices of where to put the time in a graph
grammar: rules, messages, and objects. We have decided
to put time stamps on the messages describing when they
are to be delivered/handled. In this way, we can program
certain events to happen at some specific time in the fu-
ture. Rules do not have time stamps, that is, the applica-
tion of a rule is instantaneous. Our idea is that the time
assigned to messages models the amount of time these
messages need to arrive at their destinations. This choice
was made because we intend to have a formalism suitable
for reactive systems, that are typically distributed systems
with asynchronous communication. In such systems, the

most time consuming operation is communication (that is,
transmission times are usually much bigger than compu-
tation times), and therefore it is adequate to assume that
computations (rule applications) are instantaneous, and
that communication (message exchange) consumes time.
Moreover, we adopt relative time: time stamps are not to
be understood as absolute time specifications of when an
event should occur, but rather as an interval of time rela-
tive to the current time in which the event should occur.

Syntactically a Timed Object Based Graph Grammar
(TOBGG) is an OBGG with an additional time represen-
tation at the messages. The time stamps of the messages
have the format: 〈tmin, tmax〉, with tmin ≤ tmax,
where tmin and tmax are the minimum/maximum num-
ber of time units, relative to the current time, within which
the message should be handled. The possible time-stamps
are:

• : this message must be handled in at
least tmin time units and at most in tmax time units,
i.e., in interval [tmin + current time, tmax +
current time].

• : if tmin is omitted, the current time
is assumed as the minimum time for this message,
i.e., the message must be handled in interval [0 +
current time, tmax+ current time].

• : if tmax is omitted, infinite is assumed
(i.e., this message has no time limit to be deliv-
ered). It must be handled in interval [tmin +
current time, +∞).

• : if tmax = tmin, this message must
be handled in a specific time during the simulation,
i.e., in interval [t+current time, t+current time].

• : if tmin, tmax and the bar | are omitted,
the message can be delivered from the current time
on, and has no time limit to be handled, i.e., it must
be handled in interval [0 + current time, +∞).

• : this notation is equivalent to having
tmin = tmax = t, with t being the current time.
These messages must be handled immediately, i.e.,
in interval [current time, current time].
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Now, we define timed OBGGs, short TOBGGs using
(typed and attributed) hypergraphs. Let SpecNat denotes
an algebraic specification including sort Nat and the
usual operations and equations for natural numbers.

Timed Graph, Timed Graph Morphism. A timed
graph consists of a graph with two partial functions,
which assign a minimum/maximum time to each mes-
sage. A timed message has the minimum/maximum time
defined. A (partial) timed graph morphism is a graph
morphism that is compatible with time, that is, if a timed
message is mapped, the time of the target message must
be the same.

DEFINITION 5 (TIMED GRAPH, TIMED GRAPH MORPHISM)
Let SpecNat be a specification, a timed graph
TimG = (G, tGmin, t

G
max) consists of a graph G

and partial functions tGmin, t
G
max : mEG → N, assigning

a minimum/maximum time to each message edge of G.
A timed message is a message m ∈ mEG such that
tGmin(m) and tGmax(m) are defined. For timed messages
m, we require that tGmin(m) ≤ tGmax(m).

A (partial) timed graph morphism g : G → H is a
graph morphism g = (gV , gE , gA), such that, the dia-
grams below commute. A morphism is called total if both
components are total. The category of timed graphs and
partial timed graph morphisms is denoted by TimGraphP
(identities and composition are defined componentwise).

dom(gE) ∩ dom(tmax) mEH

N N

Â gE
•

//
_

tmax
G•

²²

_

tH
max

²²
id

//

=

dom(gE) ∩ dom(tmin) mEH

N N

Â gE
•

//
_

tmin
G•

²²

_

tH
min

²²
id

//

=

Timed OB-Graph. The definition of timed OB-graph is
analogous to the untimed case.

Timed Rule. A timed rule is a rule with an additional
requirement: the message in the left-hand side should not
have a specific time stamp, i.e., tmin and tmax are un-
defined. This means that the aim of the rules shall be to
specify how to handle a message, and not when it should
be delivered.

DEFINITION 6 (TIMED RULE) Let timedrule(r : L→R,
Eq) be a rule according to Definition 3. Then timedrule

is a (timed) rule if the following condition is satisfied:

1. tLmin(trigger(r)) and tLmax(trigger(r)) are unde-
fined.

Timed Object-Based Graph Grammar (TOBGG). The
definition of TOBGG is analogous to Definition 4, consid-
ering timed graphs and timed rules.

