
FEDERAL UNIVERSITY OF RIO GRANDE DO SUL
INFORMATICS INSTITUTE

BACHELOR OF COMPUTER SCIENCE

LUIZA DE SOUZA

Conception and Implementation of a Tiny
Smart Environment Platform

Graduation Thesis

Prof. Dr. Cláudio Fernando Resin Geyer
Advisor

PhD Student Valderi Reis Quietinho Lei-
thardt, Sebastian Wille
Coadvisor

Porto Alegre, January 2013

CIP – CATALOGING-IN-PUBLICATION

de Souza, Luiza

Conception and Implementation of a Tiny Smart Environment
Platform / Luiza de Souza. – Porto Alegre: Graduação em Ciência
da Computação da UFRGS, 2013.

99 f.: il.

Graduation Thesis – Federal University of Rio Grande do Sul.
BACHELOR OF COMPUTER SCIENCE, Porto Alegre, BR–
RS, 2013. Advisor: Cláudio Fernando Resin Geyer; Coadvisor:
Valderi Reis Quietinho Leithardt, Sebastian Wille .

1. TinySEP. 2. Smart environment platform. 3. Ambient as-
sisted living. 4. Ambient intelligence. 5. Monolithic systems.
6. Platform-based systems. 7. Driver model. 8. Signal-slot model.
I. Geyer, Cláudio Fernando Resin. II. , Valderi Reis Quietinho
Leithardt, Sebastian Wille. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitora de Graduação: Profa. Valquiria Link Bassani
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do CIC: Prof. Raul Fernando Weber
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“ The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life until

they are indistinguishable from it.”
— MARK WEISER

ACKNOWLEDGEMENTS

I would like to thank my parents. They are the base of my life. They have always
believed in me even when I did not. Thank you so much for always invest in my education,
for all support and love. The day is coming when you can proudly say that all your
children are graduated. For sure a part of this achievement is yours. I would like to thank
my brothers for always being an example for me, I have always looked up to you. I
would like to thank to all my uncles and aunts, specially my aunt Maria Alice, my second
mother, for all the support and love.

I would like to thank the Federal University of Rio Grande do Sul (UFRGS), spe-
cially Informatics Institute, for the excellence with which you conduct everything in the
educational process. I would like to acknowledge the Profa. Dra. Taisy Weber and the
Prof. Dr. Valter Roesler for being more than professors to me, thank you for being my
friends. I would like to thank the Prof. Dr. Cláudio Fernando Resin Geyer, my advi-
sor, and the Dipl.-Inf. Valderi Reis Quietinho Leithardt, my co-advisor, for the important
contributions and the helpfulness in this work since I arrived back in Brazil.

I would like to thank, the Prof. Dr.-Ing. Norbert Wehn and Martina Jahn for giving
me the outstanding opportunity of studying in their excellent research group, in Germany.
I would like to, specially, thank the Dipl.-Ing. Sebastian Wille, my co-advisor, who had
lots of patience and dedication to help me in every detail of this work, being not only an
co-advisor, but a friend.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 9

LIST OF FIGURES . 11

LIST OF TABLES . 13

ABSTRACT . 15

RESUMO . 17

1 INTRODUCTION . 19
1.1 Motivation . 21
1.2 Goal . 22
1.3 Text Structure . 23

2 STATE OF ART . 25
2.1 Requirements of an AAL Platform . 25
2.2 Related Works . 27
2.2.1 Monolithic Systems . 27
2.2.2 Platform-based Systems . 28
2.3 Comparison of Fulfilling the Requirements 29
2.4 Simulator . 29
2.4.1 MCA2 . 30
2.4.2 SimVis3D . 31
2.4.3 Siafu . 32

3 TINYSEP: MODEL . 35
3.1 Driver Model . 36
3.2 Signal Slot Model . 36
3.3 Device Manager . 38
3.4 Runtime Changes . 42
3.5 Hardware and Software Integration . 43
3.6 House Information . 45
3.7 System Backup . 47
3.8 Sketch of the TinySEP GUI . 49
3.9 The Hardware Behind TinySEP . 50
3.9.1 AmICA . 50
3.9.2 Sun SPOT . 53

4 TINYSEP: PROTOTYPE . 57
4.1 Driver Model . 58
4.2 Signal Slot Model . 59
4.3 Device Manager . 61
4.4 Applications . 61
4.4.1 Hardware Connection . 62
4.4.2 Hardware Abstraction . 63
4.4.3 Intermediate Services . 65
4.4.4 Ambient Assisted Living Services . 67

5 PLATFORM EVALUATION . 71
5.1 Performance Analysis . 71
5.2 Sensor Nodes Signal Range Analysis . 75
5.2.1 AmICA Sensor Nodes . 76
5.2.2 Sun SPOT Sensor Nodes . 76
5.3 TinySEP in the Real-world . 78
5.4 System Simulations . 78
5.4.1 Simple UDP/IP Simulator . 78
5.4.2 MCA2/SimVis3D . 80
5.4.3 Siafu . 82

6 CONCLUSION . 85

REFERENCES . 87

APPENDIX A TINYSEP INTERFACES 93
A.1 IBusRadioAmICA Interface . 93
A.2 IBusRadioSUNSpot Interface . 93
A.3 IMovement Interface . 94
A.4 IWindow Interface . 94
A.5 IDoor Interface . 95
A.6 ISimpleLight Interface . 95
A.7 IDimmableLight Interface . 96
A.8 IHeater Interface . 96
A.9 ISpeaker Interface . 97
A.10 ITemperature Interface . 97
A.11 ILightBrightness Interface . 97
A.12 IFlatOccupancy Interface . 98
A.13 IHouseInformation Interface . 98
A.14 IMailManager Interface . 99
A.15 ITimeController Interface . 99
A.16 IInactivityRecognition Interface . 99

LIST OF ABBREVIATIONS AND ACRONYMS

DB Database

IP Internet Protocol

AAL Ambient Assisted Living

AmI Ambient Intelligent

DLL Dynamic Link Library

GUI Graphical User Interface

IDE Integrated Development Environment

LED Light-Emitting Diode

PNG Portable Network Graphics

SEP Smart Environment Platform

UDP User Datagram Protocol

UID Unique Identifier

USB Universal Serial Bus

WSN Wireless Sensor Network

XML Extensible Markup Language

MCA2 Modular Controller Architecture Version 2

SANET Sensors-Actuators NETwork

TinySEP Tiny Smart Environment Platform

LIST OF FIGURES

Figure 1.1: Interaction between sensor nodes and actuator nodes on a smart en-
vironment. 20

Figure 1.2: The percentage of elderly on the Brazilian total population. 21

Figure 2.1: Side Effect of Over-Using Assistive Devices (Karlsson 1996). 27
Figure 2.2: Example structure of MCA2 modules and groups. 31
Figure 2.3: 3D-Visualization of Ravon with overlaid navigation graph (Hirth et al. 2007). 32
Figure 2.4: A snapshot of Siafu being used to simulate a city. 32
Figure 2.5: The upper figure illustrates a background map, while lower figure

represents the wall map. 33

Figure 3.1: The three basic functions that compose the main characteristic of
event-driven applications . 37

Figure 3.2: TinySEP Interfaces . 38
Figure 3.3: TinySEP example scenario: after creation of the "FlatOccupancy"

Device. 39
Figure 3.4: TinySEP example scenario: after removal of the "BusRadioAmica"

Device "Type: Movement". 41
Figure 3.5: TinySEP drivers XML file. 42
Figure 3.6: TinySEP example scenario: after the integration of new hardware. . . 44
Figure 3.7: The systematization of a house plan into a XML file. 46
Figure 3.8: TinySEP example scenario: after the integration of the "HouseInfor-

mation" device. 47
Figure 3.9: The configuration GUI from the "HouseInformation" device. 48
Figure 3.10: A possible sketch of the TinySEP GUI. 49
Figure 3.11: AmICA WSN sensor node; without (left) and with (right) housing. . . 51
Figure 3.12: A modified AmICA sensor node, that was built on a board with a

USB port for power supply. 51
Figure 3.13: Packet description of the AmICA node protocol. 53
Figure 3.14: Sun SPOT sensor node. 53
Figure 3.15: Packet description of the Sun SPOT node protocol. 55

Figure 4.1: The project structure from a TinySEP application. This project is
composed by 3 classes, one for the device, another for the driver and
the last one is for the configuration graphical user interface. 59

Figure 4.2: Connection establishment between a Device A and a Device B using
the IMovement interface. 60

Figure 4.3: TinySEP applications layers. 62

Figure 4.4: The flat occupancy algorithm used by the Flat Occupancy device to
verifies if there is at least someone at the house or not. 66

Figure 4.5: The algorithm used by the Inactivity Recognition device to detects if
the person suffers an accident and need help. 68

Figure 5.1: Graphical representation of the CPU average rate used to perform the
tests in each scenario. 73

Figure 5.2: Graphical representation of the memory usage average value used to
perform the tests in each scenario. 73

Figure 5.3: Graphical representation of the CPU rate obtained with the execution
of the Scenario 5. 74

Figure 5.4: Graphical representation of the memory usage obtained with the ex-
ecution of the Scenario 5. 75

Figure 5.5: Illustration of the flat that was used to perform the signal range analysis. 75
Figure 5.6: Illustration of the three inhabited flats used to perform the real-world

evaluations; flat A (left), flat B (right) and flat C (bottom). 77
Figure 5.7: The Simple UDP/IP simulator. 79
Figure 5.8: Example of a mail sent to inform that an inactivity was detected. . . . 79
Figure 5.9: Layout plan of the flat with sensor and actuator positions. “M” indi-

cates a movement sensor, “D” a door sensor (reed switch) and “L” a
light. 80

Figure 5.10: High-Level interconnection diagram of the robotic frameworks (MCA2
and SimVis3D) and TinySEP. 80

Figure 5.11: The flat equipped with the TinySEP framework as seen in the SimVis3D
visualization. 81

Figure 5.12: Example scenario including a pet and a person provided by the robotic
frameworks. 81

Figure 5.13: Illustration of the flat used in the simulations with the Siafu simulator. 82
Figure 5.14: Relational structure from TinySEP, Siafu and the Time Synchronizer. 83
Figure 5.15: Example scenario of the usage of Siafu to perform evaluations from

the prototype. 83

LIST OF TABLES

Table 2.1: Comparison of fulling the requirements of an AAL platform of Tiny-
SEP, monolithic systems and platform-based systems. Given the cri-
teria presented on the subsection 2.1 Requirements of an AAL Plat-
form the tokens represents the level of satisfaction, where + repre-
sents high, - assume the role of low, 0 correspond to dissatisfied
(Wille et al. 2012). 30

Table 3.1: Payload description of the AmICA node protocol 52
Table 3.2: Payload description of the Sun SPOT node protocol 54

Table 4.1: Methods defined in the IDriver programming interface. 58
Table 4.2: Methods defined in the IDevice programming interface. 60

Table 5.1: Total number of received packets by the prototype in each one of the
5 scenarios. 72

Table 5.2: The average of the CPU and memory usage values obtained in each
scenario. 72

Table 5.3: Results obtained with the execution of the Scenario 5 for 72 hours. . . 74
Table 5.4: The results obtained with the analysis of the signal range from the

AmICA sensor nodes. 76
Table 5.5: The results obtained with the analysis of the signal range from the

Sun SPOT sensor nodes. 77

ABSTRACT

In the last years many research and development have been made on Ambient Assisted
Living (AAL). However, as for 2012, there exist no definition of the AAL platform re-
quirements, neither a standard for an AAL system. The solutions already available are
no widely accepted outside their projects and can be divided in two groups. The first of
them is composed of the universal and flexible platforms, however they are complex and
difficult to understand. The second group includes the monolithic systems, which were
developed for a specific problem statement and therefore implement only basic function-
alities.

Due to the problem of finding a platform that is at the same time, easy to understand
and sufficiently flexible and universal, it was decided to design and implement a new
solution, which was named as Tiny Smart Environment Platform (TinySEP). TinySEP is
a compact platform for AAL that makes use of two very successful and frequently used
concepts of software engineering: the driver concept and the signal slot model. It allows
a single platform to be capable of adapting itself to different scenarios and the needs of
each of its users without having to do any reprogramming neither having to restart the hole
system. One of the main advantages of this platform is that besides providing the support
expected of an AAL system, it also allows new hardware and software to be integrated
to the system at runtime in a fast and easy way. Because of this ease of integration, both
hardware and software developers can make use of TinySEP as a means of validating their
solutions. TinySEP can be seen as a starting point of an evolutionary process to develop
a compact platform, which makes use of the high usability of the monolithic systems and
the high reusability of encapsulated components of the universal platforms.

Keywords: TinySEP, smart environment platform, ambient assisted living, ambient intel-
ligence, monolithic systems, platform-based systems, driver model, signal-slot model.

RESUMO

Nos últimos anos, tem-se realizado muita pesquisa e desenvolvimento na área de Am-
bient Assisted Living (AAL). Entretanto, até 2012, não existia nenhuma definição dos
requisitos de sistema para AAL, muito menos um padrão para as plataformas desenvol-
vidas. As soluções que já foram desenvolvidas não são amplamente aceitas fora do es-
copo de seus projetos e podem ser divididas em dois grandes grupos. O primeiro deles
é composto por plataformas universais e flexíveis, entretanto essas mesmas plataformas
são muito complexas e de difícil compreensão. O segundo grupo engloba os sistemas
monolíticos, que foram desenvolvidos para um problema específico e por esse motivo
implementam apenas funcionalidades básicas.

Devido ao problema de se encontrar uma plataforma que fosse, ao mesmo tempo, de
fácil compreensão e suficientemente flexível e universal, se optou pela concepção e desen-
volvimento de uma nova solução, que foi chamada de Tiny Smart Environment Platform
(TinySEP). TinySEP é uma plataforma compacta que utiliza dois conceitos de engenharia
de software: driver model e signal slot model. Ela permite que um único sistema seja
capaz de se adaptar aos diversos cenários e às necessidades de cada um dos seus usuários,
sem ter de realizar nenhuma reprogramação muito menos reiniciar o sistema. Um dos
principais diferenciais dessa plataforma é que além de ela fornecer o suporte esperado de
um sistema AAL, ela ainda permite que novos hardwares e softwares sejam introduzidos
ao sistema de uma forma rápida e fácil. Devido a essa facilidade de integração, tanto
desenvolvedores de hardware quanto software podem fazer uso do TinySEP como forma
de validação de suas soluções. TinySEP pode ser vista como um ponto de partida de um
processo evolutivo para desenvolver uma plataforma compacta, que faz uso da alta usabi-
lidade dos sistemas monolíticos e a elevada possibilidade de reutilização dos componentes
encapsulados das plataformas universais.

Palavras-chave: TinySEP, smart environment platform, ambient assisted living, ambi-
ent intelligence, monolithic systems, platform-based systems, driver model, signal-slot
model.

19

1 INTRODUCTION

The constant miniaturization of computer technology has allowed the integration of
tiny microelectronic processors and sensors into everyday objects. More and more people
cease to communicate with the traditional computer input and output media, instead they
communicate directly with the daily objects (Weiser 1999).

More than 20 years ago, Mark Weiser published the influential article "The Computer
for the 21st Century" (Weiser 1999). In this paper, he created a vision of omnipresent
computers that would serve people in their everyday lives at home and work, functioning
invisibly and unobtrusively in the background (Coroama et al. 2004). This view has been
increasingly adopted by Ambient Intelligent (AmI). An Ambient Intelligent system, also
referred as Smart Environment Platform (SEP) and as Ambient Assisted Living (AAL),
aims to improve the quality of people’s life by making everyday activities more con-
venient and enjoyable with digital media. Technically, AmI refers to the presence of a
digital environment that is sensitive, adaptive, and responsive to the presence of people
(Doorn e Vries 2006). A SEP interconnects and controls various appliances and services,
as for example TV’s, lights, stoves, doors, refrigerators and some others that we had never
dream about, reconfiguring them on the fly, responding as your needs and desires change
(Hedberg 2000). While there are a number of different technologies involved, the goal of
a SEP is also to hide their presence from the user by having the computer "disappear" from
the users’ perception and providing them with implicit, unobtrusive interaction paradigms
(Streitz 2007).

A typical AmI system requires for its operation an AAL software platform, a Central
Processing Unit (CPU) and Sensors-Actuators NETworks (SANETs). The basic idea is
that SANETs provide a communication infrastructure while gathering and distributing
information, such as speed, pressure, temperature, brightness and localization. Obviously,
SANETs are heterogeneous networks having widely differing sensor and actuator node
characteristics (Akyildiz e Kasimoglu 2004). In this text the term sensor node is defined
as a device that account with at least one sensor and may include actuators as well, while
an actuator node is a device composed with at least one actuator, but no sensors. Sensors
are responsible for measure the physical property and quantity of an observation, while
actuators are devices that can carry out an action, e.g. a physical response such as turn on
a light, in response to a certain stimulus caused by an input signal (Gómez et al. 2010).
In some cases, the same elements of a sensor network can be used to activate actuators in
order to perform certain tasks in response to an event or to exceed a predefined threshold
for a certain parameter. To better understand how does this interaction works, imagine the
situation represented on the Figure 1.1, where there is a smart environment equipped with
sensors nodes, which are capable of detecting movement and brightness, and actuators
nodes, which can control the room light and TV. When a person arrives on this ambient,

20

the movement sensor node detects this motion and sends this information to the AAL
software. While that, the other sensor node also sends data related to the room brightness
to the platform. When the platform receives all this information, it knows that there is
someone on the room due to the movement information and the light is off, because of
the brightness data. So it sends a message to the light actuator node in order to turn the
light on and an other one to the TV actuator node, because there is someone on the room
and this person usually watch TV at this time.

Figure 1.1: Interaction between sensor nodes and actuator nodes on a smart environment.

Currently the market offers the SANETs in two different ways. The first one is
given in the form of wired solutions like KNX1. It is apparent that in a wired sensor
network, all the sensor nodes are connected via a wired network. In spite of its sim-
plicity, a wired sensor network is a very expensive means of sensory data transmission
due to the wiring costs, particularly in environments with massive numbers of sensors.
Moreover it is hard to change the position of a sensor node and maintenance is not
only costly as difficult as well (Lee et al. 2010). The second one is given in the form
of Wireless Sensor Network (WSN) like AmICA (Wille et al. 2010; Wille et al. 2010).
In a WSN, there is no need for any wired infrastructure. Sensory devices accompanied
by their wireless modules can be deployed anywhere in an ambient intelligence environ-
ment. Wireless sensor networks, in comparison with wired sensor networks, are more
flexible in terms of the deployment, more easy to maintain the required infrastructure

1http://www.knx.org/

21

of the network in AmI environments. Power consumption is the most important con-
cern in WSN because sensory devices and their wireless modules are usually powered
by batteries (Aboelaze e Aloul 2005; Akyildiz et al. 2002). Recent advances in wireless
communications and electronics have enabled the development of low cost, low power,
multifunctional sensor nodes that are small in size and communicate untethered in small
distances (Akyildiz et al. 2002). The cost of production of a single node has been reduced
to less then 1 dollar, paving the way for large scale of deployments (Tynan et al. 2005).

