UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

CLAUDIO SCHEPKE

Exploiting Multiple Levels of Parallelism
and Online Refinement of Unstructured
Meshes in Atmospheric Model Application

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr. Nicolas Maillard
Advisor

Porto Alegre, December 2012

CIP — CATALOGING-IN-PUBLICATION

Claudio Schepke,

Exploiting Multiple Levels of Parallelism and Online Refine
ment of Unstructured Meshes in Atmospheric Model Applmati
/

Claudio Schepke. — Porto Alegre: PPGC da UFRGS, 2012
116 f.: il.

Thesis (Ph.D.) — Universidade Federal do Rio Grande do Sul.
Programa de Pé6s-Graduacédo em Computacéo, Porto Alegre, BR—
RS, 2012. Advisor: Nicolas Maillard.

1. Multi-Level Parallelism. 2. Online Refinement of Unstrug
tured Meshes. 3. Ocean-Land-Atmosphere Model. 4. Parallel
Tasks. 5. High Performance Computing. I. Maillard, Nicola
[I. Titulo.

UJ

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Pro-Reitor de Coordenagéo Académica: Prof. Rui Vicentes@ppnn
Pro-Reitor de Pos-Graduacgéo: Prof. Vladimir Pinheiro dediaento
Diretor do Instituto de Informética: Prof. Luis da Cunha lbam
Coordenador do PPGC: Prof. Alvaro Freitas Moreira
Bibliotecéaria-chefe do Instituto de Informatica: BeafRegina Bastos Haro

"For everything there is a season,
and a time for every matter under heaven"
— ECCLESIASTES3:1 ESV

ACKNOWLEDGEMENTS

First and foremost, | give thanks to God for all blessings.

Next, | give thanks to Diana, my wife. She assists me sincebdgnning of the
doctoral. | feel me happy by receive her love, affection amwhjgrehension.

| appreciate the effort of my parents for my education. Myep#s can barely read
and they can not understand the ideas discussed in this thasthey always endeavored
to ensure quality for my basic education.

Thank you, Nicolas, by the orientation of the work.

| appreciate also the contribution of the members of the GRE@arch group, in
discussions about implementation of code and result aisalysank you Joéo, Stéfano,
Rodrigo, Fernando, Alexandre, Cristian, Antonio, Brun@idus and Silvio, and col-
leagues of the rooms 305/72 (Valderi, Julio, Felipe, .00/87 (Francieli, Laércio, ...)
and 301/67 (Vicente, Mathias, ...).

Thanks also for the colaboration of the members of otheitutgtns: LNCC (Carla,
Pedro, Roberto and Pablo), CPTEC (Jairo) and KBS (Heisg, Barry, Jan and Jan).

| am grateful for the assistance of all my friends. | am algodyato have made many
new friends in the last years, specially in Porto Alegre.

Finally, and not least, thanks f@onselho Nacional de Desenvolvimento Cientifico e
Tecnoldgic CNPQ), due to the support to realize the work.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 8
LISTOFFIGURES e e e e 10
LISTOF TABLES e 12
LISTOF ALGORITHMS e e 13
ABSTRACT . . . e e 14
RESUMO e e 15

1 INTRODUCTION e e e e e e 16
1.1 Mesh Resolutions of Decomposed Atmospheric Domains. 16
1.2 Numerical Models for Climate and Weather Forecast 18
1.3 Atmosphere Model Problem. 18
1.4 Objectivesofthe Thesis. 19
15 TextOrganization e 20
2 OCEAN-LAND-ATMOSPHERE MODEL 22
21 MainFeatures 22
2.2 Equations e 23
2.3 Global Grid Structure 24
24 MeshRefinement. 26
2.5 \Vertical Level Definition 27
2.6 Coordinate System. e 28
2.7 Algorithm 28
2.8 Data Structures Used for the Discrete Representation @he Domain . . 29
2.9 ParallelizationoftheModel 30
2.10 FinalConsiderations. e 33
3 HIGH PERFORMANCE COMPUTING CHALLENGES 34
3.1 Parallel Applications 34
3.1.1 Initiatives for Improving the Development of Applitms 35
3.1.2 Changesto Improve Exascale Computing 35
3.2 Multi-Level Parallelism 36
3.3 Parallel Architectures 37
3.4 State of the Artin Parallel Programming Tools 40

34.1 MessagePassing. Q

3.4.2
3.4.3

3.4.4

3.5

Parallel Programming Interfaces for Shared Memory

Distributed Shared Memory

Evaluation of the Presented Tools
Final Considerations.,

4 SCALABILITY STUDY OF STATICOLAM

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Simulation Environment L L
Scalability Intra-Node
Scalability Inter-Nodes.
Execution Time - Multi-Corelmpact

Execution Time - OLAMRoutines
Performance Analysis with Vtune Analyzer

SummaryoftheResults.
Final Considerations.,

5 ONLINE LOCAL MESH REFINEMENT

5.1
5.2
5.3
5.4
5.5
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.7
5.7.1
5.7.2
5.7.3
5.8

Motivation to Improve Online Mesh Refinement
Related Work
Static Mesh Refinement in the Ocean-Land-Atmosphere Mad
Finer Mesh Resolution Execution.
Online Mesh Refinement Implementation.
Performance Evaluation.
Execution Environment
Online Mesh Refinement Execution Time Impact -
Comparison between Static and Dynamic Local Mesh E?nahmt Ce
Speed up Evaluation of the Iterative Step of the Model
Improvement of Load Balance Distribution
Unbalanced Load Problem
OpenMP Solution e
Performance Impact of OpenMP Threads
ConclusionsofthisChapter.

6 MULTI-LEVEL PARALLELISM

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.4.1
6.4.2
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5

Motivation to Explore Multilevel Parallelism
Related Work: Multi-Level Parallelism in Atmospheric Models
OLAM Parallel Task
Data Structures for AtmosphericStates
Procedures or Methods to be Executed
Data Dependencies and Communication Between Tasks.....
Computation and Communication Costs
OLAM Parallel Implementation
OLAM Prototype
Programming InterfacesUsed
Exploration of Multi-Level Parallelism
Implementation
Execution Environment oo
OpenMP Parallelism in Shared Memory Systems
OpenMP and MPI Multi-Level Parallelism
Performance Impact of CUDA for Different Mesh Resolog

6.5.6 Execution Time Impact for Different CUDA Threads Nwenb 77

6.5.7 Using CUDA with MPl processors 78
6.5.8 Execution Time Comparison Between MPIl and CUDA/MPplementation 79
6.5.9 CUDA Atmospheric Simulation of the Online Mesh Refieatn 81
6.6 Conclusions. 83

7 SCALABILITY EVALUATION OF OLAM MULTI-LEVEL PARALLELISM 84

7.1 Simulation Environment 84
7.2 MPlImplementation e 84
7.3 MPIland OpenMP Implementation 86
7.4 MPland CUDA Implementation 88
7.5 Conclusion 90
8 CONCLUSION AND FUTUREWORKS 92
REFERENCES e 96
APPENDIXA RESUMOEMPORTUGUES 104
Al IntroduGdo 104
A.2 TrabalhosRelacionados. 105
A.3 Paralelismo Multi-Nivel 106
A.4 Interfaces de Programacgdo Paralela. 107
A.4.1 Message-PassingInterface 107
A4d2 OpenMP e 107
A.4.3 Compute Unified Device Architecture 108
A.5 Ocean-Land-Atmosphere Model 108
A5.1 ImplementacdiodoModelo oL, 109
A5.2 ProtétipodoModelo o9
A.6 Avaliacdode Performance. 110
A.6.1 Ambientede Simulagdo oL 110
A.6.2 ImplementacdiocomMPI oo 101
A.6.3 Implementacdocom MPleOpenMP 111
A.6.4 ImplementaciocomMPIeCUDA 121

A.7 Conclusao e Trabalhos Futuros. 114

LIST OF ABBREVIATIONS AND ACRONYMS

AMR Adaptive Mesh Refinement

ANSI American National Standards Institute
AMPI Adaptative Message-Passing Interface
API Application Programming Interface

BRAMS Brazilian Regional Atmospheric Modeling System

CAF Co-Array FORTRAN

CMP Chip-level Multi-Processing

CNPq Conselho Nacional de Desenvolvimento Cientifico e diégico
CPTEC Centro de Previsao de Tempo e Estudos Climaticos

CPU Central Unity Processing

CUDA Compute Unified Device Architecture

FPGA Field Programmable Gate Array

GPGPU General-Purpose computing on Graphics Processing Units
GPPD Grupo de Processamento Paralelo e Distribuido

GPU Graphics Processing Unit

HPC High Performance Computing

IEEE Institute of Electrical and Electronics Engineers
ILP Instruction-Level Parallelism
INPE Instituto Nacional de de Pesquisas Espaciais

JVM Java Virtual Machine

LNCC Laboratério Nacional de Computacéo Cientifica
MIT Massachussets Institute of Technology

MPI Message-Passing Interface

MPMD Multiple Program Multiple Data

OLAM Ocean-Land-Atmosphere Model

OMR Online Mesh Refinement

OpenMP Open Multi-Processing

PGAS
PITAC
PUP
PVM
RAMS
RTS
SMP
SPMD
STL
TBB

Partitioned Global Address Space

President’s Innovation and Technology Advisory Committee
Pack and UnPack

Parallel Virtual Machine

Regional Atmospheric Modeling System

Run-Time System

Simetric Multi-Processor

Single Program Multiple Date

Standard Template Library

Threading Building Blocks

TU-Berlin Technische Universitat Berlin

UPC

Unified Parallel C

Figure 1.1:
Figure 1.2:

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:

Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:
Figure 2.10:
Figure 2.11:
Figure 2.12:

Figure 3.1:
Figure 3.2:
Figure 3.3:

Figure 4.1:
Figure 4.2:
Figure 4.3:

Figure 5.1:

Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:

Figure 5.7:

LIST OF FIGURES

Two different mesh resolution for a triangulandiin decomposition. 17

Structured and unstructured mesh examples... 17
Example of icosahedron. 25
OLAM subdivided icosahedral mesh. 25
Local mesh refinement applied to a selected pmmglobe 26
Local mesh refinement transition from coarsen@fesolution. 26
Projection of a surface triangle cell to largena@entric spheres in

order to generate multiple vertical model levels. 27
Example of a prism-shaped grid cell. 27
Cartesian coordinate system with origin at dreer of the Earth 28
Polygon formed by boundary points aroundra vertex. 31
Computational horizontal stencil for a valué/pt aiu localization. 31
Horizontal computational stencil tp galue in:w localization. 31
Controlvolume. 32
Global domain divided in 18 and 180 processes. 33
Multi-level parallelism. 36
GPU Tesla architecture. 39
Different levels to explore parallelism in @nt architectures. 39
Speed up using 1 cluster node with8cores. 49
Speed up using 1 core from each of the 14 nodesalditer. 50
Execution time using 1, 2, 4, 6 and 8 processesgqzer node. 51
Mesh refinement area definition of a specific regiothe Earth. In

this example, parameters were determined for an ellipsetareover

Argentine. e e 57
Example of one level mesh refinement applied m@p. 57
Execution steps of an atmospheric model impttoyean OMR. . . . 59
Execution time using 1 to 32 processes for a 100v&sh resolution

with Online Mesh Refinementcall. 60
Execution time using 1 to 32 processes for a 50 Kashmesolution

with Online Mesh Refinementcall. 61
Execution time using 1 to 32 processes for 100 K&, Km with

Online Mesh Refinement and 50 km of mesh resolution. 2 6
Speed up comparison of the iterative step of thdekbefore and

after the OMR call for a global mesh resolution of 100 Km. 63

Figure 5.8:

Figure 5.9:

Figure 5.10:

Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:

Figure 6.9:

Figure 6.10:

Figure 7.1:
Figure 7.2:
Figure 7.3:

Figure 7.4.

Figure 7.5:
Figure 7.6:
Figure 7.7:

Figure 7.8:

Speed up comparison of the iterative step of tbdainbefore and
after the OMR call for a global mesh resolution of 50 Km.
Speed up of the iterative step execltefibre the OMR call using
different number of OpenMP threads in a simulation with MR3-p
CESSES. . v v v e e e e

.63

Speed up of the iterative step execafeat the OMR call using dif-

ferent number of OpenMP threads in a simulation with MPI peses. 66
Example of indexing triangle elements of theimes. 71
Boundary elements to update between Process Praness 1. 72
Execution time using OpenMP threads runningqmmode. 75

Execution time using threads OpenMP and presdd®l in two nodes. 76
Execution time measurement for sequential dddAimplementa-
tion using different mesh resolutions. CUDA threadsl2.
CUDA execution time ranging the number of thesasked for a sim-
ulation of 40 Km of mesh resolution.
Execution time of a combined implementation &D& and MPI
running on 1 node.
Execution time of a combined implementation &fD& and MPI
runNiNgoN 2Nn0des. e
Comparison of the execution time between MPIGADA/MPI im-
plementation. e
Execution time comparison among MPI, OpenM& @ DA with
MPI implementations.

Execution time usingto 32 MPI processes for a simulation 60
Kmof meshresolution.
Execution time usingto 32 MPI processes for a simulation 66
Km of meshresolution..
Total execution time using different number ge®MP threads in a
simulation with MPI processes. Horizontal mesh resoluabi0 Km.
Speed up of the iterative step of the model usifigrent number
of OpenMP threads in a simulation with MPI processes. Hortilo
mesh resolution of00 Km.
Execution time evaluation using different nemtf GPUs for simu-
lations 0f100 Km, 67 Km, and50 Km of mesh resolution.
Initialization and iterative step executiamei for simulations using
100 Km of mesh resolution in a CUDA/MPI mixed implementation.
Initialization and iterative step executiamei for simulations using
50 Km of mesh resolution in a CUDA/MPI mixed implementation.
Speed up evaluation using different number dii&@r simulations
of 100 Km and50 Km of mesh resolution.

88

.98

.98

Table 3.1:
Table 3.2:

Table 4.1:
Table 4.2:

Table 5.1:

Table 5.2:
Table 5.3;

Table 6.1:

Table 6.2;

Table 7.1;

LIST OF TABLES

Examples of different multi-core architectures. 38
Different levels of parallelism covered by pagming interfaces. . . 46
Execution time using 8 processes in 1 node andou8s1 52
Execution time using 14 processes Witk 1 andC' =8. 53

Number of vertices, edges and triangles meshesltnfior different
meshresolutions. L L 58
Unbalancing Load after an Online Mesh Refinemsinigp$ processes. 64
Speed up for the iterative execution steps beiodeafter an OMR. . 66

Number of CUDA threads and the respective blook sf elements

used in each function called in the iterative step. . . .79
Partial execution time for MPI, OpenMP, and CUDAthPI im-
plementations. 82

Speed up for the iterative execution step usingpviftesses. 86

2.1
2.2
2.3
2.4
3.1
3.2
4.1
6.1
6.2

6.3

LIST OF ALGORITHMS

OLAM algorithm. e 29
Data structureitab_ m vars. 29
Data structureitab u vars. 29
Data structureitab w vars. 30
MPI example of parallelization of thecode. 41
OpenMP loop parallelization. 42
OLAM pseudo code and the localization of the timestamps. 51
Data structures for atmospheric proprieties variables 70

Auxiliary date structures for indexing processes awdllgertices, edges
andtriangles.
Iterative step of the OLAM prototype. 74

ABSTRACT

Weather forecasts for long periods of time has emerged asasingly important.
The global concern with the consequences of climate chamgestimulated researches
to determine the climate in coming decades. At the same timsteps needed to better
defining the modeling and the simulation of climate/weaihé&r of the desired accuracy.
Upscaling the land surface and consequently to increasautinder of points used in cli-
mate modeling and the precision of the computed solutioasgeal that conflicts with
the performance of numerical applications. Applicatidmat include the interaction of
long periods of time and involve a large number of operatlmetome the expectation for
results infeasible in traditional computers. To overcohis situation, a climatic model
can take different levels of refinement of the Earth’s swgfasing more discretized ele-
ments only in regions where more precision are requireds iBlthe case of Ocean-Land-
Atmosphere Model, which allows the static refinement of dipalar region of the Earth
in the early execution of the code. However, a dynamic mefsherment could allow to
better understand specific climatic conditions that appearecution time of any region
of the Earth’s surface, without restarting execution. With introduction of multi-core
processors and GPU boards, computers architectures hawepaeallel layers. Today,
there are parallelism inside the processor, among proceaso among computers. In
order to use the best performance of the computers it is sageo consider all paral-
lel levels to distribute a concurrent application. Howevething parallel programming
interface abstracts all these different parallel levelasdl in this context, this thesis in-
vestigates how to explore different levels of parallelisntiimatological models using
mixed interfaces of parallel programming and how these nsocn provide mesh re-
finement at execution time. The performance results shotidhmssible to reduce the
execution time of atmospheric simulations using diffedemels of parallelism, through
the combined use of parallel programming interfaces. Higleeformance for the exe-
cution of atmospheric applications that use online meshegsfent was also provided.
Therefore, more mesh resolution to describe the Earth’sspimere can be adopted, and
consequently the numerical forecasts are more accurate.

Keywords: Multi-Level Parallelism, Online Refinement of Unstructdideshes, Ocean-
Land-Atmosphere Model, Parallel Tasks, High Performanoe@uting.

RESUMO

PrevisBes meteoroldgicas para longos periodos de teméom stornando cada vez
mais importantes. A preocupac¢do mundial com as conse@gdaimudanca do clima
tem estimulado pesquisas para determinar o seu compottiamas proximas décadas.
Ao mesmo tempo, 0s passos necessarios para definir uma meddetagem e simula-
céo do clima e/ou tempo estdo longe da precisdo desejadaeraino refinamento da
superficie terrestre e, consequentemente, aumentar aodi@meontos discretos (utiliza-
dos para a representacdo da atmosfera) na modelagem cliragirecisdo das solugdes
computadas é uma meta que esta em conflito com o desempenaplidagbes numé-
ricas. Aplicacdes que envolvem a interacao de longos pesidd tempo e incluem um
grande namero de operacdes possuem um tempo de execugdelipara as arquitetu-
ras de computadores tradicionais. Para superar estad&ituat modelo climatoldgico
pode adotar diferentes niveis de refinamento da supericiestre, utilizando mais pon-
tos discretos somente em regides onde uma maior precisgoeriaga. Este € o caso de
Ocean-Land-Atmosphere Model, que permite o refinamen&tieside uma determinada
regiao no inicio da execucao do codigo. No entanto, um renéordinamico possibili-
taria uma melhor compreenséo das condi¢des climaticasiispe de qualquer regido da
superficie terrestre que se tivesse interesse, sem a igacksde reiniciar a execucao da
aplicacado. Com o surgimento das arquiteturas multi-corad®maéo de GPUs para a com-
putacdo de propdsito geral, existem diferentes niveis deghiamo. Hoje ha paralelismo
interno ao processador, entre processadores e entre auopeg. Com 0 objetivo de
extrair ao maximo a performance dos computadores atuaesassario utilizar todos os
niveis de paralelismo disponiveis durante o desenvolviond® aplicagdes concorrentes.
No entanto, nenhuma interface de programacéao paralelarexgpmultaneamente bem os
diferentes niveis de paralelismo existentes. Baseade westexto, esta tese investiga
como explorar diferentes niveis de paralelismo em moddimstologicos usando inter-
faces classicas de programacéo paralela de forma combeneoimo € possivel prover
refinamento de malhas em tempo de execucao para estes mddelesultados obtidos
a partir de implementacg@es realizadas mostraram que é/pbssiuzir o tempo de exe-
cucao de uma simulacéo atmosférica utilizando difereritessnde paralelismo, através
do uso combinado de interfaces de programacao paralela di&so, foi possivel prover
maior desempenho na execucéo de aplicacdes climatoldgieastilizam refinamento
de malhas em tempo de execugédo. Com isso, uma malha de nsnlugéo para a re-
presentacdo da atmosfera terrestre pode ser adotada egaengemente, as previsoes
numericas serao mais precisas.