2.2. EXAMPLE: RAILROAD SYSTEM
In this section we model a simple railroad system us-

ing graph grammars. This example is similar to the one
presented in [17] (and in many other papers that propose
new specification and verification techniques for real-time
systems). In a railroad system, the most important issue
that should be guaranteed is that trains do not crash. This
is typically achieved by interlocking systems, that only
allow trains to enter regions of tracks in which there are
no other trains. We kept the example simple to be able
to explain in detail how the semantical model - that de-
scribes the computations of the system - is constructed.
Nevertheless the specification method as well as relevant
properties of railroad controlling system can be suitably
illustrated in this example.

The railroad system is composed of instances of three
entities: Train, Gate and RSegm. We model a system
in which there are trains traveling along a railroad (com-
posed of railroad segments), and at some places there are
gates. The model shall assure that two trains can not be at
the same railroad segment at the same time, and addition-
ally if there is a gate to enter some region of the railroad,
this gate shall be opened when a train passes. This ap-
parent simple behavior involves intense exchange of mes-
sages since this system is inherently asynchronous. Now
we show the model for each component of this system.

Train Entity: the graph grammar of the Train En-
tity is depicted in Figure 1 (type graph), Figure 2 (initial
graph template TrainIni) and Figure 3 (rules). The type
graph shows that each train has six attributes: its current
position (curr), a reference to the position the train can
move to (next), a reference to a gate (gate), the identifier
of the next position (posNext), the identifier of the gate
(posGate), and a state attribute that describes whether
the train is moving or waiting (wait).

Train

posNext: _

posGate: _

wait: false

curr

next

gate

Rsegm

Rsegm

Gate

nextr

Rsegm

station: _
id: _
busy: _

Rsegm
nextr

Gate

open: false

TravelingTrainIni RSegIni GateIni10

Figure 2. Initial Graphs Templates

Trains may receive four kinds of messages: Wait, Go,
OpenGate and Traveling. Messages OpenGate and
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Train
wait: falsenextRsegm

Traveling

Train
wait: falsenextRsegm

MayGo?
t

R1-T

Train
wait: falsenextRsegm

Traveling

Train
wait: truenextRsegm

R2-T

Wait10

Train
wait: bnextRsegm

Wait

Train
wait: falsenextRsegm

MayGo?
t

R3-T

Train
posNext: n
posGate: g

nextRsegm:N

Go

R4-T
n<>g

currRsegm:C

Rsegm:X
nextrs

idx

Rsegm:N curr

Rsegm:X

Rsegm:C

Train
posNext: x
posGate: g

Traveling10

next

Leaving

Train
posNext: n
posGate: g
wait: false

GateGate

Go

R5-T
n=g

Rsegm:X
nextrs

idx

Train
posNext: n
posGate: g
wait: true

GateGate

OpenGateRsegm:X
nextrs

idx

32

Open

Train
posNext: n
posGate: g
wait: true

nextRsegm:N

R6-TcurrRsegm:C

Rsegm:X

Rsegm:N curr

Rsegm:X

Rsegm:C

Train
posNext: x
posGate: g
wait: false

Traveling10

next

Leaving
OpenGate

nextrs

idx

Figure 3. Train Rules

Go have parameters. The initial graph template TrainIni
in Figure 2 describes that initially a train must be con-
nected to two instances of RSegm, one of Gate, and has
a pending Traveling message (this message will trigger
the movements of the train). The attribute wait is ini-
tialized to false. To create an object of this class, four
arguments are need to instantiate this template: a natu-
ral number (posGate), two railroad segments (curr and
next) and one gate (gate).

The behavior of the Train entity is modeled by the
rules shown in Figure 3. Rule R1-T describes that, when
receiving a message Traveling, a train tries to travel to
the railroad segment pointed by its next attribute. This is
modeled by the message MayGo? at the right-hand side
of the rule asking permission to enter this segment. Rule
R2-T chooses to wait at least 10 time units before trying
to travel. Since both rules delete the same message, for
each message, one will be non-deterministically chosen
to be applied. Rule R3-T models that, when receiving a
Wait message, the train asks permission to enter the next
railroad segment. Rule R4-T describes the movement of a
train: it updates its attributes, sends a Traveling message
to itself to be received in (at least) 10 time units (simulat-
ing the time needed to reach the end of this segment) and
sends a message to the segment it was in to inform that
this train is leaving. Note that this rule has a condition
n<>g, expressing that this movement may only occur if
there is no gate g to enter the next position n. If there is
a gate, message Go will be treated by rule R5-T, that re-
quires the gate to open immediately (the Open message
is scheduled to arrive exactly in the next time unit (with-
out delay)). The application of rule R5-T also generates
a message OpenGate, that shall arrive between 2 and 3
time units (the time needed for the gate to open), and will
trigger rule R6-T, that will then move the train to the next
position.

