FEDERAL UNIVERSITY OF RIO GRANDE DO SUL
INSTITUTE OF INFORMATICS
BACHELOR OF COMPUTER SCIENCE

ANDRE RODRIGUES OLIVERA

Taim: A Safety Pattern Repository

Graduation Thesis.

Prof. Dr. Taisy da Silva Weber
Advisor

Prof. Dr. Elisa Yumi Nakagawa
Co advisor

M.Sc. Pablo Oliveira Antonino de Assis
Co advisor

Porto Alegre, December 2012

FEDERAL UNIVERSITY OF RIO GRANDE DO SUL

Rector: Prof. Carlos Alexandre Netto

Vice-Rector: Prof. Rui Vicente Oppermann

Dean’s office Coordinator: Profa. Valquiria Link Bassani

Institute of Informatics Director: Prof. Luis da Cunha Lamb
Computer Science Coordinator: Prof. Raul Fernando Weber
Librarian of the Institute of Informatics: Beatriz Regina Bastos Haro

ACKNOWLEDGMENTS

I would like to thank Pablo Oliveira Antonino de Assis and Elisa Yumi Nakagawa
for all the support and devoted time for this work, first at Fraunhofer and, after that,
with our countless remotely meetings through Skype during this year; 1 am also thankful
to them for introduce me the passion about software architecture and design patterns.

I wish to thank my friend and advisor Taisy da Silva Weber who not only helped me
to write this thesis but also gave me several personal, academic and professional advices
during all my graduation.

My respect to all the employees and professors of Informatics Institute who helped
to keep this university among the best in Brazil. | would start to cite name of excellent
professors who | have the gratification to be one of their students, but the list would be
too large (and probably I would forgot some important name).

Thanks to all the people involved with the international program within
Kaiserslautern University, a special thanks to Arthur Harutyunyan that was a great
friend for all the Brazilians in Kaiserslautern.

| wish to thank my friends from Santa Vitéria do Palmar who despite the distance
continued keeping in touch with me during these years and also my friends from Porto
Alegre who provided me awesome moments in this city. A special acknowledge to the
people who were with me in Germany for this awesome year and for the help with my
thesis.

Finally, special thanks to my entire family that always prized for a good education
and have trusted and supported me for many years that I lived far away from home and
to my girlfriend to be with me all these not so easy years.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS......cccoiiiiiieeeieieese e 6
LIST OF FIGURES.........oooi ittt 8
ABSTRACT ottt s et e et et et e be e Rt e re et et et nrenaenrenreenen 9
RESUMO ...ttt ettt b bbbttt s et e sttt sbenbenaenreas 10
1 INTRODUCTIONoiiiiiiiiieieie ettt bbb 11
I R |V T €AV Z 14 o] ISP 11
1.2 G0AIS ittt b e re e e e nre e 11
1.3 RESUIS ..ot s 12
14 OFQAnIZATION ...c..oviieiiiiiiieiieieee ettt b et b 12
2 LITERATURE REVIEW ...ttt 13
2.1 Safety-Critical SYSEIMScccveiiiie e 13
2.1.1 FAUIT ClaSSESvvevieieeie ettt ettt enreeeeenee e 14
2.1.2 Service Failure MOGESccviiiieieieiee e 14
2.1.3 SAFELY TACHICS ...ttt 15
2.2 DESIgN PAttEINSoocviiiiieie et 15
2.2.1 SAfELY PAIEINS ...t 16
2.2.2 Pattern RepreSENtationcccccveiieii i 16
2.2.3 Safety Pattern RepreSentation...........cccooevererene s 18
2.3 RElAted WOTK ... 18
24 SUMIMAKTY oottt e et e e s e e e nbb e e e bbe e e nbeeennees 20
3 DESIGN AND IMPLEMENTATIONcoiiiiieie sttt 21
3.1 MEthOAOIOGYot 21
3.2 ANAlYSIS @NA PrOJECT......cciiiiic et 21
3.21 REQUITEIMENTS ...t 22
3.2.2 Conceptual MOTEL..........ccvveiiiiiece e 23
3.2.3 O L O T PRSP TRR 25
3.2.4 System ArChITECIUIEvveiiecee e 26
3.3 IMPIleMENTAtioN ISSUES..........oiiiiiiiiiiee s 32
3.3.1 Sparx Enterprise Architect AddIn Development.............coccovvievieiiicinnnn, 32
3.3.2 WWED SEIVICESovveeiieiie ettt e e te e nnae e 33
34 Difficulties and Limitationsccoccooiiiiiiiiie e 34
3.5 Final CoNSIAEIALIONSoiieieiieieecie e sre e 34
4 DEMONSTRATION ..ottt sttt re e 35
4.1 Storing a Safety Pattern in the RepoSItOry.........cccocevvviieiiieiveic e 36
4.2 Retrieving a Safety Pattern from the RepoSItoryccccovviciiiiiienienienns 41
4.2.1 Creating a new version from a previously clonedc.c.cccecvvvevvevnennene, 43
4.3 Observations about the USAgeccceiiiieiiiiiiie e 45

4.4 FINal CoNSIAEIATIONS ...ttt e e e e e e e e 45

D CONCLUSION e ettt e e
51 FFUBUE S MV OTK oot nennnnennennnnneen

REFERENCES

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface
CASE Computer-Aided Software Engineering
DGML Directed Graph Markup Language
DLL Dynamic-link library

EA Sparx Enterprise Architecture

ERD Entity-Relationship Diagram

GoF Gang of Four

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure
IDE Integrated Development Environment
IESE Institute for Experimental Software Engineering
1S Internet Information Services

JSON JavaScript Object Notation

LAN Local Area Network

MEX Metadata Exchange

ORD Object-Relational Database

REST Representational State Transfer

SOAP Simple Object Access Protocol

SPR Safety Pattern Repository

SQL Structured Query Language

UFRGS Universidade Federal do Rio Grande do Sul
UML Unified Modeling Language

W3C World Wide Web Consortium

WCF Windows Communication Foundation
WSDL Web Services Description Language

XML Extensible Markup Language

XMI XML Metadata Interchange

LIST OF FIGURES

Figure 3.1: CoNCePLUAl VIBW.......cciiiiiiiiieieesie e 23
Figure 3.2: Data MOUEL.........c.ociiiiecece e 24
Figure 3.3: Use Cases DIAGIAMccueiiiiiriiriiiiesiisesieie ettt 25
Figure 3.4: CONCEPLUAL VIBWcceiiiiiiiiie ettt 26
Figure 3.5: Server-side rePOSITONYcceoiiiiiriiiiieie et 27
Figure 3.6: Data CONMIACEc.ccvueiieiecie et re e 28
Figure 3.7: Multi-Layer Client ArChiteCtureccooooeieneniiinisceeeee s 29
Figure 3.8: DeployMENt VIBWccviiuiiieiiecic ettt 30
Figure 3.9: DGML generated from the COOeccovviiiiiiiiiceeee e 31
Figure 4.1: Safety UML Profile diagram in EA ..o 35
Figure 4.2: Homogeneous Redundancy Pattern in EA..........cccovoiiiiiiiene e 36
Figure 4.3: Repository AcCess fFrOM EA........cov oo 36
Figure 4.4: Repository access CONFIQUIALIONcccveieierieniieniesceieeee e 37
Figure 4.5: Repository main window and Pattern menuccccecvveveieeineveseeseenens 37
Figure 4.6: Pattern Creationcooeeieieiiiesie e 38
Figure 4.7: Menu to create a PatternVersion into an existent Pattern..............c.cc.cco...... 38
Figure 4.8: General Description from Pattern Version...........ccccoovvvvneienenene s 39
Figure 4.9: PatternVersion PartS............ccciieiiiieieese et ste e sre e 40
Figure 4.10: Choosing a UML Package from EA ... 40
Figure 4.11: Inserting an Optional Info into the PatternVersion.............ccccceeeiveiieennnne 41
Figure 4.12: Browsing in the REPOSITONYccoiiiiiiiiiieiesc e 41
Figure 4.13: Cloning a pattern from the repository into EAccccooiiiiviieiieceenne 42
Figure 4.14: Cloned Pattern iN EA ... s 42
Figure 4.15: Cloned Pattern modifiedcccooviiiiiiiii e 43
Figure 4.16: Creating a new pattern from the previously clonedcccoceveniiiinnne. 43
Figure 4.17: PatternVersion information filled automatically..............cccccooveviiiiinnnn 44
Figure 4.18: Modified UML diagram..........cccooeiiiininiiie e 44

ABSTRACT

Various important application domains, such as medical, avionic, and automotive,
requires software based systems prepared for handling potential malfunctions, since
these defects could cause severe harms to the environment as well as to humans. During
the development of such systems, several techniques and tactics should be taken into
account in order to avoid, remove and tolerate failures. Design patterns are proven
solutions for recurring design problems. They represent experience and knowledge
encapsulating best practices and techniques that can be shared among software
developers. In the case of safety-critical systems, these patterns are called safety
patterns.

This work presents the design and implementation of a centralized repository that
stores safety patterns with the purpose of increase the use and sharing of patterns during
the development of safety-critical systems. This work also describes the development of
an extension for the UML CASE tool Sparx Enterprise Architect that accesses the
repository through the network and allows the user to visualize, manage and store new
patterns into the repository. The integration between the repository and a UML CASE
tool permits a system architect to use this tool to create the pattern UML structure that
will be stored in the repository. Another advantage of this approach is the possibility of
reuse safety patterns from the repository directly into diagrams being modeled by the
tool. Furthermore, the repository was created using open standards and web services in
a way that third-party tools can access it independently from platform.

The resulting artifacts from the analysis and development, such as use cases, data
model and class diagrams that shows the architecture of the developed system in
different levels of abstraction, are used to describe the application. In addition to this
documentation, some implementation concerns, such as details from web services and
used protocols as well as concerns about Add-In development in Sparx Enterprise
Architect are reported.

Finally, the solution was deployed in an academic environment and the tool was
used to verify if the repository achieves its functional requirements. Some screens shots
are depicted to show the system in use.

Keywords: Safety-critical system, safety pattern, design pattern, repository.

Taim: Um repositorio de Padrfes de Seguranca

RESUMO

Diversos dominios de aplicagdes importantes, como médico, avidnico e automotivo,
necessitam de sistemas preparados para lidar com falhas em seu funcionamento, pois
caso essas falhas ndo forem tratadas adequadamente, elas podem causar prejuizos
severos ao ambiente bem como as pessoas. Durante o desenvolvimento de tais sistemas,
muitas técnicas e taticas devem ser levadas em consideracdo a fim de evitar, remover e
tolerar falhas. Padrdes de projetos sdo solugOes efetivas para problemas de projeto
recorrentes. Eles representam experiéncia e conhecimento encapsulando as melhores
préticas e técnicas que podem ser compartilhadas entre desenvolvedores de software.
No caso de sistemas criticos de seguranca, esses padrdes sdo chamados de padrdes de
seguranca.

Este trabalho apresenta o projeto e implementacdo de um repositorio centralizado
que armazena padrdes de segurangca com O propoésito de incrementar 0 uso e
compartilhamento de padrbes durante o desenvolvimento de sistemas criticos de
seguranca. Este trabalho descreve também o desenvolvimento de uma extensdo para a
ferramenta CASE UML Sparx Enterprise Architect que acessa o0 repositorio através da
rede e permite ao usuario visualizar, gerenciar e armazenar novos padrbes no
repositério. A integracdo entre o repositério e uma ferramenta CASE UML permite um
arquiteto de sistemas usar essa ferramenta para criar a estrutura UML do pattern que
sera armazenado no repositério. Além disso, o repositério foi criado utilizando padrdes
(standards) abertos e servigos “web” de forma que ferramentas de outras companias
possam acessar o repositorio independentemente de plataforma.

Os artefatos resultantes da anélise e desenvolvimento, tais como, casos de uso,
modelo de dados e diagramas de classes que mostram a arquitetura do sistema
desenvolvido em diferentes niveis de abstracdo, sdo utilizados para descrever a
aplicacdo. Além dessa documentacédo, algumas questdes de implementacdo, tais como
detalhes dos servigos web e protocolos usados bem como preocupacdes relacionadas ao
desenvolvimento de extensdo para Sparx Enterprise Architect sdo relatadas.

Por ultimo, a solugdo foi implantada em um ambiente académico e a ferramenta foi
utilizada para verificar se 0 repositorio satisfaz seus requisitos funcionais. Algumas
imagens das telas sdo retratadas para mostrar o sistema em uso.

Palavras-chave: Sistemas criticos de seguranca, padrdes de seguranca, padrdes de
projeto, repositdrio.

11

1 INTRODUCTION

This chapter provides an introduction for this bachelor’s thesis, which is the design
and implementation of a safety pattern repository called Taim. It allows a system
architect to store safety patterns in a database and use them directly into a model. Also
the motivation behind the work and the project will be discussed. The objectives will be
listed and defined. Finally, the organization of the text will be detailed.