Palavras-chave:Paralelismo Multi-Nivel, Refinamento Online de Malhas NEgiruturadas,
Ocean-Land-Atmosphere Model, Tarefas Paralelas, Comp@oide Alto Desempenho.

16

1 INTRODUCTION

Numerical models have been extensively used in the lasddsda understand and
predict weather phenomena and climate, in daily weathectsts as well as in researches
on Global Warming (VASQUEZ, 2006), (WASHINGTON; PARKINSQRO005). These
models calculate the values of the physical conditionse&tmosphere using quantitative
methods. To this end, the atmosphere is represented byratéispace, a mesh of points
obtained through the use of a domain decomposition tecknmuwhich interactions are
made during discrete time steps.

As the domain refinement increases, more points are used meish representation,
and consequently the forecasts become more accurate. faiteerte impact of various
physical factors, that vary in a continuous space, are mieiel® and taken into account
during the simulation.

1.1 Mesh Resolutions of Decomposed Atmospheric Domains

Numerical climatological models represent the Earth sertarough a mesh. A mesh
is a piecewise approximation from a given geometry definea > of simpler elements,
such as triangles and quadrilaterals for the two-dimemsicase, and tetrahedron, prisms,
pyramid and hexahedron for the three-dimensional case giig¢ader the number of dis-
crete elements used to decompose a domain, the highexsbleition of the mesh. Thus,
the resolution can be defined as the spacing between twoadiveediscrete points of the
mesh. The more discrete points are used, the smaller trendesbetween these points.

The resolution adopted for a domain strongly influences toeiracy of the results.
This occurs because physical factors that vary in a contisgpace are more visible and
taken into account, during the simulation, only from a givesolution level. A mesh
representation of regions where the topography is verguteg, for example, will not
consider small differences in the Earth surface if low mesolution is adopted.

Figure 1.1 presents two different resolution examples olagular domain decom-
position, where the second domain Hagmes more resolution. The choice of the mesh
resolution defines the performance of the simulation angbtéeision of the results.

The performance of a simulation depends on the number ofegltsrthat will be
processed. The greater the surface area covered by eactelisesh element, the lesser
the number of elements needed to cover all domain. Therefmgesimulation performs
faster with larger elements.

The simulation precision is related to the shape and the olosiee covered by each
mesh element. Generally, equilateral elements are therpeeffshape. On the other hand,
the smaller the area covered by a discrete element of the, tiesimore accurate are the
results of the forecast.

17

Low Resolution High Resolution

Figure 1.1: Two different mesh resolution for a triangulanthin decomposition.

? ?

(x,y+1) Ponto Vértice

A-—> 1,8,9

B—> 1,2,9
. . . 3 C-> 20910
_ + D-> 23,10
(x-Ly) |(xy) (x+1y) E > 5410
F-> 4,5,10
G-> 5,6,10
? ® 4 H-> 6,7, 10
(x,y-1) |-> 7,9,10

J—> 7,8,9

Figure 1.2: Structured and unstructured mesh examples.

Thereby the performance and the precision of the simulatése opposite require-
ments and it is important to ponder between them.

A further aspect related to the mesh representation is tiek & relation among the
mesh points. The discretization process of a domain resulésfinite representation
through interconnected mesh points. This process can wdt iesa structured or an un-
structured mesh.

In astructured mesh, each point has the same number of neighbor points (GALANTE,
2006). Thus, it is possible to access a neighbor point thr@ugdex of a coordinate sys-
tem as, for example, a matrix structure.

An unstructured meshis an irregular grid where data locations are selected,llysua
by underlying characteristics of the application. Datanptocation and connectivity of
neighboring points must be explicit. The points on the griel @onceptually updated
together. Updates typically involve multiple levels of mam reference indirection, as
an update to any point requires first determining a list oghkoring points, and then
loading values from those neighboring points. There is moroanication pattern for this
kind of application.

The Figure 1.2 shows examples of a structured and unstaettaesh, respectively.
In the left illustration of the figure it is possible to obserhe use of a cartesian system
to access the neighbor points of a structured mesh. Thepaghof the figure illustrates
the unstructured mesh case. There is a table that idenéfyettices {, ..., 10) for each
element of the mesh(, ..., J triangles).

In this work, the interest is for unstructured meshes ohgies.

18

1.2 Numerical Models for Climate and Weather Forecast

In general, there are two kinds of models, differing on tldgmain: global (entire
Earth) and regional (country, state, etc).

Global models like GISS ModelE (SCHMIDT et al., 2006), consider the ensur-
face of the Earth for modeling and decomposing the domaidsaa® normally used to
predict long climatological periods (months, years). Tremiimitation of this approach
is the computing power to execute with higher mesh resaluti@obal models have nor-
mal spatial resolution of about 0.2 to 1.5 degrees of |latitaicd therefore cannot represent
very well the scale of regional weather phenomena.

Regional models like BRAMS (FAZENDA et al., 2011), simulate only a specific
interesting piece of the Earth atmosphere. They use higleshmesolution but they are
restricted to limited area domains. Therefore, it is neags establish the initial entry
conditions to the boundary of the domain. These conditiars lwe determined from
previous executions of global models.

Forecasting the atmosphere conditions on limited domansathds the knowledge of
future atmospheric conditions at domain borders. Becalibesothe integration of initial
boundary conditions with the limited area domains are resrgsand this coupling is not
easily done. On the other hand, local models take into adagional characteristics
that are unnoticed by a global model.

A way to use the best characteristics of both approachesaffeo different levels
of mesh refinement in global models. An advantage is thatribtsnecessary to handle
boundary conditions, since the transition among diffetevels of refinement is done by
a transparent design.

This is the case of the Ocean-Land-Atmosphere Model (OLAWAIKO; AVIS-
SAR, 2008a), (SILVA et al., 2009), which provides a globatighat can be locally re-
fined, forming a single grid. This feature allows simultan®oepresentation (and fore-
casting) of both global and local scale phenomena, as wdli-dsectional interactions
between scales.

Global models with local mesh refinements, like OLAM, defihe tmesh at the be-
ginning of the execution, before any calculation of the ptglsproperties at the iterative
step, in a static approach. For long numerical simulatiois important that mesh re-
finement can be made while the code is running. Thus, spomiaregmospheric changes
that appear in restricted areas, for a given time during xleewdion, like storms and hur-
ricanes, can be better investigated by applying more mesituton. At the same time,
their impact in the whole mesh domain can be better undetstoo

1.3 Atmosphere Model Problem

The use of environments for High Performance Computing (HRG been recurrent
for running applications that require a significant capefcit data processing (SCHEPKE;
NAVAUX; MAILLARD, 2009), (PANETTA et al., 2007), (SIMS et a) 2000), (DON-
GARRA et al., 2002). Usually, these solutions are based@déirelopment of parallel ar-
chitectures (FOSTER; KESSELMAN, 2003), (WILKINSON; ALLEN998), (BUYYA,
1999). The use of vector machines, multiprocessors, anermly multi-core systems
have been some of the alternatives (ANDREWS, 2001). Atmaspkimulations have a
significant processing load due the high number of operatiswally involved. Because
of this, climatological software often use programmingdees that allow the concurrent

19

execution of operations in both shared and distributed nngsystems. Thus, it is possi-
ble to obtain satisfactory results in accordance with tlaglalvle hardware in a reasonable
period of time.

High speed execution of atmospheric models is fundamem@bérational activities
on weather forecast and climate prediction due to exectitio® constraints — there is a
predefined short time window to run a model. The model exenutannot begin before
input data arrives, and cannot end after the due time eskedaliby user contracts. Expe-
riences in international weather forecast centers poiatwo-hour window to predict the
behavior of the atmosphere in coming days, simulating ialfgrarchitectures (clusters).

The computational complexity of atmospheric and enviromtalemodels isO(n?),
wheren is the number of discrete elements resulted from a domaiondgasition in
relation to the latitude (or longitude) of the geographidamain of the model, if the
number of vertical points and number of discrete time iterat also increases with.!
Operational models worldwide use the highest possibldutgsa that allows the model to
run during the established time window on the available aatersystem. New computer
systems are frequently selected according to the abilitymothe model at even higher
resolution during the available time window.

A climatological application needs also to maximize theefsxisting computational
resources, considering the cost and availability of hardwkn this sense, it is necessary
that the application ensures good performance and sagfadnil parallel architectures,
as well as correct results according to the physical proggedesign of the model and
values measured in practice. Therefore, aspects such astiexeenvironment and load
distribution must be taken into account during the programgrstep of the application.

1.4 Objectives of the Thesis

With the introduction of multi-core processors (SHAMEEM)RBERTS, 2005), (DON-
GARRA et al., 2007), computers architectures have manylipbtayers. Today, there
is parallelism inside a processor, among processors andi@eamputers. This new
paradigm was not foreseen by parallel applications deeelop the past, like OLAM.
In order to use the best performance of computers it is napess consider all parallel
levels to distribute a concurrent application.

Parallel programming interfaces are generally specifiaiolevel of parallelism. Cur-
rently, there is not a single programming interface ablefare all levels of parallelism.
To perform this, it is necessary to use two or more combinegnamming interfaces,
like Message-Passing methods for Distributed Memory Syst@nd resources for creat-
ing and manipulating threads in Shared Memory Systems. Ahcgpion developed with
a specific programming interface for a determined parattdlitecture model is not easily
migrated to another architecture or programming interface

Based on the context described before, this thesis proplosese of mixed program-
ming interfaces as solution to provide multilevel paradiel for implementations of atmo-
spheric models. For parallel applications, the load digtion in each processing unit is
done in order to maximize the parallel performance for ard@teed architecture. The use
of mixed programming interfaces reduces the total exeoutme of simulations through
the maximization of the use of the available processingsunihis is achieved when all
processors or cores are continuously executing. Howeata,dkpendencies arising from

1In some models the complexity can be simplifiedt:?), depending on the method of resolution of
the equations that model the atmosphere.

20

the parallelization of atmospheric models can limited taggrmance. To overcome this
situation, the scheduling of the parallel tasks and the dieimof the granularity of each
task can contribute for the best load distribution.

Each programming interface abstracts the concurrent éreawsing different ways to
express the parallel task (processes, threads, ...). Algddesk in an atmospheric model
is defined by data structures that represent one or morespafithe mesh and numerical
operations. Each task is composed by data sets of physmaéies associated to the
points of the mesh, and functions that manipulates the datatsres according to the
code of the model. These functions are formed by climatckdginteractions and are
iteratively called.

The unstructured meshes employed in the atmospheric meddlin this work can
be also refined at runtime, in order to increase the precigidhe forecasts. We pro-
vide and evaluate an Online Mesh Refinement (OMR)plementation to increase the
resolution of part of the parallel distributed domain treginesents the Earth atmosphere,
when special atmosphere conditions are registered durengxecution of an atmosphere
model. Therefore, more computation is only required forréfened mesh ensuring low
performance impact and more precision for the simulations.

The contribution of this thesis includes both, the efficiese of multilevel parallelism
and dynamically modification of the domain representatioough OMR calls. Multi-
level parallelism is explored by the execution of concurtasks according to available
resources. We provide also arguments that online mesh medimeis better for the ap-
plication of parallel climatological models. Thus, the dempment of high-performance
applications like climatological applications could benplified and improved by better
exploiting the available hardware resources.

1.5 Text Organization
This thesis is divided in 8 chapters. The reminder of this tegrganized as follows:

e Chapter 2 - Ocean-Land-Atmosphere Model Relates all necessary aspects to
understand the atmospheric model used as case study, ingltrek description
of the domain representation, algorithm, data structunelsparallelization of the
code.

e Chapter 3 - High Performance Computing ChallengesDescribes a bibliographic
revision about High Performance Computing, pointing aalles to explore mul-
tilevel parallelism in computer architectures, and to deérparallel task with cur-
rently parallel programming tools.

e Chapter 4 - Scalability Study of Static OLAM: Shows experimental results ob-
tained with OLAM original implementation tested in a paghkxecution environ-
ment. The evaluation of the measured results with statingefent demonstrates
the limits of performance of the application.

e Chapter 5 - Online Local Mesh Refinement Presents an implementation of a run
time mesh refinement and the performance evaluation resultss implementa-
tion in a OLAM prototype. The chapter shows also how it is jddssto improve

2In this work we consider the word online as a synonymous foragyic or runtime mesh refinement.
Online is the term frequently used in the context of job sciied in opposition to the static or the offline
scheduling approach.

21

performance when new data elements are added in the conmopytgter an online
mesh refinement call.

Chapter 6 - Multi-Level Parallelism: Describes the implementation of task par-
allelism, by different parallel programing interfacespirer to extract parallelism
of multi-core, many-core and multiprocessors architeauExperimental tests us-
ing mixed parallel programming interfaces are made, amnayit impact in atmo-
spheric simulations.

Chapter 7 - Scalability Evaluation of OLAM Multi-Level Para llelism: Provides
a performance evaluation (execution time and scalabiliasarement results) of
the multi-level implementation of OLAM, on a high perfornt@nenvironment.

Chapter 8 - Conclusions Discusses the conclusion of this thesis, relating objec-
tives, implemented solutions and obtained results. Thrdhig relation is possible
to point some future works.

22

2 OCEAN-LAND-ATMOSPHERE MODEL

Ocean-Land-Atmosphere Model (OLAM) was chosen as backgtrooithe develop-
ment of this thesis. This model is used to forecast weathérchmate in research and
forecast centers. OLAM is also a good example of a large ng@liGation of domain
decomposition because it uses a significative number ofeteselements to represent the
structure of the atmosphere of the Earth and, consequeetjyjres a large amount of
memory and processing.

This chapter describes OLAM: its main features, equatidogyain decomposition
approach and discrete representation of the domain, amdsbarce for mesh refinement.
The algorithm, data structures to represent the code, aradlgdadecomposition of the
data structures is also presented in order to show all aspé&tiie model.

The concepts discussed in this chapter are necessary tostartte the implementa-
tions, tests and results presented and proposed in theneenaif this thesis.

2.1 Main Features

OLAM was developed by Roni Avissar and Robert Walko at Dukeévehsity. This
model extends features of the Regional Atmospheric Modediystem (RAMS) to cover
a global domain (PIELKE; AL., 1992). OLAM uses many functdrom RAMS, includ-
ing physical parametrization, data assimilation, iniiaion methods, logic and coding
structure, and 1/O formats (WALKO; AVISSAR, 2008b) (AVIS®APIELKE, 1989). A
global domain expands widely the range of atmospheric systnd scale interactions
that can be represented in the model. This was the primarvation for developing
OLAM.

OLAM introduces a dynamic approach of domain decompositiased horizontally
on a global geodesic grid discretization with triangulasineells, and vertically through
the height levels of the atmosphere, forming verticalpeked prisms of triangular bases.
It also uses a finite volume discretization of the full congsible nonhydrostatic Navier
Stokes equations (MARSHALL et al., 1997). These equationélize conservation
laws for mass, momentum, and potential temperature, ancenceah operators that in-
clude time splitting for acoustic terms.

Local mesh refinement can be applied to cover specific gebgrapeas with higher
resolution. The mesh points that represent these areastadizisled cyclically while the
expected mesh resolution is not achieved. Each cyclicaidivdoubles the resolution.
The global grid and its refinements define a single grid, a®sge to the usual nested
grids schemes of regional models. The grid points, whichesgnt a more refined area,
do not overlap the grid points that represent the global domidey substitute them.

23

2.2 Equations
OLAM dynamic equations are:
e Momentum conservation (componeint

Vi
ot

S v (UZV) — (Vp), — (2pﬁ X ﬁ)i + pgi + Fi (2.1)

e Total mass conservation

dp ou ov oW
Lo VWV M= 4 M 2.2
ot~ VT or oy 0z (2:2)
e Energy conservation
0p© .
- ="V (eV)+H (2.3)
e Scalar mass conservation
9(ps) 7
5=V (sV)+@ (2.4)
e State equation
Rq
S 1\
p = [(paRa + puRy) 0] <_> (2.5)
Po
e Total density
p = pa+ potpe (2.6)
e Momentum definition
V =pu (2.7)
e Potential temperature
) i p— (2.8)

C, max (T, 253)

Inthese equation§,and17 — pi are velocity and momentum vectors, ahandS} are
the Earth’s gravity and angular velocity vectors. Subgcénippresents a vector component
in the z; direction, is the time,p is the pressure, antlis the potential temperaturé:,
and (), are the specific heat of a dry air at a constant pressure arsacrvolume R,
and R, are gas constants for dry air and water vapor, and a pressure reference equal
to 10° Pa. Total densityp is given by the sum of the densities of dry air, water vapaod, an
liquid plus condensate ice.

The scalar variable represents the specific density or concentration (relatiyg
of any prognostic scalar quantity, such as various classiee and liquid hydrometeors
and aerosolsF;, H, M, and(@ are forcing terms for momentum, internal energy, mass,
and scalar fields, respectively. These terms represen¢sses such as radiative transfer,
microphysical phase changes, surface fluxes, and/or @btrardging to observational
data, as applicable to each equation.

24

The ice-liquid potential temperature is used in OLAM as thegpostic internal en-
ergy variable. It has the desirable property of being neeolystant in a parcel for pro-
cesses of transport and internal phase change. It is e@pinielated to potential temper-
ature wherey,; is the latent heat required to vaporize any presented ligigtice water,

andT is the air temperature.
Applying Gauss Divergence Theorem and integrate overd-Wotumes:

/v.cf)d\y _ }f &.do (2.9)
We have the discretized equations:

%/vmp _ —f'(vy).d&—/ Op d\p—/ (2061 U)‘d\I/Jr/ pgid\If+/ FdV (2.10)

or,

9 [paw =~ § V.1 (2.11)
9 [odu = f (V) a5 + [Fodv (2.12)
9 [psaw =~ § (V) o+ [v (2.13)

We can also represent the closed integral as sum over faces:
 (27).ds =% U {o,7,) .daj] =3 [(8,7, + 5G5S {®;,V}})o;] (2.14)
j j

So, the conservation equations in the discretized finitare form are:

Mo = -3 (57 + SCS v Vi)] - g_fiaivxi_ (263 x), W pgu0+ Fov
J (2.15)

- > Vi (2.16)

ag_?\p - _; 8,V +5GS{8;,V;}) 05| + HY (2.17)

%\I’ = =2 |5V + 5G5S {s;,V}) o] + QU (2.18)

J

2.3 Global Grid Structure

OLAM’s global computational mesh consists of sphericarigles, a type of geodesic
grid that is a network of arcs that follow great circles (ltke equator line) on a sphere.
The geodesic grid offers important advantages over the aomynuised latitude-longitude
grid. It allows approximately uniform mesh size over thebglpand avoids singularities
and grid cells with very high aspect ratio near the poles.

OLAM's grid construction begins from an icosahedron inlsed in the spherical
Earth, as is the case for most others atmospheric modelagkajeodesic grids. (SILVA

25

Figure 2.2: OLAM subdivided icosahedral
mesh.
Figure 2.1: Example of icosahedron. (WALKO; AVISSAR, 2008a).

et al., 2009). An icosahedron is a regular polyhedron thasists of 20 equilateral trian-
gle faces, 30 triangle edges and 12 triangle vertices, witiges meeting at each vertex.
Figure 2.2 shows an example of icosahedron.

The icosahedron representation used in OLAM is orienteth $liat one vertex is
located at each geographic pole, which places the remalkfngertices at latitudes of
+tan~1(1/2). Uniform subdivision of each icosahedral triangle imox N smaller
triangles, where/V is the number of vertices divisions of each triangle, is @ened
in order to construct a mesh of higher resolution for anyréesdegree. The uniform
subdivision add80(/N? — 1) new edges to the origindb and10(N? — 1) new vertices to
the originall2, with 6 edges meeting at each new vertex. All newly constructedcesrt
and edges are then projected radially outward the sphecgrtogeodesics.

Figure 2.2 shows an example of the OLAM subdivided icosaledin the figure
the mesh is generated with = 10. The dark lines indicate the edges of the initial
icosahedron.