Railroad Segment Entity: this graph grammar is
depicted in Figure 1 (type graph), Figure 2 (initial
graph template RSegIni) and Figure 4 (Railroad Segment
Rules). The type graph describes that each railroad seg-
ment keeps the information about its identifier (attribute
id: Natural), its neighbour (the reference nextr), its state
(busy:Boolean) and the knowledge whether it is a station
or not (station:Boolean). The initial graph is given by
two consecutive RSegm instances. Instances of RSegm
can react to messages MayGo?, telling a train that it can
either move to it (rule R2-R) or that it should wait at least
10 time units (rule R1-R), and to messages Leaving, up-
dating its busy attribute (rule R3-R).

Gate Entity: the specification of the Gate Entity is
shown in Figure 1 (type graph), Figure 2 (initial graph
template GateIni) and Figure 4 (Gate Rules). The type
graph indicates that gates have one attribute open that de-
scribes whether the gate is opened or closed. By rule R1-
G, if the gate is requested to open, its closure is scheduled
to occur between 5 and 8 time units, i.e. all open requests
cause a delay in closing the gate. By rule R2-G, if the
gate is opened and there is a close request, attribute open
is modified to false.

3. SEMANTICS OF TIMED OBJECT
BASED GRAPH GRAMMARS

As discussed in the previous section, the semantics of
graph grammars is based on rule applications. First, we
give the formal definitions of how these rule applications
are obtained in the untimed graph grammars. Then, we
explain how these rule applications can be enhanced to
handle time. The resulting semantic model will be a
transition system in which states correspond to reachable
graphs (equipped with clocks) and transitions describe
rule applications or the elapse of time.
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Figure 4. Railroad Segment Rules and Gate Rules

Rule Application, Computation. Given a rule r and a
state G, we say that this rule is applicable in this state if
there is a match m, that is, an occurrence of the left-hand
side of the rule in the state. We denote such rule applica-

tion by G
(r,m)
=⇒ H .Graphs G and H are called input and

output graphs of this rule application. A rule application
means that all items that are in the left-hand side of the
rule and not in the right-hand side will be deleted from
G, and all items that are in the right-hand side of r but
not in its left-hand side will be included in G (formally,
this effect can be described by a pushout in suitable cat-
egories of graphs). In a graph, there may be various ver-
tices/edges with the same types. This means that the same
rule may be applicable to a graph using different matches.
A computation of a graph grammar is a sequence of rule
applications starting with the initial graph of the grammar,
and in which the output graph of one rule application is
the input graph of the next one. We say that a graph (or
state) G is reachable if there is a computation in which
the output graph of the last rule application is G.

DEFINITION 7 (RULE APPLICATION, COMPUTATION)
Let OBGG = (Spec,X,C, IG,N, n) be an object-
based graph grammar, (r : L → R,Eq) be a rule, and
G be a typed graph over C. A match for r in G is a
total morphism m : L → G in OBGraph(C). A rule
application G

(r,m)
=⇒ H using rule r and match m is a

pushout in the category OBGraph(C). The morphism
r′ : G→ H is called derived rule.

L R

G H

r //
_

m

²²
m′

²²

r′
//

(PO)

A (finite) computation of OBGG from IG to H , de-
noted by IG ∗=⇒ H , is a sequence of rule applications

Gi
(ri,mi)=⇒ Gi+1, i ∈ {0, . . . , n}, n ∈ N, whereG0 = IG,

Gn = H and ri ∈ Rules(C) for all i ∈ {0, . . . , n}.
Infinite computations are defined analogously, with i ∈
N. The class of all computations of OBGG is denoted
by CompOBGG. The class of all reachable graphs in
CompOBGG is defined by StateOBGG = {G | G =
IG ∨ IG ∗=⇒ G ∈ CompOBGG}.

An example of a rule application is shown in Figure 5.

Gate
open: false
stay: 0

R1-GOpen

Gate
open: true
stay: 1

Close

Gate
open: false
stay: 0

Gate
open: true
stay: 1

m m

L R

G H

Open Close

Figure 5. Example of a Rule Application

Typically, the semantics of a system described using
a graph grammar is a transition system where the states
are graphs and the transitions describe the possible rule
applications. This semantics, however, does not take into
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consideration any time restrictions. In order to define the
transition system that gives semantics to a timed object-
based graph grammar, we make an extension of the usual
semantics, including clocks on states and allowing only
rule applications that respect time restrictions.