1.1 Motivation

The ageing of the world population is a phenomenon to which even the richest and
most powerful countries are still trying to adapt. There are at least two important reasons
for people living longer. First of all, healthy life styles in terms of improved nutrition,
hygiene, and a growing emphasis on physical and mental exercise have contributed a big
deal to greater longevity. Another crucial factor has been medical progress, which has
reduced infant and maternal mortality rates significantly (Germany 2011). In Brazil, the
index ageing indicates changes in the population age structure. In 2008, for every 100
children aged 0 to 14 years old there was 24,7 elderly aged 65 years old or more. In 2050,
those values will change and for every 100 children aged 0 to 14 years old there will be
172,7 elderly. Studies from the Brazilian Institute of Geography and Statistics (IBGE), as
shown on the Figure 1.2, indicates that in 2030 elderly will represent 18,7% of the Brazil-
ian population (ESTATÍSTICA 2008). Those values are even higher on the first world
countries. Studies of the federal statistical office from Germany shown that there will be
approximately 39,3% more elderly people living in Germany in 2030 (Germany 2011).

Figure 1.2: The percentage of elderly on the Brazilian total population.

Studies of Counsel and Care in UK revealed that elderly would prefer to live in their
own home, however they need support to remain independent (Counsel e Care 2005).
And that’s exactly the goal of an Ambient Assisted Living platform. AAL aims to pro-
longate the time people, especially elderly and those who need special care, can live in
a decent way in their own familiar environment by increasing their autonomy and self-
confidence (Ras et al. 2007). To achieve this purpose it is necessary to provide assistance

22

to carry out daily activities, health and activity monitoring, enhancing safety and security,
getting access to social, medical and emergency systems, and facilitating social contacts.
AAL also has the potential to reduce the costs associated with elderly care, because it
reduces the need of caretakers and personal nursing. A study conducted in Finland has
suggested a reduction in the order of 50% (Steg et al. 2006). Therefore, there is a twofold
goal of AAL: a social advantage and an economic advantage.

1.2 Goal

Much research is being carried out on building AmI systems around people. As for
2012 there exists no standard for an AAL software platform. That is one of the reasons,
why smart environment platforms are not wide spread despite of years of intense research
work. Most of the AAL platforms that are already available, which will be discussed in
detail in Chapter 2, contains some limitations that preclude their widespread use. The
first obstacle encountered is related to the platform supported hardware, because many
of the systems where developed in research projects as a means of validating a specific
hardware, thereby precluding the use of hardware from different suppliers. Thus the cost
of deploying these systems becomes much more expensive, because even having a house
equipped with various sensor nodes, the user will have to purchase the specific sensor
nodes for that platform. The platforms that can be adapted to support different hardware
are so complex and difficult to understand that the simple task of adapting the system to
perform a special function requires a long time from the developer (Wille et al. 2012).

Another very common problem is the lack of system customization according to the
needs and desires of the end user. Many platforms are static, so in order to make any
modification to a supported application it is necessary to reprogram the system. That is
not acceptable on a AAL software, because each user is different from each other and
consequently their wants and needs are as well. Furthermore the needs and desires of a
user may change, so it is not feasible to have to change a platform every time the user want
to add or remove a certain functionality. Ideally, these updates should be done without
even having to reboot the platform (Ziefle et al. 2011).

In this work the conception and implementation of a Tiny Smart Environment Platform
(TinySEP) is presented. TinySEP is a compact platform for AAL that makes use of two
very successful and frequently used concepts of software engineering: the driver concept
and the signal slot model. It allows the easy integration of hardware and software from
different vendors, without having to completely understand the platform. In one easy way
TinySEP connects all the single elements to one AAL system, which can be customized
according to the needs of its different users, without having to do any reprogramming. All
the features available can be customized at run time, without having to restart the system.
In other words, TinySEP bridges the gap between the approaches used so far, combining
their advantages (Wille et al. 2012).

The results obtained with this work have already been published. The first publication
was in the proceedings of the AAL-Kongress, that happened in Berlin, Germany in 2012
(Wille et al. 2012). The second publication was in the proceedings of the Ubirobots 2012
Workshop conducted at the 14th International Conference on Ubiquitous Computing, that
happened in Pittsburgh, USA in 2012 (Wille et al. 2012). This paper was also selected to
submit to a special issue of the Robotics and Autonomous Systems journal. Furthermore,
due to the ease of integration of different hardware and software components, TinySEP
is already being used by other international research groups as a way of validating their

23

projects.

1.3 Text Structure

The rest of this document is organized as follows: Chapter 2 discusses the state of art
of the ambient assisted living platforms, and also presents two simulation tools, that can
be used as ways to validate smart environment platforms. Chapter 3 presents a model for
a new smart environment platform that may be seen as a starting point for a evolutionary
process to develop a compact ambient assisted living system. Chapter 4 shows how the
model proposed on Chapter 3 was prototyped and the developed applications provided
in the first moment. Chapter 5 analyses the platform performance and the supported
hardware. Chapter 6 presents the concluding remarks and future works.

24

25

2 STATE OF ART

Developed societies are getting older at an unprecedented rate. This ageing leads to
new challenges for the provision of healthcare and elderly care. In response of this need,
many research and development have been made on Ambient Assisted Living (AAL). An
Ambient Intelligent (AmI) system is comprised of SANETs, a CPU and an AAL software,
which receives and process the sensory input information in order to determine the action
that should be performed (Eichelberg et al. 2010). The AAL systems already available
may encompass a wide range of applications such as recognition of adverse events, mon-
itoring of vital parameters, home automation and biometric readers (Hein et al. 2009).
However, as for 2012, there exist no standard for a SEP nor a definition of its require-
ments. So before making an analysis about the AmI solutions already developed, the
requirements of a SEP, for which they will be assessed, will be presented.

After the presentation of the requirements of an SEP that are going to be used in this
work, some of the AAL solutions that were already developed will be analysed. Those
platforms will be divided in two groups: the monolithic platforms and the platform-based
systems. The monolithic platforms, presented in chapter 2.2.1, were developed for a spe-
cific problem statement and therefore implement only basic functionalities. The platform-
based systems, discussed in the section 2.2.2 are composed of the universal and flexible
platforms, which are complex and difficult to understand. Once the characteristics of
the platforms that compose those two groups were already presented, a comparison of
fulfilling the requirements previously defined will be analysed in the section 2.3.

Testing AAL platforms is a difficult task, specially due to the lack of the provision
of a readily smart environment. Therefore some simulation tools were developed as an
attempt to provide some ways to validate the platforms and their algorithms. In this work
the robotic frameworks, MCA2 and SimVis3D, and the context simulator Siafu are going
to be used to perform some validations and thus they will be presented, respectively, in
the sections 2.4.1, 2.4.2 and 2.4.3.

2.1 Requirements of an AAL Platform

The requisites of an AmI system, which are going to be used on this work analysis,
was based on the following sources:

• TinySEP - A tiny platform for Ambient Assisted Living (Wille et al. 2012)

• The GAL Middleware Platform for AAL (Eichelberg et al. 2010)

• The PERSONA Service Platform for AAL Spaces (Tezari et al. 2009)

26

• Promises and Challenges of Ambient Assisted Living Systems (Sun et al. 2009)

• SOPRANO - An extensible, open AAL platform for elderly people based on se-
mantical contracts (Wolf et al. 2008)

The following list summarizes requirements derived from the sources previously pre-
sented. Those selected prerequisites are generic, ie, they are not specifically focused on
a select group, as for example people with impaired vision, loss of hearing, mobility dif-
ficulties or with specific illness such as the Parkinson or the Alzheimer’s disease. Since
each of these groups has different needs, which would make unfeasible a more compre-
hensive analysis of the current state of the art of the SEPs.

• Hardware abstraction: It should be possible to easily add new sensor or actuator
nodes, which may come from different vendors, to the SEP while enabling their
easy adoption and usage by the rest of the logical or physical components.

• Open system interfaces: Guarantee flexibility in the distribution of functionali-
ties and facilitate the integration of different kinds of hardware and software in the
systems.

• Changes of hardware and software at runtime: The user by himself must be
capable to disconnect the services at all times, without having to restart and recon-
figure the hole system.

• Sensor fusion and context management: The devices used for building up the
ambient infrastructure should be, as must as possible, invisible to the users percep-
tion, aiming to avoid situations as represented in the Figure 2.1. Furthermore the
system should always take into account the current context of the user for the sake
of ensure coherent service provision.

• Mechanisms for self configuration and adaptation: The system should support
personalization and context-awareness in all layers of the system and it must be
capable of adapt itself to those changes.

• High re-usability of single components: Serving explicit service requests that can-
not be resolved directly but by an intelligent strategy using simple services available
as building blocks to compose the original service request.

• Internal system communication and ontologies: The platform should support dif-
ferent communication patterns, such as event-based and call-based, and ontologies,
in order to give an explicit specification of a conceptualization and to define aspects
of all species that are at the same level of abstraction.

• High usability for the developer: The platform and all the features and resources
it offers should serve the developer also as an easy way to validate applications and
ideas, that may range from a new kind of hardware to a new software application,
such as one for fall detection.

• Low resource consumption: One of the goals of an ALL system for a developer
should be to avoid to re-inventing the wheel. It means that should be possible
to adopt the solutions already available, in order to spare time, effort and money.
Moreover the cost of a AmI platform for the end user must be acceptable so it can
be widely adopted.

27

• Easy changeability and portability: It should be possible to easily develop new
functionalities and services to a system, which will be integrated to those already
available without having to understand the implementation details.

Figure 2.1: Side Effect of Over-Using Assistive Devices (Karlsson 1996).

2.2 Related Works

If an analysis on the existing AAL platforms is carried out, it is possible to observe
that they do not offer suficient means to be adapted. According to (Wolf et al. 2008), that
might be one of the reasons why they did not have reached a high market. Basically those
platforms can be divided in three different groups: the home automation, the monolithic
and the platform-based AAL systems. However the group composed by the home automa-
tion solutions, such as the In Home project (Vergados et al. 2008), can be only seen as a
part of a SEP. Due to the fact that they were developed by sensor providers and network
experts, those solutions focus primarily on the advantages of the use of certain sensors and
their communication protocols. In order to validate these solutions, automated homes are
developed in research laboratories, where all devices are integrated, however they often
lack services for their specific users, ie the user must adapt to the system, not the opposite
and that is against all the design principles. The author from (Sun et al. 2009) remarked
that "The assistive devices are not useful if not combined with services and formal or
informal support and help" and that’s the reason why this group can not be considered
a fully AAL solution. The other two classes of AAL solutions are described hereafter
together with their drawbacks.

2.2.1 Monolithic Systems

The monolithic platforms are usually developed by research groups as a solution for
concrete projects and problem statements, in which all the functional requirements are
well defined since the beginning and have a low probability of late changes and exten-
sions. Consequently, their applicability is usually restricted to the problem scope, what
allows them to be developed in a short time and be efficient, since only the required

28

functionalities will be implemented. They are usually developed using the programming
languages which are better known by their developers, who rarely makes use of ontolo-
gies and concepts of software engineering. Due to those peculiarities, these systems are
used to be characterized by autonomously gloomy "brain", that is responsible for mak-
ing all the decisions for the devices based on those highly-customized algorithms. The
monolithic platforms commonly are developed for a specific hardware, on one hand the
underlying hardware can be very compact and energy-efficient, but on the other hand
the sensor-fusion is highly dependent on the algorithms and the concepts for hardware
abstraction has to be developed.

The biggest disadvantage of monolithic systems is their low re-usability, because they
are not use to be separated as components and open system interfaces are very rare, con-
sequently, it is very hard to extend these systems at all. An other drawback is that the
changes made on the software require restarting or even recompilation. Moreover they
frequently do not offer mechanisms for self-configuration and self-adaptation, therefore
they have to be manually reconfigured every time new features are installed. In many
cases, developers from other projects cannot integrate their own services to a mono-
lithic system, because they are often developed for specific hardware and they usually
are closed-source. Consequently, more and more monolithic platforms are developed
each year, each requiring time and money.

Research projects from this area are the EU project EMERGE(Prueckner et al. 2008),
which aims to utilize ambient intelligence technologies for detecting emergency situa-
tions in elderly people’s homes and for alerting emergency response personnel; the EM-
BASSI project (Herfet et al. 2001), which is focused at enhancing the interaction with
living rooms, automobiles and terminal systems by providing intelligent assistance and
multimodal interaction; the MAP consortium (Fischer et al. 2003), whose purpose is to
set up a multimedia workplace environment for the integration of user systems, network
and supporting services, to evaluate multimodal interactions for delegation and assistance
tasks; the Assisted Living Project PAUL (Floeck 2010), which is focused on inactivity
recognition based on motion sensors; the Verity (Winkley et al. 2012), which integrate
sensing devices within their clothing in order to determine their internal health-state.

2.2.2 Platform-based Systems

The platform-based systems, also referred as agent-based systems, have an universal
applicability. They are characterized by a set of devices, each one having its own intel-
ligence, which together comprise the system intelligence. They differ significantly, in
this aspect, from monolithic systems, because while the decisions of monolithic systems
are made in a centralized manner typically by an algorithm highly-customized, in agent-
based platforms such decisions are taken in a decentralized way by one or more agents.
This decentralization allow these systems to have a high flexibility and re-usability. Usu-
ally it is possible to make changes on the system without having to restart. They also
use to be composed by mechanisms for hardware abstraction, sensor fusion and open
system interfaces, which allows the integration of hardware and AAL services from dif-
ferent suppliers. Extending the platform by the creation of new devices is possible, but
need a deep knowledge of the complex platform, which commonly requires knowledge
of specific programming languages, frameworks and tools. For example, the SerCHO
(Albayrak et al. 2009) requires the developer to learn and use the Business Process Mod-
elling Notation (BPMN). This complexity is the most significant disadvantage of the plat-
form based systems, because the simple task of adapting the system to perform a special

29

function becomes almost impossible and demands a long time from the developer. That
is the main reason why often the agent-based systems are developed again, because in the
view of the developer it is much more easier and faster to develop a new platform than
to adapt one already implemented. An other drawback from the agent-based platforms is
the cost charged for a membership in order to use a determined solution, as for example
the OSAmI platform (Eichelberg et al. 2009).

Some other research projects in this area are the PERSONA (Tezari et al. 2009), which
relies on the bus-based architecture to integrate a set of intelligent devices; SOPRANO
(Wolf et al. 2008), which is based on a combination of ontology-based techniques, seman-
tic contracts and a service-oriented device architecture; GAL (Eichelberg et al. 2010),
which is a service oriented architecture focused on the integration of different assis-
tive systems; Amigo (Janse et al. 2007), which is composed by a service oriented ar-
chitecture with service composition strategies and those strategies must be implemented
by each service; OASIS (Kehagias et al. 2008), which is based on an Ontology-driven,
Open Reference Architecture and System, which allows an interoperability, seamless
connectivity and sharing of content between different services and ontologies; MPower
(Mikalsen et al. 2009), which is composed by interoperability services based on patterns,
service-oriented architectures, web services and XSDL transformations; SENSACTION-
AAL(SENSACTION-AAL 2007), which is a wireless on-body system that enables daily
activities monitoring, real-time active control of physical performance and fall detection
and management; I-Living (Wang et al. 2006), which is focused on the integration of
different hardwares and softwares from distinct suppliers in order to construct a better
environment.

2.3 Comparison of Fulfilling the Requirements

Given the criteria presented on the subsection 2.1 Requirements of an AAL Platform, a
comparison between the existing AAL platforms, presented on the subsection 2.2 Related
Works, and TinySEP, which is going to be discussed in detail in the next sections, was
made and systematized in the Table 2.1. As can be seen, TinySEP bridges the gap between
the approaches used so far and combines the advantages of both in one single platform
(Wille et al. 2012).

2.4 Simulator

Evaluate the AAL systems is not an easy task, because due to the heterogeneous nature
of the data sources, which makes the context gathering and processing difficult. Further-
more, the lack of readily available infrastructure makes the process of collecting large
data sets unfeasible. The limitation if those infrastructures makes the process of evalu-
ation from those AAL platforms be limited to a small subset of users and sensor nodes.
Moreover, those tests usually are performed in a short time.

As a way to solve this problem of AAL systems evaluation, simulation tools were
developed. Those tools attempt to give suitable abstraction for the problem domain. The
main idea from those simulators is to allow the test of functionalities of group of services
and applications before performing the user evaluations.

In this work 2 simulators are going to be used to perform the evaluation of the appli-
cations from the AAL platform that are going to be presented in the next chapter. The
first of them is composed by robotic frameworks, the Modular Controller Architecture

30

Table 2.1: Comparison of fulling the requirements of an AAL platform of TinySEP,
monolithic systems and platform-based systems. Given the criteria presented on the sub-
section 2.1 Requirements of an AAL Platform the tokens represents the level of satis-
faction, where + represents high, - assume the role of low, 0 correspond to dissatisfied
(Wille et al. 2012).

TinySEP

Monolithic
systems

Platform-based
systems

Hardware abstraction + - +

Open system interfaces + - +

Changes of hardware and
software at runtime

+ - +

Sensor fusion and context
management

+ 0 +

Mechanisms for self
configuration and adaptation

+ - +

High re-usability of single
components

+ - +

Internal system
communication and ontologies

+ - +

High usability for the
developer

+ +/-² -

Low resource consumption + + 0

Easy changeability and
portability

+ 0 -

Version 2 (MCA2) and SimVis3D. Both are discussed, respectively, in the sections 2.4.1
and 2.4.2. The results obtained using from both robotic frameworks will be presented in
the section 5.4.2. The second one is an open source context simulator, named as Siafu.
Siafu will be presented in the section 2.4.3 and its usage is going to be discussed in the
section 5.4.3.

2.4.1 MCA2

The Modular Controller Architecture Version 2 (MCA2) is used as a main control
system of a variety of robots including the Robust Autonomous Vehicle for Off-road
Navigation RAVON (Schaefer et al. 2009), the Mobile Autonomous Robotic Vehicle for
Indoor Navigation MARVIN (Schmidt et al. 2006), the Autonomous Robot for Trans-
port and Service ARTOS, that has also been used for several experiments for the el-
derly care (Berns e Mehdi 2010). Additionally, it has been used as the control system
of CROMSCI, the Climbing Robot with Multiple Sucking Chambers for Inspection tasks
(Hillenbrand et al. 2008), the Robothuman interaction machine ROMAN (Hirth et al. 2007)
and several other projects. It also serves as the original framework that forms the base of
the popular Integrated Behaviour-Based Control iB2C (Proetzsch et al. 2010).

MCA2 was developed using a set of small modules written in C++. All the modules
are interconnected allowing the communication between them. It is very easy to connect
modules that run in separate processes on the same machine, but also to connect mod-

2Only high for internal developers, who know the system structure

31

ules that run on entirely different machines. Each module process data in two different
methods, the Sense-method and the Control-method. The Sense-method processes sensor
inputs and generates sensor outputs while the Control-method processes the controller
inputs and generates the controller outputs. Another feature to cope with complexity is
the concept of groups. MCA2-groups have basically the same interface as modules, but
instead of containing program logic, as the modules do, they are used to encapsulate a
bunch of modules or even other groups, exposing only the external controller/sensor in-
puts/outputs.