1.1 Motivation

Various important application domains, such as medical, avionic, and automotive,
requires software based systems prepared for handling potential malfunctions, since
these defects could cause severe harms to the environment as well as to humans.
Ideally, such systems, known as safety-critical systems (DUNN, 2003), should not fail,
however, failures could happen, either by faults caused by programming or design
errors, or even some defect at hardware level. Therefore, it is important to provide
means with which such systems can recover from a failure, or, when a complete recover
is not possible, there must be, at least, mechanisms that will bring the system to a fail-
safe state (DOUGLASS, 1999).

Design patterns are general solutions for common occurring design problems
(GAMMA et al., 1994). They have a structure (context, problem, solution) that makes it
easy for an architect to understand and use them. In the field of safety-critical systems,
these patterns, called safety patterns, include known fault-tolerant techniques, such as
monitoring and redundancy, in order to improve the safety and reliability of such
systems (DOUGLASS, 1999).

Thereby it is important to provide means to increase and facilitate the usage of
patterns during the development of safety-critical systems. In this context, a tool that
helps the system architect to store, share, visualize and apply safety patterns direct into
models seems to be very useful.

The repository aims to capture and increase the knowledge about safety patterns get
during the system architecture and provide it in an easy way.

1.2 Goals

The main objective of this work is to design and develop a tool to manage a safety
pattern repository. Such repository may support safety-critical systems engineers to
identify, select, apply and reuse patterns during the construction of such systems.

The repository will be provided as web service based system, enabling the storing,
editing and retrieving of patterns from different systems. In addition to the basic and
some flexible optional information, the description of the pattern will include a XMl file

12

with the UML description containing the model of the pattern making possible the
manipulation of the pattern structure. With this, third-party UML CASE tools may be
able to download this file and import the pattern in their workspace or create the UML
structure and upload it in the repository.

Furthermore, an extension for an important UML CASE tool which will use the
services provided by the repository will be developed in order to validate the overall
solution. This Add-in will provide a user interface to access the services of the
repository and also will serve as guidance to find out what are the services that need to
be provided by the repository, thus enabling that other tools access and use the services
in the same way.

1.3 Results

This work presents as main result the documentation of the implemented solution.
This documentation includes: (i) an entity-relationship diagram that was used to
generate the database structure; (ii) a conceptual view showing the overall architecture
of the solution; (iii) a use case diagram showing the main cases of the tool; (iv) class
diagrams to describe some relevant structures and how they were designed; (v) a
dependency graph diagram generated from the code showing the architecture of the
overall solution.

The implemented system was deployed: The server-side was deployed in this
university (UFRGS), using a computer with Microsoft 11S web server to host the WCF
services and PostgreSQL to store physically the data. The client-side, the Sparx
Enterprise Architect (EA) extension that accesses the repository remotely, was installed
in a computer with EA at Fraunhofer IESE, in Germany and accessed the repository
from there over the internet.

Finally, | used the system to store a real safety pattern. Screen shots and
observations about this experiment were taken and are presented as part of the results.

1.4 Organization

The rest of this work is organized as follows: Chapter 2 presents a study of the
relevant concepts and terminologies important to the work, such as safety-critical
system development, design patterns and existent design patterns catalogs and
repositories. Chapter 3 describes the design and implementation of the repository
depicting the architecture of the system, technologies used and implementation issues.
In Chapter 4, the system in use is demonstrated through screen shots. Chapter 5
summarizes this work and outlines concerns for future works.

13

2 LITERATURE REVIEW

This chapter presents an overview of important concepts and terminologies adopted
to create the repository as well as similar tools available nowadays.

Since this work is about patterns for safety-critical systems, it is important to
introduce what are such systems and why their development must take into account
several aspects that are not so important in regular systems. The section 2.1 presents the
concepts about safety-critical systems.

Section 2.2 leads into the idea of design patterns. The section shows a resume of
how and why these principles become important between the current software
engineering techniques. It shows also central aspects of design patterns such as the
representations used to describe them and the existent work of design patterns for
safety-critical systems.

Finally, following the intent of this work, the section 2.3 exposes the existing
catalogs and repositories of patterns. These catalogs can exist in the form of papers and
books and also in digital form such as web sites or embedded into UML CASE tools.

2.1 Safety-Critical Systems

Safety can be defined as the “absence of catastrophic consequences on the user(s)
and the environment” (AVIZIENIS et al., 2004). Following this concept, safety-critical
systems are applications in which failures can cause severe harms to humans or to the
environment (ARMOUSH, ASHRAF, 2010; DUNN, 2003). Typical applications
include fire control, avionics, nuclear power, automotives, and medical systems.

Especially in this kind of systems, the occurrence of an accident or mishap is
undesirable. Mishap is “an event or series of events resulting in unintentional death,
injury, occupational illness, damage to or loss of equipment or property, or damage to
the environment. Including negative environmental impacts from planned events”
(DEPARTMENT OF DEFENSE, 2012).

Since it is not possible to build an absolutely safe system, several measures must be
taken in order to mitigate the risk of a mishap until an acceptable (tolerable) risk level.
The mishap risk is measured as a combination of the likelihood of a mishap and its
potential severity (LEVESON, 1995). The acceptable risk level is established by the
public considering the willingness to tolerate the mishap as long as it occurs
infrequently.

Risk mitigation can be achieved in three ways: (i) improving component reliability
and quality; (ii) incorporating internal safety and warning devices; (iii) incorporating
external safety devices (DUNN, 2003).

14

The designing of safe systems requires the knowledge of the potential conditions
that can lead to a mishap, this real or potential conditions are called hazards
(DEPARTMENT OF DEFENSE, 2012). Hazard analyses are performed to identify and
define hazardous conditions in order to their elimination or control (FEDERAL
AVIATION ADMINISTRATION, 2000). Hazard is the key element connecting a
failure in the basic system to a subsequent mishap. After that, a failure-mode analysis is
performed to discover all possible failure sources in each component of the system in
order to determine how these components can fail and cause a mishap (DUNN, 2003).

All these terminologies and concepts outline a high level overview of the issues that
must be considered when developing safe systems. However, safety practitioners also
shall to understand in deep the various threats that may affect a system; this is known as
the fault-error-failure model. In other words, it is necessary to comprehend how and the
reasons why the faults are introduced and activated producing errors that can be
propagated between components until cause service failures in the system enabling the
“chain of threats”. And especially to know what are the means to their achievement
(fault avoidance or prevention, fault tolerance, fault removal, fault forecasting)
(AVIZIENIS et al., 2004).

Three concepts are especially important for this work because they are used in the
design pattern representation of the Taim repository: (i) Fault Class, (ii) Service Failure
Modes, and (iii) Safety Tactics. The sub-sections below describe them.

2.1.1 Fault Classes

Faults are inevitable. They can be introduced in the system during the specification,
design or implementation; faulty components; or by external factors such as radiation or
electromagnetic interference, for example.

Azivienis (AVIZIENIS et al., 2004) categorizes the faults into 31 classes, some
example includes: development faults vs. operational faults; internal faults vs. external
faults; hardware faults vs. software faults; permanent faults vs. transient faults, etc. The
combined fault classes belong to three major partially overlapping groupings: (i)
development faults (all fault classes occurring during development); (ii) physical faults
(faults that affect hardware) and; (iii) interaction faults (all external faults). Internal
faults starts in a dormant state and become active due to some input to a component (the
activation pattern) causing an error.

Knowledge of all possible fault classes allows the safety engineer to decide which
classes should be included in the safety specification. This is useful to know what fault
classes one needs to address when designing the system in order to choose the correct
techniques.

2.1.2 Service Failure Modes

A service failure or just failure happens when the delivered service does not
implement the system function, either due to fails in the functional specification
achievement or due to faulty specifications. Service failure modes are the different ways
that the deviation is manifested. Each mode can have more than one service failure
severity.

The service failure modes characterize incorrect service according to four
viewpoints: (i) failure domain (content and/or timing failures), (ii) detectability
(signaled or non-signaled failures), (iii) consistency (consistent or inconsistent failures),

15

and, (iv) consequences (ranging from minor to catastrophic failures) (AVIZIENIS et al.,
2004).

Several classifications of failure types exist in literature. In (WU; KELLY, 2004)
they have adopted Pumfrey’s failure classification (FENELON; MCDERMID;
NICOLSON; PUMFREY, 1994) that classifies the failures in three categories: (i)
Service provision (omission or commission); Service timing (early or late), and; (iii)
Service value (coarse incorrect or subtle incorrect).

In the same manner as fault classes, service failure modes specification provides
insights into the design of safety-critical systems.

2.1.3 Safety Tactics

“An architectural tactic is a means of satisfying a quality-attribute-response
measure by manipulating some aspect of a quality attribute model through architectural
design decisions.” (BACHMAN; BASS; KLEIN, 2003) Tactics show how the quality
attributes can be addressed through architectural design decisions, based on well-known
patterns or reasoning frameworks.

The principle of architectural tactics is to identify and codify the underlying
primitives of patterns in order to solve the problem of the intractable number of patterns
existing. In this context, safety tactics extends the notion of architectural tactics to
include safety as a consideration trying to fill the lack of guidance in how to develop a
basic safety strategy in software architecture design. (WU; KELLY, 2004)

The tactics are based on existing software safety architectural design techniques
used in both research and practice. They are organized into three sets: tactics for failure
avoidance, tactics for failure detection, and tactics for failure containment; and
documented as a structured template with the fields: Aim, Description, Rationale,
Applicability, Consequences, Side Effects, Practical Strategies, Patterns (patterns that
implement the tactic) and Related Tactics.

It is considerable to differentiate techniques from tactics; usually some technique
may implement multiple tactics of a quality attribute and also a technique may enclose
mechanisms that are not related to quality attributes.

Since one of the characteristics of architectural tactics is that they can be combined
into patterns, the design pattern repository present in this work uses the safety tactics
implemented by the patterns to their description.

The next section presents the concepts related with design patterns.

2.2 Design Patterns

In a common sense, design patterns are generalized solutions to commonly
occurring problems. They were firstly introduced by the architect Christopher
Alexander in his book called “A Pattern Language: Towns, Buildings, Construction”.
He says, "Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a way
that you can use this solution a million times over, without ever doing it the same way
twice" (ALEXANDER; ISHIKAWA; SILVERSTEIN, 1977). He was talking about
buildings but the definition fits nicely for software as well.

16

Thus, a pattern expresses a relation between three parts: (i) the context, that is the
(recurring) situation in which the pattern applies; (ii) the problem refers to the
constraints that occur and the goal you are trying to achieve in this context, and; (iii) the
solution, a general design that anyone can apply which resolves the goal and set of
constraints.

Based on Alexander’s book, many other domains have been using the idea of design
patterns. In software domain, the book “Design Patterns: Elements of Reusable Object-
Oriented Software” written by Gamma et. al. (group known as GoF) is considered the
most popular work about this topic. The design patterns in this book are “descriptions of
communicating objects and classes that are customized to solve a general design
problem in a particular context”. The book describes, through a structured template, 23
design patterns classified by two criteria: purpose (creational, structural, or behavioral)
and scope (classes or objects) (GAMMA et al., 1994).

There are many reasons to use design patterns in software development. In
summary, design patterns make it easier to reuse successful designs and architectures
that have worked in the past to solve some class of problem. They represent experience
and knowledge encapsulating best practices and techniques that can be shared among
software developers. Moreover, the pattern names provide a common vocabulary that
allows designers to communicate more effectively and provide a good way for
documenting proven design techniques.

The design patterns described in GoF book were catalogued to be used in no specific
application domain. However many other researches has focused in design patterns for a
specific domain, such as, Service Oriented Architecture (ERL, 2009) or for specific
programming languages, such as, Java (BIEN, 2012).

2.2.1 Safety Patterns

Safety patterns are design patterns that include known techniques for fault tolerance,
such as channel monitoring and redundancy, in order to improve the safety and
reliability of safety-critical systems.

The most popular work about safety patterns is in (DOUGLASS, 1999, 2002). It
describes several patterns for real-time development, including patterns that deal with
safe and reliable architectures based on well known fault-tolerant design methods. He
defines a design pattern as means to optimize some aspect of the system in some way
while deoptimize it in some other way. Thus, one important aspect of these patterns
(that is explicit in the pattern representation) is the consequences of applying the
pattern, thus, the architect must understand the negative as well as the positive aspects,
in other worlds he must deal with the trade-offs of the pattern application.

2.2.2 Pattern Representation

An important aspect of design patterns is how they are represented or, in other
words, which template is used to describe the pattern. There is no agreement between
representation forms on a single template. Some authors use precise and short structure
and others more comprehensive and expressive. In some cases, the author uses different
field names to represent the same aspect of the design pattern. However, they often use
the basic structure suggested in GoF’s book with four important aspects: hame, purpose,
solution and consequences (ARMOUSH, ASHRAF, 2010).