Time is handled in the following way: a clock is
assigned to each timed message, that is, to each message
that is generated with some time constraint (minimum
and/or maximum delivery time). This clock is initialized
with zero, and, as time advances, the clock eventually
reaches the minimum/maximum time. One requirement
that is imposed on the semantic model is that all clocks
advance simultaneously. This requirement implies that
the relations among delivery times of messages in a state
are preserved in the subsequent states, and this assures
that the time constraints of the system are adequately
modeled. Note that this does not impose a serious
restriction in practice, since we are just assuming that
clocks count the time in the same units and never stop
until they are deallocated (in particular, this does not
mean that we have a global notion of time).

Timed State. In the semantical model proposed here,
states are described by tuples (G,ClocksG,mc

G, valG),
where G is a timed object-based graph, ClocksG is a set
of clock names, a function mcG associates a clock with
each timed message of G, and a function valG associates
a time (natural number) with each clock.

DEFINITION 8 (TIMED STATE) Given a timed object
based graph grammar TOBGG = (Spec, X,C, IG,N,
n) and a timed graph G over C. The tuple SG =
(G,ClocksG,mc

G, valG) is called a timed state if (i)
ClocksG is a set of clock names; (ii) the partial func-
tion mcG : mEG → ClocksG, called clock assignment
function, is injective and total on timed messages of G;
(iii) the total function valG : ClocksG → N, called in-
terpretation or value function, assigns a time with each
clock of SG.

Timed Computations. A state change of a TOBGG can
be obtained in two ways: by an application of a rule of a
TOBGG or by elapse of time. In both cases, time restric-
tions must be obeyed: in the case of rule applications, it
must be assured that a message will be treated only within
its delivery time (this is guaranteed by suitable definition
of match for timed rules); in the case of time elapse, the
maximum treatment time of all messages should not be
violated (this is guaranteed by forbidding computations
that would lead to inconsistent states, that is, states that
do not satisfy the time restrictions). A timed computa-
tion is defined by a sequence of such state changes (cor-
responding to rule application or time elapse). Therefore,
by construction, a timed computation guarantees that time

restrictions will never be violated.

DEFINITION 9 (TIMED RULE APPLICATION) Let
TOBGG = (Spec,X,C, IG,N, n) be a timed object-
based graph grammar, (r : L → R,Eq) be a rule,
and SG = (G,ClocksG,mc

G, valG) be a timed
state. A match for r in SG is a total morphism
m : L → G in OBGraph(C) such that if trigger(r) is a
timed message then (i) valG(mcG(mE(trigger(r)))) ≥
tGmin(mE(trigger(r))); (ii)valG(mcG(mE(trigger(r))))
≤ tGmax(mE(trigger(r))).

A timed rule application SG
(r,m)
=⇒ SH using

rule r and match m generates a timed state SH =
(H,ClocksH ,mc

H , valH) obtained as follows: H
is the graph resulting from application of rule r at
match m in graph G; ClocksH = ClocksG −
{mcG(mE(trigger(r)))} ∪ {ci|i is a message created
in H}; for each timed message msg of mEH

mcH(msg) =
{
mcG(msg) , if msg was preserved by r
cmsg , if msg was created by r

and for each clock name c ∈ ClocksH corresponding to
a message msg of H

valH(c) =
{
valG(c) , if msg was preserved by r
0 , if msg was created by r

DEFINITION 10 (TIMED COMPUTATION) A (finite)
timed computation of a timed object-based graph
grammar TOBGG = (Spec,X,C, IG,N, n) between
timed states SIG and SH , denoted by SIG

∗=⇒ SH , is a
sequence of transitions SGi

lab=⇒ SGi+1 , i ∈ {0, . . . , n},
n ∈ N, where G0 = IG, SGn = SH and lab can be:

(ri,mi) : in this case, Gi
(ri,mi)=⇒ Gi+1 must be a rule

application of rule r at match m;

δ : a non-negative value corresponding to the elapse
of time from state SGi to state SGi+1 . In this
case, SGi+1 is obtained as follows: Gi+1 = Gi,
ClocksGi+1 = ClocksGi , mcGi+1 = mcGi ,
valGi+1(c) = valGi(c) + δ, for all c ∈ ClocksGi+1 .
This transition may only occur in case the following
restriction is satisfied: for all timed message msg of
Gi with corresponding clock cmsg ,

t ≤ tGi
max(msg), where

valGi(cmsg) < t ≤ valGi+1(cmsg).