To allow the usage of this framework to perform simulations of AAL systems, more
specific with the prototype that is going to be presented in the chapter 4, new modules
were created. Their structure is illustrated by the Figure 2.2. The inner group, which is il-
lustrated in light gray, simulates the behaviour of the sensor nodes. The sensor nodes that
are simulated by this module are equipped with movement sensor and reed-switch sen-
sor. The module SimulatedMedium processes the simulated sensor node information and
feeds the AmicaUDPTransmitter module that sends this information to the AAL platform.

Figure 2.2: Example structure of MCA2 modules and groups.

2.4.2 SimVis3D

The SimVis3D framework (Braun et al. 2007) is a primary simulation and visualiza-
tion framework for the 3D sceneries of all the robots described in the section 2.4.1. It is
an open and flexible and customizable solution which has been released under the terms
of the GNU General Public License (GPL)3.

SimVis3D serves two main tasks: first the simulation of robots by providing the pos-
sibility to simulate the sensor systems as well as the actuation systems of the robots.
Additionally, all kinds of static objects as well as other dynamic entities such as people
or animals can be simulated. The second task is the visualization of the current state of a

3http://rrlib.cs.uni-kl.de/software/simvis3d/

32

Figure 2.3: 3D-Visualization of Ravon with overlaid navigation graph (Hirth et al. 2007).

(real) robot. This is usually done by displaying a 3D model of the robot and additionally
visualizing the state of the world, as illustrated by the Figure 2.3.

2.4.3 Siafu

Siafu is an open source, versatile, large scale context simulator written in Java. It was
developed by the NEC Europe Networks Labs from Heidelberg, Germany. Siafu has been
designed to be generic, flexible and applicable in a wide range of scenarios, as shown in
Figure 2.4. The main information sources from the simulator is split in 3 parts: the agent
model, the world model and the context model (Martin e Nurmi 2006).

Figure 2.4: A snapshot of Siafu being used to simulate a city.

The agent model is responsible for modelling the behaviour of individual agents, ie,
the agent model decides what an agent should do given the current environment and con-
text. Therefore this model must change the proprieties of an agent, as for example change

33

the current agent’s activity from sleeping to working. In order to perform these changes,
the simulator designer must specify those changes. To facilitate this process, Siafu pro-
vides some templates that can be used to define the agent’s behaviour. Those agents
provides an random behaviour to the agent (Martin e Nurmi 2006).

The world model handles the environment. This model consists of three parts, the en-
vironment to be simulated, the places of interest for the simulation and a global event
model that handles global events such as citywide festivals. This model is specified
through a set of Portable Network Graphics (PNG) images. The base set of image files
consists of a background map and a wall map (see Figure 2.5). The background map
defines the places where the simulation is performed, while the wall map define the re-
gions from the background map where the agents can walk and others where they can not
(Martin e Nurmi 2006).

Figure 2.5: The upper figure illustrates a background map, while lower figure represents
the wall map.

The context mode is used for defining how the context data is simulated, ie, it man-
ages the context variables that are used in the simulation. As an example, consider a
context model with 2 variables that are temperature and Wi-Fi hotspot coverage. For the
temperature, this model can specify the temperature in specific areas, while the Wi-Fi
hotspots can specify the signal strength of the base stations. In order to simulate the sen-
sors behaviour, this context can be used to specify the signal range from the sensor nodes
(Martin e Nurmi 2006).

34

35

3 TINYSEP: MODEL

In this chapter a model for an event-driven AAL system, named as Tiny Smart Envi-
ronment Platform (TinySEP), will be presented. The main functionalities of TinySEP are
to provide all the necessary support expected of a SEP, while allowing an easy and fast
integration of hardware and software from different vendors, enabling a high usability
for the developer and even greater freedom to its users; and permitting a single system
to adapt itself to several scenarios and different needs of their users, without having to
reprogram a single line of code and without having even to reboot the system.

TinySEP might be seen as a starting point for a evolutionary process to develop a com-
pact platform, that makes use of the high usability of the proprietary monolithic systems,
presented in the section 2.2.1, and the high re-usability of encapsulated components of
the platform-based systems, described in the section 2.2.2.

TinySEP model makes use of two concepts of software engineering: the driver model
and the signal slot model. The driver concept, which is going to be presented in detail
in the section 3.1, allows an easy encapsulation and integration of new components of
software and hardware. In this model each software component is encapsulated in a driver
and devices that might be accessed from the other devices and drivers. The signal slot
model from TinySEP that will be discussed in section 3.2 enables the communication
between the several drivers and devices. This concept is extremely important to event-
driven applications like TinySEP.

In order to manage all the devices and drivers, TinySEP has its own device manages
that will be explored in section 3.3. In this section an example scenario, where devices
are created and removed, is presented. Through this example it is also possible to have a
better understanding of how each driver and device reacts to events.

TinySEP model supports runtime changes and an easy integration of hardware and
software. Those two characteristics are discussed, respectively, in the sections 3.4 and
3.5. Before proceeding to this sections it is important to have understood the concepts
previously presented, once this two features are directly interconnected with them.

One of the requirements of the TinySEP model is to allow a single software to run in
different environments. With the view to enable that a new component, called as House
Information, was projected. The goal of the House Information is to allow the other com-
ponents to access the environment informations, such as the rooms name, room type and
which room is connected with an other room. All the details about the House Information
will be discussed in the section 3.6.

During the process of installation the user to might need to provide a large amount of
information, because some components need specific inputs from the user, as for example,
the user might need to inform the room in which a sensor node is installed. In order to
avoid the reconfiguration of all those informations, the TinySEP model provides a system

36

backup that automatically stores all the needed information and reconfigure the system
when it is restarted. This feature is presented in the section 3.7.

In the section 3.8 a sketch from this model is presented. This section discuss the basic
functionalities that the graphic interface should support.

At the end of this chapter the hardware that will be first supported will be assessed.
In order to validate and evaluate the TinySEP model, at least two types of hardware from
different vendors should be selected. The AmICA and the Sun SPOT sensor nodes were
selected and the reasons and characteristics of each of them will be encompassed in this
chapter.

3.1 Driver Model

The driver model is used in most of the modern operating systems as an easy way of
integrating a computer’s software with its hardware. Basically, this concept enables the
encapsulation of software applications from the hardware, in order to protect each other
from changes. (Wille et al. 2012; Lemon e Rossi 1995) The operational system may ac-
cess the hardware with the help of drivers, which can create devices, that may be accessed
from other drivers or devices. As for example, if a mouse is plugged into the computer,
the computer USB controller driver creates a new USB device, that will be responsible to
handle and provide the raw data from the hardware, in this case the USB mouse. The USB
driver also creates a second device that convert the raw data from the device previously
created into cursor coordinates (Wille et al. 2012).

TinySEP makes use of a similar driver model. In the same way as described before
the drivers can create devices, which can be accessed from others devices or drivers. The
drivers can create a device given an input, which may range from a hardware connection
to the creation of a specific device. In fact the main goal of a driver is to manage it’s
devices. The devices are objects that encapsulate a certain application, as for example,
the devices can be used to make an abstraction from a hardware or to verify if the flat is
occupied or not. Each device stores it’s own internal configuration information, some of
which can be accessed externally. For example, a device that correspond to the abstraction
of a door sensor node can provide information about the location of the door, if the door
is an outer or inner door and if the door is opened or closed. Other devices need this
information, in order to decide if they want to establish a connection with this device
or not. It is important to note, that a device can not create an other device, the device
creation can be performed only by it’s driver. Therefore a TinySEP application is seen as
the combination of a driver and its devices.

3.2 Signal Slot Model

A SEP is typically an event-driven system, in which observed events cause reactions
in the system (Hinze et al. 2009). For example, reconsider the situation represented by the
Figure 1.1, when someone enters in the room, the movement detection sensor node notices
this motion and forwards this information to the event-driven system. As a reaction to
this event the light is automatically switched on. The event-driven applications consist
basically of three features, sense, analysis and respond, as shown in Figure 3.1. The
sensing property is responsible for collecting the information, ie, observe the external
system events. In the situation described previously, the monitoring component would
be symbolized by the movement detection sensor node, which noticed someone’s motion

37

and transmit this information to the system (Chandy 2006).
The analysis part is responsible for analyzing the data transferred to the system by

sensing component and for performing event notification. The event notification may be
performed in three different ways. In the first, the producers disseminate the information
to the consumers. This approach is often called push-based. In the second one, denomi-
nated pull-based, the consumers must request the information to the producer. The third
one, referred as publish/subscribe notification, may be seen as the combination of the two
previous approaches, since the consumer need to register itself to a producer to receive no-
tifications, but that same consumer can make requests for information (Muhl et al. 2006).

Figure 3.1: The three basic functions that compose the main characteristic of event-driven
applications

The respond component is triggered by the corresponding events. If an determined
condition is met, then a action is performed. This action may be the sending of a warning,
the start of another application or the performance of an operation by actuators nodes, as
occurred in the previous example, in which the light was turned on.

In an event-driven system, the objects, producers and consumers, can be intercon-
nected with the help of the signal slot model. In this model, the signals are messages,
which may represent an event, that are sent to one or more slots. The same slot may
receive several different signals. TinySEP makes use of the signal slot model to intercon-
nect primarily devices. However the signal slot model was modified, in order to allow
a publish/subscribe event notification. This decision was made, because a publish/sub-
scribe notification was evaluated as the best possible approach when compared to the
pull-based and the push-based notification. In a push-based concept the consumers be-
come extremely dependent on producers, which disseminate the information to all con-
sumers, even those who will not make use of it. In the pull-based approach, the problem of
the data notification to the uninterested parties is solved, although the events notification
no longer occurs in real time, because it becomes necessary to request the information
producer. If such requisitions are made in a very large space of time, the consumer will

38

be only informed of an event a long time afterwards it has occurred, which may even
cause the loss of information from an intermediate event. On the other hand if the period
between this requests is too short, then the producer will be overloaded with requisitions,
especially if it has established connections with a large number of consumers. In a pub-
lish/subscribe approach none of these problems occurs, because a consumer signs up to
receive information only from the producers that interest it and, consequently, the pro-
ducers send notifications only for consumers which sign them. Consumers can also make
requisitions to producers whenever they need, without necessarily rely solely on those
producers notification to obtain the information needed.

The signal slot model from TinySEP was modified in two ways. First, the several pairs
of signals and slots were bundled into so-called interfaces. It is important to clarify that,
in this work, whenever the word interface is referenced, it will make mention of a signal
slot pair. Second, in order to implement a publish/subscribe approach, the connection
must be bidirectional. To better understand this concept, the interfaces from Figure 3.2
will be explained one by one.

Figure 3.2: TinySEP Interfaces

The Device A is able to send different signals to the Device B through the Interface
A. The Device B is also capable to send data to the Device A. The Device C1 and C2
have the same Interface C, through which a bidirectional connection is established with
the Device D. This illustrates that a single interface may be available from more than one
device. Two other interesting characteristics can be observed from Device E. The first
one is that it is connected at the same time to the Device B, through the Interface B, and
to the Device D, through Interface D, ie, the same device can be connected to more than
one interface simultaneously. The second characteristic is that an interface do not need
necessarily to have an established connection to exist, such as the Interface E, which is
provided by the Device E.

3.3 Device Manager

All the drivers, devices and available interfaces are administrated by the device man-
ager. In order to become available and active, the drives must register themselves at the
device manager. Once registered, they start to receive notifications from it whenever a
new interface is found or removed. When a driver receives a notification from a new in-
terface encountered, it can choose to create a device to communicate with this interface

39

or not. This decision is made individually by the driver and the whole logic that rules its
actions. In this scope the device manager works only as a way to establish a connection.

The devices also must register themselves at the device manager to become active and
available. Once the registration is performed, all the drivers and devices so far installed are
informed about the interfaces provided by this device. Upon receipt of such notifications
of new interfaces found, a device may choose to connect to this interface or not, but it will
never be able to create another device. Once more this decision will be taken solely by
device, in other words, once created, the device starts to establish its connections without
the aid of the driver that originated it. Since a connection was set among the two devices
via an interface, all communication shall be made directly between them, ie, at no point
the device manager or the drives are informed about the data or signals forwarded via
this interface. This decentralization of event communication is an extremely important
factor, because the device manager does not need to be overwhelmed with transmission
of messages. Imagine if that does not happen, ie, to send a signal from the Device A to
the Device B, it would be necessary first to send it to the device manager, which will be
transferred this signal to its destination. Clearly this approach is not efficient and it would
end up to overload the device manager as far as the amount of devices increases.

Figure 3.3: TinySEP example scenario: after creation of the "FlatOccupancy" Device.

To better understand the dynamics of the devices creation and communication, the
installation process that led to the scenario illustrated by the Figure 3.3, will be described
step by step. Initially are loaded and registered at the device manager the drivers "BusRa-
dioAmica", which makes a connection with the sensor nodes; "AmicaMovement", which
abstracts the raw data supplied by a movement sensor node and informs if there were
an occurrence of a movement or not; "AmicaDoor", which abstracts the raw data from a
door sensor node and reports if the door is open or closed; and "FlatOccupancy", which

40

informs whether the house is occupied or not.
When the first movement sensor node is installed, it starts sending packets. As soon

as the first packet from this node is received by the "BusRadioAmica" driver, a "BusRa-
dioAmica" device, with the "AmicaNode" interface and "Type: Movement" is created.
The "BusRadioAmica" interface allows the other devices to receive the raw data or to
send configuration data to this sensor node. Having completed the build process, this de-
vice registers itself at the device manager to become active. Once this registration is done,
the device manager will inform all the drivers and devices already registered, in this case
the drivers "BusRadioAmica", "AmicaMovement", "AmicaDoor" and "FlatOccupancy",
about the new device found, because they might be interested in connecting with its "Am-
icaNode" interface. The 4 drivers receive this information, but only the "AmicaMove-
ment" and the "AmicaDoor" have the interest on a "AmicaNode" interface. Therefore,
both read out the "Type: Movement" information. The "AmicaMovement" driver decided
create a device to connect with this "BusRadioAmica" device, through the "AmicaNode"
interface. This device analyses the raw data and abstract it as movement information to
the other devices via a "Movement" interface. The "AmicaDoor" driver does not create a
device, because they can only convert raw data from "Type: Door".

Once created this "AmicaMovement" device, it registers itself at the device manager
as an activation process. By doing this the device manager sends a message to the four
drivers and to the "BusRadioAmica" device, notifying about the creation of this device,
which provides the "Movement" interface. Upon the receipt of this information, the "Fla-
tOccupancy" driver creates a device, in order to stablish a connection with the "Move-
ment" interface. This device, verifies if the flat is being occupied or not and deliver this
information through the "FlatOccupancyStatus" interface. This device will register at the
device manager, which in turn will notify all drivers and devices currently active con-
cerning this new device and its "FlatOccupancyStatus" interface. However, none of the
active drivers and devices have interest on using this interface, therefore, any connection
is established, neither a new driver is created.

A door sensor node, which until then was inactive, is turned on and starts to send
data packets. As soon as the first packet arrives at the "BusRadioAmica" driver, a new
device is created. This device will provide the "AmicaNode" interface and "Type: Door".
Once registered, the driver manager will send a message to all the drivers and device
current available informing that a new device, which supplies the "AmicaNode" interface
and "Type: Door", was found. This time the "AmicaMovement" driver does not create
device, because despite the interest in the interface, its type is different from the supported.
However, the "AmicaDoor" driver creates a new device, which will make a connection
with this new "BusRadioAmica" device. Through the "Door" interface, the "AmicaDoor"
device abstracts the raw data into door informations and turn them available to the other
devices.

Once created, the "AmicaDoor" device is registered to then become active. Once
again, the device manager will inform all drivers and devices about the existence of this
new device and its "Door" interface. This time the "FlatOccupancy" driver does not create
a new device, because it has already created one, which is all it needs. However, the
"FlatOccupancy" device wants to receive the data from the "Door" interface, therefore it
establish a connection through the "AmicaDoor" device.

As it was possible to observe through the detailed explanation, the creation of a device
is performed automatically, without needing to specify one by one how the connections
between the devices will be made. Once established these connections, the communica-

41

tion between the devices is done automatically, without the help of the device manager.
As for example, given this scenario, when the person arrives at home, he will open the
door of his home. By doing this, the door sensor node will send data packets with this
information. Once the "BusRadioAmica" device receives this message, it will abstract
this raw data into door information, ie, it will observe that the door was opened and it
will forward this information to all the devices to it connected, that have the interest on
this information, in this example only the "FlatOccupancy" device. By receiving this no-
tification, the "FlatOccupancy" device, for example, may initiate the process of checking
the house status. The action by it performed will depend on the logic by which it was
programmed.

The device manager is also responsible for reporting all the active drivers and devices
about the removal of a specific interface. Thus, if a particular device has an established
connection via this interface, it can terminate it. Moreover, if a certain device loses all
the necessary connections for its operation, it will also uninstall itself, thus avoiding the
system to have devices that can not operate.

Figure 3.4: TinySEP example scenario: after removal of the "BusRadioAmica" Device
"Type: Movement".

Given the scenario from the Figure 3.3, imagine that the user, displeased with the
movement sensor node, decides to remove it. Then, he simply removes this "BusRa-
dioAmica" device, which was performing a connection with this sensor node. By doing
this, the device manager will be notified about the unregister of this device. Thus, it
will inform all the devices and drivers about this. The "BusRadioAmica" driver, which
has created this device, will remove this device from its device list, in order to allow the
same movement sensor node to be switched back and a new device created. Additionally
the "AmicaMovement" device, which held a connection to that device through the "Am-

42

icaNode" interface, decides to uninstall itself, because this connection was vital for its
operation. The other drivers and devices do nothing when they receive this information,
because there was no connection among them.

Once the device manager is informed that the "AmicaMovement" device is unregis-
tering, it informs all the drivers and devices that occurred. The "AmicaMovement" driver
removes this devices from its devices list. The "FlatOccupancy" device, which has a
connection with this device through the "Movement" interface, removes it. But unlike the
"AmicaMovement" device, it does not uninstall itself, because it still have a essential con-
nection through the "Door" interface. At the end of this removal, the resulting scenario is
represented by the Figure 3.4.

If the user opts to remove a driver, then all its devices will be also removed, one by one.
Consequently, all devices and driver will be informed of each removal. It is interesting to
note that it is up to each device to decide whether to unregister when they lose a connection
or not. This decision will be based on the logic by which it was programmed.

3.4 Runtime Changes

One of the requirements presented in the section 2.1 was that it should be possible
to perform software and hardware modifications at run time. In fact, TinySEP is capable
of accomplish this, due to the combination of its driver model, its signal slot model and
its device manager. According to what was presented in section 3.3, the installed drivers
and devices, which compose TinySEP, are able to adapt themselves to the appearance and
removal of other drivers and devices. However it is still necessary to explain how those
new drivers and devices can be introduced to the system at runtime.

Figure 3.5: TinySEP drivers XML file.