17

The pattern representation is intended to make design patterns easier to learn,
compare, and use. Below three well known examples of design pattern representations
are described.

1 - The GoF Patterns uses the following template:

Pattern Name and Classification;

Intent: What does the pattern do? What particular design issue or problem the
pattern addresses?

Also Known As: Other well-known names for pattern;

Motivation: A scenario that illustrates a design problem and how the class and
object structures in the pattern solve the problem;

Applicability: The situations in which the design pattern can be applied;
Structure: Graphical representation of the pattern, usually using UML,;
Participants: The classes and/or objects and their responsibilities;

Collaborations: How the participants collaborate to carry out their
responsibilities;

Consequences: The trade-offs and results of using the pattern;

Implementation: The pitfalls, hints, or techniques that one should be aware of
when implementing the pattern;

Sample Code;
Known Uses: Examples of the pattern found in real systems;
Related Patterns.

2 - Martin Fowler in (FOWLER, 2002) proposes the following fields to represent the

design
[]

pattern (obs.: not all sections appear in all patterns):
Pattern Name;

Intent and Sketch: The intent sums up the pattern in a sentence or two; the
sketch is a visual representation of the pattern, often but not always a UML
diagram;

How It Works: Describes the solution as independent as possible of any
particular platform;

When to Use It: Discussion of the trade-offs that make you select this solution
compared to others;

Further Reading: References that point to other discussions of this pattern;

Examples: Simples examples of the pattern in use with some code in Java or C#.

3 - Bruce Douglass in (DOUGLASS, 2002) write the patterns with these fields:

Abstract: Brief description of the pattern use or justification. An overview of the
problem, solution, and consequences;

Problem: Statement of the problem context and the qualities of service
addressed by the pattern;

18

e Pattern Structure: Structural UML diagram, showing the important elements
of the pattern;

e Collaboration Roles: Properties of the individual elements in the pattern
collaboration;

e Consequences: Tradeoffs made when the pattern is used,;

e Implementation Strategies: Issues around implementation of the pattern on
different computing platforms or in different source-level languages;

e Related Patterns;

e Example Model: Example that illustrates how the pattern is applied in some
particular case.

2.2.3 Safety Pattern Representation

Many researches target in finding a design pattern representation that fits better with
classes of problem from a specific domain. Armoush in (ARMOUSH, A.; SALEWSKI;
KOWALEWSKI, 2008) argues that the conventional design pattern structure lacks a
consideration of potential consequences and side effects on non-functional requirements
(more precisely safety and reliability) and proposes a new pattern representation for
safety-critical applications that includes fields for the implications and side effects of
the represented design pattern on the non-functional requirements of the overall
systems.

Antonino, in (ANTONINO et al., 2012), presents an approach for extending the
safety patterns representation in a way that allows them to be properly modeled and also
offers means to support their application in architectural models. To this, it proposes the
joint use of a UML profile and rules as descriptive structures stating safety patterns
application constraints. The graphical representation of these safety patterns with
stereotypes instances is an appropriate front-end that allows engineers to reason on the
safety pattern structure (roles and connections) in terms of abstract functional entities.
Moreover, it provides means to state safety specificities (fault classes, services failure
modes and safety tactics) that are singular to each safety pattern.

The Antonino’s pattern representation is used as basis to the development of the
Taim’s safety pattern repository; in different words, the repository aims to store safety
patterns as described in this paper. Thus, the representation includes the basic fields
proposed by Douglass and also the extension ideas described by Antonino.

2.3 Related Work

The application of a pattern in system architecture, called Pattern Hatching in
(VLISSIDES, 1998), requires a good familiarity with a specific pattern catalog in order
to choose the pattern which best fits to achieve the current problem/issue that is being
addressed.

As stated in section 2.1, several kinds of patterns were and continue being published,
either focusing in general or specific domain areas, such as enterprise software, business
system or real-time systems; focusing in different level of abstraction or to be used in
different development phases. All these discovered patterns are catalogued in books and
papers following a specific pattern representation discussed in previous section. Thus,

19

the traditional way to study design patterns is to read and get familiarized with these
books and papers.

In addition to this, the internet becomes an important way to disseminate the design
pattern knowledge. Many web sites are focused in cataloguing patterns, much of these
web sites are based on some book or they are even maintained by the author of the
book.

Ward Cunningham together with other important people from the software
engineering area, such as Kent Beck and Grady Booch created the Hillside Group (“The
Hillside Group - A group dedicated to design patterns. Home of the patterns library”)
which provides a central resource for patterns work. The site provides information on
many patterns-related resources such as articles, books, mailing lists, tools and links
pointing to other important resources. One of them is the well known Portland Pattern
Repository (“Portland Pattern Repository”) created by Cunningham. This repository is
devoted to all things related to patterns. It presents many patterns and good practices in
software development. The inclusion of patterns in the site is made sending an e-mail to
the author with a document that must follow some stipulated conventions. Some other
web sites examples are described below:

In (“Patterns - intuio”) Zahler, based in his Ph.D. thesis, lists many pattern intended
for touch-screen systems for safety-related environments. The company Yahoo presents
many web user interface patterns in (“Yahoo! Design Pattern Library”), the catalog is
improved through user feedback. User Interface patterns are present also in (“Design
Patterns Library | Fellowship Technologies”, “Ul-Patterns.com”). The Open Security
Architecture Company (“11.02 Security Architecture Patterns”) maintains a list with
several security-related patterns; the user can contribute sending patterns by e-mail. In
(“NET Design Patterns in C# and VB.NET - Gang of Four (GOF) - DoFactory”) it is
possible to find a catalog with the GoF Patterns “optimized” to be used in .Net Platform.

Several pattern book authors also maintain web catalogs where is possible to access
a brief description of the patterns contained in the book (“Catalog of Patterns of
Enterprise Application Architecture”), or read the detailed description of the patterns
(“Elements of Parametric Design™), or even repositories which allow the user to add
patterns to the existent catalog (“Net Objectives Design Patterns Repository”,
“Wikipatterns - Wiki Patterns”).

Either in physical or online catalogs, the patterns are represented in a textual way, in
other words, they do not provide mechanisms to apply the pattern directly into the
model that is being designed, making the pattern applying process harder. Furthermore,
they do not provide means (or it is hard to understand and use) to include or to modify
patterns from the catalogue.

An open-source project called Open Pattern Repository started by Uwe Van Heesch
in 2009 (“openpatternrepository - Publicly available Online Pattern Repository - Google
Project Hosting”) aims the creation of a patterns repository that allows the user the
pattern managing, browsing (according to categories) and searching following some
quality criteria.

However these online repositories lack when it is necessary to direct apply the
pattern into the model.

In addition to these catalogues and repositories, we can find design patterns also
embedded in UML CASE tools. Some well known tools like Sparx Enterprise Architect

20

(“Enterprise Architect - UML Design Tools and UML CASE tools for software
development™), IBM’s Rational Software Architect (“IBM Software - Rational Software
Architect Family”) and the open-source tool Star UML (“StarUML - The Open Source
UML/MDA Platform™) have a built-in catalog or an extension that enables the user to
apply design patterns direct into the diagrams being modeled, usually this tools also
provide instrumentation to create or extend a design pattern library. Nevertheless the
design pattern collaborative sharing of these tools are not intuitive, besides, very often
these tools doesn’t not work well with data exchange between other companies tools, in
other words, they are not interoperable.

Aside from Douglass book (DOUGLASS, 2002), safety patterns catalogs are not so
frequent. In addition to the pattern representation proposed by Armoush, mentioned in
the previously section; in (ARMOUSH, ASHRAF, 2010) he also presented a tool to
serve as pattern repository for the patterns presented in his thesis, the tool offers safety
and reliability assessment, firstly proposed in (ARMOUSH, A.; BECKSCHULZE;
KOWALEWSKI, 2009), along with a decision support mechanism that help the user to
find a suitable pattern given the non-functional requirements needed.

In this context, the repository presented in this work aims to manage the safety
patterns as presented in (ANTONINO et al., 2012), discussed earlier; and, at same time,
it tries to overcome the limitations of the existent repositories stated in this section using
the following features:

¢ Allowing the catalog content management;
e Providing an interoperable interface to manage the repository, and;

e Permitting the direct application of the pattern into the system design.

2.4 Summary

This chapter presented the fundamental terminologies and concepts related to this
work as well as the important research existent in the area. At first, it was discussed
about the important aspects of safety-critical systems explaining some central attributes
that are used in the pattern representation of the Taim repository.

After, the fundamental concepts of design patterns were presented, together with the
safety pattern representation upon which this work is based. And finally, a study of
existent design pattern catalogs and related tools was introduced. With this study, it was
possible to state many limitations of currently available catalogs and repositories,
outlining a set of desired characteristics to be addressed by the repository being
developed.

The next chapter describes the design and implementation issues of the Taim
repository.

21

3 DESIGN AND IMPLEMENTATION

This chapter details the development of the safety pattern repository. The section 3.1
outlines some important aspects of the methodology used; section 3.2 presents the
resulting artifacts from the analysis and design of the system; section 3.3 describes
some important implementation issues and technologies that were applied during the
development; section 3.4 discusses the obstacles and limitations faced during the
process, and; the section 3.5 concludes this chapter.

3.1 Methodology

This work is part of a broader project, more specifically, a Ph.D. project being
conducted at Kaiserslautern University of Technology together with Fraunhofer
Institute for Experimental Software Engineering (IESE), in Germany. Since the people
from this project are the direct and indirect users of the repository, they acted as system
stakeholders for the work. The main purpose of this work is to develop a safety pattern
repository. The overall process can be summarized as follows.

First an extensive study was performed in order to understand the fundamental
concepts and the existing related works in the field. The result of this study was
summarized in chapter 2.

After, within the software was firstly sketched and discussed, the needed
technologies available to implement the system were studied and the solution was
designed and implemented. All these activities were developed in parallel, always with
feedback from the stakeholders. One of these stakeholders, the owner of the project,
took the final decisions about the development.

I designed and implemented the software concurrently with the holding of weekly
meetings of approximately 30 minutes with the stakeholders. In each meeting, many
aspects, ideas and technologies for the system were discussed; some diagrams, such as
conceptual view, use cases and architecture, were sketched or reviewed; many
prototypes or even working versions of the system were presented, reviewed and
validated by the stakeholders.

The requirements were discussed, defined and improved during the development of
the repository. The final decisions were made by the owner of the project. The models
and the implementation of the system were made by me and are described in sections
3.2 and 3.3.

3.2 Analysis and Project
The analysis and project of the system are described below.

22

Almost all the models used for the documentation are UML diagrams created in
Sparx Enterprise Architect with exception of the Directed Graph Markup Language
(DGML) which was created directly from the code with Visual Studio 2010.

3.2.1 Requirements

As stated in chapter 2, the safety pattern repository developed in this works tries to
achieve the following characteristics:

¢ Allowing the catalog content management;
e Providing an interoperable interface to manage the repository, and;
e Permitting the direct application of the pattern into a model.

The first characteristic describes what is expected from any repository. In opposite
to simple catalogs, a pattern repository must provide to the user a way to create, read,
update and delete patterns. The second characteristic says that the repository needs to be
available through different platforms and systems. And finally, the repository must
provide means to use the patterns directly into the models that are being designed by the
system architect.

Together with these characteristics, other aspects of the system were defined:

e Each pattern will have many pattern versions and each pattern version belongs to
exactly one pattern. The pattern has as attribute only a name and a description
and the pattern is used to group pattern versions. Each pattern version represents
the same pattern, but is slightly different from the others pattern versions that
also belongs to the same “parent” pattern. This difference can arise from a part
or a connection of the pattern that exists in one version and doesn’t exist in
other, for example;

e The pattern version represents completely the safety pattern and has all the
necessary information to represent the pattern (see section 2.2 for more
information about pattern representation);

¢ One pattern can be related with other pattern. This means that all the versions of
some pattern are also related with all the versions of the related pattern;

e The pattern is composed from many parts. These parts represent the roles of the
pattern, for example, actuator, data transformation, input processing, etc. Each
version of the pattern can use or not any part of the pattern. In other words, the
pattern owns the parts of all its versions and the part is identified by its name;

e The pattern version should be flexible within its information. Eventually the
system architect wants to insert additional information that is not present in the
representation into the pattern;

e The pattern version should keep an UML structure representing the pattern in
order to the user to be able to apply this structure directly into some model being
developed,

e The same repository should be accessed from different computers in the network
(intranet or internet). This enables the pattern exchange (increasing reusability)
by different people involved in the project or in other projects. Furthermore, this
means the pattern catalog is build in a collaborative way.