The projection causes the deviation of the majority of tlatgles from the equilateral
shape, which is impossible to avoid (WALKO; AVISSAR, 2008dpwever, the numeri-
cal accuracy of the computational mesh can be guarantejedtiad the projection of the
triangles. This is achieved by relocating the vertices angphere. For this, forces are
applied to each edge located between endpoints verticas.fdrge is a linear function
and depends on the length of each edge. The length of equifibs defined by

21 Re
5N

Where R is the radius of the Earth andis a coefficient of adjustment. Whenis
1, the length of balance is approximately equal to the aveozgeall length of the edge.
Vertices can be moved while the sum of the forces is zero fon @artex. OLAM uses
this solution to solve numerically the equations of equilibn of forces through iterative
methods.

deq = (2 . 19)

26

Vi
Vil
[

o W
/ﬁ "ﬂ’ SR
i
e
KA
(RS
R

i
\1&
B

|

{
Y
\

Figure 2.3: Local mesh refinement applied Figure 2.4: Local mesh refinement tran-
to a selected part of the globe. sition from coarse to fine resolution.

2.4 Mesh Refinement

Building a global mesh, as described above, enables a 2btsted indexing for
each element of the grid. However, a logical structure iastthe possibility of mesh
topologies. Local mesh refinement is only possible if the hmgpe is unstructured
Because of this, OLAM uses an unstructured approach andgsepts each grid cell with
a single horizontal index (WALKO; AVISSAR, 2008a). So, réga information on local
grid cell topology is stored and accessed by linked lists.

If local horizontal mesh refinement is required, it is pemfed after the step of con-
struction of the global mesh. The refinement follows a threighbors rule: each triangle
must share the length of each edge with exactly three othargjtes. The range of pos-
sible topologies that obey this rule is enormous.

An example of local mesh refinement is illustrated in Figufs &here the resolution
is exactly twice that of the original resolution. This is asled by subdividing each
previously triangle int@ smaller triangles. For this purpose, auxiliary edges weseried
at the boundary between the original and refined regionsdardo preserve the rule of
the three neighboring triangles for each triangle.

A transition from coarse to fine resolution is achieved by oiseertices with more
than 6 edges on the coarser side and vertices with fewer tkedgés on the finer side of
the transition, like can be seen in Figure 2.4. In this exaneplch auxiliary line connects
a vertex that joins 7 edges with a vertex that joins 5 edgesveider, it is not necessary
that these vertices are concentrated along a band. A mateagrnefinement of the mesh
can be obtained by distributing these vertices in a spargeower a larger area.

A more intensive refinement can be obtained using verticdsmore than 7 and less
than 5 edges. However, this would force the existence afidtes with acute degrees
that may reduce the accuracy of numerical simulations. Mg in OLAM a spring
adjustment is applied after the step of mesh refinement.

lUnstructured grids require a list of the connectivity whigtecifies the way a given set of vertices make
up individual elements.

27

Figure 2.5: Projection of a surface triangle cell
to larger concentric spheres in order to generate Figure 2.6: Example of a prism-
multiple vertical model levels. shaped grid cell.

2.5 \Vertical Level Definition

The final step of the mesh construction is the definition ofubstical levels. To do
this, the lattice of the triangular cells surface is pragelatadially outward from the center
of the Earth to a series of concentric spheres of increasidjs (ADCROFT,; HILL;
MARSHALL, 1997). The vertices on consecutive spheres ammeoted with radial line
segments as can be see in the left image of Figure 2.5. Thasesr@rism-shaped grid
cells having two horizontal faces (perpendicular to gsgvéind three vertical faces, like
can be see in the Figure 2.6.

The horizontal cross section of each grid cell and colummeglp gradually according
to the height growth. The vertical grid spacing between gpakshells may vary itself
and usually is made to expand with the increasing of the h€lyALKO; AVISSAR,
2008b). In OLAM, it is possible to define a static input vectath the vertical grid
spacing or define an initial value and a rate value to incraasach vertical level of the
grid. The first vertical grid created is generally defirsédkm above the Earth surface,
where atmospheric pressure is less thamb.

OLAM discretization scheme uses a staggered grid for uostred mesh (WEN-
NEKER; SEGAL; WESSELING, 2002). The scalar properties agéngd and consid-
ered in the center of the triangles and the normal comporfergiocity for each edge of
the triangle is set in the middle of each edge. The numeraratdlation allows the non
perpendicularity between the lines that connect the batgcef two adjacent triangles
and the common edge between two triangles. The volume daiftroovement in hori-
zontal surfaces are similar to those for scalars. This ismptished by setting the volume
control of movement of any triangle edge to the sum of them@wontrol of the mass of
two adjacent triangles. This means that it is not necessanytiain a spatial average for
the mass flow across the dynamic volume control surfaces.

28

Ze (90N)

(ON, 90E)

Figure 2.7: Cartesian coordinate system with origin at #eer of the Earth.

2.6 Coordinate System

OLAM uses arotating Cartesian system with origin at thelEsdenter, z-axis aligned
with the north geographic pole, and x- and y-axes intersgdtie equator &t deg and
90 deg E. longitude, respectively, as shown in the image of the flgi@ui7.

The three-dimensional geometry of the mesh, particulatgting to terms in the mo-
mentum equation and involving relative angles betweeniprate grid cell surfaces, is
worked out in this Cartesian system. The procedure invateasputation and storage of
the unit vector normal to each surface, and solution of lisgatems that contain the unit
vector coefficients.

2.7 Algorithm

The implementation of OLAM involves several steps and cardivyded in three
major parts: the parameter initialization, the atmosptiene state calculation and the
output writing results.

The first part of the code involves the pre-processing, wketings are read and ap-
plied for memory allocations and the processing of the miaiion of terrain, vegetation,
soil and sea.

The remainder of the algorithm consists of an iterative ,steyolving the physi-
cal parametrization. The physical parametrization is lgintb the parametrization ap-
plied in the RAMS model and includes the radiation transfecro-physics, bio-physical
schemes, turbulence and convective clouds like cumulusdslo In this iterative part,
further information calculated in the pre-processing stepinserted. At the end of each
iteration, the update of the time elapsed is made.

After the iterative step, and before the end of the programmesresults are written in
specific files, storing values of the physical conditionshef a&tmosphere to a determined
time.

29

Algorithm 2.1 OLAM algorithm.
Initialization;
Input Files (ATM/LAND/SEA) Read;
Grid Configuration/Domain Decomposition;
Variables Memory Allocation;
Pre-processing initial state calculation;
Plot and History Files Initialization;
Initialization Time measure;
Do loop for each time step;
Atmosphere time state calculation;
Send frontier variables to neighbors;
Times step Time measure;
Write atmosphere state on disk;
Barrier; Output Time measure;

2.8 Data Structures Used for the Discrete Representation dhe Do-
main

This section describes and illustrates the main data stresused in OLAM code.

OLAM discretization of the horizontal domain of the atmosphis made by decom-
pose the Earth surface in trianglesVAtriangle is formed by M vertices an@ U edges.
Thus, 3 data structures are used to represent the relation of &sric), edges ¢) and
triangles of the domain{’). These3 data structures ar¢ab_m_vars, itab_u_vars and
itab_w_vars, and are represented in Algorithm 2.2, Algorithm 2.3 andohidpm 2.4.

Algorithm 2.2 Data structure itab_m_vars.
typedef struct {
int ntpn; //number of U edges and W triangles neighbors afthivertice M point
int iw[maxtpn]; //array of W triangles neighbors of this Mriee point
int iu[maxtpn]; //array of U edges neighbors of this M veetjooint
int imglobe; //global index of this M vertice point (in palellcase)
double arm; //polygon area bounded by W triangles aroursdMhvertice point
}itab_m_vars;

Algorithm 2.3 Data structure itab_u_vars.

typedef struct {
intim1, im2; //neighbor M vertices of this U edge point
intiul, iu2, iu3, iu4, iub, iu6; //neighbor U edge points
intiu7,iu8, iu9, iulo0, iull, iul2; //neighbor U edge points
intiwl, iw2, iw3, iw4, iwb, iw6; //neighbor W triangle poist
int irank; //rank of the parallel process at this U edge point
int iuglobe; //global index of this U edge point (in paraléase)
int mrlu; //mesh refinement level of this U edge point

}itab_u_vars;

All three data structures have information about neighlversices {n), edges),
and triangles«)). Furthermore these data structures keep the paralleégsaanking and
global index of the respective point(u or w)

30

Algorithm 2.4 Data structure itab_w_vars.
typedef struct {
intiml1, im2, im3; //neighbor vertices M of this W triangleipb
intiul,iu2,iu3,iu4,iu5,iu6,iu7,iu8,iu9; //neighbor Wege points
intiwl, iw2, iw3; //neighbor W triangle points
int irank; //rank of the parallel process at this W triangten
int iwglobe; //global index of this W triangle point (in pdiel case)
int mriw, mrlw_orig; //mesh refinement level of this W tridegoint
}itab_w_vars;

These data structures are important for many segments cbttee They are used to
define the global grid of OLAM, in the domain decomposition ércal mesh refinement,
to relate with other data structures involving physicalgaxies, and to control the data
exchanges among the processes in the iterative step.

Figure 2.8, Figure 2.9 and Figure 2.10 illustrate the refatf vertices, edges, and
triangles from the data structurgsb_m_wvars, itab_u_vars anditab_w_vars presented
in Algorithm 2.2, Algorithm 2.3 and Algorithm 2.4), respaely.

Figure 2.8 presents all verticés and trianglesw neighbors of a edgen.

In the Figure 2.9, the arrow indicates the positive directd a verticel;. The area
formed by the trianglesw1 andiw? is the control volume. Another numbered vertices
iu indicate the localization of th&2 neighbors of the vertic€;, where the values af;
and/orU; are necessary to estimdigin aiu point. Theiw numbered triangles indicate
the localization of the @ neighbors, where the value pfandp are necessary.

In Figure 2.10,4w is the control volume. Numerated indicate the localization of
flux transport; of the control volume.

Another way to view these structures is given in Figure 2ldthis figure:

e A is the control volume for scalar quantities, a prism-shagpedle grid cell. The
normal momentum component is defined and prognosticatelidshe five faces.

e B is the control volume for horizontal momentum, comprisedvad prism cells.
The prognosticate momentum in the control volume is alsdltixeacross the dark-
ened face between the two prisms.

e C is the control volume (light gray) for the vertical momenteomponent. The
vertical momentum in the control volume is also the flux asribe darkened face
between the upper and between the lower prism.

2.9 Parallelization of the Model

OLAM was developed in FORTRAN 90 and parallelized with Megs&assing In-
terface (MPI) (GROPP et al., 1996) to Single Program Mudtiphta (SPMD) model.

All MPI processes have initially the original represeraatof the grid domain and its
data structures created, as described in Section 2.3. ihd,execution is set to parallel
run, each process defines its sub-domain. Data are re&tbaéer the definition of the
sub-domain in each process, so that only the sub-domairptsrkenemory.

The steps described previously are realized by the fur€tiona_decomp() and
para_init().

31

Figure 2.8: Polygon formed by boundary points aroundra vertex.
iulo iull

iué iu7z
Figure 2.9: Computational horizontal stencil for a valué/pt aiu localization.

ius iml iu7

Figure 2.10: Horizontal computational stencil tp &alue iniw localization.

32

Figure 2.11: Control volume.

The first function defines a data structure in each procedgaiting the sub-domain
that will be set to each process.
The second function is responsible in each process to:

e Deallocate the global domain and allocate the new sub-dgmai
¢ Fill all data structures of the sub-domain that belong taoitigécated process rank;

e Prepare the data structures used by the communicationidnedn the iterative
step of the execution of the code. These structures indibateecessary elements
from other data structures that need to be updated. Eackggocaintains a list of
processes to send and to receive the updated elements.

Figure 2.12 presents a graphic visualization of the globahain decomposed 8
and 180 processes, respectively. Each distinct tone represeatddimain of a process.
We can see that the covered global domain is smaller for psesecomputing on a re-
fined region (Amazon region), although the data structumstpare balanced distributed
among the processes.

The iterative step will process after the parallel grid dongecomposition and data
structures redefinition. In this step, there are data exgh@mong neighbor processes
through asynchronous messages to update physical pexpeftihe submeshes’ border.

The communication among processes in the iterative stepeodtmosphere simu-
lation occurs basically using 3 encapsulated send and iesgectively receive func-
tions. The first and the second group of communication fonstimpi_send_u() -
mpi_recv_u() andmpi_send_uf() - mpi_recv_uf(), are responsible to the exchange
of data of physical variables associated to edge elemeriteeahesh. The third group,
mpi_send_w() - mpi_recv_w(), are related to the communication of the physical proper-
ties associated to triangle elements of the mesh. In all canication group of functions,
and specially in the last, input parameters specify the kinthta that need to be send or
receive.

Data exchange in the iterative step of OLAM occurs accordintables previously
defined. Before the iterative step of the model, buffers dorated to store data to

33

Figure 2.12: Global domain divided in 18 and 180 processes.

the send and receive messages. At this part of the algorghaiso defined which data
structures need to be updated and how this process will be.matese information
are stored in special data structures and searched whendhpseilated communications
functions are called.

2.10 Final Considerations

This chapter described details of the OLAM, including aspet domain decompo-
sition, algorithm and parallelization.

OLAM represents the atmospheric domain through a unstredtmesh. Conse-
guently, each operation on a discrete element of the medisrteeuse auxiliary data
structures to identify it neighbor elements. Because &, tihie codification of the model
and its parallelization demand more programming efforts.

OLAM seems a good example of high performance applicati@vatuate multi-level
parallel architectures and to be parallelized throughediifit approaches. It demands
many computational resources for processing a simulaltfmmeover, the use of different
mesh refinement can be well explored in architectures witareént levels of parallelism.

The model is currently parallel implemented with MPI. In erdo explore new par-
allel architectures other parallel programming interfaceuld be used in parallel imple-
mentations. Multiple programming interfaces could be atsmbined to provide the con-
currently execution of the algorithm. Thus, the elementhefdata structures associated
to the mesh could be parallelized in two levels.

Next chapter presents aspects related to parallel artimiéscand programming in-
terfaces that can be used to compute and parallelize higorpemce applications. We
discuss the notion of parallel task and how is possible téoegpnultiple levels of paral-
lelism.

34

3 HIGH PERFORMANCE COMPUTING CHALLENGES

For many years multicomputers have been the prevalenttectinie adopted to de-
velop high performance applications through parallel pogs. This was the obvious
solution to match processing capacity, using single anaaltiple processors. At the
same time many tools were produced to abstract the prognagnpnocess of multicom-
puter systems.

New computer architectures were produced in recent yegrowing intra-chip par-
allelism. This form of concurrency proposes a new kind obflalism, which is already
adopted in the development of applications. However maayepisting applications are
not prepared to use these architectures. Because of thischmadlenges appear in the
High Performance Computing context (DONGARRA, 2004). Sarhthese challenges
will be investigated in this chapter.

3.1 Parallel Applications

Computer Science has introduced a revolution in sciengfearch. It is considered
as the "third pillar", along with theory and experimentatithat supports scientific re-
search (PITAC Report to the President, 2005). Computerlation has been one of the
alternatives to find the numerical solution of scientificratustrial applications, modeling
complex systems (LUCQUIN; PIRONNEAU, 1998).

Simulation is a viable alternative, once to build a protetyp to create a real situation
is not always possible due the costs involved, the risksttfeexperiment could result
or physical inviability to reproduce the tests. Examplesiaiulations can be found in
several areas, such as hydrodynamics, with the flow in ague®dia and the modeling
of climate and weather, health, through the representatidtuman organs and tissues,
aerodynamics of vehicles, to model cars, trucks and atraafl virtual reality environ-
ments, like games or situations of human risk (SCHEPKE; MAARD, 2007; SOUTO
et al., 2007; XAVIER et al., 2007; FANG et al., 2002; EXA CORRATION, 2008;
LOCKARD; LUO; SINGER, 2000).

The previously cited applications demand very high pracgssower. For example,
a operational forecast of a typical hurricane requires littia-high-resolution of gradi-
ents across the eye-wall boundariesi(atn or less), and correctly representation of the
turbulent mixing process (&b m or less) (BERGMAN et al., 2008).

For this problem, considering an atmospheric domain of:

e 100 square kilometer of horizontal area,

¢ 10 meter of horizontal grid spacing resolution,

35

e 150 vertical levels,

e 60 milliseconds of time step model.

This results a mesh withs billion of finer decomposed elements.

At a sustained petaflop/second 4, 000 processors, such a computation consumes
about18 machine hours per simulated day and takes up ab@utMB per task of data
not counting buffers, executable size, operating systdis, e4c (L0 TB of main memory
for the whole application in aggregate). The computatiomegates a data set 01.8
Terabytes (TB), od3.2 TB per simulation day, if hourlg0 three-dimensional fields are
calculated. At an integration rate ®8 machine hours per simulated day at a sustained
petaflop, the average sustained output bandwidth requsfé@d iIMB/second.

Thus, it is important to choose programming techniques aardligl software re-
sources that extract the maximum performance of the commita-structure.

3.1.1 Initiatives for Improving the Development of Applications

Some initiatives were proposed in order to provide the isfracture for the develop-
ment of applications in the next years (BERNHOLDT, 2007).

Brazilian Computer Society promotes t@@and Challenges in Computer Science
since 2006 (MEDEIROQOS, 2008), (CARVALHO, 2010). The objeetf this proposalis to
generate 5 grand research challenges in Computer ScienBeafzil to be reached in the
next 10 years. One of these challenges is to model compléaragdike artificial, natural,
socio-cultural, and human-nature interactions. To a&hibis goal, specific applications
need to be developed.

In the United States docume@bmputational Science: Ensuring America’s Com-
petitiveness proposed by President’s Innovation and Technology Adyi€ommittee
(PITAC), some research and development challenges aremnteesfor algorithms and
applications in scientific and social sciences (PITAC Refmwthe President, 2005).

The Landscape of Parallel Computingrelates challenges in some classes of appli-
cation (ASANOVIC et al., 2006), (ASANQVIC et al., 2009). BRaularly the challenges
of the 6th class of applications, unstructured grids cldsgpplication, is important to us
because it is related to the global representation of Eartblimatological applications.

A key output of The Landscape of Parallel Computing repod th& identification of
13 benchmark dwarves that together can delineate applircegguirements in a way that
allows insight into hardware requirements. In additionfenattention must be given to
both dependability and performance. The document alsaissss power monitoring and
the use of autotuners, which are software systems that aititatty adapt to performance
characteristics of hardware, often by searching over & lgpgce of optimized versions.

In terms of computer architectures, the text concludes rati-core systems are
unlikely to be the ideal answer to achieving enhanced padoce. Consequently, a
new solution for parallel hardware and software is necgSg&BANOQOVIC et al., 2006).
Increasing explicit parallelism will be the primary methmdimprove processor perfor-
mance. New models of programming will also be needed for systems.

3.1.2 Changes to Improve Exascale Computing

Multi-core appears to outline the limits of performancerafiitional processors (lim-
its of the increase of the clock frequency of the processolgllti-core is a way to
provide Exascale Performance Computing, that is, upsgahia performance of today
applications in1000x faster (DONGARRA et al., 2011). For a Exascale Performance

36

Grids

Multi-computers

Multi-processors

Granularity

Multi—core

Figure 3.1: Multi-level parallelism.

Computing system, thousands of multi-core processorsatipgrsimultaneously are nec-
essary.

There are two major reasons to invest in a new computing sysi& solving prob-
lems not previously solvable, either because of the exacuitine to solve it or because
the size of the data set of the problem, or to compute the sarde@kproblems previously
solved on a prior system, but faster or more frequently (BER® et al., 2008).

New applications: where the desired properties of computation are differénthat
Is supportable today. This includes the kind of operatitrvad tlominates the computa-
tional rate requirements, the amount and type of memory,bamdiwidth. These new
applications might as well use algorithms that are unknavday, along with new soft-
ware and architecture models.

Upscaling of current peta applications:where the overall application is similar to a
currently peta scale system, but the data set size repiegéne problems needs to grow
considerably. If the computation is linear time in the data sthen this corresponds to a
1000 increase in memory capacity along with computation and \adtti.