The combination of a driver and its devices comprises a TinySEP feature, therefore it
is possible to encapsulate the code of this feature into a Dynamic Link Library (DLL). The
major advantage of this encapsulation is that these DLL files may be explicitly loaded at
runtime. So basically everything the device manager must do is to open this DLL file and
install its driver, once the devices are dynamically created and installed by the driver. To
make this possible, the device manager must have the knowledge of this DLL file path and
the full name of driver. The easiest way to store this information and make it available to
the device manager is through an Extensible Markup Language (XML) file. So whenever
the user desires to add a new driver that was not being used so far, he just have to add a

43

new entry in this XML file and request the TinySEP to update its drivers list. To avoid
DLL to be reopened unnecessarily, a new field in this XML was included. This new field
is managed by the device manager. The Figure 3.5 illustrates the XML file from scenario
presented in the Figure 3.3.

To accomplish the removal of a TinySEP feature, it is not necessary to modify this
XML file. Only the driver of this application must be removed, because it will automati-
cally uninstall its devices. However if after this removal, the user desires this application
to never be reinstalled, then it will be necessary to remove the entry of this application in
the XML file.

This approach also enables the user to change the hardware being used at runtime.
In order to do this, the user must include the DLL files relating to this hardware, which
should be provided by its vendor. If the user wishes to completely remove his old hard-
ware from the system, he just uninstall the drivers and remove them from the XML file.

3.5 Hardware and Software Integration

The requirements "Hardware Abstraction" and "Easy changeability and portability",
presented in section 2.1, request that it should be possible to easily add new hardware
and software to the SEP while enabling their easy adoption. TinySEP makes this possible
through the use of its interfaces, which enables a given device to look for connections
based in interfaces and not on the devices by themselves. Thus, the same device can
establish connections through a particular interface, which is provided by different devices
that may also be originated from different vendors.

In order to exemplify this concept, review the Figure 3.3. There the hardware used
was from a certain type of sensor nodes, which communicated with the platform through
the "BusRadioAmica" driver and its devices. Now consider that the user wishes to install
an additional hardware from another supplier, for example another type of motion sensor.
So all the user need to do is to perform the installation of the DLL files, as described in
the section 3.4. In this example, the hardware vendor has made available two new DLL
files. The first one has the "BusRadioSunspot" driver, which together with its devices
carries out a connection with that supplier hardware. The second DLL file is composed
of the "SunspotMovement" driver, whose devices are responsible for converting the raw
data from this sensor nodes into movement information.

Once the sensor node is turned on, it starts to send data packet. As soon as the
first packet is received by the "BusRadioSunspot" driver, it will create a device with
the "SunspotNode" interface and "Type: Movement". Upon the registration of this de-
vice, the device manager will inform all the devices e drivers already actives about this
new device, which provides the "SunspotNode" interface and "Type: Movement". The
"SunspotMovement" driver has the interest on receive the data from this interface with
the "Type: Movement", therefore it creates a new device. This device offers the "Move-
ment" interface, which is the same provided by the "AmicaMovement" device. Upon its
registration to become active, the device manager will inform all the driver and devices
about the appearance of this "SunspotMovement" device and its "Movement" interface.
The "FlatOccupancy" device, given its interest on the "Movement" interface, establish a
connection with this new device. At the end of this interaction the resulting scenario is
depicted in Figure 3.6.

Besides the easy integration of hardware and software from different vendors, another
advantage of this approach is the compatibility with older software. In the example dis-

44

Figure 3.6: TinySEP example scenario: after the integration of new hardware.

cussed before, the "FlatOccupancy" driver and its devices could have been developed long
time before the "SunspotMovement" and yet they remain compatible.

Note that in the previous example a new interface was introduced into the system, the
"SunspotNode" interface. This interface, although not previously known by the drivers
installed on the system, was integrated without any trouble. This was possible because
if a particular driver or device is informed about an interface that it does not known,
it simply considers as not being of interest. Therefore in the previous example, when
the "AmicaMovement" driver and device, the "BusRadioAmica" driver and devices, the
"AmicaDoor" driver and device and the "Flat Occupancy driver and device were notified
about the "SunspotNode" interface, which they were not aware, they merely ignored, ie,
they did not try to establish any form of communication with the device that offered it.
This treatment allows different developers to develop their own solutions independently,
without even knowing the other interfaces, giving greater freedom of choice to its users.

If a developer needs, he can extend an interface in order to include new functional-
ities. For example, consider that the "Movement" interface permits only to inform if a
movement was detected or not and the exact instant that the detection was made. This
interface may be perfect to the "AmicaMovement" device, however the "SunspotMove-
ment" device can provide an additional information, as for example the exact coordinate

45

from where the motion was detected. If the device just ceases to implement the "Move-
ment" interface and starts to implement another interface, it will lose compatibility with
the "FlatOccupancy" device. So what should be done is to deploy a second interface,
such as "MovementWithCoordinates", which is an extension of the "Movement" inter-
face. This new interface besides providing all information from "Movement" interface, it
still make available the further data. Thus, with the availability of these two interfaces,
the "SunspotMovement" device still compatible with the old and new solutions.

3.6 House Information

One of the main challenges of an AAL system is how to allow a single platform to
be reused in several different homes, without performing any reprogramming. The set of
residents who lives in each home are different from each others, hence the applications
installed on the SEP should also be. According to what was presented in the sections
3.4 and 3.5 TinySEP allows in an easy and practical manner the integration of different
software and sensor and actuator nodes, while at the same time it enables a system cus-
tomization performed by the user. Therefore this problem is solved, however there is still
a second one, the mapping of the structure of the house into the system

It is of upmost importance to the system to know how the rooms in the house are
outlined and which sensor and actuator nodes are found in each of them. Only with
those information the system will be able to make the right decisions. Imagine a feature
responsible for turning the lights automatically on when someone enters in a room and off
when he leaves. To facilitate the explanation, this application will be called as "Follow Me
Light". If the SEP does not know in which room each light sensor is located, in the best
case the "Follow Me Light" will not work. In the worst case the system will continuously
turn all the house lights on and off, because it does not know how to proceed.

This example shows the importance of knowing the room that each sensor node is
located, but it has not yet justified the importance of knowing the rooms interconnection.
To accomplish this justification, now consider the following example. There is an appli-
cation responsible for remembering the house resident that it is time to take his medicine,
so whenever it is the time to taking a certain medication, a little robot brings it to the resi-
dent. Order for this robot to be able to move inside the house it must first know where the
resident is right now and the path it must follow to find him. This requires that somehow
the robot can access this information through the AAL system.

The alternative adopted by TinySEP was to save this information in a XML file. This
XML file basically schematizes the main data of the house, such as the name and type of
room and the other rooms that are interconnected with this one. Using this information it
is possible to get an idea of the house plan, even if it is not possible to know the precise size
of such rooms. The Figure 3.7 shows how the house plan on the left can be systematized
in a XML file. It is interesting to note that for each room an Unique Identifier (UID)
was included, because some of the rooms might have the same name or type, hence the
best way found to differentiate them was through the use of an UID, which is created
automatically by the system.

Despite the home information has been already structured into a XML file, it is still
necessary to somehow turn those informations available to all the TinySEP applications.
The first idea would be that the device manager provide such information to all applica-
tions that request it. However, there is a problem in this approach, because once defined
all the fields that this XML file, it would be too costly to extend this solution, since it

46

Figure 3.7: The systematization of a house plan into a XML file.

would be necessary to modify the hole platform. Ie if, for example, now it was necessary
to include the size of each of the rooms, then it would be necessary to reprogram the
platform in order to support this new information. The solution found and adopted was
to create a new driver and its devices, named as "HouseInformation", that would serve as
controller for those house informations. This approach in addition to facilitating the ex-
tension of the home information, also enables a parallel communication without the need
of an intervention from the device manager. To allow this communication, the "HouseIn-
formation" interface was developed. Through this interface the devices can get the house
information as each of them need.

Once this driver is installed, it automatically creates a device, which is responsible
for controlling all this information and make it available through the "HouseInformation"
interface. The device is automatically created, because it does not have any pre-requisite
for its operation and the information provided by it must always be available for the other
drivers and devices. Those other devices that need to receive those informations, as for ex-
ample the "Follow Me Light", can establish a connection through the "HouseInformation"
interface. For example, the "AmicaMovement" device can make use of those informations

47

to define the room, in which the movement was detected. So the name of all those rooms
can be displayed to the user in order to allow it to choose one of them. The integration of
the "HouseInformation" driver and device to the scenario from the Figure 3.6 result in the
scenario shown by Figure 3.8.

Figure 3.8: TinySEP example scenario: after the integration of the "HouseInformation"
device.

The required updates should be made direct on the "HouseInformation" driver and
device. Thus this update can be performed at runtime by the removal of this driver and
installation of its new version, as described in section 3.4.

3.7 System Backup

TinySEP requires the user to provide a large amount of information during system
installation. Those configuration may change according to the application that is being
installed, because each of their specific informations. For example, the "AmicaDoor"
device, that was first presented in the section 3.3, is capable of access informations such

48

as the coordinates of sensor node, if the door makes connection with the outside of the
house or if it is an internal door, the door opening direction and in which room is this door
located. However, once the system is setup, the user will not have to perform any extra
configuration, unless he wants to make system change, such as modifying the location of
a sensor node, which will reflect on the alteration of such information in the system.

In order to facilitate this configuration, each device must provide a Graphical User
Interface (GUI). Through this GUI , the users will be capable to performing all the re-
quested configurations. If an application does not need the user input, then, off course,
it would not need to provide a GUI. In the case of the "AmicaDoor" device, one feasible
configuration GUI would be the one represented by Figure 3.9, where each of the param-
eters to receive a user input can be intuitively filled. In this example the parameter "Room
Name" is populated according to the rooms provided by the "House Information" device,
more specific through the "HouseInformation" interface.

However to avoid having to redo all of those settings, it is important that the SEP
somehow saves those informations in case of the system is turned off, as in the case
where for some reason the electricity supply is cut. TinySEP provides a system backup,
in which all drivers and devices are saved along with their settings. Therefore, when the
user restarts the platform, the system will automatically reconfigure it as it was when it
was turned off.

Each driver and each device has its own data, but it is still necessary that the device
manager save them all and somehow minister its reconfiguration. The solution adopted by
TinySEP was to save the settings of each component in a XML file. Each driver and each
device is responsible for managing its backup informations. Once concluded the backup,
this XML is transferred to the device manager that performs the management of all these
files. The device manager also makes a mapping of each of those files to its respective
component. Therefore in order to reboot the system, the device manager will search all
XML files saved to disk and send them to their respective owners, who will make use of
this file to restore the previous settings.

Figure 3.9: The configuration GUI from the "HouseInformation" device.

49

3.8 Sketch of the TinySEP GUI

As was presented in the section 3.7, some of the TinySEP applications can provide
their own GUI, through which the user can make the necessary settings. However it
is still necessary to somehow make available a GUI, whereby the user can perform the
inclusion and removal of the driver and devices. Besides these two essential features, this
GUI still need to allow the user to choose a certain device to be reconfigured, remembered
that this setup GUI will be provided by the chosen device.

It is important to note, that once the platform is configured, the system is capable of
operating without the user interaction. Meanwhile, there is some additional information
that the GUI must provide, as an event log and a log for data packets received and sent.
This event log will visually display all the occurred events, such as, if a new device has
been created, if a door has been opened and if a motion has been detected. Together with
those events, it is necessary to display two more informations, the exact time when this
event was performed and which driver or device originated the log message. The data
packets log will store and display the time at which a packet was received or sent and
the data of this packet. Those logs should be saved by the system in order to maintain a
history. Using those informations, the user can also discover why a particular application
is not working properly. For example, the user realizes that the "FlatOccupancy" device
is no longer functioning, ie, it always reports that the flat is not occupied status. Through
the analysis of those logs, the user can identify that the door sensor node is out of battery,
therefore the system does not recognize when he opens the door of his house. Hence, the
"FlatOccupancy" device is not informed of this event.

Figure 3.10: A possible sketch of the TinySEP GUI.

The TinySEP GUI should be simple and at the same time enable all previous informa-
tion to be available to the user. Basically it can be divided into four parts. The first one is
composed by the events log, which is one of the main features of the system and therefore
should be always visible to the user. This log is depicted in the Figure 3.10. The second
one enables the user to control all the devices and drivers, ie, the user can remove them
or add new drivers. It is represented in the Figure 3.10. The third part allows the user to
modify the drives and devices settings, ie, it provides an interface through which the user

50

can select the component he wants to reconfigure. The last one is composed by the log
for data packets received and sent.

3.9 The Hardware Behind TinySEP

Before prototyping the TinySEP model, it is necessary to define the hardware that
will be initially supported by the platform. Through the choice of this hardware it will
be possible to validate and evaluate the applicability of the model previously proposed.
Since one of its goals is to enable the easy adoption and integration of new sensor and
actuator nodes, which may come from different vendors, then it is necessary to choose at
least two hardware components from different suppliers.

The hardware that will be used should give in the form of Wireless Sensor Network
(WSN), once its implementation cost is much smaller then those that are given in the
form of wired sensor network. Furthermore, it is much easier to perform modifications
on the location of a WSN sensor node. Even with the power consumption problem, the
advantages from the WSN sensor nodes are still more numerous then the ones found on
the wired sensor nodes. Among the wide range of WSN nodes available on the market, the
AmICA and the Sun SPOT were chosen as the initially supported hardware. The reasons
that led to this choice will be presented in detail within this section.

3.9.1 AmICA

The AmICA sensor nodes were developed by Sebastian Wille, my co-adviser. Hence
the first advantage of adopting this harware is the unrestricted access to the AmICA sensor
nodes and its documentation. Beyond that, given the necessity of a variety of sensors and
actuator nodes Sebastian developed some new sensor nodes, as for example the speaker
and the heater sensor nodes. With the integration of this new hardware it was possible to
develop more complex scenarios that include a significant variety of sensor nodes.

The AmICA sensor nodes, see Figure 3.11, are small in size and support various sen-
sors and actors, as for example, temperature, light, movement, reed-switch and accelera-
tion sensors and LED actuators. They have very low power consumption in sleep mode,
self-wake-up capabilities, a fast wake-up time and a self-programming capability. They
can be powered through two AA batteries or through a small lithium-polymer battery
(Wille et al. 2010; Wille et al. 2010).

A sensor node transmission range depends on frequency band, modulation, and the
physical properties of the environment. The AmICA sensor nodes uses a FSK modula-
tion in the 433, 868 or 915MHz. In most countries at least one of these frequency bands
is licence free, as for example the 868MHz frequency can be used in Europe. One sin-
gle AmICA node can send up to 21 818 packets within one hour, however this value
can be programmed and each sensor node can send those information in a different time
(Wille et al. 2010; Wille et al. 2010).

In order to perform the evaluation of the TinySEP prototype the following AmICA
sensor nodes will be used:

• Movement sensor node - This sensor node is capable o detecting a motion in 280
meters range. It sends a movement packet every 2 seconds.

• Reed-switch sensor node - It can be used for the detection of opened or closed door
or window. It sends a packet every second.

51

Figure 3.11: AmICA WSN sensor node; without (left) and with (right) housing.

• Heater sensor node - It allows the configuration of the heater’s potency. This sensor
node send a packet every 10 seconds with the current heater potency.

• Light sensor node - It sends a packet with the light brightness every 10 seconds. It
also has a actuator that allows the light brightness to be changed.

• Speaker sensor node - It sends volume information in a packet every 10 seconds.
The volume can also be changed with the help of a actuator.

• Pet collar sensor node - It is used to identify a pet motion and it sends this informa-
tion every 2 seconds.

• Modified AmICA sensor node - Provides the communication between the computer
and the sensor nodes, see Figure 3.12.

Figure 3.12: A modified AmICA sensor node, that was built on a board with a USB port
for power supply.

It is important to note that one single node can be from one or more types, ie, one
AmICA sensor node can be a movement and a reed-switch sensor node. In the previously

52

list, those combinations were omitted, because it would be redundant to present them
since their functionalities are the same presented in each type.

Table 3.1: Payload description of the AmICA node protocol

Meaning Payload Usage

Keep Alive

82 0 A B C D F G H I J K L M N O The keep alive payload is sent by every AmICA
sensor node. It is used in order to give some
informations, such as the battery status, the

seconds since the sensor node was turned on
and the node serial number, product ID and

supplier. Through this payload it is possible to
know the sensor type, ie, if it is a movement
sensor node or a reed-switch or any of the

types previously listed.

Seconds since start up =
A * 256³ + B * 256² + C * 256 + D
Battery Statys in mV =
(F * 256 + G)/ 5242880
Vendor ID = H * 256 + I

Product ID = J * 256 + K

Serial Number =
L * 256³ + M * 256² + N * 256

Reed-Switch
Status

100 3 0 A The reed-switch status payload is sent by a
reed-switch sensor node in order to inform the
current status of a door, window or letter box.

Closed if A = 0 and

Opened if A = 1

Light Control

 5 2 0 A The light control payload is sent only by the
light sensor nodes. Through this payload it is

possible to known the current light brightness
and to reconfigure this value, once this sensor

node is also equipped with an actuator.

A = light brightness value in
percentage (%)

Movement
Detection

100 5 0 A
The movement detection payload is only sent

by the motion sensor node.
If A = 1 a motion was detected,
otherwise A = 0

Speaker
Control

5 4 0 A The speaker control payload is sent by a
speaker sensor node. This payload is used to
inform the current volume and to change its

value.
 A = volume in percentage (%)

Pet
Movement
Detection

100 5 0 A
The pet movement detection payload is only

sent by the pet collar sensor node.
If A = 1 a motion was detected,
otherwise A = 0

 Heater
Control

5 8 0 A Through the heater control payload it is
possible to know the current heater potency
and to reconfigure its value. This payload is

sent only by a heater sensor node.

 A = the heater potency in
percentage (%)

The AmICA sensor nodes have their own communication protocol, named as AmICA
node protocol. It ensures a basic communication functionality between the AmICA sensor
nodes and the computer, through the modified AmICA sensor node. The structure of the
protocol is simple and a coordinator node is not needed. In this protocol, the packets
transmitted between the sensor nodes are composed by a packet size identifier, a header
and a payload, as illustrated in the Figure 3.13. The packet size identifier is used to
inform the packet beginning and its size. The header consists of seven bytes, which are,
respectively, a header value, the source address, the destination address, the netgroup, the
sequence number, the checksum and the payload length. The combination of the netgroup
and the source address identifies the sender node. In the same way the combination of

53

the destination address and the netgroup identifies the receiver. Thus it is possible to
have 65536 different sensor nodes, once each one of those fields may range from 0 to
255. The payload can contain up to 255 bytes and each of them has a specific meaning
(Wille et al. 2010; Wille et al. 2010). A list with all the recognized payloads is presented
in the Table 3.1.

Figure 3.13: Packet description of the AmICA node protocol.