23

3.2.2 Conceptual Model

The basic entities and their relationships are depicted at high level in Figure 3.1:
Conceptual View.

class Conceptual Model /

Related
P attern

Pattern

FPattern Wersion Optional Info

P atternersion
0. Fart

Part

Figure 3.1: Conceptual View

This model helps to understand how the entities are interrelated and serves as basis
for the construction of both the database structure and the fundamental classes of the
system.

Each entity represents the concepts that were addressed earlier. Some relationships
have a direct connection with the definitions made before, during the requirements
elicitation. For example: a Pattern owns many Pattern Versions; the Pattern can have
several Parts, each one can be within some Pattern Version through a PatternVersion
Part; a Pattern can be related with another Pattern through Related Pattern, and; the
Pattern Version can have several Optional Infos. The last one tries to achieve the
requirement that says “the pattern version should be flexible within its information”.
Thus, each of this flexible information can be inserted together with the pattern as an
Optional Information.

With this in mind, the data structure showed in Figure 3.2: Data Model was created.

To create this diagram, it was used a built-in UML Profile that maps classes to
tables, attributes to columns and association to relationships in a way that is possible to
generate data definition code from the model.

In Taim repository, the patterns were stored physically within an object-
relational database (ORD). Specifically, the PostgreSQL was used to this end and the
script in SQL produced from the data model depicted in “Figure 3.2: Data Model” was
used to build the data structures in the database.

24

clas=s Data Model /

related_pattern D optional _info |:|
ol umnw acalumns
*PK relationship_id: bigint PR oid: bigint
*FI id_pattern2: bigint & optional_field: varchanz55)
*FE id_pattern: bigint field_description: tesxt
relationship_description: tesxt *Fl id_pattern_wversion: bigint
Q. 0.- .=
{id_pathern_wersion = id)
1
) . FK
(id_patternZ = id) (Id_pa;rtern= id) e
«F Ko wF Hoan QE1
pattern_wersion D
1 q wcolumnms
“PK id: bigint
patbern |:| FE id_pattern: bigint
name: warchan255)
e abstract: text
= FOTTRT problem: text
Fl id: bigint q wFkx o.s
name: warcham255) . " - i - consequences: text
desoription: text (id_patterm = id) fault_elass: text
seniice_failure_mode: text

1 safely_tactic: text
uml_structure: warch an255)
diagram_image: warchanz255)

[id_pattern = id)
) 1
wF K
wF K
l:l..= |:|__“
part D pattermwersion_part D
w GO UM w0 UM
“Fl id: higint (id_part=id) *PI id: bigint
Dame: warchan2ss) 1 aF K 0.7 | “FK id_part: bigint
f:lescrlptl':ln: tfax_‘t & id_pattern_wersion: bigint
FKE id_pattern: bigint description: text

Figure 3.2: Data Model

As said in chapter 2, the pattern template used to represent a safety pattern in the
repository is based mainly in Douglass’s work (DOUGLASS, 2002) together with
Antonino’s work (ANTONINO et al., 2012). The columns name, abstract, problem,
consequences from the table pattern_version and the table related_pattern map directly
into the fields with the same name in Douglass work. The table parts and the
pattern_version’s column diagram_image together with uml_structure are similar
semantically to respectively the Collaboration Roles and the Pattern structure described

25

by Douglass. The fields: fault_class, service failure_mode and safety tactics were

taken from Antonino’s research.
Other important observations from the model are:

e The relationship between patterns, given by the table related_pattern, contains,
in addition to the identification of the two patterns that are related, a description

that says how the patterns are related.

e Each part belongs to a pattern and it has a description that explains the part in a
common meaning. Additionally, the pattern version part, which is a part that
belongs to a specific pattern version, also has a description. This description,
however, is specific for the pattern version owner of that part.

e Each pattern version can have many optional information, these information are
described by a pair: optional field and field description. This construct gives
flexibility for the pattern to keep additional information that is not in its

description a priori.
3.2.3 Use Cases

The Figure 3.3: Use Cases Diagramshows the primary use cases diagram where the

main functionalities of the system are depicted.

uc Mews Use Cases [19032012) /

Manage Parts

Yisualize Pattern

;
wincludes
Ed i’;

~aincludes

sincludes

—_— - i

SN
N wincludess
A

include
System Arc - o

Delete FPattern

“isualize
Fattern‘version

_ = ~wincludax

Manzge
Patternersion

zincludes

Download a
patternersion into
some model being
designed to use arto
modify and create a
new wersion,

Uselitpply

Patternersion

Manmage Pattermn b ———————

Safety Pattern Repositony

/KT hManage Related

——= Create Pattern

N Update Pattern

Create
Patternersion

Updste
Fattern’ersion

Delete Patternversion

Figure 3.3: Use Cases Diagram

26

For simplicity purpose, there is only one actor in the diagram that represents the
direct user of the system. In summary, the system architect may create new patterns
(and pattern versions) to share with other architects; manage them; and he also may see
and use the patterns into some model (Use/Apply PatternVersion).

3.2.4 System Architecture

Given some concerns that must be addressed by the system such as interoperability,
platform independency and network support; the Taim repository was designed as a
client-server application. In this context, the main architecture characteristic for the
solution design is the provision of a centralized interface through web services using
open protocols with the purpose of enabling third-party systems to access and use the
repository.

Thereby, in addition to the development of the server-side repository (the services
implementation together with data persistence into a physical database), this work also
includes the implementation of an application that consumes the web-services provided
by the repository and offers a user interface for the repository.

This application was developed independently from the repository. It is an extension
(Add-in) for the UML CASE tool Sparx Enterprise Architect. Thus, this tool can be
used to create the pattern’s UML structure in order to save the pattern into the
repository as well as to retrieve it from the repository and use it into some model that is
being designed in the tool. In addition to this, it encourages the development of similar
applications or third-party extensions that access and use the services provided by the
repository

cmp Conceptualview
sbEsn sy Enterprise Architect Cliert
- RepositoryClient
SafetyPatternRepository 7
o E
SeniceEndpaint 2 = CammunicationLayer | — — _ == DataTransportObject
=] . .
m I Eenie=Erdpoint Userlnterface
o
= 2 -
WCF Services 2 H J"|\ 7 7)"|\ -
E W | e !
| - |
1 - 1
l‘ |BDCommunication Userlntariace PresantationLayer } BusinessLayer
IEIDCommunication(:f ’L
EA
EDComrnunication

EA

Il
| ?

Vv

Enterprise Architect

Npgsal

v

FPostgre=ql

Figure 3.4: Conceptual View

27

An overall view of the whole solution developed in this work is presented in Figure
3.4: Conceptual View.

The image “Figure 3.4: Conceptual View” shows clearly the two parts of the client-
server solution. In the left side is the Web Server which is composed by the Repository
that access a PostgreSQL database through NpgSQL component and offers WCF
services through an interface (the Service Endpoint). On the other side, the EA
extension uses these services and presents a user interface through by means of EA.

In addition to the elements SafetyPatternRepository and RepositoryClient which
were actually developed in this work, the diagram shows external components that
collaborate in some way to the overall solution. In the server-side, the element
PostgreSQL represents the database used to store physically the data and the element
NpgSQL is a .Net data provider for PostgreSQL, it allows .Net application to access a
PostgreSQL database. And, in the client-side, Enterprise Architect component provides
an API to Add-In development making possible the integration between the UML tool
EA and the repository.

The diagram in Figure 3.5: Server-side repository presents in a more detailed level
the architecture of the server-side.

class Serverﬁepositury/

SemricesContract

I

winterfacex WEF Services
ServicesCortract

v v
DataContract
= | BOCorrnunication
+ Optionalinfa
+ Part
+ Pattern |
+ Patternfersion i
+ PatternfersionPart :
+ RalatedPattam "'.*."'
Mpg=gl
|
|
|
v
Fostgre=sql

Figure 3.5: Server-side repository

28

All the communication between the services implementation (element WCF
Services) and the database is managed by BDCommunication, which uses the NpgSQL
component to connect and access the PostgreSQL database.

The ServicesContract element is the interface that specifies what services are
provided by the repository, these services are implemented by the element WCF
Services. The DataContract package contains the classes that represent the model.
Together with the ServicesContract, the DataContract is used to create the Web Services
Description Language (WSDL) file, which is a W3C standard to describe services. The
Data Contract UML diagram is depicted in Figure 3.6: Data Contract.

class Models

Related FPatterns P=ttern’version
Each relatad pattarn REmEgetina
-) P L abstract: string
===-=9 has afield containing .)
. problem_description: string
a description of the X
el consequences: string
Pattern uml_structure: string

- diagram_image: string
- safety_tactics: string

- fault_class: string

- senvice_failure_mode: string

name: string
description: string <>

Part PatternersionPart Optional Info
name: string - description: string - OptionalField: string
description: string - part Par - FieldDescription: string

Figure 3.6: Data Contract

As expected, the data contract is similar with the database structure described
previously.

The client-side application was designed using a multi-layer approach as depicted in
Figure 3.7: Multi-Layer Client Architecture.

EAAddIn is the starting point for the application, it has the main function which is
invoked by Enterprise Architect (EA) when it is launched and when the user accesses
the Extensions (Add-In) Menu. Such function creates the central window
FormRepository (more details about EA AddIn implementation will be described in the
next section).

The Presentation Layer contains the Windows Forms that are displayed to the user.
In a general sense, each form is responsible to present to the user the actual state of
some resource, such as pattern, or PatternVersion. For Example, FormPattern is used
when it is necessary to visualize an existent pattern, create a new one (the form will be
created in blank) or edit an existent one. The form receives an object Pattern, shows it
and permit (or not) its edition.

To retrieve an object from, or to store it in the repository (actually, this means send a
message with the object to the remote repository through the network) the forms use the

29

services provided by the Business Logic Layer. This layer is responsible for the client-
side validation of the object before sending him through the network (by the
Communication Layer); also, it is responsible to ask to the Communication Layer for an
arbitrary object that is being required in the Presentation Layer.

class ClientRepository /

EAaddin EACaormmunication

+ EACommunication

v

FPresentstion Layer

+ FormManagePart

+ FormhdanageRelatedP attarn
+ FormOptionallnfo

+ FormPart

+ FormP attern

+ FormP atternfarsion

+ FormP attern/ersionP art

Ertities + FormRelatedF attern
At — + FormRepositony

= +

prianatinte = —— + FormiefCanfiguration

+ Part

= T

+ Pattern |

+ Patternvarsion I

= |

+ PattermversionFart l\y'r

+ RelatedP attarn Business Logic Layer |

+ BLLOptionallnfo

+ BLLFart

= ———| & + BLLFattern

+ BLLFatternersion

+ BLLPatternfersionP art
+ BLLRelatadP attern

v

Camrmunication Layer |

s — — — + 5PRSeniceRef
+ WCFClientP rosy

Figure 3.7: Multi-Layer Client Architecture

Closing the three main layers, the Communication Layer is responsible for the
creation of the channel that communicates with the server through web services. It is
also responsible for authentication issues and marshalling/unmarshalling of the data that
is being transmitted and received through the communication channel.

In addition to these layers, EACommunication is used by the Presentation Layer to
get access to the Enterprise Architect API; it is used, for example, to get information
about an UML element from the model being designed in EA or to include a pattern that

30

is in the repository into the model. The class SPRServiceRef is generated automatically
in the client by the .Net Framework tool SvcUtil from the WSDL file retrieved from the
web server.

The classes in Entities package are referenced in all layers. It contains classes
representing the domain model. Such classes are used as container to pass data between
the layers, thus they doesn’t have any special behavior (methods). These classes follow
the same structure as the aforementioned DataContract in the server-side and the
Conceptual Model.

The Figure 3.8: Deployment View shows how the artifacts (software components,
often DLLSs) are physically deployed in the nodes (hardware components).

deployrment Deplowrment /

RepositoryClient =
Sencer.Repositony.dll +
Senrer.Fersistence.dll

T

| f |

: M et «delplww
i

Lt y I
RepositonySenvear Bl —_— _.J"r—
———— == SEFVFF Cliert Repository
adeploys Repository
Mpg=ql =
- — — — ==
adeploys
! A ,m
! adeploys I
I i wdeploys
; l !
Postgre=sql 3" Enterprize
Communication g = Arch::;ec‘t

between C# Met and
FostgreS0QL

Figure 3.8: Deployment View

These diagrams used to represent the architecture of the system try to reflect what is
actually implemented, however the diagrams and the implemented code were created
independently, and, thus, their synchronization was did manually.

In order to see the implementation in a higher level and also be able to keep the code
the most close possible with the designed architecture, it is interesting to generate
models from the code. In this context, it was used Visual Studio 2010 to generates a
Dependency Graph in DGML and visualize it.

The “Figure 3.9: DGML generated from the code” shows the generated dependency
graph displayed in Visual Studio.