Infinite computations are defined analogously, with i ∈ N.
The class of all timed computations of TOBGG is de-
noted byCompTOBGG. The class of all reachable graphs
in CompTOBGG is defined by StateTOBGG = {G |G =
IG ∨ IG ∗=⇒ G ∈ CompTOBGG}.
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Figure 6. (Part of the) Transition System for the Railroad System

Semantics of TOBGG.
Now, the semantics of timed object-based graph

grammars can be defined: it is a transition system in
which states are timed states and transitions correspond
to rule applications that respect time restrictions (mini-
mum/maximum delivery times of the message handled by
the rule), or transitions that update clocks (all clocks si-
multaneously). The latter should also respect message de-
livery time restrictions: a clock can only be updated if the
maximum time of the corresponding message is not vio-
lated. By construction, this transition system corresponds
to the class of all timed computations of a TOBGG.

DEFINITION 11 (SEMANTICS OF TOBGG) Given a
timed object-based graph grammar TOBGG = (Spec,
X,C, IG,N, n), its semantics is the transition system
TS = (IS, States, Lab, Tran) defined by:

Initial State: IS = (IG,ClocksIG,mc
IG, valIG)

where ClocksIG = {cmsg|msg is a timed message
of IG}; mcIG(msg) = cmsg , for all timed mes-
sages msg of IG; valIG(c) = 0, for all clocks
c ∈ ClocksIG.

States: The set of states contains all states S that
are reached by timed computations that is
StatesTOBGG (see Def. 10).

Transitions: A transition S1 lab=⇒ S2 is in Tran if there
exists a timed computation tcomp of TOBGG start-
ing at IS that contains this transition.

Lab : is the set of all labels of transitions in Tran.

Figure 6 illustrates part of the transition system ob-
tained for the Railroad System presented in Subsection
2.2. Rectangles represent states and arrows model tran-
sitions (state changes). States are composed by a graph
G and by functions mcG and valG (represented in the
lower part of rectangles), that associate, respectively, a
clock with each timed message of graph G and a time
with each clock. Transitions labeled by a non-negative
value correspond to state changes due to elapse of time
and transitions labeled by a rule name correspond to state
changes caused by the application of the respective rule.
For example, from the initial state IG to state G0 the tran-
sition labeled by 12 just updates clock1, and the transition
from G0 to G2 corresponds to the application of rule R2-
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T. In the latter case, Traveling is the trigger message (it
is consumed) and a timed message Wait is created. The
clock associated with this message, clock2, is initialized
with zero.

To be able to perform automatic verification of timed
object-based graph grammars, we translate each TOBGG
to an equivalent timed automaton, and use the existing
tools to verify properties of timed automata to check the
TOBGG. Since our semantic definition for TOBGG was
highly inspired by timed automata, the comparison of the
transition systems generated by TOBGG and timed au-
tomata is straightforward.

4. TIMED AUTOMATA
Timed Automata [1, 4] are used to specify and verify

real-time systems. To express the behavior of a system
with time restrictions, Timed Automata extend Nonde-
terministic Automata with a finite set of clocks. In this
model states and transitions are associated to clock con-
straints. A clock constraint is a conjunction of atomic
constraints, which compare clock variables with a con-
stant value (a nonnegative rational value). Formally, let x
be a clock in a set Clocks of clock variables and c be a
constant inQ, then the set φ(Clocks) of clock constraints
ϕ is defined by the grammar:

ϕ := x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2,

A clock constraint associated to a state (named in-
variant) indicates how many time units the system may
remain on a certain state. The constraint of a transition
represents its activation conditions. Moreover, each tran-
sition is associated to a set (possibly empty) of clocks that
are reset with the occurrence of this transition.

DEFINITION 12 (TIMED AUTOMATON) A timed au-
tomaton TA is a tuple (L,L0,Σ, Clocks, I, E), where:

• L is a set of states;

• L0 ⊆ L is a set of initial states;

• Σ is a set of labels;

• Clocks is a finite set of clocks;

• I is a mapping that labels each state s inLwith some
clock constraint in φ(Clocks);

• E ⊆ L × Σ × 2Clocks × φ(Clocks) × L is a set
of transitions. Each tuple (s, a, ϕ, λ, s′) represents a
transition from state s to a state s′ labeled with a. ϕ
is a clock constraint over Clocks that specifies when
the transition is enabled (it may be the empty con-
straint ε), and the set λ ⊆ Clocks gives the clocks
to be reset with this transition.

( a, ,{x} )e

( b,x>2,{ } )

s0 s1

_

x<4

Figure 7. Timed Automaton

Figure 7 shows an example of a timed automaton
where s0 and s1 represent the states of the system. The
clock constraint x < 4 in state s1 means that the system
can remain in this state while the clock value x is less
than four. The transitions are (s0, b, x ≥ 2, { }, s1) and
(s1, a, ε, {x}, s0).