3.9.2 Sun SPOT

The Sun SPOT sensor nodes were developed by the Sun Microsystems. Unlike the
AmICA nodes, the Sun SPOT sensor nodes are commercialized. Thus, the first advantage
on their use is that they are produced in a large scale, therefore it is easier to buy the Sun
SPOT sensor nodes then the AmICA sensor nodes. The second advantage of this sensor
nodes is that beyond the complete documentation, they also provide an emulator capable
of running Sun SPOT software just the way the physical Sun SPOT sensor nodes does.

The Sun SPOT sensor nodes, see Figure 3.14, are Java programmable embedded de-
vices. Each node has accelerometer, temperature and light sensors, radio transmitter, eight
multicolored LEDs, 2 push-button control switches, 5 digital I/O pins, 6 analog inputs,
4 digital outputs, and a rechargeable battery. The power consumption is extremely low
during deep sleep, however if the device sensors and radio are turned full on and left to
run continuously, the battery will only last a day.

Figure 3.14: Sun SPOT sensor node.

Programming the Sun SPOT is surprisingly easy, because of the Sun SPOT Software
Development Kit, that can be easily integrated to the IDE NetBeans. In order to perform
the evaluation of the TinySEP prototype the following types of Sun SPOT nodes were
programmed:

54

• Movement sensor node - Through the accelerometer sensor it is possible to detect if
the sensor was moved. This sensor node sends a movement packet every 2 seconds.

• Temperature sensor node - Every 10 seconds this sensor node sends a packet with
the temperature detected by the temperature sensor.

• Light sensor node - A packet with the brightness detected by the light sensor is sent
every 10 seconds. This sensor node does not have any actuator, therefore it is not
possible to set the light.

• Pet collar sensor node - It is used to identify a pet motion through the accelerom-
eter sensor that should be fixed on the pet collar. This information is sent every 2
seconds.

• Basestation - Provides the communication between the computer and the sensor
nodes.

Each Sun SPOT node can implement one of the features described previously or more.
This combination depends of the intended usage, as for example, it make no sense to have
a sensor node equipped with a pet collar and at same time with the temperature, because
it would be not possible to know which room this temperature refers, since the pet can
move around the house.

Table 3.2: Payload description of the Sun SPOT node protocol

Meaning Payload Usage

Movement
Detection

2 1 0 A
The movement detection payload is only

sent by the motion sensor node.
If A = 1 a motion was detected,
otherwise A = 0

Temperature Status

3 1 A B
The temperature sensor node sends a
packet with the temperature value in

degree Celsius (ºC).

The bytes A and B generates
the temperature value in
degree Celsius (ºC)

Light Status

 4 1 0 A The light status payload informs the light
brightness in percentage (%). This

payload is only sent by the light sensor
node.

A = light brightness value in
percentage (%)

Pet Movement
Detection

5 1 0 A
The pet movement detection payload is

only sent by the pet motion sensor node.
If A = 1 a pet motion was
detected, otherwise A = 0

In order to allow an easy communication between the Sun SPOT sensor nodes and
the TinySEP prototype, a communication protocol was created. This protocol was named
as Sun SPOT node protocol and it is quite simple, once it merely schematizes how the
packages will be. In this protocol, each packet has a packet size identifier, a header and a
payload, as illustrated in the Figure 3.15. The packet size identifier, in the same way as in
the AmICA node protocol, is used to inform the packet beginning and its size. The header
consists of eleven bytes, which are, respectively, the source address (8 bytes), the sensor
type, the checksum and the payload length. The payload can contain up to 255 bytes and

55

each of them has a specific meaning. A list with all the recognized payloads is presented
in the Table 3.2.

Figure 3.15: Packet description of the Sun SPOT node protocol.

56

57

4 TINYSEP: PROTOTYPE

In this chapter a prototype for the TinySEP model, which was discussed in detail in
the chapter 3, will be presented. The TinySEP prototype was developed using the IDE
Microsoft Visual Studio 2010 and the programming language C#. All the graphical user
interfaces were developed using the Windows Forms. The programming language C#
was chosen to make this implementation, because differently from other programming
languages, like Java, in C# by passing a complex object as parameter, in fact the object
reference is being passed, ie, the parameters in C# are passed by reference and not by
value as in Java. Thus, when the object referred on a function parameter is modified, the
original object is being modified. Another advantage from this programming language
is the possibility to dynamically open DLL files to the program at run time. This DLL
inclusion was extremely important, because it allows more freedom and scalability to the
system. Another important factor for this choice was the whole background that I had
with the development of software using this programming language and this IDE. On the
other hand, when those choices were made, it became clear that this prototype would be
limited to computers equipped with Windows operating system. However even with this
disadvantage the C# was still the best choice.

The TinySEP prototype accurately follows the model proposed in the previous chapter.
In order to implement the driver model concept, 2 programming interfaces were defined,
the IDriver, which abstracts the functionalities that should be provided by the driver, and
the IDevice, whose methods define the device features. The driver model prototype, will
be discussed in the section 4.1. Programming interfaces were also used to implement the
interfaces proposed in the section 3.2. Each interface is composed by two programming
interfaces, the Listener and the Provider. This topic is going to be explained in detail in
the section 4.2.

As presented in the section 3.3, the device manager plays an important role on the
management of the drivers and devices. To allow this management a bidirectional com-
munication between the device manager and the drivers and devices is established. At the
same time this device manager also establish the communication with the TinySEP GUI.
The explanation of the device manager prototype is presented in the section 4.3.

In order to validate this platform it is important to define the initial group of applica-
tions that will be supported. In total 20 different applications were developed. To better
explain the applications, they were slip into 4 layers, the Hardware Connection, the Hard-
ware Abstraction, the Intermediate Services and the Ambient Assisted Living Services.
Those layers together with their applications will be discussed in detail in the section 4.4.

58

Table 4.1: Methods defined in the IDriver programming interface.

Method Meaning

Guid getDriverUid();
Method used to obtain the driver UID. It is
widely used by the device manager in order to
build log messages.

string getDriverName();

This function returns the driver name and it is
also deeply used by the device manager to
display to the user the informations from this
driver.

ArrayList getDevicesList();
Method that returns a list with all the devices
that were created by this driver.

void newInterfaceFound(
 object newInterface);

Method used by the device manager to inform
the driver that a new interface was found.

void interfaceRemoved(
 object interfaceRemoved);

The device manager makes use of this function
to inform the driver that a specific interface
was removed.

int installDriver(
 IDeviceManager deviceManagerRef);

Method used by the device manager to
perform the driver installation.

void installDriverFromBackup(
 IDeviceManager myDeviceManager,
 XmlDocument backupFile);

Function which installs a driver from its
previous settings that were saved in a backup.

Dictionary<string, string> getAllFunctions();
Function that provides all the additional
features of this driver, such as a GUI to
perform certain configurations.

void loadFunctions(string functionName);

Method used to execute one of the driver
functionalities that was provided by the
"Dictionary<string, string> getAllFunctions()"
method.

4.1 Driver Model

In the TinySEP model, it was proposed that each application should be encapsulated
into a DLL and that each of them should be composed by the combination of a driver
and its devices. Therefore every application must have at least a class that implements
the driver functionalities and another one that implements the device functionalities, see
Figure 4.1. Those functionalities that each one of those classes must support are defined
through programming interfaces, however, how each of them will be programmed is a
decision from the developer. It is important to observe that an application may have other
classes inside its project, as for example a GUI to perform configurations and auxiliary
classes.

A programming interface that every driver must support was named as IDriver. The
IDriver interface defines some basic features that allow the device manager to install a
driver, to inform that a new interface was found or removed and to obtain some informa-
tion from this driver, as its name, its UID and a list with its devices. Furthermore, the
driver should allow the user to access its information to perform reconfigurations or just
to analyse the current configurations. The Table 4.1 summarizes the methods defined by

59

Figure 4.1: The project structure from a TinySEP application. This project is composed by
3 classes, one for the device, another for the driver and the last one is for the configuration
graphical user interface.

the IDriver interface and the meaning from each of them.
In a similar way to the drivers, the devices are also characterized according to a pro-

gramming interface, referred as IDevice. This interface defines methods used to create
a device, to establish a connection with other devices, to obtain informations from this
device, such as its configuration parameters, its UID and its type. This interface also al-
lows the user to access additional functionalities, as for example a GUI that displays the
current configuration from this device. The Table 4.2 shows the methods defined by the
IDevice interface.

If a particular application does not implement all the features described by the pro-
gramming interface, then it does not implements it, even if it is only one of the methods
described. Ie, a class that abstracts a device need to implement all the functions described
by the IDevice programming interface. Likewise, a driver must implement all the methods
described by the IDriver programming interface.

4.2 Signal Slot Model

As presented in the section 3.2, the signal slot model from TinySEP allows a publish/-
subscribe event notification, which is made through the interfaces. In order to implement
these interfaces defined in the TinySEP model into the prototype, the programming in-
terfaces were used. Each interface is composed by two programming interfaces, referred
as Listener and Producer. The programming interface Producer is implemented by the
device that provides the interface, while the Listener is implemented by the device that
desires to receive the notifications from the events.

To better understand how the signal slot model was prototyped, see the Figure 4.2,
in which the Device A provides the IMovement interface, which is used by the Device
B to establish a connection. The IMovement interface is composed by the programming
interface IMovementProvider, which is implemented by the Device A. The IMovement-
Provider allows the Device B to obtain some information, as for example, when the last
movement was detected and if this movement happened inside or outside the house. On
the other hand, the IMovementListener is used by the Device A to inform the Device
B about an event of motion detection. Therefore at the same moment that the Device
A detects a motion, it forwards it to the Device B, through the programming interface

60

IMovementListener.

Figure 4.2: Connection establishment between a Device A and a Device B using the
IMovement interface.

It is important to observe that those programming interfaces, which were used to pro-
totype a TinySEP interface, only defines the methods that must be implemented, not how
they should be implemented, because this implementation may change according to the
application. A list with all the TinySEP interfaces already defined is presented in the
Appendix A.

Table 4.2: Methods defined in the IDevice programming interface.

Method Meaning

Guid getDeviceUid(); Method used to obtain the device UID.

string getDeviceType();
This function returns the device type, which
will be the same for every device created by
the same driver.

int connectDeviceToOtherDevice(
 object myReference);

Method used by another device to inform this
one that it wants to establish a connection
between them.

int connectToDevice(
 object deviceReference);

Function used by the driver or by this device
to indicate that it must establish a connection
with the device referred in the function
parameter.

void newInterfaceFound(
 object newInterface);

 Method used by the device manager to
inform the device that a new interface was
found.

void interfaceRemoved(
 object interfaceRemoved);

The device manager makes use of this
function to inform the device that a specific
interface was removed.

int createDevice(
 IDeviceManager myDisposer);

The driver makes use of this method to
perform the device creation.

int createDeviceFromBackup(IDeviceManager
myDeviceManager, XmlDocument backupFile);

The driver makes use of this function to
create the device from it previous
configuration, which was saved in a backup.

Dictionary<string, string> getAllFunctions();
Function that provides all the additional
features of this device, such as a GUI to
perform certain configurations.

void loadFunctions(string functionName);

Method used to execute one of the device
functionalities that was provided by the
"Dictionary<string, string> getAllFunctions()"
method.

Dictionary<string, object>
getDeviceParameters();

This function returns all the configuration
parameters from this device.

void setDeviceParameters(Dictionary<string,
object> newDeviceParameters);

 Method used to edit the device configuration
parameters.

61

4.3 Device Manager

As presented in the section 3.3, the TinySEP model has a device manager, which is re-
sponsible by the management of drivers and devices. With the help of the device manager
other drivers and devices are informed about the installation or removal from a specific
interface. This communication, provided by the device manager, performs an important
role, because it is due to it that new devices can be created or removed. However, the
device manager does not interfere on the internal event communication, once this is made
direct between the devices. In parallel to the devices and drivers communication, the de-
vice manager is also responsible to perform an interconnection with the Graphical User
Interface (GUI), whose sketch was defined in the section 3.8. The device manager can be
seen as a central piece of the TinySEP prototype.

The device manager was prototyped in a class named as CDeviceManager which im-
plements two programming interfaces, the IDeviceManager and the IGuiDeviceManager.
The IDeviceManager defines methods through which the driver and devices can com-
municate with the device manager. Those methods allow drivers and devices to register
themselves in the device manager and to obtain a list with all the devices already installed
and or a device from a specific UID. They also enable the drivers and devices to add a log
message or to save, restore or remove a backup file from a driver or from a device. This
communication between the device manager and the drivers and devices is not made on an
unidirectional way, ie, in the same way that the drivers and devices can request some ca-
pabilities from the device manager through the programming interface IDeviceManager,
the device manager can also make requisitions from the drivers and devices, respectively,
through the programming interfaces IDriver and IDevice.

A programming interface IGuiDeviceManager allows the user to perform modifica-
tions on the system currently installed through the system GUI, as for example, remove a
driver or a device form the system, or remove the whole applications. Furthermore, this
programming interface also enables the GUI to send events to the device manager, as for
example one event to notify that the application is being closed by the user, another one
to update the list of drivers already installed and one event to inform the device manager
that the user want to start the system using the backup. In the same way that the GUI can
communicate with the device manager, it can also communicate with the TinySEP GUI
through the programming interface IGui, which is implemented by the TinySEP GUI.
This programming interface provides methods through which the device manager can use
to show a list with all the drivers, another list with the devices and functionalities to add
the log messages.

4.4 Applications

The model proposed in the chapter 3 does not specify which applications must be
developed by the prototype. In fact, those definitions were not made, because the idea
behind this prototype is that it can support a wide range of applications, which can sup-
ply different capabilities, as for example one that connects a specific hardware with the
platform and another that can controls the house lights.

In this prototype 20 different applications were developed. To facilitate the expla-
nation, they will be divided in 4 layers, as illustrated by the Figure 4.3. The 4 layers,
Hardware Connection, Hardware abstraction, Intermediate Services and Ambient As-
sisted Living Services will be presented in detail together with their applications in the

62

next sections.

Figure 4.3: TinySEP applications layers.

4.4.1 Hardware Connection

The Hardware Connection layer is composed by applications that are responsible to
establish the connection between the hardware and the software. Through those applica-
tions the software can communicate with the hardware and vice versa. To each hardware
from a different supplier introduced into the system, a new application must be provided
in order to enable this communication, which can be made through a serial port or through
the Internet.

As was defined in the section 3.9, this prototype will initially support the AmICA
sensor nodes and the Sun SPOT sensor nodes. Therefore, at least one application re-
sponsible to perform the communication between the TinySEP and the AmICA hardware
and another one between the TinySEP and the Sun SPOT hardware must be provided. In
the Hardware Connection layer, 3 different applications where developed, the Bus Radio
AmICA, the Bus Radio AmICA UDP/IP and the Bus Radio Sun SPOT UDP/IP.

4.4.1.1 Bus Radio AmICA

The Bus Radio AmICA makes the connection between the AmICA sensor nodes and
the software. The Bus Radio AmICA driver receives the data supplied by the modified
AmICA sensor node (see Figure 3.12) through a serial port. This driver can also send
packet data to the AmICA sensor node through the same serial port.

Each Bus Radio AmICA device abstracts a sensor node. Ie, in a house equipped with
10 AmICA sensor nodes, at least 10 Bus Radio AmICA devices will exist. Thus every
time the driver receives a packet, whose header indicates a device already created, the
driver will forward the payload encapsulated on this packet to the device referred on the
message header. However, if the packet is from the type "Keep Alive" and its header
indicates a device that does not exist, then the driver will create a new device to abstracts
this sensor node.

All Bus Radio AmICA devices provide the IBusRadioAmICA interface. Through this
interface the device can inform other devices connected to it about the receipt of new data
packets. Through this same interface, the other devices can obtain the AmICA sensor
node identifier and can also send data to this sensor node. It is interesting to note that this
device does not make any analysis on the payload content, it just forward this payload to
the devices that desires to receive those informations.

63

4.4.1.2 Bus Radio AmICA UDP/IP

The Bus Radio AmICA UDP/IP is also responsible to establish a connection between
the TinySEP and the AmICA sensor nodes. The only difference between this application
and the Bus Radio AmICA, previously presented, is that this application does not receive
the data through the serial port. It recives them through the Internet using an UDP/IP con-
nection. This application was developed primarily with the goal to allow the realization
of simulations from the behaviour of the AmICA sensor nodes, as will be discussed in
detail in the chapter 5.

4.4.1.3 Bus Radio Sun SPOT UDP/IP

The Bus Radio Sun SPOT UDP/IP is an application that makes a connection between
the Sun SPOT sensor nodes and the software. The Bus Radio Sun SPOT UDP/IP driver
is capable to receive packets through the Internet with an UDP connection. Differently
from the Bus Radio AmICA UDP/IP, this application is not used only with the purpose of
make simulations. It is also used to receive real data from the Sun SPOT sensor nodes.

The Sun SPOT sensor nodes have a complete Software Development Kit for Java,
however the TinySEP prototype was developed using the programming language C#. The
solution adopted to allow this integration was to develop an application using the pro-
gramming language Java, which forwards those data packets through UDP/IP. Those data
packets are received by the Bus Radio Sun SPOT UDP/IP. This program in Java, makes
a connection with the basestation through a serial port. Once this program receives an
information from the sensor nodes, it just encapsulate it into an UDP datagram and sends
it to the Bus Radio Sun SPOT UDP/IP.

The whole process of creation from the Bus Radio Sun SPOT UDP/IP devices is made
in a similar way as the Bus Radio AmICA and the Bus Radio AmICA UDP/IP, however
the Bus Radio Sun SPOT UDP/IP driver can create a new device from any data packet
that it receives, ie, it does not need to wait for a data packet from with a "Keep Alive"
payload. All the Bus Radio Sun SPOT UDP/IP devices provide the IBusRadioSunSPOT
interface.

4.4.2 Hardware Abstraction

The applications of the hardware abstraction layer are responsible for converting the
raw data into usable data and vice versa, as for example, convert the sensor raw data into
a movement data. A device from this layer receives this raw data from the devices from
the Hardware Connection layer, through the IBusRadioAmica interface or through the
IBusRadioSunSPOT interface.

For every device from the Hardware Connection layer, there is one or more devices
from the Hardware Abstraction layer. For example, for a sensor node that is equipped at
the same time with a movement sensor and light actuator, a Hardware Connection device
will be created and two Hardware Abstraction devices, one for the movement sensor and
another one for the light actuator.

4.4.2.1 AmICA Movement

The AmICA Movement application is responsible for converting the raw data from the
AmICA movement sensor node into movement data. In order to make this conversion, the
AmICA Movement device analyses the payload information received from the Bus Ra-
dio AmICA device or from the Bus Radio AmICA UDP/IP device, through the IBusRa-

64

dioAmICA interface. The movement information is provided by the AmICA Movement
device through the IMovement interface.

4.4.2.2 AmICA Door

The AmICA Door converts the raw data from the AmICA reed-switch sensor node
into door data. In order to make this conversion, its device analyses the payload informa-
tion received from the Bus Radio AmICA device or from the Bus Radio AmICA UDP/IP
device, through the IBusRadioAmICA interface. Every AmICA Door device implements
the IDoor interface, through which the door data is turn available.