= EAAddIn.dll

Client.PresentationLayer.GUI

s (v
5 FarmRepository

s ¥ 3 [
% rompatimrsion % Fombou
2 ¥ u [) 2 7 [w 2
anananananan % % % %
¥

o
mmmmmmmmmmm 4 Formatanagepart

= Client.BLL.dII
Client.BLL

a ®
5 BlPatamrsonPart

= Client.Entities.dll
Client.Entities

-= Server.Repository.dIl
Server.Repository

Figure 3.9: DGML generated from the code

The image shows in different level of abstraction (assemblies, namespaces and
classes) the dependencies between each component. Each layer was implemented as a
separated DLL file in order to provide more independency between the layers.

32

3.3 Implementation Issues

This section describes some concepts, technologies and protocols that were relevant
for the Taim repository development. Some of them were already mentioned when
explaining the architecture of the system, in this section they will be described in a more
detailed level.

Two topics that are most relevant for this work are the issues about Add-In
development in EA and the technologies and protocols used to implement the web
Services.

All the system was implemented in Microsoft Windows platform using the
Microsoft Visual Studio 2010 IDE and .Net Framework 4.0. The programming
language used in both the server and the client side was Microsoft C# and to store the
data physically the PostgreSQL database was used. The WCF framework was used to
create the web services as described in 3.3.2.

3.3.1 Sparx Enterprise Architect AddIn Development

Such as other UML CASE tools, Sparx Enterprise Architect (EA) offers means to
develop new functionalities in the form of extensions. In summary, the “Automation
Interface” provides the following options to extend EA:

e The definition of menus and submenus;
¢ Notifications receipt from events occurred inside EA,

e Access to the opened project, including the packages, elements, diagrams and
connectors.

Basically for this work, it was necessary to import and export XMl files containing
an UML Package into some UML Package of an opened model on EA and also to
browse between the packages of the actual opened project in EA.

The essential steps to create an EA Add-In are described below.

First, it is necessary to create the Addin as a Class Library project (DLL). The
project must reference the file Interop.EA.dII that can be found in the EA installation
folder. The main class of the AddIn should implement some key functions to
communicate with Enterprise Architect, such as EA Connect, EA GetMenultems,
EA_GetMenuState and EA_MenuClick (the parameters were omitted). With this, it is
possible to create a sub-menu in EA that is controlled by the Add-In. As said before, the
Interop.EA.dII provides also in the namespace “EA” all the elements necessary to access
the project browser of EA, the class name of the Project Browser is “EA.Repository”.
The API reference can be found in Sparx web site (“Reference [Enterprise Architect
User Guide]”).

After that, the created assembly, a DLL file, must be registered in the .Net
Framework, to accomplish this, it was used the Assembly Registration Tool
(RegAsm.exe) available with the .Net Framework. This allows the Enterprise Architect
to use the Addin.

Finally, it is required to tell EA what is the main class of the created AddIn. When
EA starts up it will read the registry key “HKEY_CURRENT_USER \ Software \ Sparx
Systems \ EAAddins ”. Each key in there represents one AddlIn; the (default) value of the

33

key says the main class. The name includes the namespace (or assembly name) and the
name of the class, for example, Client.PresentationLayer.EAAddIn. Thereby, it is
necessary to add this to the register; the Registry Tool (regedit) of Windows can be used
to accomplish this.

3.3.2 Web Services

According to World Wide Web Consortium, “Web services provide a standard mean
of interoperating between different software applications, running on a variety of
platforms and/or frameworks.” (“Web Services Architecture”). Despite both the server
and the client implemented in this work were built upon Windows and .Net, the web
services implementation using open standards in the server-side allows them to be
accessed and used by different clients in different platforms.

The first choice when developing web services is what message protocol will be
used. For the Taim repository, it was used the SOAP protocol over HTTP, utilizing
XML as message format. Other alternative that could be used is the REST architecture
together with JSON for message formatting. The choice for SOAP takes into
consideration, between other reasons, the platform that the client pretend to run upon, in
my opinion, SOAP is more suitable to desktop applications.

To support the development of the web services, it was used the Windows
Communication Foundation (WCF) which is a framework for building service-oriented
applications. The following tasks are required to build a WCF application, the text
below describes the tasks and how they were achieved in the context of this work.

o Define the service contract which specifies the signature of a service, the data it
exchanges, and other contractually required data. Looking back to Figure 3.5:
Server-side repository, the interface “ServicesContract” and the classes inside
“DataContract” define, respectively, the service operations and its data that are
exposed through the network.

e Implement the contract that is a class that implements the service contract and
specify custom behaviors that the runtime should have. The class WCF Services
implements the ServicesContract interface. This is the core of the server-side
solution.

e Configure the service by specifying endpoints and other behavior information.
The configuration of the repository is made in the file web.config that is hosted
together with the repository in the web server.

e Host the service. During the development, it was used the ASP.NET
Development Server of Visual Studio 2010. To deploy, the application was
hosted in an I1S web server.

e Build a client application.

In order to expose the characteristics that an external entity needs to understand to
communicate with the service, the service metadata is published through WS-
MetaDataExchange (MEX) protocol. This metadata includes XML schema documents,
which define the data contract of the service, and WSDL documents, which describe the
methods of the service. The metadata can be used to generate automatically client code
necessary to access the services. This code generation is one advantage of the
SOAP/XML architecture.

34

In this work, the ServiceModel Metadata Utility Tool (Svcutil.exe)is used to
generate the file SPRServiceRef (presented in Figure 3.7: Multi-Layer Client
Architecture inside the CommunicationLayer). This file assists the programming of the
client exposing locally the contracts provided by the server.

In addition to the service contract, the client and the server must agree also with the
endpoint configuration in order to create the communication channel between them. As
said before, in the server side these configurations are established in web.config file.
The client should assent with the server also what protocols that will be used. One key
issue to taken into account is the binding configuration. It is used to specify the
transport, encoding, and protocol details required for clients and services to
communicate with each other. In this work the WSHttpBinding is used; according to the
msdn web site it described as “a secure and interoperable binding that is suitable for
non-duplex service contracts” (“Bindings”).

3.4 Difficulties and Limitations

The first obstacle faced during the development of this work was the inexperience
with web services development. Adding to this, the lack of practical knowledge coding
layered software architecture demonstrates a challenge to the development of this
application. Specifically, the configurations related with the web service, mainly the
binding configuration, were one of the hardest issues in this work.

Other difficulties arise from the changes in the requirements specification during the
development. To minimize the loss of work, many prototypes were presented and
validated during the development process.

3.5 Final Considerations

This chapter tried to show in details all the issues related with the development of
the Taim safety pattern repository. It includes the analysis, project and implementation
of the server-side and the client-side of the application.

The next chapter presents the repository in production environment through screen
shots taken during its use and describes some concerns that were not achieved in this
version of the software.

35

4 DEMONSTRATION

| deployed the Taim repository in a server at UFRGS in Brazil. Then, | installed the
AddIn in a computer with Sparx Enterprise Architect (EA) and accessed the repository
remotely over the internet in order to test the basic functionalities and to take screen
shots to demonstrate the system. At the same time, several notes about the appliance
were taken describing desirable changes for a next version of the tool.

As said before, the Taim repository is intended to store safety patterns as proposed
by Antonino in (ANTONINO et al., 2012). However, this pattern representation was not
finished during the tool implementation and, thus, some aspects were not foreseen
during the analysis and the design of the system. Despite that, | think that is important
to use the system with this representation so the limitations of the tool can be
documented to be addressed in a posterior version of the tool.

Therefore, the safety pattern Homogeneous Redundancy Pattern was created in EA
using the guidelines described by Antonino’s research. After that, the implemented
AddIn was used to access and to store the created pattern into the repository. The
section 4.1 describes this process step by step with screen shots taken during the test.
Another important use case for this application is to retrieve a previously pattern from
the repository and put it into an EA’s project. This mechanism is depicted in section 4.2.
Section 4.3 points out the notes that were taken during the steps below. And finally the
section 4.4 concludes this chapter.

@ SafetyPattemRepository - EA [E=m= =
File Edit View Project Diagram Element Tools Adddns Settings Window Help
ol A=Y) QO B <dedut = | @ o G # sasicLayout = E-0-=- 8.
& 23 Logical Diagram: “Safely UML Profil” created: 12/12/201216:47:40 modiied: 12/12/201217:34:44 100% 827 %1169 v x
© Mo tooks.
| - Profile
@ | B Profil
& | ¢ stereotyn
B || 9> Stereotype) S | .t snsor ot ot
B wead O o M = &
& Enumerat tion
=1 Profile Relationships
pal e
: “ 1
& oo /0 = H
= Common Q
B @ AE
I S
sctustion ©
bzl (o

Fault Class ¢) Service Failure Mode €) Safety Tactio €Y

i ,
4\ Statpage, % safety UML Profile | 8 Protected Single Channel,| 8. Triple Modular Redundangy |, o8 Homogeneous RedundangyPatt..| » | (@ Notes | & properties | £ Tagged val
LhB ani QRQARA REF X A &L 1 2 F 2 petautstyte - B -

CassData Vlidation n " ou

Figure 4.1: Safety UML Profile diagram in EA

36

4.1 Storing a Safety Pattern in the Repository

Following the steps to create a safety pattern, firstly, a Safety UML Profile was
created in EA as depicted in Figure 4.1: Safety UML Profile diagram in EA.

For brevity, no special concerns were taken to create the profile. Each stereotype
represents one role of the pattern, for the purpose of this work; each role is a part, as
described before, of the pattern. The pattern was forged with instances of these
stereotypes.

The Homogeneous Redundancy Pattern built in EA is showed in Figure 4.2:
Homogeneous Redundancy Pattern in EA.

@ SafetyPatternRepository - EA = e =)
File Edit View Project Diagram Element Tools Addns Settings Window Help
L2 Q0 F B <defauts > | @ o [# sasiclayout 2 E-0-=- 6y

<8

"' created: 12/12/201217:31:42 modified: 12/12/2012 18:42.58 84% 827 x 1169 X

T EHRRE % B-@-) ¢
[«stereotypes Secondary Inpu +

Protected Single Channel

el Fuiao Q)

it

B @ w
u BB
E @ »
N E B

Functonal Rdundincy

< 8
4\ StartPage | T3 satety UL Prarile |, S8, Protedted single Char =8 Triple Modula Redundand), 8 Homogeneous Redundancy Pat...» | (@ Notes [[&*properties | ©) Tagged values
e 20l 75 44 I > —

% a6 RAQAARQ &

Component Diagram:Homogeneous Redundancy Pattern H

? | Default style 5 B - L

oy @[CAP_NUM _SCRL _WAN

Figure 4.2: Homogeneous Redundancy Pattern in EA

The elements of the pattern are instances of the stereotypes from the Safety UML
Profile. In addition to the parts of the pattern, the diagram shows elements to describe
the FaultClass, the Service Failure Mode and the Safety Tactic that this pattern is
related to.

@ SefetpattemRepository - EA R |
File EG View Projec Disgram Eement Tools | Addin: | Settings Window Help
D QD [g st

@ 8 ConponentDisgar"H(| Manage Adadns
Weesodk.. |

Repository lou O -
t F.-.0 3z

" 2 moded 12/12/2012184259 B4% 27 x1163

14\ qustatPage | T3, Satety UL Protie |, 8. Proteded Singie Channel | 58, Tripke Modula Redundandy,, 8 Homogeneous Red:

ax s 48aaQ hE¥
mmmmmmmm DiagramHomogeneous Redundancy Pattem)

Figure 4.3: Repository Access from EA

37

After creating the pattern in EA, the Addin Menu in EA was used to access the
repository as shown in Figure 4.3: Repository Access from EA.

The first time that the repository is used, it is useful to set the network address where
the repository is deployed as well as the address to access the service.

@ SafetyPatternRepositary - EA o |[@][=
Fle Edt View Pojet Diagiam Element Tools AddIns Settings Window Help
@~ C QI BB <deroun - @ i R sasiclayout =T, o
@ 8 Component Diagiam: "Homageneaus Redundancy Patlem'"crealed: 12/12/2012 17.31:42 modiied: 12/12/2012 1842.58 84% 827 x 1169 - x
2 ore ool L BEsE s 3-8 23
& [E=8 B
7 mpe

[FITEE S FY
x
£

Gl conponset peaio— 7
- AN =

B
]y |8 wotes [eropertes | Taggea vaiues
¥ Default Style ~ W.

DI CAF NUM SCRL WAN

The deployed WCF services offer two service endpoints to access them. In this
example it is used a security connection over HTTPS (the other service endpoint doesn’t
use any security to communicate with the repository). This kind of connection is
recommended when the repository is deployed in internet. Another issue that is possible
to see in the figure is the use of a username and password validation (that is used only in
secure communication). In the actual version of the repository, only one user exists and
it is hardcoded. This feature was implemented aiming a future expansion of the
repository to a multi-user role-based system.