To each timed automaton TA we can associate a cor-
responding transition system [1]. The possible transitions
are the ones specified in TA, and transitions that incre-
ment the clocks (all clocks are incremented simultane-
ously). All transitions and reachable states must satisfy
the time restrictions.

Formally, the semantics of a timed automatonA is de-
fined by associating a transition system SA with it. Each
state of SA is a pair (s, val), such that s is a location of
A and val is a clock interpretation for Clocks such that
val satisfies the invariant I(s). The set of all states of A
is denoted by QA. A state (s, val) is an initial state if s is
an initial location of A and val(x) = 0 for all clocks x.
There are two types of transitions in SA [1]:

Time elapse: for a state (s, val) and a real-valued time
δ ≥ 0, (s, val) δ−→ (s, val + δ) if for all δ ≥ δ′ ≥ 0,
val + δ′ satisfies the invariant I(s);

Automaton transition: for a state (s, val) and a transi-
tion (s, a, φ, λ, s′) such that v satisfies φ, (s, val) a−→
(s′, val[λ := 0]).

Thus, SA is a transition system with label-set Σ ∪ R.

5. TRANSLATION OF TIMED OBJECT
BASED GRAPH GRAMMARS TO TIMED AU-
TOMATA

In this section we define formally how to obtain a
timed-automaton that grasps this idea of behavior of
timed OBGGs. If the initial state, the set of rules and the
set of reachable states of a grammar are finite2, a finite
timed automaton is generated. However, we can only
define a timed automaton for grammars that reach states
with a bounded number of messages (because the number
of clocks in an automaton is fixed). If we consider

2We assume that we have only one representative for each isomorphism
class of graphs in the set of reachable states.
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Figure 8. (Part of the) Timed Automaton for the Railroad System

finite-state systems (that are the ones that are possible
to automatically verify), this imposes no restriction.
To define this automaton, states are described by pairs
(G,msgclockG), where G is a timed object-based graph
and msgclockG is defined as follows:

Clock assignment function (msgclock): Given a graph
G and a set of clocks Clocks, the clock assignment
function msgclockG : mEG → Clocks is a partial
injective function that assigns a clock to each timed
message of G (analogous to definition of function
mc in Def. 8);

x-tmessage bounded graph grammar: Grammar GG
is x-tmessage bounded, where x is a natural number,
if there is no reachable state of GG in which there
are more than x timed messages.

DEFINITION 13 (TRANSLATION OF TOBGG TO TA)
Let TOBGG = (Spec,X,C, IG,N, n) be an x-

tmessage bounded timed object-based graph grammar.
The translation of TOBGG to the timed automaton
TA = (L,L0,

∑
, Clocks, I, E) is given by:

• L = {(G,msgclockG)|G is reachable in TOBGG
and msgclockG is a clock
assignment function};

• L0 = (IG,msgclockIG);

• ∑
= N ×Mor(timedOBGraph(C))3;

• Clocks = {clock1, ..., clockx};

• I(G,msgclockG) is the conjunction of all formulas
val(msgclockG(msg)) ≤ tGmax(msg), with msg ∈
mEG and tGmax(msg) ∈ N;

• E is the set of all transitions ((G,msgclockG), a, ϕ,
λ, (H,msgclockH)) such that

3Mor(timedOBGraph(C)) is the class of all morphisms in the cat-
egory timedOBGraph(C). Labels of transitions of TA are pairs of rule
names and matches (that are morphisms in timedOBGraph(C)).
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Figure 9. Examples of Initial States

– ∃ a rule application G
(r,m)
=⇒ H , let

trigger(r) = msg and msgclockG(msg) =
c;

– a = (r,m),

– ϕ =





(val(c) ≥ tGmin(msg)) , if tLmin(msg)
is defined

ε , if tLmin(msg)
is undefined

– λ is the set of clocks assigned to the timed mes-
sages created by the rule application.

The clock constraint (invariant) (val(c) ≤
tmax(msg)) on states (I(s)) assures that the system
may stay in state s at most until the clocks of all timed
messages of s are less than their respective maximum
time limits (because after this time, there will be at least
one message in s that was not delivered in time). The
clock constraint on transitions ϕ assures that, if a message
has a minimum time to be delivered (tLmin(msg)), it will
not be processed before this time, if a message does not
have such restriction, it may be processed at any time (the
restrictions on maximum times for delivery are modeled
by function I , as described above). Moreover, λ indicates
which clocks shall be reset with the transitions, these are
all the clocks used in the newly created timed messages
in the target state of the transition.