4.4.2.3 AmICA Window

The AmICA Window application is responsible for converting the raw data from the
AmICA reed-switch sensor node into window data. In order to make this conversion,
the AmICA Window device analyses the payload information received from the Bus Ra-
dio AmICA device through the IBusRadioAmICA interface. The window information
provided by the AmICA Window device through the IWindow interface.

4.4.2.4 AmICA Simple Light and AmICA Dimmable Light

The AmICA Simple Light and AmICA Dimmable Light are responsible for convert-
ing the raw data from the AmICA light sensor node into light data and also responsible
for sending information to this sensor node, as for example a message to turn the light
on. To make this conversion, a AmICA Light device analyses the payload information
received from the Bus Radio AmICA device or from the Bus Radio AmICA UDP/IP
device, through the IBusRadioAmICA interface. Using the same interface the AmICA
Light device also sends the information to change the light status. The light information
is turned available by the AmICA Simple Light device through the ISimpleLight inter-
face, while the AmICA Dimmable Light device provides it through the IDimmableLight
interface. The ISimpleLight interface is recommended to light sensor nodes that can just
turn the light on or off, while the IDimmableLight interface allows regulation of the light
brightness.

4.4.2.5 AmICA Heater

The AmICA Heater application converts the raw data from the AmICA heater sensor
node into heater data and vice versa. The AmICA Heater device can also receives raw
data from the Bus Radio AmICA device or from the Bus Radio AmICA UDP/IP device,
through the IBusRadioAmICA interface. It is also capable of sending the configuration
data to the Bus Radio AmICA device, as for example a message to change the heater
potency. The Bus Radio AmICA application forward the message to the AmICA heater
sensor node. The heater information is provided by the AmICA Heater device through
the IHeater interface.

4.4.2.6 AmICA Speaker

The AmICA Speaker application is responsible for converting the raw data from the
AmICA speaker sensor node into speaker data. In order to make this conversion, the
AmICA Speaker device analyses the payload information received from the Bus Radio
AmICA device through the IBusRadioAmICA interface. This device is also capable to
send raw data to its sensor node in order to perform some configurations, as for exam-

65

ple to change the speaker volume. Every AmICA Speaker device provide the speaker
information through the ISpeaker interface.

4.4.2.7 AmICA Pet Movement

The AmICA Pet Movement converts the raw data received from the AmICA pet
movement sensor node into pet movement data with the help of the IBusRadioAmICA
interface. Every AmICA Pet Movement device implements the IPetMovement interface,
through which the pet movement data is turn available.

4.4.2.8 Sun SPOT Movement

The Sun SPOT Movement application is responsible for converting the raw data from
the Sun SPOT movement sensor node into movement data. To perform this conversion,
the Sun SPOT Movement device analyses the payload information received from the
Bus Radio Sun SPOT UDP/IP device through the IBusRadioSunSPOT interface. The
movement information is provided by the Sun SPOT Movement device through the same
IMovement interface found on the AmICA Movement application.

4.4.2.9 Sun SPOT Temperature

The Sun SPOT Temperature converts the raw data received from the Sun SPOT tem-
perature sensor node into temperature data with the help of the IBusRadioSunSPOT in-
terface. Every Sun SPOT Temperature device implements the ITemperature interface,
through which the temperature data is turn available.

4.4.2.10 Sun SPOT Light

The Sun SPOT Light is responsible for converting the raw data from the Sun SPOT
light sensor node into light data. Differently from the AmICA light sensor node, the Sun
SPOT light sensor node is not equipped with a actuator, therefore the Sun SPOT light
device is not capable to adjust the light brightness. Ie, it can only receive the raw data
from the light sensor node. In order to receive this raw data, the device connects itself
with the Bus Radio Sun SPOT UDP/IP device through the IBusRadioSunSPOT device.
The Sun SPOT Light device provides the light information through the ILightBrightness
interface.

4.4.2.11 Sun SPOT Pet Movement

The Sun SPOT Pet Movement converts the raw data received from the Sun SPOT pet
movement sensor node into pet movement data with the help of the IBusRadioSunSPOT
interface. Every device from this application implements the IPetMovement interface,
through which the pet movement data is turn available. This interface is the same provided
from the AmICA Pet Movement interface.

4.4.3 Intermediate Services

The Intermediate Services layer is composed by applications that provide services,
which may be used by other applications. The devices from this layer can, optionally,
make use of the services provided by the applications situated in the lower layers, Hard-
ware Abstraction layer and Hardware Connection layer. In this prototype, 4 applications
for the Intermediate Services layer were developed, the Flat Occupancy, the House Infor-
mation and the Mail Manager.

66

4.4.3.1 Flat Occupancy

The Flat Occupancy is an application that monitors the house occupation. It is capable
to verify if there is someone at house or not. In order to perform this verification, a simple
algorithm, which is presented on the Figure 4.4, was developed. This algorithm is capable
to detect if there is someone at the flat, but it can not inform the exact number of people
inside the house. It is interesting to observe that the goal of this work is not to develop
the most efficient and precise algorithm to detect a flat occupation, the goal is to provide
a smart environment platform that in addition to providing all the support necessary for
an AAL system, also allows an easy integration of hardware and software from different
vendors. Ie, this application was developed only with the goal to validate the platform
and not to publish an innovative algorithm.

Figure 4.4: The flat occupancy algorithm used by the Flat Occupancy device to verifies if
there is at least someone at the house or not.

The Flat Occupancy driver creates only one device. This device implements the algo-

67

rithm from the Figure 4.4. The Flat Occupancy device is interested on the IDoor, IMove-
ment, IPetMovement and ITimeController interfaces, because the information provided
by them is used on its algorithm. The information related to the flat occupancy status is
turn available through the IFlatOccupancy interface.

4.4.3.2 House Information

The House information application is the solution for the problem previously pre-
sented in the section 3.6. The House information device manages all the necessary infor-
mation from the house and turn it available to the other devices through the IHouseInfor-
mation interface. The house information device is created automatically when the driver
is installed, because this device does not need any other device to perform its function-
alities. Ie, this device was created only to allow its information to be used by the other
devices.

4.4.3.3 Mail Manager

The Mail Manager application, when requested can send an email to a list of ad-
dresses. The email message and the subject are informed by the device that want to for-
ward it. The Mail Manager device allows the other devices to make this request through
the IMailManager interface. In the same way as the House Information application, the
Mail Manager driver creates instantaneously a device, which may receive connection re-
quests from other devices.

4.4.3.4 Time Controller

The Time Controller was developed specially to allow the realization of simulations.
Some of the simulators that were used to perform the platform evaluation may take more
time to make its graphic renderization. Therefore, while the TinySEP prototype runs in
real time, the simulator may be running in another time. The solution to that problem
was to develop a time synchronizer that will communicate with the TinySEP through the
Time Controller application. Another advantage of this approach is that it is possible to
simulate all the events that happened in a house for a whole day in a much shorter time,
increasing the number of simulations performed.

The TinySEP prototype does not need necessary to use the Time Controller applica-
tion, ie, if this application was not installed, the platform continues to operate using the
real time. Once the Time Controller is installed, the user can still choose to use it or not
and these changes may be made at run time.

Once Time Controller driver is installed, it automatically creates a device. This device
is responsible for making the whole time control. The time information is turned available
through the ITimeController interface, which is provided by the Time Controller device.

4.4.4 Ambient Assisted Living Services

The Ambient Assisted Living Services layer is composed by applications that might
be used by other devices. The main difference between the applications from this layer
to those from the Intermediate Services layer is that the ones from the AAL Services
layer can make use of the services provided by the applications situated on the Interme-
diate Services layer. In fact the applications from this layer can make use of any service
provided by any of the four layers.

In this prototype 2 applications for the AAL Services layer were developed, the Inac-

68

tivity Recognition and the Follow Me Light. Both applications make use of the services
provided by the Intermediate Services and by the Hardware Abstraction layers.

4.4.4.1 Inactivity Recognition

The Inactivity Recognition application detects if the person suffers an accident that
makes him unable to ask for help. If this situation is detected the application automatically
calls for help. The main idea of its algorithm, which is illustrated by the Figure 4.5, is
that if the person stops to make activities, as for example, movement or open a door, for a
specific time, then a inactivity was detected. Once again the idea of this application is not
to validate a new and precise algorithm but to evaluate this platform and its applicability.

Figure 4.5: The algorithm used by the Inactivity Recognition device to detects if the
person suffers an accident and need help.

69

This version of the Inactivity Recognition algorithm (see Figure 4.5) only works for
one person, because if there is another one at home and this person continues to make
activities, then the algorithm will continue to work without detecting that the other one
had an accident and needs help. Another problem from this algorithm is that the time
used for each room must be informed by the user and this algorithm does not learn with
previous examples, so if the times are not good enough, then the user must set them
manually.

The Inactivity Recognition application receives the activities information through the
IMovement, IDoor and IWindow interfaces. The IFlatOccupancy interface is used in
order to verify if there is at least one person at home, because it does not make any sense
to verify an inactivity recognition if there is no one at the house. The IMailManager
interface also play an important role, because it is used to notify the occurrence of an
inactivity. Another important interface for this algorithm is the IHouseInformation, that
provides all the environment information. If the ITimeController interface is available,
then this time provided by this interface will be used, otherwise the real time is going to
be used on the timer.

4.4.4.2 Follow Me Light

The Follow Me Light application controls the house whole illumination. As the person
moves inside the house, the lights follow this person movements, for example, if the
person is at the living room and he walks to the kitchen, then the living room lights are
turned off and the kitchen light are turned on. This application only works if there is
at least one person inside the house, because otherwise it would not make any sense to
control the house illumination if there is nobody on it.

If there is more then one person at home, this application will not turn off the lights
from where one of the users is, only because the other one is moving. It will wait for
some seconds to verify if there is someone else at one room and then turn the light off, if
there is nobody there, or maintain it on, if there is someone there.

This application has one peculiarity. If in this house there is a pet and if this pet moves
around the house, then the house lights will also follow this pet movements. However,
this will only happen while there is someone else inside the house, because if the flat is
occupied only by the pet, then the flat occupancy status will be not occupied and therefore
this application will not work.

The Follow Me Light driver creates only one device, which makes the control from
the house illumination. The Flat Occupancy device is interested on the ISimpleLight,
IDimmableLight, IDoor, IMovement, IFlatOccupancy and ITimeController interfaces,
because the information provided by them is used on the light control. The Follow Me
Light device does not provide any interface, because the service provided by it can not be
used by other devices and it can not give any special information.

70

71

5 PLATFORM EVALUATION

In order to demonstrate the applicability of the prototype developed in this work,
several tests were made. Some of those tests were performed in real environments, others
were made only with the help of simulators and the others were performed with the help
of simulator and real sensor nodes.

The first tests, discussed in the section 5.1, were performed with the aim to make a
performance analysis. Basically, measurements were made to verify the use of resources
by the prototype in different scenarios. The sensor nodes that were chosen for this proto-
type were analysed in the section 5.2, specially, according to the signal range of each of
them. Some tests were also performed in real environments. In fact 3 flats were used to
evaluate the usage of the prototype and the advantages and disadvantages of the usage of
this prototype will be presented in the section 5.3. The end tests, discussed in the section
5.4, were performed with the help of 3 different simulators. Those simulators allowed the
creation of more complex tests, which were capable to analyse each application provided
by the platform and their internal communication.

5.1 Performance Analysis

The TinySEP prototype was designed to run on personal computers or even on note-
books, in which the user can continue to use all the features from his machine while the
AAL system runs. Some tests with the goal to simulate some expected scenarios for this
platform were performed in order to analyse the platform resources usage. In total 5 dif-
ferent scenarios were developed. Each of them seeks to include all hardware and software
resources defined in previous chapters, ie, all the applications, which were presented in
the section 4.4, were used. In those tests the information provided by the AmICA sen-
sor nodes an by the Sun SPOT sensor nodes was used, once one of the goals from this
platform is to provide an easy integration of hardware and software components from
different suppliers. However due to the fact that some of those scenarios requires more
sensor nodes then the ones available, some sensor nodes were simulated with the help of
the simulators that are going to be discussed in the section 5.4.

In each one of those developed scenarios the number of installed devices were in-
creased. The Scenario 1 is composed by 10 devices, while the Scenario 2 has 20 installed
devices. In fact the Scenario 2 is composed by the same 10 installed devices from the Sce-
nario 1 and more 10 other devices. Using the same logic, the Scenario 3 has 30 devices
and the Scenario 4 and 5 have, respectively, 40 and 50 devices. However, only the number
of devices found in each scenario does not give much information about their complexity.
In order to have a better visualization about those scenarios and their complexity, the total
number of packets received by the platform in 30 minutes, 1 hour, 1 hour and 30 minutes

72

and 2 hours were analysed. The obtained results are presented in the Table 5.1.

Table 5.1: Total number of received packets by the prototype in each one of the 5 scenar-
ios.

Scenario 30 Minutes 1 Hour 1 Hour and 30 Minutes 2 Hours

1 1.077 2.155 3.233 4.313

2 3.768 7.545 11.325 15.102

3 13.292 26.581 39.900 53.217

4 18.351 36.704 55.052 73.406

5 24.110 48.228 72.344 96.461

Once the scenarios were already defined, it was possible to make some performance
evaluations, in which the CPU and memory usage were analysed. All the tests were
performed in a Sony VAIO notebook, model VPCEB4X1E, with the processor Intel R©
CoreTM i5-480M, with the processor speed 2.66 GHz with Turbo Boost up to 2.93 GHz
and with a memory size from 4 Gb. Each test was redone 4 times and the results that are
going to be presented are originating from the average values obtained in each execution.
In order to maintain the result most precise as possible, after the conclusion of each test,
the notebook was restarted and the devices installation was always performed in the same
order. Each execution lasted one hour and the values were recorded every 10 minutes.
The results of this performance test are summarized in the Table 5.2 and illustrated by
graphics form the Figures 5.1 and 5.2.

Table 5.2: The average of the CPU and memory usage values obtained in each scenario.

Scenario CPU (%) Memory Usage (K)

1 0,50% 21276

2 1,25% 21884

3 1,50% 22608

4 1,50% 23140

5 1,50% 23674

Through the results illustrated by the graphic from Figure 5.1, it is possible to observe
that increasing the number of devices, the rate of CPU usage did not change much. In fact
this rate was the same obtained for the Scenarios 3, 4 and 5. This test has also shown that
given a machine with the same configurations used in this test, it is completely feasible to
maintain the prototype running along with other applications.

The graphic from the Figure 5.2 allows the achievement of similar conclusion to the
ones found with the previous graphic. Once again it is possible to note that increasing the
device number did not change significantly the memory usage. In fact, with the addition
of 10 devices, the memory usage value was increased by approximately 600K. Once again
the obtained results have shown this prototype feasibility. However those results are not
enough, since this platform was developed to operate 24 hours a day, 7 days per week.
For this reason it is necessary to check whether the platform is able to run for a long

73

Figure 5.1: Graphical representation of the CPU average rate used to perform the tests in
each scenario.

Figure 5.2: Graphical representation of the memory usage average value used to perform
the tests in each scenario.

time. This test can also be used to verify if there is any memory leak in the prototype
implementation. This test was executed using the Scenario 5 for 72 hours and the CPU
and memory usage values were recorded every 6 hours. The obtained results are presented
in the Table 5.3 and Figures 5.3 and 5.4.

It is interesting to observe that the battery from the Sun SPOT sensor nodes did not
resist to the test. In fact the battery that was completely charged ate the beginning of the

74

Table 5.3: Results obtained with the execution of the Scenario 5 for 72 hours.

Runtime (in hours) CPU (%) Memory Usage (K)

0 1,50% 23.680

6 1,50% 23.676

12 2% 23.796

18 1,50% 23.536

24 1,50% 23.572

30 2% 23.616

36 2% 23.828

42 2% 23.944

48 1,50% 23.624

54 1% 23.632

60 2% 23.652

66 1,50% 23.596

72 1,50% 23.672

test, last approximately a day. It was not possible to determine the exact time that the
battery lasted, because this was only noticed after the first 24 hours. However even with
the Sun SPOT sensor nodes not sending any packet data to the platform, the devices that
were responsible to abstracts this sensor nodes have continued to be installed. Ie, they
were not removed from the application, because if the sensor node were recharged and
turned on, the application would return to receive the information provided by the sensor
and any other configuration would be necessary.

Figure 5.3: Graphical representation of the CPU rate obtained with the execution of the
Scenario 5.

Analysing the results from this test it is possible to observe that no memory leak was
found. Both CPU and memory usage values oscillated during the tests. The reason for
this oscillation is that in the moment that those measurements were made the platform
probably was executing a step on the algorithm that might has required more resources.

75

Figure 5.4: Graphical representation of the memory usage obtained with the execution of
the Scenario 5.

5.2 Sensor Nodes Signal Range Analysis

As was presented in section 3.9, this prototype was developed to support initially the
Sun SPOT sensor nodes and the AmICA sensor nodes. Since those sensor nodes are going
to be used in real environments, it is necessary to verify their signal range. This test was
divided in 2 parts. In the first of them, which will be assessed in the section 5.2.1, the
signal range from the AmICA sensor nodes were analysed. In the second test, presented
in the section 5.2.2, the same tests were performed, but this time using the Sun SPOT
sensor nodes.

Figure 5.5: Illustration of the flat that was used to perform the signal range analysis.

Those tests were performed in a real house, whose house plan is depicted in the Figure
5.5. To each one of the numbered points from 1 to 7 the base station, which received the
sensor packet data through the radio, was situated. Once the base station position was
defined, the verification process started. This test consisted in verify if the packets sent

76

by the movement sensor were received by the base station. Thus the movement sensor
node was positioned in each one of the 7 points that were indicated in the Figure 5.5 and
during 5 minutes the total number of packets that were received by the base station were
verified. Since the sensor node that was being used was a movement one, in 5 minutes 150
movement packets should be received, once the movement sensor nodes send a movement
packet every 2 seconds. This test was redone 4 time to each position and the results of the
average from the obtained values will be presented in the sections 5.2.1 and 5.2.2.

5.2.1 AmICA Sensor Nodes

The Table 5.4 summarizes the results that were obtained with the AmICA sensor
nodes, in which 100% is equivalent to 150 packets received. Those results have shown
that it is possible to use the AmICA sensor nodes in an environment without having much
troublesome with the sensor node signal range. However, those results has also shown
that it is very important to chose carefully the sensor node position, because this choice
directly affects the number of packets lost. This was exactly the problem that originated
approximately 40% of packets loss in the position 6. If several sensors used in this house
are found at the same conditions as the one from the position 6, then the functioning of
the prototype and of all applications on it installed will be compromised.

Table 5.4: The results obtained with the analysis of the signal range from the AmICA
sensor nodes.