In this scenario, if the basic speed of the computationakuioes not increase sig-
nificantly (as is likely), themew hardware levels of parallelism must be discovered in
the underlying algorithms, and if that parallelism takes a different form than the entr
coarse-grained parallelism used on current high end systi@n software models need
to be developed to support this form of parallelism.

3.2 Multi-Level Parallelism

Today, the composition of a parallel computing environmeiicreasingly heteroge-
neous. On one side there are clusters and grids architectDrethe other side, multi-core
architectures began to appear with different numbers afgesing cores. Consequently,
these environments end up also providing a multilevel paisin.

In a multilevel parallelism there are several levels of edzdion of parallelism. The
different levels of abstraction of parallelism may be in grecessor itself (multi-core),
internal to a computer (multiprocessor) or between mudtg@mputers (cluster and grids),
creating a hierarchy as shown in Figure 3.1. The granulafiprocesses or tasks that can
be run on each level is also highlighted in this figure, insiegas the level of parallelism
increase.

The management of each of the parallel levels of abstradidone through specific
mechanisms:

e At processor level- The instruction stream is defined by the core or the implemen
tation of registers required in hardware. Thus, the comérdbne by instructions in
assembly.

37

e At level of the operating system kernel- The instruction stream is defined by
processes or threads. The control of the flow of instructi®dsne through calls to
the operating system.

e Atlevel of middleware management The set of instructions is grouped, forming
a communicating process. The control is done through pitecess communica-
tion libraries.

Therefore, it is usually the responsibility of the prograemto use different tools for
implementing a program that explores the various levelsaddlgelism.

We can suppose, for example, a program implemented in phnsihg the divide and
conquer approach. This implementation creates processkes first recursive divisions,
and decomposes each process in threads after. Consegitaatpossible to efficiently
use multi-core processors in a cluster environment.

The programming development and execution environment bausonsidered to in-
crease the performance of a concurrent application. Emg@rchitecture portability of
applications and efficient use of hardware resources isa ditficulty existing in paral-
lel execution environments, since the programming tooteeculy available are designed
specifically to only one level of parallelism. This limitsetipotential performance of a
parallel application if it is executed on a different levéhardware parallelism of that it
was originally projected. Furthermore, it is difficult tordool how a parallel implemen-
tation will be executed once that different ways of mappimg flow of instructions can
occur regardless of the level of abstraction. Who decidisscin be a parallel program-
ming library, a code compiler, the operating system, the-lesel thread scheduler or the
CPU.

3.3 Parallel Architectures

New computer architectures have been produced recentlyder @o improve per-
formance for individual processors. This occurred becgigsical properties and tech-
nological resources used in hardware conception do nat/dhe increase of clock fre-
guency of an individual processor (clock speed).

In the early 2000s, the limitations to provide head dissgpato chips and the re-
duction in the ability to include more transistors for highestruction-Level Parallelism
(ILP) led to a stagnation of single-core single-thread grenance. The solution was to
switch from microprocessors of general purpose to ChipH&tulti-Processing (CMP).
Thus, many processing units were implemented in a same yikigjng, the multi-core
architecture (GEPNER; KOWALIK, 2006).

From the viewpoint of computer architecture, multi-cor@gassors are prevalent
nowadays in systems ranging from embedded devices to sa@e-high performance
computing systems (RAUBER; RUNGER, 2010). This can be blessen if we com-
pare the composition of the 500 machines with the largestgasing power of the world.
These machines are used to process different kind of afiplsaand their infrastructure
are composed of several processing units (processorgjonteected in most of the cases
through special network technology (TOP 500, 2011).

There are several options of multi-core processors availa the market. For ex-
ample, Intel produces Quad-, Six- and Eight-Core proces@biTEL, 2011a). AMD
presents Eight- and Twelve-Core processors (AMD, 2011).

38

Table 3.1: Examples of different multi-core architectures

Vendor | Processor Model Cores | Clock Rate | L3 Cache | Manufacture
Intel | Xeon Nehalen W5590| 4 3.33 GHz 8 MB 45 nm
Intel | Xeon Nehalen X7560 8 2.26 GHz 24 MB 45 nm
Intel Xeon Westmere X5677 4 3.46 GHz 12 MB 32 nm
Intel Xeon Westmere X5690 6 3.46 GHz 12 MB 32 nm

AMD | Opteron 6136 8 2.3 GHz 12 MB 45 nm
AMD | Opteron 6176SE 12 2.4 GHz 12 MB 45 nm

Table 3.1 presents some examples of multi-core archiestunformation about the
number of cores, clock rate, level 3 cache, and manufagiueichnology are compared
for different processors models.

In terms of computer architecture research, Intel preseat80-core processors as
part of the Teraflops Research Chip project (INTEL, 2011bat&res of the processor in-
clude dual floating point engines, sleeping-core techngkeglf correction, fixed-function
cores, and three dimensional memory stacking. The degrae-ciiip parallelism will in-
crease significantly over the next decade and processomnearially used will contain
tens and even hundreds of cores, increasing the impact dipheukevels of parallelism
on clusters.

At the same time, the performance of a contemporary Graphmsessing Unit (GPU)
has increased much faster than conventional processqgartibecause these processors
can easily exploit parallelism. (NICKOLLS; DALLY, 2010).igure 3.2 shows an exam-
ple of GPU Tesla architecture. In this figure it is possibleae the organization of GPU
devices, composed by many processing units and differadtdfi memory spaces.

Modern GPUs incorporate an array of programmable procgsemupport the pro-
grammable shaders (a set of software instructions) foungtaphics APIs (NVIDIA,
2012). For example, the Nvidia GForce 9800 includes a doaivley of 128 processors.
Each processor can execute only one single-precisionrfgpgibint operation in each cy-
cle. This is a significative power processing because u@l doncurrently executing
instructions can be run at each clock cycle. Another hardwire Nvidia Tesla GPU
M2090, developed for High Performance Computing, has 5t@scand can process 665
Gflops.

The programmability, high performance, and efficiency otderm GPUs have made
them an attractive target for scientific and other non-giegeépplications (KIRK; W. HWU,
2010). Programming libraries such as Nvidia’s CUDA havelwsa to support general
purpose applications on these platforms (NICKOLLS et £08). Emerging hardware
such as AMD'’s Fusion processor is expected to integrate GRidconventional proces-
sors. These initiatives simplify the programming of a code.

Computers can also be composed by heterogeneous processisg A machine
can be formed by many multi-core processors for generalgsapgraphic cards (GPU)
and reconfigurable hardware (Field Programmable Gate Ai3GA) (BROWN et al.,
1997). Computers can also be combined forming a cluster wiank interconnected
machines or cluster of clusters, as can be seen in Figur®8s3ible components of each
individual node of a cluster are shown in the circle posiidat the first part of this figure.
In fact, clusters are the solution to give high power proicesto large applications.

39

Multiprocessor 1

Shared Memory
A A A
Y Y Yy .
! I
Registers Registers Registers l , ‘
i Instruction |
I .
Processor 1 Processor 2 Processor N ! Unit i
L
WK 'R A1
| | |
| | |
! ! !

Constant Cache

Texture Cache

Device Memory

Figure 3.2: GPU Tesla architecture.

i Node | i Node l
I i
¥ | 1 i
} Node 3 | Node 3
i | I =
" Cluster | Cluster |
\ Grid o

Figure 3.3: Different levels to explore parallelism in @nt architectures.

40

3.4 State of the Art in Parallel Programming Tools

The process of implementation of applications is simplifigdhe existence of tools
for parallel programming. These tools abstract both sharetior distributed memory
architectures and provide standard development appredchseveral parallel program-
ming paradigms.

Message-passing libraries were developed to abstracetirk layer (sockets) and
to offer a clean interface for communication functions. 3Jéndibraries were used to
develop several high performance applications in the lastdecades. The Message-
Passing Interface (MPI) communication library is one of thechanisms widely used
to simplify parallel programming. MPI has a large numberwidtions to be used both
in parallel and in distributed implementations. This ragses are necessary to obtain
parallel performance and are recurrently used in many kohdgplications.

However, MPI is not the only choice to write a concurrent co@&ssical tools like
Pthreads and OpenMP are adopted also in applications mimmimultiprocessor ma-
chines. Moreover, in recent years other tools were devdlbke Intel Threading Build-
ing Blocks(TBB) and Compute Unified Device Architectu(€UDA). These tools are
employed in the development of multi-core and GPUs codspgeively. Programming
interfaces were also created to abstract different typgmrdllel hardware, simplifying
the development process of concurrent code. They are disdus the following subsec-
tions.

3.4.1 Message Passing

In the message passing model each processor has its own yérherexchange of
information occurs through communication between pramssssing normally a high-
speed network. This model introduces a new problem: howdtiblute the computa-
tional task into multiple tasks to multiple processors aso®y different units of memory
and to organize the results into a single solution. To sdiieegdroblem, some approaches
of scheduling were proposed.

The main advantage of this model is scalability, since ther® limit on the number
of processes that can be created, nor the number of prosdssrcan be used. There
is also a possibility (although demote the overall perfaro®g of using heterogeneous
machines. In the model of message passing the tasks ustefigidormed in a distributed
way into distinct processors and the end result is groupedénprocess or shared among
all processes.

Message-Passing Interfag®Pl) is the main representative message passing pro-
gramming interface. MPI is a standard for exchange datagagespassing) in parallel
computation (GROPP et al., 1996). MPI supports the portalmf code and provides
efficient parallel performance for many types of paralletimaes.

MPI can be considered an evolutionRdrallel Virtual Maching(PVM) (GEIST et al.,
1994) and allows to write parallel programs in FORTRAN, C erdanguages. MPI is a
norm, supported by several implementations (LAM/MPI, Q@én, MPI-CH) with spe-
cific optimizations (LAM/MPI PARALLEL COMPUTING, 2012), (BEN MPI: Open
Source High Performance Computing, 2012), (MPICH HOME PA@EL2). The norm
standardizes the name, parameters and return codes ofcedicter

A MPI application is composed by one or more processes timdbe@xecuted on pro-
cessors of distinct machines. The processes may commenuidt other processes by
sending and receiving messages. This resources are applieziSingle Program Multi-

41

ple Data(SPMD) andMultiple Program Multiple Datg MPMD) programming models.

MPI provides different communications primitives. The msisnple communication
mechanism that can be used is the point to point communicatibere operations of
message exchange occur between two processes. More sgcicammunication func-
tions are obtained calling collective communication operss (collective for a group of
processes. This operations may involve all processes tuére.

Moreover, MPI supports asynchronous communication andutaog@rogramming by
mechanisms of communicatoiofmmunicatoy. The communicators allow the MPI user
to define functions that encapsulate internal communicainucturesgroup communi-
cationg.

Advanced programming resources ligatesian communicationmechanisms offer
services that allow addressing messages to the processediag to identifiers assigned
to them, using a Cartesian communication structure, thrdugctions for mapping and
accessing the processes.

The basic operation of an MPI program consists of all praeess execute the same
code normally as a sequential program. Each process hasatifichtion number as-
signed. The identification number can be used to restriaxeution of part of the code
for a specific process or a group of processes. This idensfedso necessary to address
a message for a process in function calls to exchange data.

An example of pseudocode using MPI is shown in Algorithm 3rithis example,
the process with ran send a set of data to process with rdnkThe process with rank
1, receive the data set, computes the data and send it to prvtésank0. Process with
rank0 receives the data processed by ran&nd shows the results.

Algorithm 3.1 MPI example of parallelization of the code.
if (rank == 0)

send(data, 1)

receive(data, 1)

show_results()
else // rank ==

receive(data, 0)

calculation_execution()

send(data, 0)

The functions found in MPI are very important. It providesglkl implementations
with efficient communication mechanisms and a greater iaddgnce among the execu-
tion of the processes. Evaluating this resources we coadhat MPI offers conditions
for parallel programming applications to run on multicortgge machines, abstracting the
granularity of a parallel task by (a MPI) process.

3.4.2 Parallel Programming Interfaces for Shared Memory

There are also libraries developed for programming shaesdany architectures. For
shared-memory programming, the standard tools providstaacts to allocate and access
data in the global address space, common to all the runnregds. Examples of shared
memory programming tools are described below.

42

3.4.2.1 Cilk

Cilk is a general purpose programming language for any dipgraystem platform
proposed by the Technology of Supercomputation Group of #R1IGO, 2007), (BLU-
MOFE et al., 1995), (FRIGO; LEISERSON; RANDALL, 1998). Cikbased on ANSI
C standard and offers a multi-thread parallel programmimgrenment. It extends C
language through keywords that enable to express the g@lgsallof the application. A
Cilk program without keywords is called as C elision and hssin a syntacticly and
semantically valid C program.

The execution of Cilk is responsible to make load balancimdjta schedule the cre-
ated threads to execute concurrently over the processors.

Cilk tasks can be scheduled by shared tasks or by work stedinthe first case, a
thread is scheduled to execute concurrently in each pbfatietion call. Such a concur-
rently execution maximizes the computer processing bstenalized by the high cost
to create a new thread. In the second case, a processor cen seae tasks to process
when it end its current works (adaptive scheduling). Theaathge of this method is to
provide better parallelism conditions, minimizing the ambof thread and maximizing
efficiency. Scheduling decisions in Cilk are defined by infation obtained in compile
and execution time.

The parallelism and synchronization primitives of Cilk :a@lk, spawn, sync and
return. The cilk primitive identifies a parallel function tioee environment, defining it as
a Cilk procedure. The parallelism begins in the spawn prmithat launch a new task
for the specified function. The semantic of spawn differs @f mmethod because spawn
does not wait for the end of the called function in opositio@tC method call. The sync
primitive offers a local barrier as a way to wait for the endhaf tasks created by a father
task. The Cilk environment inserts a sync before the imipleturn of a task in order to
guarantee that all child tasks end before the return of theetly running task.

3.4.2.2 OpenMP

OpenMP (Open Multi-Processing) provides directives thiawathe expression of
data parallelism in parts of the code and loops, and pamatiedf tasks, introduced in its
version 3.0 (CHANDRA, 2001), (CURTIS-MAURY et al., 2008).nfexample of loop
parallelization is shown in Algorithm 3.2, where all opévat of a step of the loop can be
concurrently executed, according to the number set intie set _num_t hr eads()
function @ threads, in this case).

Algorithm 3.2 OpenMP loop parallelization.
omp_set_num_threads(4);
#pragma omp parallel for
for (i=0; i < MAX; i++)
Alil= c*A[i] + Bi];

The API of OpenMP consists of compilation directives, lifgraf methods/functions
and environment variables that describe how the workloadbeashared among differ-
ent threads running on different processors or cores. Togr@mmer can choose the
number of threads to execute by calling library methods osdiying environment vari-
ables. Moreover, the granularity of tasks, using the apprad data parallelism, can be
determined by the programmer or by the compiler.

43

The OpenMP standard does not specify a scheduling algarithinis is attributed
to the implementation of the API, in order to define the bestiah in terms of load
balancing.

3.4.2.3 Threading Building Blocks

Threading Building Blocks (TBB) is a C++ library developegdihtel to program soft-
ware that run on multi-core processors (PHEATT, 2008), (80&Z009), (WILLHALM;
POPOQVICI, 2008). The first version of the library was annacha 2006 for the first
x86 dual-core, Pentium D processors.

In order to reach the best way to use processor resourcespid®les the division
of the workload into threads and gives a scheduling soldtothe threads. TBB parallel
tasks are called work units. The granularity of the loop paiam is defined by the library
and the granularity of the threads using tasks parallelssdefined by the programmer.
A set of threads executes the available tasks in user modedacg to the work stealing
scheduling inspired by the Cilk environment. This makessgdlse programming because
it is not necessary to understand how the threads were ingpitd.

In general, the focus of this library is the high level pagkdiation through, for exam-
ple, the distribution of data among threads. This meanghiegbrogrammer can concen-
trate his efforts on solving problems, and not in small detdy using threads.

TBB library has performance, scalability, and is similatihe OpenMP library, sup-
porting loops and tasks parallelism. However the libragvies it with different ap-
proaches. Another significant difference of TBB is that fteis the utilization of generic
programming in parallel loops, in order to avoid limitingetparallel data structures to
basic types of the language. This resource is similar asd&tdrnfemplate Library (STL)
containers programming tool (MUSSER; SAINI, 2004).

3.4.2.4 Charm++

Charm++ is an object-oriented paradigm for parallel prograng and asynchronous
message exchange that adds several features and straottiresC++ language (KALE;
KRISHNAN, 1993). It is based on the manipulation of specibjects calledchares
Chareshave their own data (local). They communicate with otttearesand have spe-
cial methods called input methods, responsible for rengidnd processing messages
destined to its objects. Input methods are different fraaditronal methods because they
return immediately after their invocation, but not necegsafter the asynchronous exe-
cution of the called method, ensuring that this method vélelzecuted eventually.

A Charm++ program is a set aharesreferred as a global space of objects, and
has their execution initiated through a specific chare dattain chare The messages
exchanged betweerharesare also known as Remote Method Invocation, because the
senderof a message does nothing more than invoking entry methodiseatceiver
Migration of charesbetween processing nodes can be made using the framewdtk Pac
and UnPack (PUP) in order to facilitate the packaging of (etsses).

A Charm Run-Time System (RTS) is provided to remove the nesibdity of the pro-
grammer to identify and manage quantity and type of proecessgpe of communication
(network) between them, and the amount of resources al&ilBb'S is responsible for:

e Mapping chare objects in physical processors.

e Load balancing of objects through dynamic migration.

44

Routing of messages: it is important due the migration oedlsj between pro-
cesses.

Checkpoint: by enabling objects’ "state" migration.

Fault tolerance: recreation of objects in distinct prooessvhen processors crash.

Dynamic reallocation of physical resources: the possyhiti allocate more or less
space according to the extra load present in the cluster.

RTS provides support for other languages or programmingetsditke Adaptive MPI
(AMPI) (HUANG et al., 2006), where MPI programs can take adage of virtualization,
load balancing, fault tolerance, among other charactesistready listed.

3.4.25 CUDA

Compute Unified Device Architecture (CUDA) is a parallel gramming computing
architecture developed by nVidia (NICKOLLS et al., 2008nables the use of Graphics
Processing Units (GPU), integrated in the video boardss Téghnology was available
initially for the GeForce (series 8 and after) and Quadrdi@us, and more specifically
for the Tesla edition (developed for HPC) and lon (for mobdenputers).

The use of video boards to execute an application normalfippeed by a CPU is
called General-Purpose computing on Graphics Processiitg (PGPU) (GARLAND
et al., 2008). The first advantage of using CUDA is the use afesthmemory for quick
access to arbitrary addresses in memory. Since the verslQi€8DA has support for
recursion, double-precision floating point data type, enpeénted according to the IEEE
754 standard, and rendering of textures.

The programming model of CUDA consists of extensions to C@ntlin a sequential
program that can boot a kernel (NICKOLLS et al., 2008). Theng&kis similar to a C
function and runs concurrently through several CUDA thgeddhe threads are mapped to
the execution core of the GPU by the GPU. The programmerp®resble for transferring
data from CPU to the GPU and GPU to CPU.

The programming model of CUDA is ideal for applications wiigh data parallelism
level and for applications that have not dependencies anesig. However, CUDA
limitations include no control of coherence of the data used the lack of support for
the execution of multiple kernels. Thus, significant parfance gains in CUDA depend
on good knowledge about the architecture and the progragymodel.

3.4.3 Distributed Shared Memory

Programming interfaces for distributed systems use expio-sided communica-
tions. On the other hand, the interfaces used for progragnsiiared memory systems
provide simple statements of concurrency, but not appbedttercomputer architectures.
To overcome this situation, some tools were proposed tdh@ibest features of these two
paradigms (BERNHOLDT, 2007). These solutions are baseddantitioned Global Ad-
dress SpacéPGAS).

In the PGAS model the languages are developed over a memalgimdhat a global
address space is logically partitioned in order to give gaohto a local processing unit.
This kind of language is typically implemented on distriomtemory machines and use
communication libraries to address the virtual space.