@ SaferyPattemRepasitory - EA EEA

Fils Ed% View Project Disgram Element Tools Addling Settings Window Help

£ G- GOe [8 et © @ o 1 BasicLaout @ 0-m- @e
] o “Hamagensous .y Pallem”_cresied: 12/12/2012 17.3142 modiied 12/12/2012 184258 84% 627 x 1169
g Mok eck._| EEEEICY e i
: A gt bt o S m & Model
=
=5 58 ==
elp]
e
ncy
Cammon
2D AH 3
0% 3 3
[E]% 2 hya)
Mo Pattern Selected
4 Start Fage. | 23, Satety UL Frofile, |, 58 Frotected Single Channel |, &, Tiple Moduiar Redundangi, %8 Homogeneous Redundancy Pat..| » | B Hotes |[&Fror ¥ Tag

aAF 6 68aq FiFs <, I = Default Style - -

nt Dizgram:Hamogeneous Redundancy Pattern

Figure 4.5: Repository main window and Pattern menu

38

After connect with the WCF service, the repository is shown to the user as in
“Figure 4.5: Repository main window and Pattern menu”. In this case, the repository is

empty.

The menu Pattern->New presents to the user a form to create a new pattern. As said
before, the pattern will serve as container to many pattern versions. The “Figure 4.6:
Pattern Creation” shows this form already filled to create the new pattern.

@ SafetyPatternRepository - EA o |[&][=
File Edit View Project Diagram Element Tools AddIns Settings Window Help
B - & ne <defauits < @ L G Basicloyout T,
@ =8 Component Diagiam: "Homogeneous Fiedundancy Patem” created: 12/12/2012 17.31:42 modifed: 12/12/201218:4258 84% 627 x1163 - x
H Mare tol: .‘Eafgg%gvv/}\}@
A e Model
E — = (@ Mode
Y e —— o Pattam [E=E{Ho =3 —
& o it e =
o | P———r afety Pattem Repository b ney Pt
%! 4] Component| Pattem PattemVersion Help s]
fil
2 Class Redundancy Channel e
ncy
= FE Desaiiption
@ object Paitern with tecundart channls]
G Port
I ExposeInterf
2 adifact m—|
B oo - atts | Related Pattems
I Component Ref
K »
S
! v
I Commor .
B @ AH Compares the cutout 1o the commanded oulpu b
N Actuat This is the device petfoming the actuation. Thi —
BB g
B @
< ‘ v
Mo Pattern Selected
« 0 »
q Start Page | 33 safety UML Profile | S8 Protected Single Channel | =8 Triple Modular =8 Pat.|p | Notes [Bfproperties |) Tagged Values
B TR Eapm A & 2 A% Qe - L1 L g 2| Default Style v B - L
Component Diagram:Homogeneous Redundancy Pattern Homoge s Redundan.. o (D CAP__NUM__ SCRL _WAN

Figure 4.6: Pattern Creation

This form allows the user to set the pattern name and description, which is optional,
as well as the Parts (Roles) that compose the pattern. It is also possible to define the
related patterns, but they have to be stored in the repository first. The parts depicted in
the figure represent the stereotypes defined before in the Safety UML Profile. When the
user clicks the button “Save” the pattern is stored in the repository.

@ SafetyPattemRepository - E4 =S
File Edit Brotect Flement _Tnalc _ada "
P] anotacoes uso spr.bt - Notepad = |[®]=
e File Edit Format View Help
& Wl 20 cadastrar o pattern, ndo precisaria ficar digitando todas informages. . + 3 6
2 tais informagdes poderiam ser buscadas auTomatiZamente do UML do pattern e sugeridas para o usuario.
= Common
2@ m Al o s Pattem Repastory == [E=E)
2
g = Pattern Pattern Version Hel
Sle @ mfy e _tonioen TR
w@ al ! m Manage »
al & | ey Patt
| | create Patter version into I N
Redundancy Channel ney
o
A Descriptior:
Pattem with redundant channels.
rv
d
q v
u
Selected Pattern: 3 - Redundancy Channel
Il
Ready AN

Figure 4.7: Menu to create a PatternVersion into an existent Pattern

39

After that, it is possible to create the PatternVersion into this pattern. One of the
ways to create a new Pattern\Version in the repository is depicted in Figure 4.7: Menu to
create a PatternVersion into an existent Pattern.

The menu “Pattern -> Create Pattern Version into” opens a form to fill the
information about the PatternVersion that will be stored into the selected Pattern. This
form is shown in Figure 4.8: General Description from Pattern Version.

@ SafetyPatternRepository - E&,

===
File Edit View Project Diagram Element Tools Addlns Settings Window Help
i [
a5l Safety Pattern Repositary = (@)=
E4 a5 Pattern Version =
° & [E=SECE 55 B-E- 4+ 3¢
HIE Patten Version Name: eous Redundancy Pat «
fix) eneous Redundanc:
g|= Homagenesus Redundancy Patiem gen ¥
z & & Failure Maodes Conts
= ET) Parent Pattern | General Description | PattemDeseription - Safety | Pattem Deseription - Parts | Pattem Description - Diagram | Optional Info Tactic» Functional Re
= el Class» Randam Fault
- an @ problem of things breaking is to jes of that thing. In safety
g time
) tchorback
switcho-backup pol
B
B Preblem Description: types Prirnary Input: 1
B types Secondary Actu
- types Secondary Actu
types Secondary Data
& types Secondary Data
ex Secondary Inpu =
7 Consequences e oy
faults. Because the eletronic and mechanical hardware must be duplicated for maximal coverage, each shipping »
system must bear the cost of additional hardware components, Funthemore, since the channels are clones, any
B systematic fault in one channel, by definition, appear in the other. The pattern runs 3 single channel and switches = N
over to a backup channel only when a fault is detected and either the data is lost o recovery time to redo the
& computation must be taken into accout in time-criical situations. =z
=3
2]
b bt Save
f
q start Pagét, “8 Homogeneous Redundancy Pattem | b | [Notes | B properties | G2 Tagged Values

A H REQEQ 2 F s A1 2 Default Style - B -

Ready Homogeneous Redundan...

(S (D[CAP NUM__ SCRL _WAN

Figure 4.8: General Description from Pattern Version

Since a Pattern Version contains several information fields to store, for visual
purposes, the form was subdivided in many tabs, each tab related with some
characteristic of the pattern. In the tab “Parent Pattern” it is possible to set the pattern
in which the PatternVersion is being allocated as well as create new parts and set the
patterns related with it.

The “Figure 4.8: General Description from Pattern Version” shows the “General
Description” tab that contains the Abstract, the Problem and the Consequences. The
next tab “Safety” is very similar and shows text boxes to fill information about Fault
Class, Service Failure Mode and Safety Tactics.

The Parts tab “Figure 4.9: PatternVersion Parts” shows the parts that compose this
specific PatternVersion.

Each part from a PatternVersion is a part from the Pattern (parent of the pattern
version) plus a description specific of it in the context of the PatternVersion.

40

@ SafetyPatternRepository - E5

Fil= Edit View Project Diagram

L
i,

ol Safety Pattern Repository

Element Topls Addn: Seftings Window Help

a5l Pattern Yersion

g Pattern Pattern Version Help IRtz Yt e
% =T 3- Redundancy Channel Homogeneous Redundancy Pattern
f_g B Parent Pattem | General Desciiption | PattemDescription - Safety | Pattern Description - Parts | Pattein Description - Diagram | Optional Info
é a Hame Description
2 Input Sensar This is the source of the information used to cantiol the actuator
= Input Processing | Acaquires and performs the first processing on the data sent by the Primany Input Sensar
B Data Transformation | Performs a single transformation step on the input
El Data Validation | Validates if the data is comect or reasonable, and sk staps the processing on the current channel &
o Actustion Validation | Compares the output to the commanded output, and determines when some application specific faul
B Actuator This is the device perfarming the actuation. This is the actuator used by defaul:

Input Processing | Acaquires and performs the first processing on the data sent by the Primany Input Sensar

Data Transfomation | Performs a single transfomation step on the input

= & ==]

ERNERAE B]
ous Redundancy Pat =
geneous Redundancy
« Failure Mades Conts
Tactics Functional Re
Classs Random Fault
types Prirmary Actuati
types Primary Actuaty

types Prirmary Data Tr|
types Prirmary Data Ve
types Prirnany Input P
types Prirnary Input:
types Secondary Actu
types Secondary Actu

(=]
DataValidation | Validetes if the data is caect ar reasenable, and ako stogs the processing on the curient channel typer Secondary Dats
o types Secondary Data
Actustion Validation | Comparss the output to the commanded autput. and detemines when some appication specific faul
A typer Secondary Inpu ™
Actuator This is the device perfarming the actuation. This is the actuator used by defaul: v
(=)
« I ’ -
£} K R
3
2
Stlected Pattern: 3 - Redundancy Charmer
« i »
q start Pagit, “8 Homogeneous Redundancy Pattem | b | [Notes | B properties | 63 Tagged Values
Brog TR aFm Qe BEFE B e -1 1 @ 7 Default Style > B -
Ready Homogeneous Redundan... (D[CAP_NUM__ SCRL _WAN
@ SafetyPatternRepository - EA [= =][=]
File Edit View Project Diagram Element Tools Adddns Seftings Window Help
& a2l Pattern Version (=R =N 3l | S—
ol Safety Pattern Repositary b= =]
@ Pattern Pattem Version Help | Fattem Version Name, —
o Bog- 3 &
z 3- Redundancy Channel Homogeneous Redundancy Pattern a2 Select ane package
Ei eous Redundancy Pat -
a
@ Farent Patiemn | Geneial Desciption | PattemDesciption - Safety | Pattem Desciiption - Parts = hod 7 geneous Redundancy
:;1 Diagram Image: (& Conceptushiew & Failure Modes Contr
= - DeploymentView Tactics Functional Re
- Diomain Model Classs Randam Fault
[2J- Safely Patterns itypes Primary Actuati
: types Primary Actuaty
Protected Single Chanrel types Primary Data Tr &
Safety UML Profile typen Prirmary Dita Ve
i Tiiple Modular Redundancy e Pritnan Input P
Use Case Model Sl v Inp
- Diata Model i types Prirary Input: 1
= ypes Secondary Actu
q ypes Secondary Actu
types Secondary Data
b typer Secondary Data
type» Secondary Inpu
7 i
(=]
Clone: (Dovninad) Pattemersion To E4 Projsct Brovser
E = X G R
Update Paltem Version Package/Diagram From EA Praject Browser
[
Selected Pattern: 2 - Redundancy Charmer

m v
start Pag§\ =3 Homogeneous Redundancy Pattern J

[t 43 7=
jae 5l

b @ notes | B eroperties | & Tagged Values

Ready

50 % S 6 OB QB BEE X LIAN B 1 2 o A

@

Homogeneous Redundan...

CAP

NUM SCRL WAN

Figure 4.10: Choosing a UML Package from EA

The figure shows the Add-In accessing information about the opened project in EA.
More specifically, it shows all the UML Packages from the current EA project so that
the user can select the pattern that was previously designed in EA (the pattern in EA

was showed in

Figure 4.2: Homogeneous Redundancy Pattern in EA).

41

With this information, the Add-In uses a method provided from the EA API that
exports a XMI and an image file from the selected UML Package in EA. These files are
stored in the repository together with the textual information.

The last tab (Figure 4.11: Inserting an Optional Info into the PatternVersion) allows
the user to fill the optional information about the PatternVersion.