AmICA Movement Sensor Node Position
Basestation

position 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%)

1 100 100 100 100 95 57 99

2 100 100 100 100 99 61 93

3 100 100 100 100 97 58 98

4 100 100 100 100 100 83 100

5 98 97 97 100 100 100 100

6 64 58 61 83 100 100 100

7 100 92 99 100 100 99 100

5.2.2 Sun SPOT Sensor Nodes

The results obtained with the Sun SPOT sensor nodes, which are presented in the Table
5.5, were worse than expected. It was expected that their values would be close to those
obtained with the AmICA sensor nodes, however they were much lower. The tests have
shown that the Sun SPOT signal range is much shorter then the one found in the AmICA
sensor nodes. Therefore the packet loss value has increased and in some situations this
lost was so high that the base station practically stopped to receive the sensory data. With
those results, it is possible to note that the Sun SPOT sensor nodes are not suitable to cases
in which the sensors are at a long distance from the base station. For the same reason, it is
possible to conclude that they are not suitable to be used as the only hardware in a house,
even because of the resources that it offers and the battery durability.

77

Table 5.5: The results obtained with the analysis of the signal range from the Sun SPOT
sensor nodes.

Sun SPOT Movement Sensor Node Position

Basestation
position 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%)

1 100 100 79 98 62 2 43

2 100 100 100 97 42 5 31

3 77 100 100 47 25 0 32

4 97 99 51 100 100 15 99

5 55 43 20 100 100 100 100

6 8 3 0 17 100 100 79

7 43 25 28 100 100 71 100

Figure 5.6: Illustration of the three inhabited flats used to perform the real-world evalua-
tions; flat A (left), flat B (right) and flat C (bottom).

78

5.3 TinySEP in the Real-world

In order to evaluate the platform in the real-world, 2 inhabited flats were equipped
with the AmICA sensor nodes and a third flat equipped with the AmICA sensor node and
the Sun SPOT sensor nodes. This three flats are illustrated by the figure 5.6.

The flat A is equipped with 7 AmICA movement sensor nodes and 2 AmICA move-
ment and reed-switch sensor nodes. This flat is inhabited by a 88 years old person. The
flat B is equipped with 12 AmICA movement sensor nodes and it is inhabited by a 28
years old single person. The flat C is equipped with 1 Sun SPOT temperature sensor
node, 1 Sun SPOT movement sensor node, 2 AmICA reed-switch sensor nodes and 1
AmICA movement sensor node. This flat is inhabited by a 23 years old single person.

The results obtained with the flat C has shown that it is really possible to accomplish
the integration of these two hardware in the platform, whose applications take benefit
of the data provided by both. However they have also shown some disadvantages on
the use of this prototype and the hardware that it compounds. Those disadvantages are
found specially with the usage of the Sun SPOT sensor nodes. The battery durability have
proved to be a big problem, because their battery must be recharged every day. Related
with the Inactivity Recognition application, the configuration of the ideal times used by
the algorithm were difficult to determine, specially because at night when the person is
sleeping, he does not perform any movements for a long and therefore the algorithm
detected an inactivity when in the fact the person was just sleeping. Those results have
also shown the necessity of an algorithm that would be capable to automatically adapt the
its times according to the user and the time of the day.

5.4 System Simulations

The results from the tests performed so far were not enough, since it was not possible
to make a precise evaluation of the platform applications, specially the ones found in the
Intermediate Services layer and in the Ambient Assisted Living layer. Moreover, the tests
made so far did not allow the realization of tests from adverse situations, because they
were really inhabited. To overcome this problem, 3 different simulation tools were used.
With the help of those simulators, it was possible to verify precisely the behaviour of each
prototype application.

5.4.1 Simple UDP/IP Simulator

The Simple UDP/IP simulator was developed in C# with the goal to analyse the pre-
cise behaviour of each prototype application to certain sensor inputs. This simulator is
illustrated in the Figure 5.7. It simulates the flat A, whose house map was previously
presented in the Figure 5.6, but for this simulation the flat is equipped with more sensor
nodes then the ones found on the real flat. In total this simulator is composed by 20 Am-
ICA sensor nodes and 3 Sun SPOT sensor nodes, which may or not be activated during
the test. At same time that this simulator sends the sensory data to TinySEP, it also re-
ceives information from the prototype, such as a packet data informing the light actuator
that the light should be turned off. All the received data can be analysed through the log
box found on the bottom of the Figure 5.7.

The first results obtained with this simulations have shown that the packets received
by the applications from the Hardware Connection layer were forwarded to the right de-
vices, ie, the devices that were responsible to abstracts the sensor node functionalities.

79

Figure 5.7: The Simple UDP/IP simulator.

Figure 5.8: Example of a mail sent to inform that an inactivity was detected.

Those devices from the Hardware Abstraction layer were also performing the correct ab-
straction from the sensor nodes raw data. Once it was guaranteed the correctness from
the devices found on both layers, it was possible to make a basic analysis of the Flat Oc-
cupancy, Inactivity Recognition and Follow me Light applications. The tests started with
the Flat Occupation algorithm, because the other applications depend of the results of the
Flat Occupancy application. It was possible to conclude that the Flat Occupancy algo-
rithm was responding as the expected. Moreover, it was possible to observe that when its
status has changed, this event was being forwarded to the right devices. For the Inactivity
Recognition application it was possible to obtain similar results, ie, the timer used in the
algorithm were being setted to the right value, that was stipulated according to the room,
in which the user was performing the activities. Once an inactivity was detected the Mail
Manager application was used to inform this event, as the Figure 5.8 illustrates. However
this simulator was not adequate to evaluate the Follow Me Light application, because it
does not allow the straight visualization of the situation being performed. Ie, in order to
discover which light was being turned on and which was being turned off, it was neces-
sary to analyse the packets displayed in the log provided by the simulator window. This
analyses were not natural, in fact it was confuse and consumes a lot of time. Another dis-
advantage of this simulator is that the sensory information was only sent when the tester
clicked on a button, ie, the information were not being sent in the times that were defined
on the sensor nodes specification. So it can not be used to simulate real scenarios.

80

5.4.2 MCA2/SimVis3D

The MCA2 and SimVis3D platforms, first presented in the section 5.4.1, were devel-
oped by the Robotics Research Lab from the University of Kaiserslautern, Germany. The
idea of this simulation is that the robotics frameworks MCA2 and SimVis3D simulate a
smart environment with one simulated person, one pet and several AmICA sensor nodes
placed in the flat, illustrated by the Figure 5.9.

Figure 5.9: Layout plan of the flat with sensor and actuator positions. “M” indicates a
movement sensor, “D” a door sensor (reed switch) and “L” a light.

This flat is equipped with 8 AmICA sensor nodes. Four of them were composed by
movement sensors and reed-switch sensors (used as doors) and four of them were AmICA
light sensor nodes. The simulator sensor nodes sends informations to TinySEP, which
receives them through the Bus Radio AmICA UDP/IP application. The communication
established between them is bidirectional, because at the same time that TinySEP receives
information from the robotic frameworks it can also send data to them.

Figure 5.10: High-Level interconnection diagram of the robotic frameworks (MCA2 and
SimVis3D) and TinySEP.

During the simulations, both frameworks where running on two different computers,
one with the robotic frameworks and another with the TinySEP. The overall situation of
the interconnected frameworks is shown in Figure 5.10. Through this image it is possible
to note that SimVis3D resides as a module inside of the MCA2 framework, therefore there
is no explicit connections drawn in the image.

81

Figure 5.11: The flat equipped with the TinySEP framework as seen in the SimVis3D
visualization.

In the first moment, only one simulated person was used. With it, differently from the
one obtained with the previous simulator, it was possible to visually analyse the behaviour
of the Flat Occupancy, Inactivity Recognition and Follow Me Light applications. The
first two applications were already validated by the previous simulator, however with
this one it was not only possible to visualize the simulated scenario, but this time the
sensory data was sent in the time stipulated by their specification. The behaviour provided
by the Follow Me Light algorithm was also validated. The Figure 5.11 illustrates the
visualization provided by the robotic frameworks.

Figure 5.12: Example scenario including a pet and a person provided by the robotic frame-
works.

82

In a second moment, a pet was included in the simulations, as illustrated by the Figure
5.12. This pet was equipped with a AmICA pet collar sensor node and therefore it was
possible to analyse the influence of the pet on the algorithms. The results have shown
that the Follow Me Light responds negatively to the inclusion of the pet. The problem
provided by the pet is that the lights are also controlled according to the pet movements.
This was also stipulated by the algorithm but the visualization of the scenarios has proved
not to be the best solution to be adopted.

As a result of the combination of those frameworks a paper was published in the Pro-
ceedings of the Ubirobots 2012 Workshop conducted at the 14th International Conference
on Ubiquitous Computing. This paper was also selected to submit to a special issue of the
Robotics and Autonomous Systems journal.

5.4.3 Siafu

The Siafu, as presented in chapter 2, is an open source context simulator that allow the
simulation of environments that range from an office up to a huge city. For the simulations
from the prototype the Siafu TestLand simulator, which provides an office as an environ-
ment, was used. The flat used is illustrated by the Figure 5.13. This flat was equipped with
several simulated AmICA sensor nodes. This simulator sensor nodes sends information to
TinySEP, which receives them through the Bus Radio AmICA UDP/IP application. The
TinySEP can also send configuration data to the simulator.

Figure 5.13: Illustration of the flat used in the simulations with the Siafu simulator.

The Siafu simulator does not run in real time, therefore it was necessary to develop
the Time Synchronizer application. The idea behind the Time Synchronizer is that both
applications must control their time with the time provided by this synchronizer (see Fig-
ure 5.14). Initially the Time Synchronizer informs both applications about the current
time, when they receive this information they make all the processing they need. Once
this processing is finalised, they send a message to the Time Synchronizer informing that
they finished doing all the processing required and can advance to the next second. Once
the Time Synchronizer receives the confirmation message from both applications, it ad-

83

vances to the next second and sends a message to the applications to inform that the time
has advanced. Once Siafu receives this message informing that it can forward to the next
second, it advance one step in its interaction. By doing this next step, the simulated user,
consequently, moves in the scenario and at the same time the simulated sensor nodes de-
tect this motion, they send a packet data with this information to TinySEP. By finishing
this interaction step, Siafu sends a new confirmation message to the Time Synchronizer
in order to advance to the next step. TinySEP receives the time information through the
Time Controller application. By receiving this information, TinySEP performs all the
processing required and then in sends a message to Time Synchronizer requesting that the
application forwards to the next second. With the usage of the Time Synchronizer it was
possible to guarantee that the application were running using the same time.

Figure 5.14: Relational structure from TinySEP, Siafu and the Time Synchronizer.

Figure 5.15: Example scenario of the usage of Siafu to perform evaluations from the
prototype.

The main advantage of the usage of the Siafu simulator comparing with simulators
previously presented is that it allows the usage of more then one simulated person. This
simulator also allows the usage of many pets and the usage of different houses, once it
is not fixed to a specific environment. The results obtained with the usage of more users
has proved the problem on the detection of an inactivity, once the second user continue to

84

perform activities and therefore the inactivity is not detected. This simulator is perfect to
continue to analyse the improvements that can be done on this algorithm.

It is important to clarify that all the simulation performed with the Siafu were de-
veloped together with the computer science student from the Federal University of Rio
Grande do Sul Vitor Fortes Rey. Therefore this work to enable the simulation of smart
environments that use the TinySEP framework is not only the result of my work.

85

6 CONCLUSION

This work presented the design and implementation of a Tiny Smart Environment
Platform (TinySEP) for Ambient Assisted Living. Relevant concepts, requirements, re-
lated works and simulation tools that may be used to validate complex scenarios were
presented. The model and the implementation of the TinySEP were discussed and the
tests used to evaluate the platform were shown.

Developed societies are getting older at an unprecedented rate. This ageing leads to
new challenges for the provision of healthcare and elderly care. In response of this need,
many research and development have been made on Ambient Assisted Living (AAL). The
solutions already provided are not wide spread, specially because of the lack of a standard
for an AAL software platform.

The platform presented in this work combines the high usability of the proprietary,
monolithic systems and the high re-usability of encapsulated components of the platform
based systems. TinySEP takes advantage of the driver concept model and signal slot
model. In one easy way TinySEP connects all the single elements to one AAL system,
which can be customized according to the needs of its different users, without having to do
any reprogramming. Its prototype was developed using the IDE Microsoft Visual Studio
2010 and the programming language C#. Among with the wide range of sensor nodes
already available, the AmICA sensor nodes and the Sun Spot sensor nodes were chosen
as the initially supported hardware. In total 20 different applications were developed and
each of them was discussed.

In order to evaluate the applicability and the performance of the prototype, several
tests were conducted. Those tests ranged from the analysis of the signal range from the
sensor nodes to the simulation of complex scenarios performed by 3 different simulation
tools. The results provided by those tests have proved that the platform is capable of
providing all the features expected by an AAL system. However the results have also
shown that the algorithm used to perform the Inactivity Recognition should be improved
in order to allow an automatically adaptation of its parameters.

Due to the ease of integration of different hardware and software components, Tiny-
SEP is already being used by other international research groups as a way of validat-
ing their projects, such as a kind of sensor nodes. Furthermore, this work has already
been published. The first publication was in the proceedings of the AAL-Kongress,
that happened in Berlin, Germany in 2012 (Wille et al. 2012). The second publication
was in the proceedings of the Ubirobots 2012 Workshop conducted at the 14th Inter-
national Conference on Ubiquitous Computing, that happened in Pittsburgh, USA in
2012 (Wille et al. 2012). This paper was also selected to submit to a special issue of
the Robotics and Autonomous Systems journal.

Even with the results already achieved there is still much work to be done. New

86

applications are being developed, specially the ones more focused in the healthcare and
social integration. The platform is being integrated with new hardware components. Other
projects are also being made in the integration of mobile devices. A web visualizer is
being developed in order to allow a remote visualization. Much research is being made in
order to create new scenarios to validate the platform and all its new applications.

87

REFERENCES

[Aboelaze e Aloul 2005]ABOELAZE, M.; ALOUL, F. Current and future trends in sen-
sor networks: A survey. In: Proceedings of the Second IFIP International Con-
ference on Wireless and Optical Communications Networks. IEEE Computer Soci-
ety, 2005. (WOCN 2005), p. 551–555. ISBN 0-7803-9019-9. Available from Internet:
<http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1436087>.

[Akyildiz e Kasimoglu 2004]AKYILDIZ, I. F.; KASIMOGLU, I. H. Wire-
less sensor and actor networks: Research challenges. Elsevier Ad Hoc
Network Journal, v. 2, n. 4, p. 351–367, 2004. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/S1570870504000319>.

[Akyildiz et al. 2002]AKYILDIZ, I. F. et al. A survey on sensor networks. IEEE Com-
munication Magazine, v. 40, n. 8, p. 102–114, 2002. Available from Internet:
<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1024422&tag=1>.

[Albayrak et al. 2009]ALBAYRAK, S. et al. Ein framework fuer ambient assisted liv-
ing services. In: Proceedings of the Second Deutscher Ambient Assisted Living-
Kongress. VDE-Verlag, 2009. (AAL-Kongress 2009), p. 264–268. Available from In-
ternet: <http://www.vde-verlag.de/proceedings-en/453138063.html>.

[Berns e Mehdi 2010]BERNS, K.; MEHDI, S. A. Use of an autonomous mo-
bile robot for elderly care. In: Proceedings of the Advanced Technolo-
gies for Enhancing Quality of Life. IEEE Computer Society, 2010. (AT-
EQUAL 2010), p. 121–126. ISBN 978-1-4244-8842-1. Available from Internet:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5663614>.

[Braun et al. 2007]BRAUN, T. et al. A customizable, multi-host simulation and visualiza-
tion framework for robot applications. In: Proceedings of the 13th International Confer-
ence on Advanced Robotics. VDE-Verlag, 2007. (ICAR 2007), p. 1105–1110. Available
from Internet: <http://www.vde-verlag.de/proceedings-en/453138063.html>.

[Chandy 2006]CHANDY, M. K. Event-driven applications: Costs, benefits and design ap-
proaches. In: Presented at the Gartner Application Integration and Web Services Sum-
mit. [S.l.: s.n.], 2006.

[Coroama et al. 2004]COROAMA, V. et al. Living in a smart environment – implications
for the coming ubiquitous information society. In: Proceedings of the IEEE Interna-
tional Conference on Systems, Man and Cybernetics. IEEE Computer Society, 2004.
(ICSMC 2004, v. 6), p. 5633–5638. ISBN 0-7803-8566-7. Available from Internet:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1401091>.

88

[Counsel e Care 2005]COUNSEL; CARE. Community care assessment and services. In:
. [S.l.: s.n.], 2005.

[Doorn e Vries 2006]DOORN, M. V.; VRIES, A. P. D. Co-creation in ambient narratives.
In: Ambient Intelligence in Everyday Life. [S.l.]: Springer, 2006. p. 103–129.

[Eichelberg et al. 2009]EICHELBERG, M. et al. Osami commons: Eine softwareplat-
tform fuer exible verteilte dienstesysteme ueber geraete und eingebetteten systemen. In:
Proceedings of the Second Deutscher Ambient Assisted Living-Kongress. VDE-Verlag,
2009. (AAL-Kongress 2009), p. 269–272. Available from Internet: <http://www.vde-
verlag.de/proceedings-de/453138064.html>.

[Eichelberg et al. 2010]EICHELBERG, M. et al. The gal middleware platform for
aal: A case study. In: Proceedings of the 12th IEEE International Confer-
ence on e-Health Networking Applications and Services. IEEE Computer Society,
2010. (Healthcom 2010), p. 1–6. ISBN 978-1-4244-6374-9. Available from Internet:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05556589>.

[ESTATÍSTICA 2008]ESTATÍSTICA, I. B. D. P. E. Projeção da população do brasil: pop-
ulação brasileira envelhece em ritmo acelerado. In: Comunicação Social. [S.l.: s.n.],
2008.

[Fischer et al. 2003]FISCHER, K. et al. Multimedia workplace of the future. In: Proceed-
ings of the Human Computer Interaction Status Conference. [s.n.], 2003. p. 97–113.
Available from Internet: <http://publica.fraunhofer.de/documents/N-58659.html>.

[Floeck 2010]FLOECK, M. Activity monitoring and automatic alarm generation in aal-
enabled homes. In: PhD thesis. [S.l.]: Logos-Verlag, 2010.

[Germany 2011]GERMANY. Statistisches bundesamt: Demografischer wandel in
deutschland - bevolkerungs- und haushaltsentwicklung im bund und in den ländern.
In: . [S.l.: s.n.], 2011.

[Gómez et al. 2010]GóMEZ, C. et al. Sensors everywhere: Wireless network technolo-
gies and solutions. In: . [S.l.]: Fundación Vodafone España, 2010. v. 1.

[Hedberg 2000]HEDBERG, S. R. After desktop computing: A progress report on smart
environments research. In: Proceedings of the IEEE Intelligent Systems and their Appli-
cations. IEEE Computer Society, 2000. v. 5, p. 7–9. ISSN 1094-7167. Available from
Internet: <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=889101>.

[Hein et al. 2009]HEIN, A. et al. A service oriented platform for health services and
ambient assisted living. In: Proceedings of the International Conference on Ad-
vanced Information Networking and Applications Workshops. IEEE Computer Society,
2009. (WAINA 2009), p. 531–537. ISBN 978-1-4244-3999-7. Available from Internet:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5136702>.