Now, this construction is illustrated by an example.
Figure 8 shows a (partial) timed automaton (TA) that was
obtained from translation of example in Subsection 2.2.
The initial state of TA is the state IG. G1, G2, G6, G7,
G13, G14, G15 and G16 are some states of the automa-
ton TA (that are obtained with rules application from IG).
The time constraints were inserted following Definition
13. The complete timed automaton for this example has
36 states and 40 transitions. In the graph representations
the matches are omitted.

Due to the construction of the timed automaton
based on rule applications over reachable states of
TOBGG, this semantics is compatible with a tradi-
tional semantics based on sequences of rule applica-

tions presented in Section 3: whenever there is a transi-
tion ((G,msgclockG), (r,m), ϕ, λ, (H,msgclockH)) in
the timed automaton, there is a corresponding transi-
tion from graph G to graph H corresponding to ap-
plying rule r using match m to graph G. The con-
verse is also true because timed rule applications always
respect the minimum/maximum delivery times of mes-

sages, that is, a timed rule application SG
(r,m)
=⇒ SH

can always be translated to a corresponding transition
((G,msgclockG), (r,m), ϕ, λ, (H,msgclockH)), where
the clock assignment functions are basically the same (up
to renaming of the used clocks). Note that, in the TO-
BGG transition system there is no limit in the number
of created clocks, whereas in timed automaton there is
a fixed set of clocks. Therefore, this full semantical com-
patibility can be achieved only for grammars that do not
generate an unbounded number of timed messages (since
there is a clock for each timed message, such grammars
would have to be translated to timed automata with infi-
nite number of clocks, and this is not possible according
do the definition of timed automata). The transitions that
correspond to time elapse in both semantical models are
defined basically in the same way: they must guarantee
that maximum delivery times of messages will not be vi-
olated. Thus, the resulting transition systems will have
exactly the same time elapse transitions.

In Figure 9 we present two other possibilities of initial
states (IG1, IG2) for the example in Subsection 2.2. Note
that if we change the initial state, we are actually speci-
fying a new system, since the properties that may or not
hold are highly dependent on the state the system starts to
execute. Graph IG1 presents a situation in which there is
only one train traveling in a circular railroad consisting of
two segments (called 1 and 2), and with a gate that should
be opened to allow the passage from segment1 to seg-
ment 2. The timed automaton that represents the TOBGG
with the initial graph IG1 has 21 states and 24 transitions.
Graph IG2 models a circular railroad with 3 segments in
which two trains are traveling. It also contains one gate.
For the TOBBG with initial graph IG2, the timed automa-
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Figure 10. (Part of the) Timed Automaton for the Initial Graph IG1

ton has 123 states and 264 transitions. These numbers do
not consider unreachable states and transitions.

6. VERIFICATION

For simulation and verification of properties of real-
time systems we chose to use Uppaal (version 3.4.11) [3],
a toolkit developed by Uppssala University and Aalborg
University. Uppaal is a tool for validation (via graph-
ical simulation) and verification (via automatic model-
checking) that has timed automata as the input language
and a subset of CTL as the specification language. The
simulator can be used in three ways: the user can run
the system manually and choose which transitions to per-

form, the random mode can be toggled to let the system
run on its own, or the user can go through a trace (saved
or imported from the verifier) to see how certain states
are reachable. The verifier is designed to check a subset
of CTL (Computation Tree Logic). The formulas to be
checked must be in one of the following formats:

• A[]φ: for all paths, φ always hold;

• E <> φ: there exists a path where φ eventually
holds;

• A <> φ: for all paths, φ will eventually hold;

• E[]φ: there exists a path where φ always holds;
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Figure 11. (Part of the) Timed Automaton for the Initial Graph IG2

• φ − − > ψ: whenever φ holds ψ will eventually
hold.

where φ e ψ are Boolean expressions that can refer to
states, integer variables and clocks constraints. The word
deadlock can be used to verify deadlocks.

Safety properties mean that something bad will never
happen. To check these properties in Uppaal, we use the
forms A[]φ or E[]φ. For example, the property A[] not
deadlock was checked for the railroad system of section
2.2 (with initial graph IG (Figure 8)) and was satisfied.
This indicates the absence of deadlock for all paths of the
system.