PGAS languages provide abstract resources to developbdisid data structures and
communication of the cooperative instances of the codéhodiigh the objective of these

45

languages is to improve the capability to write codes, itilslsnited in terms to provide
a global vision of parallel computing.

Some programming languages, that allow the programmerdenelarge scale com-
putational environment as a unified system like a shared meenvironment, are pre-
sented below.

¢ Unified Parallel C (UPC) - Itis a extension of the programming language C, devel-

oped in Berkeley, for HPC on large scale parallel machinéd (YCK; BONACHEA,
WALLACE, 2004). The language provides an uniform programgnmodel for
both shared and distributed memory systems. UPC abstrecSRMD program-
ming model. The parallelism is defined before the executiotih® code. Each
execution stream is destined to a processor. Thus, the texe@nvironment can
be viewed as a single shared memory system in that the poycess read and
write variables, although these variables are physicafpeiated to one distinct
processor.

e Co-Array FORTRAN (CAF) - This language is an extension of FORTRAN to
supportthe SPMD programming model, developed in Berkél&yMRICH; REID,
1998). It has similar properties as the UPC implementati@hiacludes resources
expected for the next version of FORTRAN. The name of thedage arises from
the implementation of a new kind afrray calledco-array. This resource is used
to reference multiple cooperative instandesages of a SPMD program. Eadim-
agecan access remote instances from a variable through the aidedimension
of co-array. A variable declared in ao-array dimension allocates a copy of the
variable in each image. The way that@arrayis created is similar to the creation
of a normalarray in FORTRAN. The language offers also synchronization roasi
to coordinate the cooperative images.

e Titanium - Itis alanguage developed in Berkeley to implement the SRidiadigm
for Java (YELICK et al., 1998). Titanium increases sevezattires of Java, includ-
ing support to multi-dimensional vectors and sub-vecttegtions, copy opera-
tions, class with unchanged values ardions an alternative garbage collector
that supports memory management oriented to performanoe.lahguage offers
support among instances of the program developed in SPMiDghrsynchroniza-
tion and communication primitives, methods and variabias allow an alternative
synchronization way, and a notion of private and sharedentes.

e Chapel - It is a programming language developed by Cray (CHAMBERNAI
CALLAHAN; ZIMA, 2007). Chapel is part of a larger project kweby Cascade It
provides a higher abstract level to express parallel progrdt offers a separation
between the development of the algorithm and the detailsatf structure imple-
mentation. Chapel supports multithreaded programmingetadfering data and
tasks abstract parallelism.

e Fortress - It is a high performance programming tool projected by SWNE(-
LAND, 2007). The language is based on FORTRAN and providiésiericy and
security. Fortress has an innovative syntax: it was deweeldpprovide a mathemat-
ical notation style. With that, the development of a code lbarmore easily done
for scientists. The fundamental components of Fortrese ewd theobjectsthat
define the variables and methods, andtthés, where the conjunct of abstract and

46

Table 3.2: Different levels of parallelism covered by pangming interfaces.

Parallel Level Cilk | OpenMP | TBB | PGAS | MPI | CUDA/OpenCL
Distributed Memory X X

Interprocessors X X X X X

Intraprocessor X X X X

GPGPU X

concrete methods are declared. Fortress is an interpaaigddge. The interpreter
runs over a Java Virtual Machine (JVM) and interprets thestz the specification
of the language.

e X10- Itis an experimental programming language developed ByilBassociation
with academic institutions (CHARLES et al., 2005). The chjee of the language
is to offer new programming techniques for scalable pdraifte It is optimized for
a environment management at execution time. X10 offerdadbkecal resources of
the Java programming language for Symmetric Multi-Promess¢€SMP) and clus-
ters environments.

All these tools provide an abstract layer, making the im@etation mechanism ho-
mogeneous. At the same time is not possible to extract pésatl from all hardware
layers because they are not abstract so well, for exampléi-cove architectures. Thus,
these interfaces can be considered solutions for abswaeleel and do not for multi-
levels of parallelism.

3.4.4 Evaluation of the Presented Tools

To explore the performance of the parallel architectureésypa programming tool
needs to provide mechanisms to access all the paralleklef@ machine. However, no
programming interface provides this. Some languages predgdave the intention to pro-
vide more code abstraction but they do not include somelpalels in its conception.
Moreover, this resources are still in development.

Table 3.2 presents a summary of the different parallel sectures levels covered by
the different programming interfaces previously desatibe

The notion of parallel task is presented in different waythmparallel programming
interfaces discussed in this chapter. CILK and TBB suppativaly this notion. This
notion is not so well defined in MPI. In this programming toghch MPI process is the
task itself.

The solution to explore multi-parallelism level is to comé&more programming tools.
Therefore a parallel program that utilizes the MPI librapuld be combined with the
OpenMP or the TBB programming interfaces. An MPI program abso incorporates
CUDA functions, in order to explore GPU hardware. In the Gaap we will to discuss
how the combination of these interfaces can be made for Gggijins of atmospheric
models.

3.5 Final Considerations

There are many challenges to create and execute high parficeapplications today.
The scale of the simulations for solving real problems arg leage. New applications

47

demand ever more memory and processing since the volumetafadd operations to
compute in these applications is increasing.

Applications need to use the entire architectures availdylthe executions in order
to maximize it performance. Currently, the architectunes/le many level of hardware
concurrency. But there is not a programming interface ablabistract all these levels.
Because of this, each of these levels can be only explored) asspecific parallel pro-
gramming interface. Thus, it is important to understandayglication functionality and
how parallel tasks can be defined.

Next chapter presents a performance evaluation of OLAM. éuaduation of the ap-
plication, simulating some case studies on a multicoretefienvironment, is necessary
to understand the limits of performance of the model usinlg arparallel programming
interface.

48

4 SCALABILITY STUDY OF STATIC OLAM

The previous knowledge of the execution behavior of OLAMnigportant to better
understand how is possible to improve the model. Becauskigfwe present in this
chapter the simulation environment and the performancesarements of the original
code of OLAM in order to evaluate the impact (execution timd speed up) of multi-core
architectures in simulations of atmospheric models usimghesh resolution. This study
highlights many performance aspects of the original versiothe model, implemented
in FORTRAN 90.

4.1 Simulation Environment

We evaluate the3.0 version of OLAM. In our case study, each side of the initial
icosahedral triangle was divided #% parts (V = 25). So, the distance between the
discretized points on the horizontal globe surface was 2@&aKm. The atmosphere was
divided vertically ¢ dimension) ir28 levels.

The objective of the simulation was to evaluate the exenutiosts of the model.
Therefore we measure the impact of fluid dynamics methodaglad hours of simula-
tion of an atmosphere, without any computation of physicalhads, in the iterative step
of the model. Each timestep of integration simuldt@seconds of the real time.

All measurements have been made on the two clusters ICE aNeHBG.

The ICE platform at the Institute of Informatics of the FealeUniversity of Rio
Grande do Sul is composed by dual nodes with Intel Xeon E5310 Quad-Coreldaf
GHz and4 MB of cache, with16 GB of RAM memory in each node. The cluster is
interconnected by &igabit Ethernenetwork.

The SUNHPC platform at the National Laboratory of Scien@mmputing (LNCC)
iIs composed by3 dual node Intel Xeon E5440 Quad-Cores witiMB of cache and
16 GB of RAM memory in each node. The cluster is interconnectearbpinfiniBand
network.

MPICH 2-1.0.7 and 2-1.2.p1 versions were respectively usé¢de implementations
evaluated at ICE and SUNHPC platforms.

4.2 Scalability Intra-Node

The first test realized evaluates the scalability of the dada multi-core machine
using all8 cores of two processors in one node of the cluster ICE. Ifitia-Node test
simulates the execution of the model usingp 8 number of processes. The processes are
balanced distributed between the processors.

49

1node|/8 cores %IH I I I I I I
8 I ideal —e— -
7 - -
6 - -
5 - -
Q.
=}
e]
[0}
2 4r -
n
3 - -
2 - -
1 - -
0 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

Processes

Figure 4.1: Speed up using 1 cluster node with 8 cores.

The results presented in the Figure 4.1 show an increasefoip@ance when more
processes are used. In fact, the speed up usirgates of one node is only arouind
instead an ideal df.

4.3 Scalability Inter-Nodes

The scalability of OLAM code was evaluated in a second testjgumultiple nodes
of the cluster. Figure 4.2 presents the speed up obtainad asly one core of each node
of the ICE cluster. The number of processes used to simulatsbdel wad to 14. The
speed up using 8 processes was around 6.4 and using 14 poeessup to 11 in this
Inter-Node test.

The performance results of the parallel execution of OLAMhg®nNly 1 core of each
node of the cluster provide more scalability than the testguall 8 cores of one node,
as present at the Section 4.2. In fact, the maximum efficiamtye Intra-Node test was
62%, using8 cores and in theinter-Node case the efficiency wak7%, usingl4 cores
This occurs because the impact of cache misses itnthe-Node test is very high, as
will be shown later.

4.4 Execution Time - Multi-Core Impact

A third test was made using a different number of cores in emdte of the cluster.
P processes are distributed €6 cores processors to better understand how multi-core
architectures influence the execution of OLAM. TH&' nodes will be used to execute
the model.

50

T
14 | 14 nodes/1 core —— _
ideal —e—

12

10 -

Speed up

0 1 1 1 1 1 1 1

Processes

Figure 4.2: Speed up using 1 core from each of the 14 nodeg altister.

Figure 4.3 shows a comparison of the parallel execution Gfr@LAM, distributing
14 processes among the ICE cluster nodes in five differeriigtoations. These configu-
rations consist of processes distributed respectivelgiier, two, four, six, and eight cores
per node(=1, 2,4,6,8).

The results show that using only a core per node is betterubkeng more cores per
node. The results also demonstrate reduction of perforenatien the number of cores
used in each node increases. This is more visible when mare4ltores per node are
used. In fact, quad-core processors share the access tasheBecause of this, the
performance on simultaneous accesses of memory is not sh doeto the large volume
of data manipulated in OLAM.

Data access latency has been a problem even on single-sbeesy as processors are
much faster than memory. With the emergence of multi-cooegssors, a more severe
problem arises with data access due to the limited bandwaidditcess shared resources
in the memory hierarchy. When multiple cores are procesgifigrent sets of data, the
shared resource becomes a performance bottleneck, if tiueMidth is not high enough
to support the multiple cores. This has been already expaxtein currently available
processors (BYNA; SUN; HOLMGREN, 2009), (SHALF, 2007).

4.5 Execution Time - OLAM Routines

Seven timestamps barriefE{1, ..., T'S7) are inserted on selected points of the origi-
nal source (a few module boundaries) in order to correcgygaspartial execution times
to OLAM main modules. OLAM pseudo code is presented in Altdponi 4.1 indicating
where selected timestamps barriers were placed.

51

T T T T T T T T T T T T T
600 L ncpus=1 1 |
ncpus=2 KXXX
ncpus=4 RRRHKKA
ncpus=6 |
ncpus=8 £xXxX
500 -
@ 400 -
£
|_
c
S
= _
= _
q) - —
¢ 300
L
o
[
(o]
[R
200 .
%s X(%
S
100 | el | b .
8
o L 4: N :
!

w

D

()]
ok
\‘ZQ
[{e)

Processes

Figure 4.3: Execution time using 1, 2, 4, 6 and 8 processessqeer node.

Algorithm 4.1 OLAM pseudo code and the localization of the timestamps.
Initialization;
Input Files (ATM/LAND/SEA) Read(TS1)
Grid Configuration/Domain Decompositioff;S2)
Variables Memory Allocation{TS3)
Pre-processing initial state calculatidiS4)
Plot and History Files Initialization(TS5)
Initialization Time measure;
Do loop for each time step;
Atmosphere time state calculation;
Send frontier variables to neighbors;
Times step Time measure;
If time equal END then(TS6)
End Do Loop;
Write atmosphere state on digK;S7)
Barrier; Output Time measure;

In Table 4.1 the best (T. Min) and worst (T. Max) executiongsyare shown in mil-
liseconds (ms) of each of thieparts of the instrumented code. The results compare the
use of8 processes in only one node and 8 processes executed irctisiges of the ICE
cluster, respectively.

Each timestampl(S) stagel'S1, ..., T'S7 is followed by a synchronization stage. The
synchronization stage measures the time elapsed betweendhof each execution time
stage and a barrier, where all processes must arrive ande@faite to continue the exe-

52

Table 4.1: Execution time using 8 processes in 1 node and au8s

Time- | T.Min | T.Max | T. Min | T. Max
Stamp| 1 node| 1 node| 8 nodes| 8 nodes
TS1 598 618 180 182
Syn 0 31 0 6
TS2 186 225 58 59
Syn 0 39 0 1
TS3 20 23 15 17
Syn 0 39 0 3
TS4 565 601 554 555
Syn 0 1 0 0
TS5 109 280 103 266
Syn 0 170 0 163
TS6 | 111268| 111924| 81641 | 82194
Syn 83 837 129 704
TS7 173 487 132 138
Syn 109 585 130 302

Total | 114497| 114510| 83830 | 83837

cution.

In this table we observe thdtS6 is the most impacting step of the execution. This
timestamp monitors the iterative step of OLAM and, in thisesaepresents around%
of the total execution time in both cases evaluated. Howdirerdifference between the
caseg’'1 and(C8 is very significant. The Inter-Node approach demands @8% of the
total time in relation to the Intra-Node approach.

A similar evaluation was made using processes.

In Table 4.2 respectively the best and worst execution tiftbeinstrumented code
are reported in milliseconds (ms), usihgore (C' = 1) and8 cores (' = 8) per node of

the cluster.

TS6 dominates the overhead for bath= 1 andC' = 8 synchronization time. The
synchronization time increases in all timestampsdo 8, indicating that the use of all
cores of a node impacts in reduction of performance.

Synchronization time fronT'S6 is related to a small load imbalance from the atmo-
sphere time state calculation part. The increase of synctation time onl’S1 to 7'S7
onC = 8 test are related to the multi-core memory contention (OSFH@t al., 2010).

Applications running on multi-core systems using many s@med a large amount of

RAM memory in each process have low reuse of cached data. Dseexnternal cache
levels are generally shared among the cores of a multi-gsters. In applications of do-
main decomposition, this implies low cache reuse, sinch eae handles different data
from the others. In addition, large volumes of data manigarhainvolve often rewriting
of data in the most internal cache levels.

53

Table 4.2: Execution time using 14 processes Wita- 1 andC' = 8.
Time- | T. Min | T. Max | T. Min | T. Max
Stamp| C=1|C=1|C=8| =28
TS1 178 183 177 1095

Syn | O 149 0 959
TS2 | 57 60 55 | 201
Syn 1 4 0 147
TS3 | 9 13 15 18
Syn 1 5 0 38
TS4 | 323 | 367 | 339 | 374
Syn | O 1 0 8

TS5 | 88 195 | 93 191
Syn | 0 107 0 90

TS6 | 47323 | 49249 | 70063 | 72481
Syn 244 2224 463 2862

TS7 43 134 121 175
Syn 254 510 513 964

Total ‘ 49884‘ 50786‘ 75496‘ 75552

4.6 Performance Analysis with Vtune Analyzer

Timestamp 6 1'S6) was the part of the code that demanded more execution time.
Because of this, the iterative step was executed usingVitele Performance Analyzer
9.1 (INTEL, 2010) in order to investigate the execution heétraof the processes.

OLAM was parallel executed with 8 processes, each one omdistodes of the
cluster SUNHPC, obtaining a cache miss (L2)16f48%. The execution of 8 processes
in a same node results in a measured cache mi89.84% and the rate of data transfer
from the memory bus increasesd0.83% of the bus capacity/time.

Hardware prefetching was another aspect investigated ZALEV; BLAGODUROQV;
FEDOROVA, 2010). The tests allow to conclude that OLAM exemunot increase hard-
ware prefetching when more cores are used.

These results show that there is an increased cache misanctgata transfer rate
in the memory bus when more cores are used in a multi-core imgcthat is, there is
memory contention. The tests realized with Vtune prove thetnory and cache access
affect directly in the execution time of the model.

4.7 Summary of the Results

This chapter evaluates the performance of the parallelizexion of the Ocean-Land-
Atmosphere Model (OLAM) on a multi-core cluster environrhem order to evaluate
the scalability of the model we present the speed up obtaised all 8 cores of two
processors of a cluster node and the speed up resulted udingree core of each node
of the cluster.

We insert timestamp barriers on parts of the OLAM code to fimroutines of the
algorithm that increase the execution time as more prosessaised. The execution time

54

are more impacted by the routines called in the iterative atel by the output operations
of OLAM. The results indicate also that the barrier synclration time increases in the
same order as the increment of cores number used per node.

In order to evaluate OLAM multi-core contention of resowree instrumented OLAM
with Intel Vtune Performance Analyzer. The results indéctitat the L2 cache miss and
the memory bus traffic increases as the number of cores perinocases.

4.8 Final Considerations

This chapter contributes with an evaluation of performaorca multi-processor/multi-
core cluster of a real scientific application characterizgtligh processing load. We sim-
ulate a parallelized version of the OLAM atmospheric aggilan using MPI processes.
The tests show that the scalability of OLAM application getrst as we increase the
number of cores used in each node of the cluster.

We observe in the previous results that using only MPI preee# a today parallel
architecture does not explore well all levels of paralfaliSome of the features observed
in this chapter could be outlined by the use of techniquetsitbtier exploit the different
levels of parallelism (multiprocessors/multicore) andthgy expression of parallelism of
the application. The Chapter 6 will discuss some ideas taorgprogramming tech-
nigues in order to improve multilevel parallelism in the eod

Another challenge for climatological models is to incredmseresolution of the meshes,
without impacting in the application performance. This t@ndone through the use of
multiple layers of mesh refinement. These multiple levefseantually also explore the
parallelism levels of the architectures. Next chapteruses how mesh refinement at run
time can be provided in an atmospheric model.

55

5 ONLINE LOCAL MESH REFINEMENT

The mesh resolution impacts directly in the performance dfraatological model.
In Chapter 2 and Chapter 4 we discussed concepts about as@terae model, and
evaluated its parallel performance on a specific clustdmiature, respectively. We saw
that the atmospheric model implementation defines a meshutem, to cover the global
domain, statically at the beginning of the simulation, anovles also resources to set
parts of the domain with more (local) mesh resolution.

In this chapter we propose an Online Mesh Refinement (OMR)oagh for unstruc-
tured meshes distributed in distinct processes. The OMReimgntation allows local
mesh refinement at execution time, increasing the resolati@ discrete representation
of part of a domain. This solution provides higher mesh nesmh for atmospheric mod-
els with low impact in the execution time, providing alsotbenhumerical results.

5.1 Motivation to Improve Online Mesh Refinement

The forecast accuracy of climatological models are limligadcomputing power and
time available for the executions. As the number and speguoafessors increases, the
resolution of the mesh adopted to represent the Earth’ssgth@se may also be increased
(without changing a maximum execution time limit reservedthe simulation in a high
performance system), and, consequently, the numericatést will be more accurate.
However, a finer global mesh resolution, able to includellpteenomena in an atmo-
sphere simulation, is still not possible because of theelamgmber of mesh elements to
be included in the model, and consequently a large increfasesoution time.

To overcome this issue, different mesh refinement leveldesset statically to cover
distinct parts of the global domain simultaneously. Thia good approach if we previ-
ously know what parts of the global domain need to have a higéhmesolution, due the
impact of these parts in the precision of the final solutioa simulation. However, if the
regions that impact in the precision are know only at executime, the best solution is
to improve, at run time, mesh refinement for parts of the domai

A mesh refinement mechanism, like presented in the OLAM, eaorty applied in a
static way, that is, before the iterative step of the moddllzefore of each physical prop-
erties calculation. In this context, this chapter evals&i@v mesh refinement at run time
can improve performance for climatological models. In otdecontribute with this anal-
ysis, an Online Mesh Refinement (OMR) mechanism was provitled implementation
of the OMR increases mesh resolution in parts of a paral&tiduted model, when spe-
cial atmosphere conditions are registered during the eixecaf an atmospheric model.
Thus, it is not necessary to reboot the application to irsgdacal mesh resolution.