@ SafetyPatternRepository - E& o |[& | =
File Edit Proisct D EL it Tnal chd. s thi lin Hal,
B
oy 8 Fattern Version = == =
8 Safety Pattern Repositary
g Pattem PatternVersion Help | Fatlem Version Name: —ar
Z a4 3-Redundancy Channel Homogeneous Redundancy Patiem
s jancy Pat =
o | & Parent Paltern | General Description | PaltemBesciption - Safely | Paitern Descriplion - Parts | Petiem Deseriplion - Diagiam | Dptianal Infa ndancy
= k2] Optional Field Field Description Edit Delete e Conts
=l g tional Re
= Fault
f Actuati
a Actuaty
5 s Optional Info =2 g:: ;i 3
B Optional Field Tnput P
Implementation |ssues Tnput: [
ary Actu
= Field Description ary Actu
The implementation issues center around ideniing the falls that can lead ary Data
. ta system dysfunction or to 2 hazerd and miigating them with redundancy- ary Dita
inthe-smalL. This can be dane in several waps. The data itsel may be stored v
A tedundanily, for example. When the data s written, a CRC map be aryInpu ™
computed When the data s read, the CRC is checked before the data is »
used. O the dat tself may bs stored mulipls imes: !
= Save &
[
el
“ | [Selected Pattern: 3 - Redundancy Chal
« o 3
Save
« i '
Ready Homogeneous Redundan. [(£)[CAP__NUM SCRL _WAN

Figure 4.11: Inserting an Optional Info into the PatternVersion

4.2 Retrieving a Safety Pattern from the Repository

@ SafetyPatternRepasitory - EA = @ | =
File Edit View Project Diagram Element Tools Add-Ins Settings Window Help

D G ety Pttem Repository oo
@ Pattern PatternVersion Help
& IR T we—— ERRERAE A
& | =4 [& 3- Redundncy Charnel Paltem Version Basi Info
E 7 o eous Redundancy Pt +
2 - B Heme:
S =] gencous Redundancy
e Homogeneous Redundancy Palten omp Homageneous Redundancy Pattern / = e Failure Modea Cont
) Abstract Primary Ing] Tactics Functional Re
= (- Class» Random Fault
> An obvious approach to sokina the preblem of things types Primary Actuati
- breaking i 1o pravids mliple copies of thet thig. In .
2 safely and relibilty archtzetures. the fundamental unt typen Primary Actusty
: is called a chamnel. & channel is & kind of subsystem, or types Primary Data Tr =
7 z Primary input Procsssing -rput Frocessing (3, = types Primary Data Ve
1= B types Prirmary Input P/
B fobiem types Primary Input: [
B The problem addiessed by the Homageneous - types Secondary Actu
Redundanty Paltemis to provide proteslion agairst 1= Primary Data Validation :ats Validstion ex Secondary Actu
= tandom faulls - that i, fallres - n he system execulion |~ © P "
and ta be able to continue to provide functionalty in the typen Secondary Data
- presence of afalure. The prnary charmel should i type Secondary Data
b types Secondary Inpu
Consequences: ‘ Pritnery Dats Transformaticn sts Trarsfermation. ¢y [
The Hamogenzous Redundancy Patiem has 2 number ~ T o
B of advantages. Itis conceptualy simple and ez to = %@
dasign. It provides good coverags fot random hal s.
® hardnare and iansient] aults. althoush only i the:
hardnare i itsol replicated. It is usualy a simple malter i mary Actustion Vallgation Actustion valldation ¢ e
-
“ i v ‘ i v
N
< | [Stlected Pattem Version: 4 - Homagenzous Redundancy Pattem
« W 5
q Start Page, 8 Homogeneous Redundancy Pattern | b | Notes |[Bf Properties | & T
6 f ARQAQ & s ARl s Default Style - B -
Ready Homogene o (D CAP__NUM__SCRL _WAN

Figure 4.12: Browsing in the Repository

The process of retrieving a pattern (in the repository, this action is called Cloning)
from the repository is quite simple. The main repository window (Figure 4.12:

42

Browsing in the Repository) presents all the patterns and pattern versions actually stored
in the repository. It is possible to see some basic information of them and also the UML

diagram of the Pattern Version.

After select the pattern that is desired to clone into EA, the menu “Pattern Version -
> Clone (Download into EA Project Browser” (Figure 4.13: Cloning a pattern from the
repository into EA) is used to imports the XMI package stored in the repository into the
opened project in EA. It is necessary to choose what UML Package from the current

Project Browser will be the container for the cloned pattern.

@ ModelTolseSafetyPattern - E4

File Edit View Project Diagram Element Tools AddIns Settings Window Help

oo H @ 0 | B | <detauns - @ L G B Basic Layout < H- OBk
@ =5 Compaonent Diagram: ''Components’ created: 05/01/2006 modified: 05/01/2006 100% 827 x 1169 -
H Mors tods B E R Bt €
E‘ = Component = 5 Model
© 1 Paf ol Safety Pattem Repository E==(EeE
= odel
S D P paern | Pattem version | Help
= C
=-3-Red Mewr b ts
= el
o Manage 5 1
[[Clone (Downlaad) into EA Praject Brawser em omp Homageneous Redundanoy Pattern /7 o 2
=T Abstract: Primary in res
E o Arcbvious sppoach jsaving e piobiem of things A=
ER bieaking i o provide multile copies of that thing. In
= 5 safely and rekiabiy archtzclutes, the fundamentalurit
is calied # channel & channel i & kind of subsystem, or
=l Com i oty Inpu: Frooessing dnput Frooessing €} =
< A Problem
A The problem adhessed by the Homogensous -
Reedundancy Pattem i lo provids protsclion against [Pimary ks valisation e v Q)
Com tandom fauls - tha s (slutes - in the system sveculion |~
and la be able to coniinue to provide funclionally n the
Bl piesence of false. The primaty channel shodd © %R
B Y Consequences: ‘ Primary Dsta ransformation :Data Transformation ¢}
@
it The Homogeneous Redundancy Paltem has a number T oA
| of advantages. It s conceplualy simple and easy to
& & design. | provides gaod caverage for random hal i,
hardware and ransient] faults, although only ¥ the
hardware is itsek replicated. It is usuall a simple matter rimary Actushon Valssion sctustion valston g3 ez
‘ i > ‘ v
Selected Pattern Version: 4 - Homogeneous Redundancy Pattemn

q startPage | =8 Component Modéi, <8 ~Components |

Component Diagram:Components

A f Raeaq & s

Components

B

b | (@ notes [Bproperties | & Tagged Values

Default Style

- 8

(B[CAP NUM SCRL _WAN

Figure 4.13: Cloning a pattern from the repository into EA

@ ModelTolseSafetyPattern - EA

File Edit View Project Diagram FElement Tools Adddns Settings Window Help

T & -
g More tools.
£) Component
; B Package
% £ Packaging Compe
= & component
2 dass
o Interface
B object
@ port
[Exposelnterface
& Aifact
21 Dotument Artifac

abs R

<default>

B ary mput Frocassing

v | @ [Basiclayout

<8 Component Diagram: "Homogeneous Redundancy Patier” created: 12/12/2012 17:31:42 modified: 12/12/201218:42:58 84% 827 % 1163

P ary nput

=

&

Frmary Cuts Ualdation

Seoondary Pata Valldsfion

&%

Fnary Cata Tanematon

Ready

‘Component Relatio. || Tn‘ -
A 7

Sseondary cata Transmomation

Sscondary nput procs g

n

| mary cfuaton vadaton

‘Seoandary Setuatian Valiatan

esl

€3

Py fcfuator

Seoondary setuator

i Eenie Falkr e,
Randon Fuit Cantantand T ing Funstona Feckncney
1o 1k
i]
Start Pagé, =8 Homogeneous Redundancy Pattern |

apH eaeaq & F s

Homogeneous Redundan. ..

AE . ;-

-1

= Default Style

V
3

pup =R R TE RN =RAE

= (g Model B
& [@] Companent Model
a8 Component Model
@ [Components
% (] Connections
-] Intemal Structures =
5 [SafetyPatterns
& [Homageneous Redundancy

«Service Failure Modes C
«Safety Tactics Functiona
aFault Classo

Random Fau
wsterentypes
wstereatyper
wsterentypes
wsterentypes

Primary Act.

Primary Acty

Primary Dat:

Primary Dat: ™
v

(W o D D D

'mes B Properties | i Tagged Values

NUM SCRL _ WAN

Figure 4.14: Cloned Pattern in EA

43

In this case, it was created a new package called “SafetyPatterns” for this purpose.
The resulting of this action is presented in Figure 4.14: Cloned Pattern in EA.

4.2.1 Creating a new version from a previously cloned

One of the characteristics of the AddlIn is that it keeps in memory the last pattern
that was cloned. Therefore, it is possible to create quickly a new version of some pattern
in the repository. To show this feature, the pattern cloned before was slightly modified

(It was created a secondary input sensor) as shown in Figure 4.15: Cloned Pattern
modified.

@ ModelToUseSafetyPattern? - EA

File Edit View Project Diagram Element Tools Adddns Settings Window Help

P @ Q0 <detauits - @ . sesicayout T, — T

@ & Component Diegra: "Homogenseus Redundancy Pater” creaed: 12/12/201217:31:42 modiid: 17/12/2012 000541 98% 8271153

e AN
g

« b
q startPage, 8 |23 satety L profite b |8 notes [2
56 AQ8aq i P R Default Style - -
Component Diaaran:Homoaeneous Redundna Fattern Homoaeneous Redundan an I NOM SCRL AN

Figure 4.15: Cloned Pattern modified

After modify the pattern in EA, the repository should be accessed and then the menu
“Pattern Version -> New -> PatternVersion filled with last cloned one info” (Figure
4.16: Creating a new pattern from the previously cloned) is used to create a new Pattern
Version with the fields already filled with the information of the last Pattern Version
cloned and with the modified UML structure.

@ ModelTolseSafetyPattern - EA

File Edit View Project Diagram Element Tools Adddns Settings Window Help

o - B = @ [<derautt> © @ . sesiclayout =T -
& 8 Component Diagram: "Homogensous Fledundancy Patiem’ crealed: 12/12/2012 17:31:42 modiied 1212/2012 222330 84% 8271163 v x
2 Hore todl e =Rl = B RE R =RAK W A
= | B profile dodel -
E
o| B profile o/ Safety Patter Repository B3 E=E <=
T | <> stersotype | pottern [Patte Help
B wetaciass [poppm » Pattemyersion |
& Enumeration 4
Manage Patter\fersion filled with last cloned one info. |
<! Profile Relatior Clone (Dawnload) into EA Project Browser
TN Fiedundancy Charmel prtem m
by Patts
7 Descriptior tent anc
Pattern with recundant channeks Redundz
tion Val
tar
[Transt:
-3
Selected Pattem: 3 - Redundancy Channel
5
q StartPagé, =8 *Homogeneous Redundancy Pattern | b | Notes | properties | G Tagged Values
€ H aeeaq & J Defaut style - B - L
Component Diagram:Homogeneous Redundancy Pattern Homoge [@[cap NUM_ SCRL wan

Figure 4.16: Creating a new pattern from the previously cloned

44

All the form fields were already filled as shown in Figure 4.17: PatternVersion
information filled automatically.

@ ModelTollseSafetyPattern - B4,

File Edit View Project Diagram Element Tools Addns Settings Window Help

=) B (& [e [F @& <defaurts » @ . 3 /# sasiclayout B OQr=-

L
¥
m

& =8 Companent Diagram: “Hamegensous Redundancy Pattem” created: 12/12/201217:31:42 modfied: 12/12/2012 22:25:30 84% 827 1169 =
— .
O B o S o, EEBEE % B 43
£ (B c Aodsl A
2
0| B package | a3 Safety Pattem Repository s lEj=
5
T %) Packaging €| pattem Pattem Version Help
Z| Component
3| aJ Pattem Version (=N
= Class =
=@ Interface Pattern Version Name:
O Opjeat Homegeneous Fiedundancy Pattemn modied attern m
U Port — ly Patterr
e Exposelnter| Paiert Paltemn | Genetsl Description | PattemDescriotion - Safety | Pattern Description - Parts | Pattem Description - Diagram | Optional Info tentant
2 anfact Abshact Redundz
) Document Al An dbvious approach o solving the problem of things breaking s to pravide multple copies of that thing, In safety » v
and reliabity architectures, the fundamental unit is called a charnel. & chanriel i 3 kind of subsystem, o run-ime
= Component Re| organizational unit, which is end-to-end in its scope, from the monitaring of realworld signals ta the control of Val
[actuators that do the work of the system. The Homogeneous Redundancy Pattern replicates channels with a tion Val
& A S switch-to-backup policy in the case of an error. - itor
[Transfor =
iz Prablem Diescription: D
The problem addressed by the Homogeneaus Redundancy Pattem s to provide protestion against random faults -
thatis, failures - in the system exscution and to be able to continue to provide funcionaliy i the presence of &
q failure. The primay channel should confinue:to run as long as there are no problems. In the oase of falure within the b
E channel, the system must be able ta detect the fault and switch to the backup channel
Consequences
E &
The Homageneous Riedundancy Patiem has & number of advantages. It is conosptualy simple and sasy to design. «
A S It provides good coverage for random [that is. hardware and transient]faults. athough only | the hardware is itssf
replicated. It is usually 3 simple matter to get good isalation of faults and to siiminate common mode faults, The
pattem applies when random faults acour at a significantly higher rate than systemati faults. such as in rough or
Srduous physical environments. |t aso is useful for satety-critical o high-reliabilty systems that must continusta. =
“
Select
Save
« 0 5
4 Start Pagé, ©8 "Homogeneous Redundancy Pattern | b B Notes | B Properties | 53 Tagged Values
EEFSERR O 6 Q6 AQ BEF X A M- 2.1 1§ S pemautsyie T B
Compaonent Diagram:Hamogeneous Redundancy Pattern Homogeneous Redundan... [} CAP NUM__ SCRL

Figure 4.17: PatternVersion information filled automatically

With this option, the user can easily change only what effectively changed from one
version to the other. The UML structure of the modified pattern was exported to the
repository as shown in Figure 4.18: Modified UML diagram.