Reachability properties are the simplest forms of
properties. They specify whether a given property φ can
be satisfied in some reachable state. The form E <> φ
is used to check these properties. For example, we can
check if there is one path in which state G7 of automaton
TA in Figure 8 (that represents the situation when train
asks permission to pass to the railroad segment identified
with id 3) is reachable and clock2 has a value less than
10 time units (E <> TA.G7 and clock2< 10). This
property was checked and was not satisfied because when
the system reaches state G7, the value of clock2 must be
already greater than 10 (this is the condition of the transi-

tion to reach this state).
Liveness properties are used to check if something

good will eventually happen. These properties are ex-
pressed by the forms A <> φ and φ − − > ψ. For
example, TA.G13−− >TA.G16 means that if state G13
of TA occurs, then G16 will occur, too. This establishes
that if the train can travel to a railroad segment that has
a gate (situation represented by state G13) the gate will
eventually open and the train will travel to this segment
(represented by state G16). This property is satisfied by
the example.

Graph IG1 of Figure 9 illustrates a state with one train,
two railroad segments and one gate. Considering this ini-
tial state and the same rules for the behavior of trains, gate
and railroad segments, we obtain a TOBGG whose corre-
sponding timed automaton is partially depicted in Figure
10 . For this system, we verified the following properties:

• A[] not deadlock: the system never deadlocks, that
is, in any reachable state, there is always a rule that
can be applied.

• TA1.G3−− >TA1.G4: the train always requests the
opening before passing a gate. In this case, G3 cor-
responds to the state in which there is a gate to en-
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ter the next railroad segment and G4 is the state in
which the gate receives the opening request.

• E <> TA1.x: the unreachability of some states. In
this formula, x corresponds to a state which is not
reachable due to clock constraints. For example,
considering x = G6, the property is not satisfied.
State G4 which originates G6 possesses two timed
messages: Open that must be handled immediately
and OpenGate that must be handled in at least 2
time units and in at most 3 time units. Therefore, re-
specting the clock constraints only state G5 can be
reached. The property x = G9 is not satisfied either,
since state G7 which originates G9 has the message
Leaving which must be handled in current time.

For the automaton that represents the TOBGG with
IG2 as initial graph (Figure 9, with two trains, three rail-
road segments and one gate), we verified the following
properties (Figure 11 shows part fo the timed automaton
obtained for this example):

• A[] not deadlock: the system never deadlocks.

• TA2.G8−− >TA2.G5: a train doesn’t enter a rail-
road segment with another train. Here, G8 repre-
sents a state in which a train tries to enter a segment
(which is not a station) which is already occupied by
another train. In G5 the train receives a message to
wait until the other train leaves the segment.

• TA2.G12−− >TA2.G17: when a train leaves a rail-
road segment, the segment is released. This property
establishes that if a train has left a segment (situa-
tion represented by state G12), the segment will be
eventually released (represented by state G17).

7. FINAL REMARKS
In this paper we introduced Timed Object-Based

Graph Grammars (TOBGGs), an extension of Object-
Based Graph Grammars that includes the notion of time,
allowing the specification and analysis of real-time sys-
tems. Time stamps on the messages describe when they
are to be delivered/handled. A translation of TOBGG
to Timed Automata provided a way to verify proper-
ties over TOBGG specifications using the Uppaal model-
checker. The main reason for extending Object-Based
Graph Grammars is that, besides being formal, they are
quite intuitive even for people not used to formal de-
scription languages. This is an advantage of graph gram-
mars comparing to other specification methods such as
real-time process algebras and Timed Petri Nets, since
the object-based style is really appealing and is the most
widely used in practice. The specification style proposed

here is specially suitable for reactive systems, and this
feature is not common in other object-based formalisms
because they typically offer only synchronous message
passing schemes. Our choice of having asynchronous
communication allows a natural description of reactive
systems, but has the drawback that when synchronous
communication is needed, the specifier has to explicitly
introduce state variables and messages with correspond-
ing rules to assure that an object remains blocked until
a message arrives indicating that another object is syn-
chronized with it (simulating this way a synchronous mes-
sage passing scheme). The choice of specification method
shall always take into account the main characteristics of
the application being modeled, and also the features of-
fered by the specification formalism. For inherently syn-
chronous systems, formalisms based on process algebras
may be more adequate. For asynchronous systems, TO-
BGGs have the advantage over timed Petri nets or timed
automata because of the object-based style (that naturally
leads to a modular structure of a system).

Since there exists already a rich theory of concurrency
for graph grammars [25, 13], it would be interesting to in-
vestigate to which extent main results can be obtained in
the case of timed OBGGs. Another topic of future work
is how to lift constructions like the compositional verifi-
cation method introduced in [24] and the inheritance and
polymorphism concepts [15] to TOBGGs.
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