56

5.2 Related Work

The Adaptive Mesh Refinement (AMR) technique is frequenitigctin the literature
as a way to represent complex geometry and to increaseydballresolution for a thin
part of a domain (PLEWA; LINDE; WEIRS, 2003). This technigeaised in computa-
tional fluid dynamics to add fine grid patches to regions ofliwe where more resolution
Is needed, such as near shocks and detonations. The AMRgraficsintly speed up a
computation and/or enable simulations with a much highiecéde resolution as com-
pared to the uniformly refining of the grid approach. Effitienmerical schemes can be
written for overlapping grids since they are composed afcstired grids and Cartesian
grids (ZUMBUSCH, 2003).

There are many applications and interfaces developed tikiadgechnique (ZUM-
BUSCH, 2003). In (HORNUNG; TRANGENSTEIN, 1997) is presehgesolution using
AMR in a porous media fluid flow application. (DEBREU; VOULANBLAYO, 2008)
provide a set of function to apply AMR in FORTRAN codes. ThedHal Hierarchical
Adaptive MultiLevel (PHAML) library develops new methodsdsoftware for the effi-
cient solution of 2D elliptic partial differential equatis (PDES) on distributed memory
parallel computers and multicore computers using adaptesh refinement and multi-
grid solution techniques (MITCHELL, 2006).

An another example of programming interface for AMR applaas is provided by
the PARAMESH toolkit, a software designed to offer paradigbport with adaptive mesh
capability for a large and important class of computationaflels, those using structured
logically Cartesian meshes (MACNEICE et al., 2000). The RMESH package of
subroutines is designed to provide an application develapesasy way to extend an
existing serial code into a parallel code with adaptive nrefhement.

However, mesh refinement solutions, like PARAMESH, areriest to structured
grids and differ from the unstructured mesh adopted in méimatological models.

In relation to climatological applications, an executioné mesh refinement was sug-
gested for one of the first sequential versions of BraziliagiBnal Atmospheric Model-
ing System (BRAMS), during the design phase of the model EXRA et al., 2011)
(PIELKE; AL., 1992). However, this option has not been im#d in the parallel imple-
mentation of the model and is consequently not used in rembhtd simulations.

5.3 Static Mesh Refinement in the Ocean-Land-Atmosphere Maal

Local horizontal mesh refinement can be specified to covendetl geographic areas
with higher resolution after the setup of the global meshhatinitialization step of the
model. The definition of the region to be refined begins with thoice of a specific
geographic coordinate point of the Earth surface. Aftes,thil points included in the
area formed by a radius surrounding that point will be matkee refined.

Summarized, we can say that the refinement procedure deparal€artesian coor-
dinate point (Earth latitude and longitude), a radius afdde, a radius of longitude and
an angle of inclination of the ellipse formed by using the bamation of these two radii.
Figure 5.1 illustrates the distribution impact of each ast variables to define a region
of refinement. The figure shows also how the choice of the aaligiers the rotating of
the ellipse in order to better cover a region of the physitabasphere.

After the choice of the region market to be refined, each diszd element contained
in this area is subdivided horizontally into four new eletserfFigure 5.2 illustrates the

57

Latitude: -38°
Longitude: -67°
Angle: 330°

Lat. length: 4000 Km
Lon. length: 8300 Km

Figure 5.1: Mesh refinement area definition of a specific regibthe Earth. In this
example, parameters were determined for an ellipse areavéw Argentine.

T1

TO T4
T3 T2

Figure 5.2: Example of one level mesh refinement applied wirtp

decomposition of a mesh element marked to be refiitg, (/iew horizontally as a triangle,
in 4 new triangular elementd(, 72, T'3, andT4).

The level of resolution of the new refined region, in relatiorthe previous horizon-
tally representation of the region, is always doubled. ldeorto achieve specific local
mesh resolution values, the mesh points that represerd Hreas are subdivided cycli-
cally while the expected mesh resolution is not overcome.

OLAM allows various levels of horizontal mesh refinement iten be applied in dif-
ferent parts of the domain, that is, a given domain can bea@fseveral times. Since the
resolution of the final level of refinement applied is alwagsille in relation to the previ-
ous one, when multilevel refinements are adopted to an Initial Level (Ify@solution,
the Final Level (FL) of resolution will always be:

FL=1L/2"

The global grid and its refinements define a single grid, assggto the usual nested
grids of regional models. Grid refined cells do not overlathwhe global grid cells - they
substitute them. The parallel data distribution takes atoount the number of triangles
(the horizontal mesh points of the domain) after the stagsmrefinement to ensure a
good load balancing. Once defined the distribution of sulalosiamong the processes,

58

Table 5.1: Number of vertices, edges and triangles mesheslerior different mesh
resolutions.

Resolution Vertices Edges| Triangles
100 Km 25,002 75,000 50,000
50 Km 102,012 306,030 204,020
10Km | 2,550,252 7,650,750/ 5,100,500
5Km | 10,201,002 30,603,000 20,402,000

each process discards the global mesh, and keeps in memigrytonespective sub-
meshes.

Each OLAM MPI process is responsible for operating the fiomst of the iterative
step on a given subdomain. There is ho master process résjecios determining the
division of the load and then assigning it to slave processe®ccurs, for example, in
BRAMS. The distribution of data among the processes is seaahn one. Each process
determines its operating subdomain from the global grieeting to its MPIrank.

5.4 Finer Mesh Resolution Execution

The OLAM horizontal mesh representation is made by decomgadse Earth surface
in triangle points, according to the requested Resoluti®ngiven in Kilometers. The
Number of Triangles (NT) for a specific resolution dependshenEarth’s circumference
and is given by:

NT =20 x (5050/R)

Table 5.1 presents the number of edges, vertices and tesf@l 4 specific horizontal
mesh resolutions. In this table, we can see that the numlperiofs increases by a factor
100 if the adopted resolution doubles.

There is also a specific number of vertical layers (atmosphelumn) associate to
each horizontal decomposed triangle point. This numbdrasen according to the physi-
cal characteristics of the atmospheric layers. There @sralationship between horizontal
resolution and the size of atmospheric level to ensurestgaphysical proprieties during
the simulation. For example, for280 Km of horizontal mesh resolution, aroud ver-
tical levels can be adopted. For higher horizontal meshugea, this number needs to
be increased.

Data values of the physical properties of the model are &ssakto edge and triangle
elements of the horizontal mesh, and its specific verticadlge Ignoring auxiliary data
structures, and considering only physical proprietiesea@t30 different data structures
are required for a simple simulation.

Many atmosphere simulation steps, called in the iterataré @f the model, each one
representing a small real elapsed time, increase suladtartie execution time. This
computational time could be not acceptable, even using egformance architectures.

For a parallel execution usingf) core or processors, and execution parameters of
20 Km of mesh resolution28 vertical levels, simulating only one day of atmospheric
integrations, where each step represénts of the real elapsed time, arouddihours of
execution time are required for the simulation. That is ey simple simulation setups,
the simulation execution time would be almost equal to tla tiene of the atmospheric
transition.

59

Initialization 4" Iterative ‘ - ‘ Mesh Refinement ‘ -

Figure 5.3: Execution steps of an atmospheric model imuttyean OMR.

The total execution time elapsed in the simulation is catesl to the number of el-
ements that represent the domain. However, finer mesh redmemeeds to be adopted
only to cover local weather phenomena. In this context, tluce the execution time,
without loss of precision simulation, different mesh refirent levels can be used. The
best solution to cover local phenomena is to adopt highehmesolution in a global
Earth model when it is really necessary, using a runtime mefaiement.

5.5 Online Mesh Refinement Implementation

The refinement of meshes at runtime needs to take into coasime that the dis-
cretized points of the domain to be refined can be distributexl different processes.
Thus, the implementation of this feature considers that @aacess must be able to iden-
tify whether its respective subdomain has a region to beaeéfiithe refinement is called
at runtime.

Just as each process is responsible for setting its sub-ah#shbeginning of the code
execution, according to its MPI rank, now each processzesliocally the identification
of the domain area to be refined, since each point of the sidirmaintains a reference to
a global geographical coordinate system. Thus, it is ontessary to check if the global
localization of a mesh point is circumscribed in the regibthe domain that will to be
online refined. If the point is circumscribed, it will be suNided into four new triangles,
as illustrated and discussed previously in Figure 5.2.

All distributed processes know if the mesh refinement musinbee in its specific
sub-mesh. Thus, each process knows which points must bedeffter the refinement,
data structures of the new created points will be completed.

The mesh refinement at execution time stops the executiorefinds the distributed
sub-meshes points on specific Earth regions, according tonatological condition.
Next, data exchange are made among neighbor processesjeintorupdate the data
structures of the boundary points of each sub-mesh. Thdaesttactures are used by
communication functions called in the iterative step of¢bde.

After the conclusion of an online mesh refinement call, tlkeeative execution pro-
ceeds normally. Figure 5.3 illustrates all steps consaléyean atmospheric simulation
using an OMR implementation. In the figure only one OMR cakl®wn, but in the
simulations the iterative step can be stopped more thanimeddiy the OMR.

We compare the numerical results of all physical data sirestused in the simulation
of the ONR version with the results of a static mesh refinenvension of the code.
The computed results of both versions are similar considdhe use of identical initial
parameters.

5.6 Performance Evaluation

In order to measure the performance impact of the OMR we maderal experi-
ments. This section presents the simulation environme&ation parameters, and exe-
cution time measurements.

60

4500 T T T T T T
Total 1
Online Mesh Refinement Exx=

4000 [1

3500 [1

3000 [1

2500 1

2000 1

Execution Time (s)

1500 - E

1000 - 1

500 - 5

1 2 4 8 16 32
Processes

Figure 5.4: Execution time using 1 to 32 processes for a 100nkash resolution with
Online Mesh Refinement call.

5.6.1 Execution Environment

All experimental measurements were obtained using a clestaposed by 28 Sun
Fire X2200+ workstations, each one with 2 Quad-Core AMD @pte.2 GHz processors
and 16 GB of RAM, interconnected by an InfiniBand network tesdbgy. We could use
a maximum of 16 nodes of this cluster.

In all executions we simulated the atmosphere for 24 houeseh Each timestep
simulated 60 seconds of the real elapsed time of the weatmtiton. The vertical
atmosphere layer was divided in 28 layers. We use two ha@toasolution cases, 100
Km and 50 Km. The number and the size of each one of this lagezhase according
to the parameters adopted in large climatological simutatienters for its daily weather
forecasts.

An OMR occurs for specific tests in the half time of the exemutf the simulation.
The refinement of the mesh is realiz&)0 Km around a specific point of the Earth after
12 hours of atmosphere integration.

The standard deviation for all obtained results was less #¥ain relation to the
median time measured.

5.6.2 Online Mesh Refinement Execution Time Impact

A first test was made in order to analyze the impact of the OMPbodhe total execu-
tion time. Figure 5.4 and Figure 5.5 present the executioe tiesults of an atmospheric
integration, using a mesh witd0 Km and50 Km of horizontal mesh resolution, where
an OMR occurs during the execution of the code. The grapHittsese figures show the
total execution time and the total time spent to call the OM$tng1 to 32 processes.

Each column of the graphic represents the total executioa fior a determined num-

61

20000 T T T T

'Il'otal |:I|
Online Mesh Refinement Exx=
18000 [.

16000 | ,

14000 | 1

12000 ,

10000 1

Execution Time (s)

8000 [1

6000 r R

4000 1

2000 [-

1 2 4 8 16 32
Processes

Figure 5.5: Execution time using 1 to 32 processes for a 50 Keahnresolution with
Online Mesh Refinement call.

ber of processes. We can see that this time decreases whenpnoaesses are used.
Consequently, there are performance gains.

The second measurement (scratched area) of each groupaefspes presents the
time spent for the OMR call. The duration time of this stepppraximately130 s and
570 s, respectively, for the00 Km and50 Km of mesh resolution cases. This time is a
little more than the time spent with the initialization oktmodel, that id15 s and415
s, respectively, for the two analyzed cases. The time spetidtiae OMR includes all
necessary procedures to interrupt the iterative stepfiteerthe mesh in each process and
to reallocate variables.

The OMR has low impact on the total execution time. The timensgor this re-
finement is constant independently of the number of prosegsed in the atmospheric
simulations. The relation between the execution time ofQMR call and the total exe-
cution time decreases if more high mesh resolutions are used

5.6.3 Comparison between Static and Dynamic Local Mesh Refament

The second test evaluates the execution time impact of datimu using a runtime
mesh refinement in relation to finer and larger global meshesfents simulation cases.
Figure 5.6 shows a comparison of the parallel execution {imeeconds) o8 different
configurations using to 32 processes. The first and third columns show the total exe-
cution time using a global mesh resolutioniof) Km and50 Km, respectively, without
any OMR call. The second column represents the total exactitne for al00 Km grid
resolution, where an OMR occurs during the execution of duec

The results of Figure 5.6 show that all configurations haveaeahse of the execution
time, as a larger number of processes are used. The resuitsd&ate also that if we use
a double resolution5() Km) instead of a large resolution({0 Km), without a run time

62

20000 T T T T

Resoldtion of 100 Km |':|
Online Mesh Refinement kxx=x
18000 F Resolution of 50 Km Exzza

16000 .
14000 .
12000]
10000 .

8000 - T

Total Execution Time (s)

6000 - B

4000 T

gl Wi IS L

1 2 4 8 16 32
Processes

Figure 5.6: Execution time using 1 to 32 processes for 100 K@@, Km with Online
Mesh Refinement and 50 km of mesh resolution.

mesh refinement call, we spebdo 8 times more execution time.

The execution time using OMR was always between the ressilig 00 Km and the
50 Km resolution cases configuration. Thus, the evaluatiohefmplementation shows
that it is efficient, since not all the surface of the Earthdset® be refined all the time. In
fact, the total execution time increases a little in relatio the100 Km resolution case,
because the costs of the OMR call.

The OMR improve numerical quality for the simulation resuftit is necessary to
the model. That is, a region of the Earth need to be highere@fonly when special
atmosphere conditions occur.

5.6.4 Speed up Evaluation of the Iterative Step of the Model

OLAM execution time measurements are also made, evalutitergartial execution
of the iterative step. Through these measurements it wasilppedo establish the speed
up of the iterative step of the model in parallel simulations

In Figure 5.7 and Figure 5.8 are presented the speed up d&tlaéive step before and
after an OMR call for a mesh with global resolution1®H Km and50 Km, respectively.
The number of MPI processes used was 1 to 32.

In both cases, the continuous lines present the speed upekmwidOMR call and the
non continuous lines are the speed up after an OMR call. Tée toecalculate the speed
up was the execution time using a single process for each rasshution.

The use of more processes provides more performance indfaive step of the
model for both mesh resolution cases. However, the itexagtep executed after the
OMR call increases less speed up than the iterative stepudbefore the OMR call.
This occurs because the unbalance load among the proc&egagason why this occurs,
and solutions to resolve this issue are discussed in theseekbn.

63

Before OMR —o—

20 | After OMR =

15

10 -

Speed up

16

32

1
Processes

Figure 5.7: Speed up comparison of the iterative step of thedehbefore andafter the

OMR call for a global mesh resolution of 100 Km.

T T
Before OMR —e—

20 After OMR =

15 -

10 -

Speed up

16

32

1
Processes

Figure 5.8: Speed up comparison of the iterative step of thdeibefore and after the

OMR call for a global mesh resolution of 50 Km.

64

Table 5.2: Unbalancing Load after an Online Mesh Refinemsinig$ processes.
Before Online Refinement | After Online Refinement
Proc. | Vertices| Edges| Triangles| Vertices| Edges| Triangles
0 3408 | 9873 6468 3408 | 9873 9873
3394 | 9925 6534 3394 | 9925 6534
3412 9952 6543 5667 | 16549 10857
3439 | 10041 6605 5933| 17362 11404
3421| 9959 6541 3421| 9959 6541
3432 | 10042 6613 3432 | 10042 6613
3451| 10070 6622 6427 | 18491 12067
3452 | 10131 6682 5952 | 17556 11607

N OOl B W N~

5.7 Improvement of Load Balance Distribution

The runtime mesh refinement approach, described beforggsbtinbalanced distri-
bution of load after it is called, since some processes mayat@ new data elements
to compute and others not. These new data elements are nsiriteded among all
processes. Because of this, the number of data elementsmoute is higher in some
processes, where the sub-mesh is refined, than others.

5.7.1 Unbalanced Load Problem

Table 5.2 presents the number of decomposed elements fonaievith 100 Km of
mesh resolution divided in 8 processes before and after kg Calll.

In this table it is possible to see that the number of Verfiégdges, and Triangles
for the processe®, 3, 6 and7 increase after the OMR execution. The localization of the
increased points depends on the place of the Earth atm@sphere the mesh refinement
occurs.

Load balancing can be provided by redistributing the load &l processes. But
this involves many data exchanges. On the other hand, théameof new processes or
threads is a simple solution and can be applied for all MPtgsees.

5.7.2 OpenMP Solution

In order to better distribute the load among the processe$fiave added an OpenMP
layer to the MPI program.

OpenMP is a parallel programming interface used to abstnatti-processors archi-
tectures. The interface is also a good solution to explorallgism in multi-core systems
(CURTIS-MAURY et al., 2008). This approach enables the a&ean of parallel loops
in order to increase the performance of the code. OpenMPs@salgood solution for
climatological applications (OSTHOFF et al., 2011a,b).

In this work, OpenMP enables to benefit from thread-basedwoency, added to the
MPI parallelism. We choose OpenMP programming interfaceabse it abstract very
well loop parallelization. Thus, each MPI process divideslbad among a specific num-
ber of OpenMP threads.

65

20 T

1 Thread ——
2 Threads —=—
18 + 4 Threads —=&— .
8 Threads —e—

16 - b

14 - -

12 —

10 - —

Speed up

=
N
N
[ee]

Processes

Figure 5.9: Speed up of the iterative step execlnefdre the OMR call using different
number of OpenMP threads in a simulation with MPI processes.

5.7.3 Performance Impact of OpenMP Threads

The use of OpenMP threads was evaluated in some atmospimeulasons consid-
ering meshes with initial horizontal resolution 80 Km. Figure 5.9 and Figure 5.10
present the speed up of the iterative step of the model bafudeafter an OMR call, re-
spectively. In the tests we compardo 8 MPI processes, each process running in one
node, for an atmospheric simulation using an initial hantab mesh resolution of00
Km. We run1 to 8 OpenMP threads in each MPI process.

The results show that the use of threads OpenMP increadesrpance in the partial
iterative steps before and after the OMR execution for athbers of MPI processes eval-
uated. The combined use of more tl#nthreads/processes does not add a significantly
performance because the most part of the execution timeeisdspith the initialization
step.

Table 5.3 presents comparatively the speed up shown ind-g@rand Figure 5.10.
The first column indicates the partial kind of the iteratiweeution: be fore indicates
the simulation before the OMR, andfter points the simulation after the OMR call.
The second column shows the number of MPI processes usedhrpaatial kind of the
iterative execution. The third to the seventh column presséire speed up obtained using
1, 2, 4, and8 OpenMP threads. The initial speed up is based on the seqlexgicution
of each part of the iterative step.

For the simulation results presented in the table, the firsslconsiders only OpenMP
threads in the simulation, the third column uses only MPtpsses, and the other mea-
surements combine MPI processes with OpenMP threads. Bhdggresented in the
table show that the second part of the iterative step hasedageclose to the first part
in most of the cases. The use of more threads improves loaddag for the last part of

66

20

T
1 Thread ——
2 Threads —=—
18 + 4 Threads —=&— .
8 Threads —e—

16 .
14 + .
12 .

10 - —

Speed up

=
N
N
[ee]

Processes

Figure 5.10: Speed up of the iterative step execafeel the OMR call using different
number of OpenMP threads in a simulation with MPI processes.