[Herfet et al. 2001]HERFET, T. et al. Embassi - multimodal assistance for
infotainment and service infrastructures. In: Proceedings of the Work-
shop on Universal Accessibility of Ubiquitous Computing: Provid-
ing for the Elderly. [s.n.], 2001. p. 41–50. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/S0097849301000863>.

89

[Hillenbrand et al. 2008]HILLENBRAND, C. et al. Cromsci - a climbing robot
with multiple sucking chambers for inspection tasks. In: Proceedings of the
11th International Conference on Climbing and Walking Robots. [s.n.], 2008.
(CLAWAR 2008), p. 311–318. Available from Internet: <http://agrosy.informatik.uni-
kl.de/fileadmin/Literatur/Hillenbrand08a.pdf>.

[Hinze et al. 2009]HINZE, A. et al. Event-based applications and enabling technologies.
In: Proceedings of the Third ACM International Conference on Distributed Event-Based
Systems. IEEE Computer Society, 2009. (DEBS 2009), p. 1–15. ISBN 978-1-60558-
665-6. Available from Internet: <http://dl.acm.org/citation.cfm?id=1619260>.

[Hirth et al. 2007]HIRTH, J. et al. Emotional architecture for the humanoid
robot head roman. In: Proceedings of the IEEE International Confer-
ence on Robotics and Automation. IEEE Computer Society, 2007. (ICRA
2007), p. 2150–2155. ISBN 1-4244-0601-3. Available from Internet:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4209403>.

[Janse et al. 2007]JANSE, M. et al. Amigo architecture: Service oriented architecture for
intelligent future in-home networks. In: Proceedings of the Constructing Ambient In-
telligence – AmI 2007 Workshops. Springer, 2007. v. 8, p. 371–378. ISBN 978-3-540-
85378-7. Available from Internet: <http://link.springer.com/chapter/10.1007

[Karlsson 1996]KARLSSON, R. Printed in helsingin sanomat. In: . [S.l.: s.n.], 1996.

[Kehagias et al. 2008]KEHAGIAS, D. et al. Preliminary architecture of the oasis
content connector module. In: Proceedings of the International Conference Am-
bient Intelligence System of Agents for Knowledge-based and Integrated Services
for E&D users. [s.n.], 2008. p. 1–12. Available from Internet: <http://server-
5.iti.gr/diok/publications/03.confs/OASIS_Content_Connector_Module-ASK-IT-
Conf.pdf>.

[Lee et al. 2010]LEE, H. B. et al. Interactive remote control of legacy home ap-
pliances through a virtually wired sensor network. In: Proceedings of the
IEEE Transactions on Consumer Electronics. IEEE Computer Society, 2010.
(TCE 2010, v. 56), p. 2241–2248. ISSN 0098-3063. Available from Internet:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5681096>.

[Lemon e Rossi 1995]LEMON, S.; ROSSI, K. An object-oriented de-
vice driver model. In: Proceedings of Compcon: Technologies for
the Information Superhighway. IEEE Computer Society, 1995. (CMP-
CON 1995), p. 360–366. ISBN 0-8186-7029-0. Available from Internet:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5681096>.

[Martin e Nurmi 2006]MARTIN, M.; NURMI, P. A generic large scale simulator for
ubiquitous computing. In: Proceedings of the 3rd Annual International Confer-
ence on Mobile and Ubiquitous Systems - Workshops. IEEE Computer Society,
2006. (MOBIQW 2006), p. 1–3. ISBN 0-7803-9791-6. Available from Internet:
<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4205246>.

[Mikalsen et al. 2009]MIKALSEN, M. et al. Interoperability services in the mpower
ambient assisted living platform. In: Proceedings of MIE: The XXIInd International

90

Congress of the European Federation for Medical Informatics. IOS Press, 2009. p.
366–370. ISSN 0926-9630. Available from Internet: <http://dx.doi.org/10.3233/978-
1-60750-044-5-366>.

[Muhl et al. 2006]MUHL, G. et al. Distributed event-based systems. In: . [S.l.]: Springer,
2006. p. 1290–148.

[Proetzsch et al. 2010]PROETZSCH, M. et al. Development of complex robotic
systems using the behavior-based control architecture ib2c. In: Robotics
and Autonomous Systems. [s.n.], 2010. p. 46–67. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/S092188900900116X>.

[Prueckner et al. 2008]PRUECKNER, S. et al. Emergency monitoring and prevention
eu project emerge. In: Proceedings of the Erste Deutscher Ambient Assisted Living-
Kongress. VDE-Verlag, 2008. (AAL-Kongress 2008), p. 167–172. Available from In-
ternet: <http://www.vde-verlag.de/proceedings-de/563076032.html>.

[Ras et al. 2007]RAS, E. et al. Engineering tele-health solutions in the ambient assisted
living lab. In: Proceedings of the 21st International Conference on Advanced In-
formation Networking and Applications Workshops. IEEE Computer Society, 2007.
(AINAW 2007), p. 804–809. ISBN 978-0-7695-2847-2. Available from Internet:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4224204>.

[Schaefer et al. 2009]SCHAEFER, H. et al. Ravon — the robust autonomous ve-
hicle for off-road navigation. In: Proceedings of the IARP International Work-
shop on Robotics for Risky Interventions and Environmental Surveillance. [s.n.],
2009. (RISE 2009), p. 1–28. Available from Internet: <http://agrosy.informatik.uni-
kl.de/fileadmin/Literatur/Armbrust09.pdf>.

[Schmidt et al. 2006]SCHMIDT, D. et al. Autonomous behavior-based exploration
of office environments. In: Proceedings of the 3rd International Conference
on Informatics in Control, Automation and Robotics. [s.n.], 2006. (ICINCO
2006), p. 235–240. Available from Internet: <http://agrosy.informatik.uni-
kl.de/fileadmin/Literatur/Schmidt06a.pdf>.

[SENSACTION-AAL 2007]SENSACTION-AAL. Sensaction-aal project: Sensing and
action to support mobility in ambient assisted living. In: 6th Framework Programme
of the European Union. [s.n.], 2007. Available from Internet: <http://www.sensaction-
aal.eu>.

[Steg et al. 2006]STEG, H. et al. Europe is facing a demographic challenge ambient as-
sisted living offers solutions. In: Technical Report. [S.l.: s.n.], 2006.

[Streitz 2007]STREITZ, N. A. From human-computer interaction ti human-environment
interaction: Ambient intelligence and the disappearing computer. In: Universal Access
in Ambient Intelligence Environments. [S.l.]: Springer, 2007. p. 3–13.

[Sun et al. 2009]SUN, H. et al. Promises and challenges of ambient assisted liv-
ing systems. In: Proceedings of the 6th International Conference on Infor-
mation Technology: New Generations. IEEE Computer Society, 2009. (ITNG
2009), p. 1201–1207. ISBN 978-1-4244-3770-2. Available from Internet:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5070788>.

91

[Tezari et al. 2009]TEZARI, M. et al. The persona service platform for aal spaces. In:
Handbook of Ambient Intelligence and Smart Environments. [S.l.]: Springer, 2009.

[Tynan et al. 2005]TYNAN, R. et al. Agents for wireless sensor network
power management. In: Proceedings of the International Conference
Workshops on Parallel Processing. IEEE Computer Society, 2005. (IC-
CPW 2005), p. 413–418. ISBN 0-7695-2381-1. Available from Internet:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1488723>.

[Vergados et al. 2008]VERGADOS, D. et al. An intelligent interactive healthcare ser-
vices environment for assisted living at home. In: Proceedings of the Second Inter-
national Conference on Pervasive Computing Technologies for Healthcare. Springer,
2008. (PervasiveHealth 2008), p. 329. ISBN 978-963-9799-15-8. Available from Inter-
net: <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5446172>.

[Wang et al. 2006]WANG, Q. et al. I-living: An open system architecture
for assisted living. In: Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics. IEEE Computer Society, 2006. (SMC
2006, v. 5), p. 4268–4275. ISBN 1-4244-0099-6. Available from Internet:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4274570>.

[Weiser 1999]WEISER, M. The computer for the 21st century. ACM SIGMO-
BILE Mobile Computing and Communications Review - Special issue dedi-
cated to Mark Weiser, v. 3, n. 3, p. 3–11, 1999. Available from Internet:
<http://dl.acm.org/citation.cfm?id=329126>.

[Wille et al. 2010]WILLE, S. et al. Amica - a flexible, compact, easy-to-program and low-
power wsn platform. In: Mobile and Ubiquitous Systems: Computing, Networking, and
Services. Springer, 2010. (Mobiquitous 2010), p. 381–382. ISBN 978-3-642-29153-1.
Available from Internet: <http://link.springer.com/chapter/10.1007

[Wille et al. 2010]WILLE, S. et al. Amica - design and implementation of a flexible, com-
pact, and low-power node platform. In: Technical Report. [s.n.], 2010. Available from
Internet: <https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2807>.

[Wille et al. 2012]WILLE, S. et al. Combining robotic frameworks with a smart environ-
ment framework: Mca2/simvis3d and tinysep. In: Proceedings of the Ubirobots 2012
Workshop conducted at the 14th International Conference on Ubiquitous Computing.
ACM Digital Library, 2012. (UBICOMP 2012), p. 818–825. ISBN 978-1-4503-1224-0.
Available from Internet: <http://dl.acm.org/citation.cfm?id=2370405>.

[Wille et al. 2012]WILLE, S. et al. Tinysep - a tiny platform for ambient assisted liv-
ing. In: Proceedings of the AAL-Kongress 2012 - Advanced Technologies and Societal
Change. Springer, 2012. (AAL-Kongress 2012), p. 229–243. ISBN 978-3-642-27490-9.
Available from Internet: <http://link.springer.com/chapter/10.1007

[Winkley et al. 2012]WINKLEY, J. et al. Verity: an ambient assisted living platform. In:
Proceedings of the IEEE Transactions on Consumer Electronic. IEEE Computer Soci-
ety, 2012. (TCE 2012, v. 58), p. 364–373. ISSN 0098-3063. Available from Internet:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6227435>.

92

[Wolf et al. 2008]WOLF, P. et al. Soprano - an extensible, open aal platform for elderly
people based on semantical contracts. In: Proceedings of the Third Workshop on Artifi-
cial Intelligence Techniques for Ambient Intelligence. [S.l.: s.n.], 2008. (AITAmI 2008).

[Ziefle et al. 2011]ZIEFLE, M. et al. A multi-disciplinary approach to am-
bient assisted living. In: E-Health, Assistive Technologies and Appli-
cations for Assisted Living: Challenges and Solutions. IGI Global,
2011. p. 804–809. ISBN 978-0-7695-2847-2. Available from Internet:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4224204>.

93

APPENDIX A TINYSEP INTERFACES

In this appendix the programming interfaces from all the TinySEP interfaces used to
build the prototype are presented.

A.1 IBusRadioAmICA Interface

p u b l i c i n t e r f a c e IBusRadioAmICA1_0Lis tener
{

i n t r e c e i v e D a t a (b y t e [] pay load ,
DateTime t imes t amp) ;

}

p u b l i c i n t e r f a c e IBusRadioAmICA1_0Provider
{

i n t sendDa ta (b y t e [] p a y l o a d) ;
s t r i n g g e t S e n s o r I d () ;

}

A.2 IBusRadioSUNSpot Interface

p u b l i c i n t e r f a c e IBusRadioSunSPOTLis tener
{

i n t r e c e i v e D a t a (b y t e [] pay load , DateTime t imes t amp) ;
}

p u b l i c i n t e r f a c e IBusRadioSunSPOTProvider
{
}

94

A.3 IMovement Interface

p u b l i c s t r u c t SLastMovement
{

p u b l i c DateTime t imes t amp ;
p u b l i c i n t movementHappened ;

}

p u b l i c i n t e r f a c e IMovementProv ider
{

SLastMovement getLas tMovement () ;
i n t getLastMovementType () ;

}

p u b l i c i n t e r f a c e I Mov em en t L i s t e ne r
{

vo id movementHappened (o b j e c t dev i ce ,
SLastMovement movement) ;

vo id movementTypeChanged (o b j e c t dev i ce ,
i n t newMovementType) ;

}

A.4 IWindow Interface

p u b l i c i n t e r f a c e IWindowProvider
{

i n t ge tWindowSta tus () ;
S P o s i t i o n ge t Win dowP os i t i on () ;

}

p u b l i c i n t e r f a c e IWindowLis t ene r
{

vo id windowSta tusChanged (o b j e c t dev i ce ,
i n t newWindowStatus ,
DateTime t imes t amp) ;

vo id windowPos i t ionChanged (S P o s i t i o n windowPos) ;
}

95

A.5 IDoor Interface

p u b l i c s t r u c t S P o s i t i o n
{

p u b l i c f l o a t xAxis ;
p u b l i c f l o a t yAxis ;
p u b l i c f l o a t zAxis ;

}

p u b l i c i n t e r f a c e I D o o r P r o v i d e r
{

i n t g e t D o o r S t a t u s () ;
f l o a t ge tDoorAngle () ;
i n t g e t D o o r O p e n i n g D i r e c t i o n () ;
i n t getDoorType () ;
S P o s i t i o n g e t D o o r P o s i t i o n () ;
DateTime ge tLas tChangedTimes tamp () ;

}

p u b l i c i n t e r f a c e I D o o r L i s t e n e r
{

vo id d o o r S t a t u s C h a n g e d (o b j e c t dev i ce ,
i n t newDoorSta tus ,
DateTime t imes t amp) ;

vo id doorTypeChanged (o b j e c t dev i ce ,
i n t newDoorType) ;

vo id d o o r P o s i t i o n C h a n g e d (S P o s i t i o n D o o r P o s i t i o n) ;
}

A.6 ISimpleLight Interface

p u b l i c i n t e r f a c e I L i g h t B r i g h t n e s s P r o v i d e r
{

i n t g e t L i g h t B r i g h t n e s s V a l u e () ;
}

p u b l i c i n t e r f a c e I L i g h t B r i g h t n e s s L i s t e n e r
{

vo id l i g h t B r i g h t n e s s C h a n g e d (o b j e c t dev i ce ,
i n t n e w L i g h t S t a t u s ,
DateTime t imes t amp) ;

}

96

A.7 IDimmableLight Interface

p u b l i c i n t e r f a c e I D i m m a b l e L i g h t P r o v i d e r
{

i n t g e t D i m m a b l e L i g h t S t a t u s () ;
vo id c h a n g e L i g h t S t a t u s (DateTime t imes tamp ,

i n t newDimmableLigh tS ta tus) ;
}

p u b l i c i n t e r f a c e I D i m m a b l e L i g h t L i s t e n e r
{

vo id d i m m a b l e L i g h t S t a t u s C h a n g e d (o b j e c t dev i ce ,
i n t n e w L i g h t S t a t u s ,
DateTime t imes t amp) ;

}

A.8 IHeater Interface

p u b l i c i n t e r f a c e I H e a t e r P r o v i d e r
{

i n t g e t H e a t e r S t a t u s () ;
}

p u b l i c i n t e r f a c e I H e a t e r L i s t e n e r
{

vo id h e a t e r S t a t u s C h a n g e d (o b j e c t dev i ce ,
i n t newHea te rBoxSta tus ,
DateTime t imes t amp) ;

}

97

A.9 ISpeaker Interface

p u b l i c i n t e r f a c e I S p e a k e r P r o v i d e r
{

i n t g e t S p e a k e r S t a t u s () ;
}

p u b l i c i n t e r f a c e I S p e a k e r L i s t e n e r
{

vo id s p e a k e r S t a t u s C h a n g e d (o b j e c t dev i ce ,
i n t n e w S p e a k e r S t a t u s ,
DateTime t imes t amp) ;

}

A.10 ITemperature Interface

p u b l i c i n t e r f a c e I T e m p e r a t u r e P r o v i d e r
{

i n t g e t T e m p e r a t u r e S t a t u s () ;
}

p u b l i c i n t e r f a c e I T e m p e r a t u r e L i s t e n e r
{

vo id t e m p e r a t u r e S t a t u s C h a n g e d (o b j e c t dev i ce ,
i n t newTemperature ,
DateTime t imes t amp) ;

}

A.11 ILightBrightness Interface

p u b l i c i n t e r f a c e I L i g h t B r i g h t n e s s P r o v i d e r
{

i n t g e t L i g h t B r i g h t n e s s () ;
}

p u b l i c i n t e r f a c e I L i g h t B r i g h t n e s s L i s t e n e r
{

vo id l i g h t B r i g h t n e s s C h a n g e d (o b j e c t dev i ce ,
i n t n e w L i g h t S t a t u s ,
DateTime t imes t amp) ;

}

98

A.12 IFlatOccupancy Interface

p u b l i c i n t e r f a c e I F l a t O c c u p a n c y P r o v i d e r
{

i n t g e t F l a t O c c u p a n c y S t a t u s () ;
}

p u b l i c i n t e r f a c e I F l a t O c c u p a n c y L i s t e n e r
{

vo id f l a t O c c u p a n c y S t a t u s C h a n g e d (i n t newSta tus ,
DateTime t imes t amp) ;

}

A.13 IHouseInformation Interface

p u b l i c s t r u c t roomInfo
{

p u b l i c s t r i n g roomName ;
p u b l i c s t r i n g roomType ;
p u b l i c L i s t < roomInfo > roomNeighbors ;

}

p u b l i c i n t e r f a c e I H o u s e I n f o r m a t i o n P r o v i d e r
{

D i c t i o n a r y <Guid , roomInfo > g e t H o u s e I n f o r m a t i o n () ;
vo id s e t H o u s e I n f o r m a t i o n

(D i c t i o n a r y <Guid , roomInfo > newHouseInfo) ;
roomInfo getRoomWithUid (s t r i n g u i d) ;
vo id addNewRoom () ;

}

p u b l i c i n t e r f a c e I H o u s e I n f o r m a t i o n L i s t e n e r
{

vo id house In foChanged
(D i c t i o n a r y <Guid , roomInfo > newHouseInfo) ;

}

99

A.14 IMailManager Interface

p u b l i c i n t e r f a c e I M a i l M a n a g e r P r o v i d e r
{

vo id sendMai lMessage (s t r i n g mailBody ,
s t r i n g m a i l S u b j e c t) ;

}

p u b l i c i n t e r f a c e I M a i l M a n a g e r L i s t e n e r
{
}

A.15 ITimeController Interface

p u b l i c i n t e r f a c e I T i m e C o n t r o l l e r P r o v i d e r
{

DateTime g e t C u r r e n t T i m e () ;
vo id ge tNex tSecond () ;

}

p u b l i c i n t e r f a c e I T i m e C o n t r o l l e r L i s t e n e r
{

vo id cu r ren tT imeChanged (DateTime c u r r e n t T i m e) ;
}

A.16 IInactivityRecognition Interface

p u b l i c i n t e r f a c e I I n a c t i v i t y R e c o g n i t i o n P r o v i d e r
{

i n t g e t I n a c t i v i t y R e c o g n i t i o n S t a t u s () ;
}

p u b l i c i n t e r f a c e I I n a c t i v i t y R e c o g n i t i o n L i s t e n e r
{

vo id i n a c t i v i t y R e c o g n i t i o n S t a t u s C h a n g e d
(i n t newSta tus ,

DateTime t imes t amp) ;
}