@ ModelTollseSafetyPattern? - EA,

File Edit View Project Diagram Element Tools Addns Settings Window Help

7 @ - = (@ O & [@ | <defautt> - - 3 # Basic Layout B Q=
® E -
& 4 Pattern Version B- + 4 ¢
£ || = com e
‘S| B pad | Patem Version Name: ==
Ef ——
g Ea Homogeneous Redundancy Pattem modified Print Sereens
2] ¢
5 o | Parent Pattem | General Diescription | PatteinDescription - Safety | Patiein Deseiiption - Pats | Pattem Description - Disgram | Dptional Infa
= Disgram Image
- - {
s ensous Redundancy Pattern / .|]
B oy crianda
4 Secondary Input :Input Senser attern_co
W Po ‘ Frimary Inpit ﬁ‘ hd pnta\ﬂ;f
B B antes de ..
B Ay
Frimary Input Processin Secondary input Processin 3 gutamety
Erimary Input Processing ‘Secondary Input Processing
& @ modified.p
ng
Ve
— Frimary Dsta Validation ﬂH ‘Secondary Data validation ©
E P Data Transtor mat Py Secondary Data Transformation ®|
i mary Dsts Transformation
al v . f\ 0.1
a8
Primary Actustion Validation © Lé%l Secondary Actuation Yalidation o il
Ll | 0 v
Clone [Downioad) Palleriersion To E4 Froject Browser
Upidate Patiem Yersion Package/Disgram From E4 Project Browser |
Joged Values

ERELS® @38 QQAGQ EEF X iA N Eogr |t F 7| omun il

Component Diagram:Hemogeneous Redundancy Pattern Homoageneous Redundan...

Figure 4.18: Modified UML diagram

NUM SCRL

45

It is important to note that the modified pattern doesn’t override the cloned one, but
it creates a new version that may be slightly different from the previous.

4.3 Observations about the Usage

Several observations were taken and it will serve to improve the next version of the
repository.

The most relevant problem faced was that the UML structure loses the stereotypes
when stored into the repository (this can be viewed in Figure 4.14: Cloned Pattern in
EA). The reason for this is that the safety pattern is constructed using instances of UML
stereotypes from a Safety UML Profile. When the UML package is exported from EA to
the repository, as the UML Profile was not inside this package, these data were lost.
One way to avoid this is to create the profile inside the UML Package of the pattern, but
this is not desirable because the purpose of creating stereotypes in the profile which
would be reused among several patterns would be lost.

Another characteristic noted was that when choosing the parts of a specific pattern
version, there was no space to define a name for that part, the user interface provides
components just to choose one part from the pattern parts and to write an observation of
that part in the context of the pattern version. Since the Part in the Pattern represents a
Stereotype and the Part in the Pattern\VVersion represent an instance of this stereotype,
should be possible to define a name for the part in the same manner than set a name for
the instance of the stereotype.

One issue observed during the usage was that, to store the Pattern/PatternVersion in
the repository, the user needed to create or write manually many things that had already
been described during the construction of the UML structure in the CASE tool. It is
desired the automation of this process in order to facilitate the storing of the patterns in
the repository. For example, the Add-In could parse the UML structure to create all the
Parts and PatternVersion Parts ensuring that the UML structure really represents the
pattern description that is actually being stored.

4.4 Final Considerations

This chapter demonstrated the tool in use and described some considerations made
during this usage. These considerations are very important to review some concepts that
were previously specified during the requirements elicitation. Since the application was
developed during the creation of the pattern representation, some characteristics such
were not addressed in this version of the tool; however it is important to define them to
create a next version consistent with the pattern representation that must be addressed.

The next chapter concludes the work and outlines it in the context with the project
being developed and the future works.

46

5 CONCLUSION

This work described the development of the Taim Safety Pattern Repository. The
system can be divided into two parts, the server-side is a remote repository that provides
SOAP/XML web services and stores physically the information about the safety
patterns in a PostgreSQL database; the client-side was built as an extension for EA that
accesses remotely the repository and shows to the user its content, allowing him to use
the patterns directly into EA or manage the content of the repository.

This work satisfies its original goals of designing and implementing a complete
solution to store and retrieve safety patterns. It provides an interoperable interface
through web services using standardized protocols in a way that third-party systems be
able to access these services. In addition to this, the Sparx Enterprise Architect (EA)
AddIn was created to prove this concept; the AddIn offers a way to create the UML
structure of the safety patterns through EA and enables a system architect to store or to
retrieve them from the repository.

The artifacts produced during the design of the system such as use cases, data model
and system architecture diagrams together with relevant details of the implementation
were presented as part of the results in section 3.3. Additionally, a demonstration of the
most important cases regarding with the solution was carried out. The screen shots
together with the notes taking during this use were showed in chapter 4.

5.1 Future Work

Some characteristics that must be addressed in a future version of the repository
have already been discussed in Chapter 4. The most important of them is to create
means to avoid losing the stereotype information when storing a pattern in the
repository and try to automate the process of storing the pattern into the repository using
information taken directly from the UML structure of the pattern.

To increase interoperability, in addition to what is actually implemented, the
repository can be extended to communicate over different protocols, and the web
services can be provided also following REST architecture with JSON. This would
facilitate the access to the repository from web apps or applications in other platforms
but .Net.

In addition to these major concerns some features are highly desired for a next
version. Some of them include a pattern search mechanism and a user authentication
engine that enables the pattern rating in order to improve the quality of the repository
content.

The continuity of this product will be done by the research group in Germany.

47

48

REFERENCES

NET Design Patterns in C# and VB.NET - Gang of Four (GOF) - DoFactory. Retrieved
December 5, 2012, from http://www.dofactory.com/Patterns/Patterns.aspx.

11.02 Security Architecture Patterns. Retrieved December 5, 2012, from
http://www.opensecurityarchitecture.org/cms/library/patternlandscape.

ALEXANDER, C.; ISHIKAWA, S.; SILVERSTEIN, M. A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, 1977.

ARMOUSH, A.; BECKSCHULZE, E.; KOWALEWSKI, S. Safety Assessment of
Design Patterns for Safety-Critical Embedded Systems. 35th Euromicro Conference
on Software Engineering and Advanced Applications, 2009. SEAA °09. p.523 -527.
doi: 10.1109/SEAA.2009.12, 2009.

ARMOUSH, A.; SALEWSKI, F.; KOWALEWSKI, S. Effective Pattern
Representation for Safety Critical Embedded Systems. 2008 International
Conference on Computer Science and Software Engineering. v. 4, p.91 -97. doi:
10.1109/CSSE.2008.739, 2008.

ARMOUSH, ASHRAF. Design patterns for safety-critical embedded systems.
RWTH Aachen University. Retrieved from http://darwin.bth.rwth-
aachen.de/opus3/volltexte/2010/3273/, 2010.

AVIZIENIS, A.; LAPRIE, J.-C.; RANDELL, B.; LANDWEHR, C. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, v. 1, n. 1, p. 11 — 33. doi: 10.1109/TDSC.2004.2, 2004.

BACHMAN, F.; BASS, L.; KLEIN, M. H. Deriving architectural tactics: A step
toward methodical architectural design. Retrieved from
http://www.sei.cmu.edu/library/abstracts/reports/03tr004.cfm, 2003.

BIEN, A. Real World Java EE Patterns-Rethinking Best Practices. 2012.

Bindings. Retrieved December 6, 2012, from http://msdn.microsoft.com/en-
us/library/ff649327.aspxX.

Catalog of Patterns of Enterprise Application Architecture. Retrieved December 5,
2012, from http://martinfowler.com/eaaCatalog/.

49

DEPARTMENT OF DEFENSE. MIL-STD-882E Standard Practice for System
Safety, 2012.

Design Patterns Library | Fellowship Technologies. Retrieved December 5, 2012, from
http://developer.fellowshipone.com/patterns/.

DOUGLASS, B. P. Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns. Addison-Wesley Professional, 1999.

DOUGLASS, B. P. Real-Time Design Patterns: Robust Scalable Architecture for
Real-Time Systems. Addison-Wesley Professional, 2002.

DUNN, W. R. Designing safety-critical computer systems. Computer, v. 36, n. 11, p.
40 — 46. doi: 10.1109/MC.2003.1244533, 2003.

Elements of Parametric Design. Retrieved December 5, 2012, from
http://www.designpatterns.ca/.

Enterprise Architect - UML Design Tools and UML CASE tools for software
development. Retrieved December 5, 2012, from

http://www.sparxsystems.com/products/ea/index.html.
ERL, T. SOA Design Patterns. 1st ed. Prentice Hall PTR, 20009.
FEDERAL AVIATION ADMINISTRATION. FAA System Safety Handbook, 2000.

FENELON, P.; MCDERMID, J. A.; NICOLSON, M.; PUMFREY, D. J. Towards
integrated safety analysis and design. SIGAPP Appl. Comput. Rev., v. 2, n. 1, p. 21—
32. doi: 10.1145/381766.381770, 1994.

FOWLER, M. Patterns of Enterprise Application Architecture. 1st ed. Addison-
Wesley Professional, 2002.

GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Design Patterns: Elements
of Reusable Object-Oriented Software. 1st ed. Addison-Wesley Professional, 1994.

IBM Software - Rational Software Architect Family. Retrieved December 5, 2012, from
http://www-01.ibm.com/software/awdtools/swarchitect/.

LEVESON, N. G. Safeware: system safety and computers. New York, NY, USA:
ACM, 1995.

Net Objectives Design Patterns Repository. Retrieved December 5, 2012, from
http://www.netobjectivestest.com/PatternRepository/index.php?title=Main_Page.

ANTONINO, P. O.; NAKAGAWA, E. Y.; KEULER, T.; TRAPP, M.; Towards an
Approach to Represent Safety Patterns, 7th International Conference on
Software Engineering Advances (ICSEA’2012), Lisboa, Portugal, 18 a 23
de Novembro de 2012, p. 1-6.

50

openpatternrepository - Publicly available Online Pattern Repository - Google Project
Hosting. Retrieved December 5, 2012, from
https://code.google.com/p/openpatternrepository/.

Patterns . intuio. Retrieved December 5, 2012,
fromhttp://intuio.at/en/blog/?cat=patterns.

Portland Pattern Repository. . Retrieved December 5, 2012, from http://c2.com/ppr/.

Reference [Enterprise Architect User Guide]. Retrieved December 6, 2012, from
http://www.sparxsystems.com/uml_tool_guide/sdk_for_enterprise_architect/reference.h
tm.

StarUML - The Open Source UML/MDA Platform. Retrieved December 5, 2012, from
http://staruml.sourceforge.net.

The Hillside Group - A group dedicated to design patterns. Home of the patterns library.
Retrieved December 5, 2012, from http://hillside.net/.

Ul-Patterns.com. Retrieved December 5, 2012, from http://ui-patterns.com/.

VLISSIDES, J. Pattern Hatching: Design Patterns Applied. 1st ed. Addison-Wesley
Professional, 1998.

Web Services Architecture. Retrieved December 6, 2012, from
http://www.w3.0rg/TR/ws-arch/.

Wikipatterns - Wiki Patterns. Retrieved December 5, 2012, from
http://www.wikipatterns.com/display/wikipatterns/Wikipatterns.

WU, W.; KELLY, T. Safety Tactics for Software Architecture Design. Proceedings
of the 28th Annual International Computer Software and Applications Conference -
Volume 01. , COMPSAC ’04.. p.368-375. Washington, DC, USA: IEEE Computer
Society. 2004.

Yahoo! Design Pattern Library. . Retrieved December 5, 2012, from
http://developer.yahoo.com/ypatterns/.

	ACKNOWLEDGMENTS
	CONTENTS
	LIST OF ABBREVIATIONS AND ACRONYMS
	LIST OF FIGURES
	abstract
	resumo
	1 INTRODUCTION
	1.1 Motivation
	1.2 Goals
	1.3 Results
	1.4 Organization

	2 LITERATURE REVIEW
	2.1 Safety-Critical Systems
	2.1.1 Fault Classes
	2.1.2 Service Failure Modes
	2.1.3 Safety Tactics

	2.2 Design Patterns
	2.2.1 Safety Patterns
	2.2.2 Pattern Representation
	2.2.3 Safety Pattern Representation

	2.3 Related Work
	2.4 Summary

	3 DESIGN AND IMPLEMENTATION
	3.1 Methodology
	3.2 Analysis and Project
	3.2.1 Requirements
	3.2.2 Conceptual Model
	3.2.3 Use Cases
	3.2.4 System Architecture

	3.3 Implementation Issues
	3.3.1 Sparx Enterprise Architect AddIn Development
	3.3.2 Web Services

	3.4 Difficulties and Limitations
	3.5 Final Considerations

	4 DEMONSTRATION
	4.1 Storing a Safety Pattern in the Repository
	4.2 Retrieving a Safety Pattern from the Repository
	4.2.1 Creating a new version from a previously cloned

	4.3 Observations about the Usage
	4.4 Final Considerations

	5 CONCLUSION
	5.1 Future Work

	REFERENCES