Table 5.3: Speed up for the iterative execution steps befodeafter an OMR.

Step | Processors 1 2 4 8
before 1 1.00| 1.85| 3.00| 4.3
after 1 1.00| 1.80| 3.15| 4.36
before 2 2.04| 3.57| 5.81| 8.26
after 2 2.05| 3.48| 5.88| 8.62
before 4 4.05| 6.76| 11.24| 9.70
after 4 3.151481| 835| 8.86
before 8 7.97|8.16| 10.69| 13.24
after 8 6.18| 8.68| 10.55| 11.11

the iterative step and, consequently, less total exectitizs

5.8 Conclusions of this Chapter

In this chapter we have presented online mesh refinement ag/ donmprove the
mesh resolution for climatological models without a sigrfit increase in the execution
time. This refinement scheme enables to refine the global wiealmodel during the
execution of the code without rebooting the application.sMeefinement at execution
time is critical for climatological models that will covene impact of local phenomena,
inputing more resolution only when it is necessary.

We presented partial and comparative execution time inrdodevaluate the dynamic
mesh refinement. The partial measurement results showheratis a time spent with the

67

refinement step. However, it pays because we do not need thewode considering all
Earth surface, with more resolution, all the time. Thushhigsolution is only adopted
when special climatological conditions occur.

We also evaluated a mixed MP1/OpenMP parallel implememtafl he mixed imple-
mentation improves the parallel performance for simutegiof the model, where mesh
refinements occurs at execution time. In this sense, neptehdiscusses more about the
use of different parallel programming interfaces in ordepérform atmospheric applica-
tions on hardware of multi-levels of parallelism.

68

6 MULTI-LEVEL PARALLELISM

In Chapter 4, OLAM was executed over a multilevel paralleh#ecture, obtaining
restricted speed up in the performance results. In the er€hapter 5, the combined
use of MPI and OpenMP was utilized to provide better perferteao executions using
Online Mesh Refinement. In this chapter we continue to dsdwsv applications for
simulating atmospheric models can well exploring diffédemels of parallelism.

6.1 Motivation to Explore Multilevel Parallelism

Theoretically it is possible to determine an optimal disition of load if we know the
processing capacity of each level of parallelism and theastrexecution of the applica-
tion. However, some factors like irregular execution of tieele, large waiting time for
synchronization and load redistribution at execution tfich@ not ensure a good perfor-
mance for the application.

Different execution times can be obtained in a multilevelafialism environment,
depending how the parallelism of the application is expaeskdistributed in each parallel
level. Because of this, it is important to define the numbeasiks and what kind they are
(threads, processes, ...) for each type of applicationassabf applications to efficiently
explore a parallel architecture. This depends basicaltii@franularity of the tasks to be
performed in each parallel level.

6.2 Related Work: Multi-Level Parallelism in Atmospheric M odels

There are several works describing the use of multi-coregssors and GPUs to com-
pute applications of domain decomposition, fluid dynamied, aalso, weather forecast
(COHEN; GARLAND, 2009).

Hybrid programs that combine multiple parallelizationgaigms, such as message
passing and/or multi-threading with an accelerator Ijgrare still relatively rare (HACK-
ENBERG; JUCKELAND; BRUNST, 2012). Their importance, howewhas increased
as hybrid HPC systems such IBM Cell and NVidia GPU clusters.

In (LINFORD; SANDU, 2011), methods for improving the periwance of two-
dimensional and three-dimensional atmospheric simulata constituent transport are
examined. A offloading function approach is used in a 2D partsnodule, and a vector
stream processing approach is used in a 3D transport modwe.methods for trans-
ferring noncontiguous data between main memory and aetetdocal storage are com-
pared (LINFORD, 2010). The results of the study demongrtite potential use of het-
erogeneous multicore chipsets to speed up geophysicalagions, through the use of an

69

IBM BlueGene/P with eight Intel Xeon cores on a single Pow@eX 8i chip.

In (MICHALAKES; VACHHARAJANI, 2008) is shown the speed uprfa computa-
tionally intensive portion of the Weather Research and ¢ase(WRF) model, increasing
8 x the performance on a variety of NVIDIA GPU. This change alortée model speeds
up the whole weather model ky23 x.

In (SHIMOKAWABE et al., 2010) is presented a full CUDA porgjrof the high res-
olution weather prediction model ASUCA. ASUCA is a next-getion of a production
weather code, developed by the Japan Meteorological AgeASUCA is similar to
WRF. Benchmark on th&28 (NVIDIA GT200 Tesla) GPU TSUBAME Supercomputer
at the Tokyo Institute of Technology demonstrated over@@-§peedup and good weak
scaling, achievind5.0 TFlops in single precision for a mesh wif956 x 6052 x 48
elements.

WRF and ASUCA are examples of local atmospheric models. tnvouk we provide
parallel implementations for a global atmospheric modeirater to run the experimental
executions over multi-core and GPUs cluster.

6.3 OLAM Parallel Task

A Parallel Task is an abstraction that defines the granylafia concurrent execution,
that is, a set of instructions that necessarily operate ayaential execution flow. The
observation of where the parallelism can be found in an egfptin, considering the input
data that are processed and the dependencies that exist dhese data, helps in the
determination of the parallel task.

A parallel task is defined in OLAM code by data structures state the physical
atmospheric state, and functions (methods) that mangpthate data structures, simulat-
ing the atmospheric conditions during the elapse of timeagk ttan be, for example, a
process, a thread or other execution kind abstracted bygagroning interface.

6.3.1 Data Structures for Atmospheric States

Each element of the discretized atmospheric domain (mesi) as values of data
structures associated with itself. Thus, the number of efemcontained in a determined
data structure is equal to the number of discretized poiritsscatmosphere.

The data structures store the values of different physicgineties that are simulated,
like pressure, temperature or wind velocity. Some dateciiras are associated with
the discretized points of the Earth surface (triangles)jembthers are associated with
the discrete edges. In both cases, each element of the dattusts has also values
associated for each level of the vertical atmosphere col@teording to the number of
levels of this dimension.

Examples of data structures that represent the atmospbrecieties are shown in
Algorithm 6.1.

The number of elements allocated for the first pointer ofdtuegta structures includes
all horizontal discretized points of the Earth. Verticaldepoints are associated to each
horizontal point (second pointer) in order to storage theecal value of each physical
propriety from the discrete atmosphere.

6.3.2 Procedures or Methods to be Executed

The simulation of the model involves the invocation of savéunctions iteratively.
These functions are controlled by the discrete time of theuktion. Each step of the

70

Algorithm 6.1 Data structures for atmospheric proprieties variables.

double **ump; //past horizontal momenturg/ (m?s)]
double **umc; //current horizontal momenturig/ (m?s)]
double **wmc; //current vertical momentunaq/(m?s)]
double **uc; //current horizontal velocityi}/ s]

double **wc; //current horizontal velocityp/ s]

double **sh_w; //total water specific densityd,.q:/kgair]
double **sh_v; //specific humidityXg,ap/k gair]

double **thil; //ice-liquid potential temperaturé(]
double **theta;//potential temperatur&’]

double **press;//air pressuré’fz]

double **rho; //total air densityKg/m?]

iteration is equivalent to a determined transition of tred tene.

The functions that manipulate the data structures simukedransition of the at-
mospheric state. Each function operates on some dataws&actMany computational
operations involve the interaction of elements of a datectire or among data structures
of neighbor discretized points of the mesh. These opemtommade by looping through
each element of the mesh. Usually, nested loops are useden tr follow the loop of
horizontal and vertical elements of the mesh.

6.3.3 Data Dependencies and Communication Between Tasks

For parallel executions, the data structures are divideohgnthe parallel tasks. That
is, each task invokes the same functions over part of theegitsof the data structures.
Therefore, each task keeps only the necessary part of thesttattures in relation to a
sequential process.

The computational operations for a specific element of astatature depend on the
element itself and some neighbor elements. These neighdmeats could be in other
processes. Because of this, there is a data dependency dmegoaytitioned elements of
the data structures that are parallel distributed.

Consequently, data exchange is necessary in each itestgpef the model if MPI
processes are used. Consequently, each process has lyoeiedants associated for all
data structures (subdomain). These boundary elementgdetad in each iteration in
order to provide the correct values for the computation.

Data exchanges are made in each step of the main loop exeofitiee code according
to Section 2.9. Each process have auxiliary data structuregshese data structures,
all discretized elements of the global mesh of OLAM have aldedex value and the
respective process ranking for this element. The auxildgatie structures for vertices,
edges and triangles elements are presented in Algorithm 6.2

An example of utilization of these data structures for indgxriangles is shown in
Figure 6.1. The use of these data structures in associattbrilve data structures of the
domain representation, as presented in Section 2.8, entblmap the elements of the
physical data structures. The physical data structures taoelge interchange in each step
of the iterative execution part of the model, after they grdaied.

For MPI processes, data elements are grouped and encapsatabrding to the des-
tination of the message. One or more elements of distinet statictures can be encap-
sulated in the same message. The number of distinct elerokdéda structures encap-

71

Algorithm 6.2 Auxiliary date structures for indexing processes and lgedices, edges
and triangles.
typedef struct { //data structure for vertices pts (global)

int im_myrank; //local subdomain index of this vertex pt

int irank; //parallel process rank at this vertex pt
}itabg_m_vars;

typedef struct { //data structure for edges pts (global)
int iu_myrank; //local subdomain index of this edge pt

int irank; //rank of parallel process at this edge pt
}itabg_u_vars;

typedef struct { //data structure for triangles pts (glgbal
int iw_myrank; //local subdomain index of this triangle pt

int irank; //parallel process rank at this triangle pt
}itabg_w_vars;

1| 2(3|4|5|6|7|8| 91011 (12|13 |14 |15 |16 |17 |18 |19 |20 | 21| 22| 23| 24| Global Domain Index

1|1(2(3|1|2|3|4|4|2|3|4|2|2|3|12|1|2|3|4|2]|3]|4]| 4| Local Domain Index
P5 |PO [P0 |PO |P1|P5 [P5 |P5 [P0 |P1 |P1 |P1 |P4 |P4 |P4 |P3|P2 |P2 |P2 |P4 |P3 [P3|P3|P2| Process

PO
2 4

1 3 5 P5 1 2 1 P1
YAV, VAVAVAVIN

6 8 10 12 2 4 2 4

13 15 17 19

1 3 1 3
NN Vz%vv
P4 P2

20 22 24 \‘/a 3 .a\4/

21 23
P3

Global Domain Index Local Domain Index

Figure 6.1: Example of indexing triangle elements of thelmes

sulated can change, depending on the settings of the siotulé& encapsulated message
includes also the global index value of the edge or triangietpin which the elements of
physical data structure belong. The receiving procesgsetaies the message and finds

the local index value, using the global index value receivethe message, to save the
received physical data.

6.3.4 Computation and Communication Costs

The number of triangles and edges for a specific resolutigemi#s on the Earth
circumference as presented in Section 5.4. Conside¥ing 5050/ R, whereR is the
resolution of the mesh, the global number of triangles aggsdor a specifié: resolution
is given by20(N?) and30(N?), respectively.

If we divide the total number of points iy processes, each process computes iterative
loops over20(N?)/P and30(N?)/ P triangle and edge mesh elements, respectively. The
number of physical data structures associated with meshegits of triangles or edges
differs depending on the parameters of the simulation. &4t20) data structures are used

72

= Triangles

Q

Boundary Triangles

VA

Figure 6.2: Boundary elements to update between Process Praness 1.

in both cases. The number of loop operations using thesesttatztures can to change
too.

In a mesh without local refinement, each parallel procesahkst3 neighbor pro-
cesses. The communication costs to update each one ®hiighbor processes is given
by 20N/ P, for both triangle and edge elements. Usually, the numbghgtical data
structures encapsulated in each message is bethvaeds.

Three calls of data exchange are made in each iterative thp model. In the first
message, encapsulated boundary elements of physicaltdattuses associated to the
triangle kind of the mesh are send/receive. The two last agessencapsulate boundary
elements of physical data structures associated to thekaagief the mesh.

Figure 6.2 illustrate®2 sub-meshes and the boundary triangles and edges between
P0 and P1 processes, that need to be send/receive to/from the neighbcess. In this
example, each process operates data structures assdoiat@dhypothetical triangles.
Data structures associated to thboundary triangles (filled and shaded triangles) need
to be exchanged. In this figure, data exchange was illustatly for one boundary side
of the mesh.

In both, processing and communication of data elementsiuheber of vertical levels
were disregarded in the previous calculations. This dinoensf the data structures is not
parallelized because it has low granularity. The operatiover all vertical levels of a
element of a data structure can be concurrently executecetipwal operations or by
PARALLEL FORexecutions.

6.4 OLAM Parallel Implementation

Programming a climatological application demands con@xXnowledge since there
is a strong dependency between code and model. The soure®tttis kind of applica-
tion is also very large and difficult to understand and to balpeized.

In this context, it is important to provide an abstractionhe parallelism, allowing the
expression of different levels of granularity. Thus, it @spible to adapt the granularity
according to the multiple levels of parallelism provideddvyarchitecture.

6.4.1 OLAM Prototype

In order to reach the objectives of this thesis, a simplifiecsion of OLAM was
implemented in the C language. This prototype includes thm mharacteristics of the
model, including domain decomposition, mesh refinemengligh data distribution, en-

73

capsulated MPI send and receive resources, and all negéssarstructures and functions
to execute it. We opt to rewrite the code because C was thédirgtiage that allowed to
couple with a CUDA code.

The objective of this prototype implementation of OLAM isgmvide different lev-
els of abstraction of parallel code for climatological apgifions. Thus, is possible to
adapt different parallel programming interfaces for tewdations, like message-passing
resources for distributed memory systems and shared manterfaces for multiproces-
sors and multi-core systems.

We use some parallel programming interfaces such as MPhi@Beand CUDA on
the developed prototype. Next, we discuss how these icesfevere coupled to the im-
plementation of the OLAM. In the sequence, we will to evaduisie performance impact
of these interfaces for the simulations on a hardware platfo

6.4.2 Programming Interfaces Used

Although the OLAM parallel implementation was developethgdViPI already, an-
other natural possibility for the parallelization is to 8penMP pragmas (CHANDRA,
2001). OpenMP is a programming interface that exploitslfgism of shared memory
systems. In general, the parallelization of a implemeatatiith OpenMP is very simple,
using concurrency on the loops.

OpenMP parallelism was combined with the MPI implementati®hus, it is possi-
ble to exploit parallelism of multiple levels of hardwaré b@th shared memory (multi-
processors and multi-cores), and distributed memory sys{enulticomputer).

Other parallel programming interface to provide multileparallelism adopted was
CUDA (KIRK; W. HWU, 2010). CUDA was used to access the patwe provided by
GPUs. We choose CUDA because it was the first interface deedlto program graphic
cards.

OLAM implementation of the prototype using CUDA involves ttewriting some
functions of the C code, converting it to a CUDA kernel coddne Tmplementation of
the functions that encapsulate the allocation, deallonasnd memory copies between
CPUs and GPUs is also necessary. Thus, all temporary arrables used in CUDA
kernel functions need to be allocated before the call of theiive step of the model
and released only after the execution of all steps of itezgiart. This is make to reduce
the number of memory allocations in the CUDA kernel and, egagntly, the execution
time.

Moreover, in each iterative step of the model, before eathotaa CUDA kernel
function, it is necessary to move data from CPU to GPU aney dlfte execution of a
iteration, data exchange from GPU to CPU.

CUDA kernel functions were also embedded in a MPI implemt@na In this way,
three levels of parallelism (GPUs, Cores/Processorst-prteeessors) can be employed
for an atmospheric simulation.

6.5 Exploration of Multi-Level Parallelism

Multi-level parallelism for climatological models was daped by the combination of
MPI with OpenMP or CUDA. MPI processes are created at thenmagg of the simula-
tion. New threads OpenMP or CUDA are launched for the iteegiart of the simulation.

74

6.5.1 Implementation

The iterative step of the OLAM prototype is composed by thHreections interca-
lated by MPI encapsulated functions. A pseudo-code of drative step is presented in
Algorithm 6.3.

Algorithm 6.3 Iterative step of the OLAM prototype.
prog_wrtu() {

hflux();

send_recv_uf();

prog_wrt();

send_recv_w();

prog_u();

send_recv_u();

OpenMP threads are created through the addition of theuctsin:
#pragma onp parallel for

These pragmas are added to the loopsfdfux (), prog_wrt () andprog_u()
functions.

For the implementation of the CUDA version, each of the tHteetions of the it-
erative step are converted to kernel CUDA functions. Thesetfons are called by C
functions of the iterative step of the code.

Each GPU core run concurrently data structure elementsiassd to a discrete mesh
point. Data structures are exchanged before and after eachidn call, between kernel
CUDA and CPU memory. To due this we use the functardaMentpy() .

Both OpenMP and CUDA versions can be combined with a MPI imletation. In
this case, if an execution uses more than 1 process, it iss@geto made data exchanges
among the MPI processes. In order to evaluate the perforenasiog different configu-
rations of these interfaces, some experiments were mageesanted later.

We compare the numerical results computed for the diffgrardllel implementations
of the prototype. The results are similar among all casessidering the use of identical
initial parameters for the simulations.

6.5.2 Execution Environment

The experimental measurements for the tests of the muki-parallelism were made
using two machines. Each machine is composed by a Intel C&&0 model, a quad-core
processor with 2.80 GHz, Hyper-Threading technology andBBd¥icache size. These
machines have also, each one, 12 GB of RAM memory and a Nvidii& @0 graphic
card, used for the tests with the CUDA version of the impletaigon.

GTX 480 is a Nvidia Fermi architecture. It contains 15 mulbigessors (Scalar Mul-
tiprocessors - SM) with a processor clock equal to 1401 MHachEmultiprocessor is
composed by 32 CUDA cores (warps). Thus, the total numbeftudA& cores is 480 in
each GPU. Each core has one floating point and one integezgsiog unit.

In each simulation, we integrate an atmospherd fdnours, considering0 s for the
real time transition of the atmosphere at each iteratione Atimber of vertical atmo-
spheric levels wa28. The horizontal mesh resolution was se6inkKm.

The standard deviation for all obtained results was less #iain relation to the
median time measured.

75

2500 T T T T T

Total —3
Initial EXXX
2000 -
£ 1500 F -
(0]
S
|_
c
2
5
[5)
£ 1000 | .
n
500 -
0
1 2 3 4 8

Threads OpenMP

Figure 6.3: Execution time using OpenMP threads runningigmode.

For the tests, we evaluate first the use of OpenMP in shareéeinsgs Next, we com-
bine OpenMP pragmas with MPI processes. In the sequencas¢ha CUDA was tested
using one GPU. At last, CUDA functions were used into MPI psses.

6.5.3 OpenMP Parallelism in Shared Memory Systems

A first test was made evaluating the performance of the madeguOpenMP threads.

In Figure 6.3 is presented the initialization step and texacution time of the proto-
type paralleled only with OpenMP, running on a quad-corehimec As only one process
is used, the initialization time is constant, independeotithe number of threads used in
the iterative step execution.

The results show also that the use of more threads improVasitg for the imple-
mentation. The speed up obtained, ustnidpreads, was.27. Therefore, OpenMP can
be an alternative to the use of MPI processes in shared mesgstgms like multi-core
processors.

6.5.4 OpenMP and MPI Multi-Level Parallelism

A second experiment was made, combining OpenMP threads &igpMcesses, in
order to explore multiple levels of parallelism of the pryfee.

In Figure 6.4, the initialization and the total executiongiof the model are presented,
using different number of OpenMP threads, in simulationgvem quad-core machines.
X-axis presents the name of the configurations evaluatedreMie number before the
letter P indicates the quantities of processes used and the numbeedreP and T’
represents the sum of threads used in the simulations.

The first4 left columns of the graphic present the results, for all geshumber

76

800 T T T T T T T T
Total —
Initialization EXxXx

700 —

600 - T

500 T

400 | ;

Execution Time (s)

300 —

200 —

100 n

1P8T 2P4T 4P2T 8P1T 2P8T 4PAT 8P2T 16P1T
Processes MPI - Threads OpenMP

Figure 6.4: Execution time using threads OpenMP and presdg®I in two nodes.

combinations between processes and threads, to run thd mitlle€ processes/threads
(tasks). The last columns show the results for the combination of processesharads
to run the model with 6 parallel tasks.

The use of more processes and less threads presents betietiex time for a same
number of parallel tasks. Although the increase of the nurab®penMP threads called
in a simulation (considering a fixed number of MPI processedilices the total execution
time, this not occur if the same total number of tasks are @veth

OpenMP threads run concurrently only some functions of teetive step of the
model, as presented in Subsection 6.5.1, whereas MPI mexesn all functions in par-
allel. Moreover, data exchanges are made only between Mépses running in distinct
nodes. Processes running on a shared memory system nooneselthe network inter-
face if a function for data exchange is called. Instead, cofyies of memory are made.

In these initial results, the use of restricted MPI procegsevides a somewhat better
performance than the use of OpenMP threads, if the same mafiheeads and processes
are compared. On the other hand, the associatioharf8 OpenMP threads t@ MPI
processes running in two nodes decreases the total exeduntie in relation to the best
performance result obtained running the prototype in onky node.

6.5.5 Performance Impact of CUDA for Different Mesh Resoluions

Another alternative to improve performance for the prgvetys adopt GPU paral-
lelism. Different execution time were measured for the aramplementation using
CUDA, running on a GPU.

A first test was made to evaluate the performance impact of &UWd different mesh
resolution sizes. Figure 6.5 shows the execution time measnts, for a sequential

77

2500 T T T . T T T T T T T
Sequential Execution Time C—

CUDA Execution Time EXXX —

2000

1500

Execution Time (s)

1000]

500 T

Oﬂzﬁﬁ@ak i
150 140 130 120

110 100 90 80 70 60
Resolution (Km)

Figure 6.5: Execution time measurement for sequential AdAimplementation using
different mesh resolutions. CUDA thread$ £.

implementation and a CUDA parallel version of the code. Tlesimresolution adopted in
the tests was from50 to 60 Km, varying in10 Km between each case. For the simulations
using a CUDA kernel;12 threads were utilized.

The results show that, the more the mesh resolution set, ¢ine the execution time
for both sequential and CUDA implementation. For all mestohation cases, CUDA
implementation has a smaller execution time than the sdiglierersion. The perfor-
mance gain of the simulations using CUDA in relation to thesi@ running on only one
core/processor is almost similar for all mesh resolutiohke average of performance
gains for thel0 cases evaluated wast3.

6.5.6 Execution Time Impact for Different CUDA Threads Number

In a second test, a simulation using high mesh resolutionevakiated, comparing
the execution time obtained for the use of different numbéGUDA threads.

Figure 6.6 presents the initialization and the iteratiepsif the execution time using
a number ofi 28 to 2048 CUDA threads. Only one CPU process was utilized. In the figure
is possible to observe that the initialization time is sanilor all cases. The tests using
512 threads or less demand more execution time for the iterstejeof the model.

The use 0fl024 CUDA threads presents the lowest execution time of thetitera
step. This configuration provides the best granularity foesolution of60 Km of the
decomposed domain of the Earth. The numbdi0afi CUDA threads will be adopted for
the next measurements of execution time.

The total number of concurrent instructions and the numbbeéhreads used for a
CUDA simulation impacts in the size of the block. The blockesis the number of con-

78

700 T T T T T T T T T T T T
Total —3

Initialization EXxXx

600 H —

500 H —

400 H .

300 [M

Execution Time (s)

200 M

100 f M

128 256 384 512 640 768 896 1024 1280 1536 1792 2048
Cuda Threads

Figure 6.6: CUDA execution time ranging the number of thesasked for a simulation of
40 Km of mesh resolution.

current tasks that each thread needs to compute. In thetygsetof OLAM, these tasks
are composed by instructions computing data structurexiased to edges or triangles
elements of the mesh.

CUDA threads and its composition in blocks were indexedy@mlone dimension)
for the simulations. Table 6.1 presents the relation of thalmer of threads and the block
size (number of partial points of the Earth surface) for tkecation of each function
called in the iterative step. Functioh§| ux() andpr og_u() operate over edges and
prog_wrt () overtriangles mesh elements.

Although the number of blocks decreases as more threadseade there are other is-
sues that impact in the efficiency of the execution. Thesgesare related to the number
of registers used in each core and the memory size demandgdréodata and instruc-
tions.

6.5.7 Using CUDA with MPI processors

The parallelization of the prototype using CUDA was also borad with MPI pro-
cesses. This mixed implementation allows to compute theatrmder GPU and cores of
a CPU.

In Figure 6.7, the initialization and total execution tinfelee simulations using only
one machine are shown. The number of CUDA threads used iresitie wasl 024. We
evaluate the use dfto 4 MPI processes number.

The results of the figure show that the execution time dees@smore MPI processes
are used. Although there is only a graphic card in the commgde, the use of more
processes improves better utilization of the CPU and GPthumse the total size of the

79

Table 6.1: Number of CUDA threads and the respective blop& sf elements used in
each function called in the iterative step.

Threads | Block hflux | Block prog_w | Block prog_u
128 1694 1129 1694
256 847 565 847
384 565 377 565
512 424 283 424
640 339 226 339
768 283 189 283
896 242 162 242
1024 212 142 212
1280 170 113 170
1536 142 95 142
1792 121 81 121
2048 106 71 106

data structures is sub-divided among the processes.

A reduction of the execution time also occurs if more proessse created. Figure 6.8
presents the measured results of initialization and togat@tion time usin@ machines
for the simulations of 1, 2, 4, 8 and 16 MPI processes.

In this case, there are 2 CPUs and 2 GPUs to compute the cotie atrhospheric
model prototype. Each CPU runs the half of the total numbénief processes created.
MPI processes need to exchange data through the netwdik, firocesses are running in
distinct machines.

In the results of the Figure 6.8 is possible to observe trautde of 2 processes not
improve performance gain, because the costs of commumicigthigher than the gain in
the parallel computation.

The test usind6 processes has higher initialization time than the otherscagaluated
because there are more processes running than cores bailais test was made only
for analyze the performance of this condition.

The use oft processes in the simulations decreases the executiontirkation to the
result obtained, using only one node. The us@ pfocesses has the best performance.
These results demonstrate that the mixed implementati@lU®A and MPI is a good
alternative to explore multiple CPU and GPUs architectures

6.5.8 Execution Time Comparison Between MPI and CUDA/MPI Inplementation

In order to understand the real impact of the use of GPUs inpr@rmance of
the atmospheric application, comparisons between theuswactime using CPU and
CPU/GPU are made.

Figure 6.9 presents the execution time of a version of théoprme running only
with MPI processes (white columns) and a version implentewieh MPI processes and
CUDA threads (scratched columns). Two machines, as theiggen in Subsection 6.5.2
are used for the tests.

In the figure it is possible to see a reduction of the executiae for both cases, as
more processes are used. This is more impacting for the aifonlusing only MPI pro-
cesses. However, CUDA threads combined with MPI procesaebétter performance

80

400 T T T T
Total ——

Initialization XxXx<x

350 T

300 T

250 n

200 —

Execution Time (s)

150 - —

100 - —

50

1 2 3 4
MPI Processes

Figure 6.7: Execution time of a combined implementation 03& and MPI running on
1 node.

400 T T T T T
Total ——3
Initialization KXxXx

350 —

300 —

250 —

200 T

Execution Time (s)

150 | T

100 | T

50

1 2 4 8 16
MPI Processes

Figure 6.8: Execution time of a combined implementation 0D& and MPI running on
2 nodes.

81

2500 T T T T T
MPI ——
MPI-Cuda EXXX

2000

1500

Execution Time (s)

1000

500 T

0 L L L L L
1 2 4 8 16

MPI processes

Figure 6.9: Comparison of the execution time between MPI@QUJ@®A/MPI implemen-
tation.

than the implementation using only MPI processes.

Considering the use of only one process, the simulatiorguSIiDA combined with
MPI has a performance up tox over the sequential version. This relation decreases if
more processes are used, but the performance of the mix@dwés more thad x faster
than the restricted MPI versiondfprocesses are used.

The maximization of the use of the hardware resources pesvide better perfor-
mance for the prototype.

6.5.9 CUDA Atmospheric Simulation of the Online Mesh Refinerant

The Online Mesh Refinement (OMR) presented in Chapter 5 weal@aimple-
mented and evaluated with MPI and OpenMP combined with M@l Noerformance
evaluations of the prototype implemented using CUDA areemadnsidering a simula-
tion that realizes an OMR.

In Figure 6.10 is presented a comparison of the executioa éfthe OLAM proto-
type, for parallel implementations using MPI, OpenMP andd®@L.tombined with MPI.
The number of MPI processes or OpenMP threads usédasl. The simulations were
made in only one machine.

An OMR occurs afte2 hours of atmospheric integrations. After the OMR call, the
execution continues unt4 hours of the atmospheric simulation.

The results show that all configuration decrease the tottwdion time as more
processes/threads are used. Comparatively MPI has a setdl Iperformance than
OpenMP. However, CUDA combined with MPI has the best exeauime for the three
cases evaluated. For all cases, the initialization and OtdRtsas low impact in the total

82

6000 T T T T T 1 T T T
Iterative 12—-24 hours—=—
Online Mesh Refinemert==
lterative 0—12 hourg===
5000 2 Initialization ===2
w
5 4000 -
£
|_
S 3000 -
5
(&)
@
w 2000n -
1000 -
1 2 3 4 1 2 3 4 1 2 3 4
MPI OpenMP CUDA+MPI
Processes/Threads

Figure 6.10: Execution time comparison among MPI, OpenM& @WDA with MPI
implementations.

execution time.

Table 6.2 presents the partial execution time of each st@pa&ted in the tests. In this
table is possible to observe that the OMR step of the exatdigmands more execution
time than the initialization, because a large size of memesds to be reallocated.

Table 6.2: Partial execution time for MPI, OpenMP, and CUDBhvMPI implementa-
tions.

Interface | Processes/ Initialization | Partial 0-12] OMR | Partial 12-24
Threads hours hours
MPI 1 78.48 2253.32 | 116.91| 3158.60
MPI 2 79.92 1137.36 | 118.69 1612.50
MPI 3 81.56 766.52 121.69 1491.79
MPI 4 83.06 579.93 124.37 1057.58
OpenMP 1 78.48 2253.32 | 116.91| 3158.60
OpenMP 2 78.56 1228.98 | 116.18 1759.07
OpenMP 3 78.61 882.44 | 116.46 1285.49
OpenMP 4 78.61 720.43 119.67 1022.87
CUDA/MPI 1 91.98 276.40 136.36 290.88
CUDA/MPI 2 95.70 209.27 139.87 170.22
CUDA/MPI 3 97.76 183.53 143.67 160.04
CUDA/MPI 4 98.86 172.97 145.19 149.96

The execution time of the iterative step executed after thi&k@all is larger than the

83

execution time of the iterative step executed before the @sIRbecause more elements
need to be computed, for the MPI and OpenMP implementatldowever, this not occur
for some cases of the mixed CUDA/MPI implementation.

The use of CUDA threads combined with more than 1 MPI proceissproves reduc-
tion of the execution time for the iterative step executeédrahe OMR call. The increase
of the number of atmospheric points to be simulate not impeitite performance in this
case, because the GPU explores more parallelism afterdrement of data to compute.

The mixed implementation of CUDA and MPI provides also goedigrmance for
simulations using OMR.

6.6 Conclusions

The use and adoption of different parallel programmingriates is a way to extract
parallelism from many levels of currently architecturesick interface evaluated in this
work provide resources to represent parallel tasks.

We evaluated, in this chapter, mixed OpenMP/MPI and CUDA/|d&rallel imple-
mentations of a OLAM prototype using meshes with Km of horizontal resolution.
These mixed implementations were made by the inclusion eh® threads or CUDA
kernel functions in a code paralleled with MPI.

The experimental results using 2 nodes, each one composedund-core processor
and a GPU board, shown that the use of OpenMP or CUDA threadeiased to MPI
processes reduces the total execution time of the model. eXéeution of4 OpenMP
threads in each node increases the performance of the ajpphi¢o3 x (using one node)
and2.5x (using two nodes) in relation to the performance resultsrotiations running
only a MPI process in each node. Tests of the combined impitatien of CUDA with
MPI speed ups i6 x in relation to a sequential execution and speed ups in mare2tk
in relation to a restricted MPI parallel implementation.

We also evaluated the mixed CUDA/MPI implementation in agpieeric simulations
with OMR. In some cases, the mixed implementation can alevige load balance for
the CUDA tasks after an OMR call. This occurs if the occupaiatg of the GPU multi-
processors is not high for the iterative step simulatiorceted before the OMR. Thus, the
new elements of data structures, arising from the OMR cail,ie concurrently executed
with the original elements, without increase the total exien time.

CUDA and combined solutions like CUDA/MPI or OpenMP/MPI iiease perfor-
mance for the OLAM prototype in parallel executions. Theutessprove that itis possible
to accelerate the execution time if all available concuyesf the machines is utilized.

In the next chapter, more performance measurements willdgkenm order to evaluate
the use of mixed parallel programming interfaces in atmesphsimulations on large
systems.

84

7 SCALABILITY EVALUATION OF OLAM MULTI-LEVEL
PARALLELISM

In Chapter 6 we present ways to explore multiple levels oélbelism. The adoption
of different parallel programming interfaces was the solufor increasing the perfor-
mance of atmospheric models. We evaluate the implemengatising limited hardware
resources, presenting some partial results.

In this chapter we run the parallel implementations of tlegqiype version of OLAM
using a cluster environment. Thus, is possible to evalti#sdalability of the implemen-
tations for some simulations.

7.1 Simulation Environment

All experimental measurements were obtained usind\éwetoncluster of theCentro
Nacional de Supercomputacadhis cluster is interconnected by an InfiniBand network
technology, and has currently 28 Sun Fire X2200+ workstat{@ach one with 2 Quad-
Core AMD Opteron 2.2 GHz processors and 16 GB RAM) and a coupéformance
of 1.97 TFlops; and 8 GPUs nVidia Tesla distributed in two B10nits, with coupled
performance of 8.28 TFlops. We could use a maximal of 16 noti#hss cluster.

For parallel executions, the processes are distributechgrtitee CPUs and/or GPUs
of the nodes of the cluster. In the simulations using GPUsntimber of CUDA threads
was fixed in 128. This number was chosen according to prewdgpsriments.

All execution time presented below are measured in secoBdsh execution sim-
ulates12 hours of an atmosphere integration. The vertical level efatmosphere was
divided in28.

We simulate the OLAM prototype in the cluster using MPI pigsees, mixed OpenMP
threads and MPI processes, and mixed CUDA threads and MPégses.

7.2 MPI Implementation

A first test was made in order to analyze the impact of the ugdRif processes in
the total execution time. Figure 7.1 and Figure 7.2 predenekecution time results of
an atmospheric integration, using a mesh with Km and50 Km of horizontal mesh
resolution, respectively. The graphics of these figuresvghe total execution time and
the time spent to call the initialization step, usintp 32 MPI processes.

Each column of the graphic represents the total executioa fior a determined num-
ber of processes. We can see that this time decreases asnmooesges are used. Conse-
guently, there are performance gains.

Execution Time (s)

2000

1800

1600

1400

1200

1000

800

600

400

200

T T
Total ——
Initialization Ex=x=

4 8
Processes

16

32

85

Figure 7.1: Execution time usingto 32 MPI processes for a simulation ®60 Km of

mesh resolution.

Execution Time (s)

8000

7000

6000

5000

4000

3000

2000

1000

T T
Total ——
Initialization KxXxX=

4 8
Processes

16

32

Figure 7.2: Execution time usingto 32 MPI processes for a simulation 66 Km of

mesh resolution.

86

Table 7.1: Speed up for the iterative execution step usingpviftesses.

Processes 100 Km | 50 Km
1 1.00 1.00
2 1.81 2.04
4 3.64 4.05
8 6.69 7.97
16 12.67| 12.81
32 21.12| 21.49

The second measurement (scratched area) of each groupaafspes presents the
initialization execution time. The duration time of thiggtis approximately15 s for the
100 Km of mesh resolution case a#ith s for the 50 Km of mesh resolution case. The
time spent for the initialization step is constant indepaly of the number of processes
used in the atmospheric simulations. The relation betwleemitialization time and the
total execution time decreases if more high mesh resolsitioa used.

Table 7.1 presents comparatively the speed up of the #eratep of the simulation
results shown in Figure 7.1 and Figure 7.2. The first columowsithe number of MPI
processes used to each mesh resolution adopted. The sechihitd columns present the
speed up for simulation using0 and50 Km of horizontal mesh resolution, respectively.
The initial speed up are based on the sequential executeewbifpart of the iterative step.

The results show that the speed up increases for both meshtres cases evaluated.
The speed up achieved usifig processes was arourzd. A similar speed up can be
obtained for other mesh resolutions.

7.3 MPI and OpenMP Implementation

The use of OpenMP threads was evaluated in some atmospimeulasons consid-
ering meshes with horizontal resolution1df) Km.

Figure 7.3 presents the total execution time of an atmosgpsienulation, using to 8
MPI processes. In the tests we compare the performancengihid 8 OpenMP threads
for different number of MPI processes. Each white filled cotuof the graphic represents
the simulations using only MPI processes. The other colushng the execution time of
the MPI processes with the inclusion of OpenMP threads.

The parallelism using OpenMP threads provides the reductidhe total execution
time of the model independently of the number of threads .usddwever, there is a
limitation in the performance gain when more ti#2threads/processes are used because
the execution time of the initialization step predominatethe total execution time and
the iterative step is not more scalable.

Moreover, the OpenMP parallelism is restricted to deteeaifunctions of the itera-
tive step of the model, whether the MPI parallelism incluakgerative step. Because of
this, the comparison among the execution time of the sinathat use only OpenMP
threads { MPI process) and the simulations that use only MPI proceSs&penMP
thread) shows better results for the first case.

Figure 7.4 presents the speed up of the iterative step of thden In the tests we
compare thd to 8 MPI processes for an atmospheric simulation. We Trdo 8 threads
in each MPI process.

87

T
1 Thread —3
2 Threads KXX=X
4 Threads ===z
8 Threads -

RS
B33
[esetotetets
ledetoleete!

16

Processes

OO
RIS

KR RRREXIRXKS
oeluoletuteletole?

1 Thread —+—
2 Threads —>—

4 Threads —=—
8 Threads —e—

Processes

20
8
16
14
12 |
10
8
6
4

R KRR —
s
R IR IKRIAIIKKKS
e%eSotetutetetotetesotetatotetototetotetetotetetotetst
dn paads

8000
7000 |
6000 |

5000 |
4000 |
3000 |
2000 |
1000 -

(s) awi] uonnoax3 [eyoL

Figure 7.3: Total execution time using different number @e®@MP threads in a simula-

tion with MPI processes. Horizontal mesh resolution @ Km.

Figure 7.4: Speed up of the iterative step of the model usifeyent number of OpenMP

threads in a simulation with MPI processes. Horizontal nresblution ofl00 Km.

88

8000 T T T T T
Resolution of 100 Km ———
Resolution of 67 Km EXX=x
Resolution of 50 Km zxzzzz

7000

6000

5000

4000

3000

Total Execution Time (s)

2000 | —

1000

0 - I

sequential 1 2
Processes

Figure 7.5: Execution time evaluation using different nembf GPUs for simulations of
100 Km, 67 Km, and50 Km of mesh resolution.

The results show that the use of OpenMP threads increadesmpance in the iterative
step for all numbers of MPI processes evaluated. The caypfi and4 threads in each
MPI process increase the speed up in more tigh and100%, respectively, in relation
to the restricted MPI version for all number of MPI processesd.

In the graphic is also possible to see that the usé¢ thireads an@® processes pro-
vides a limited performance gain. This result is obtainechise each processor/thread
computes a task with low granularity. Thus, the parallefgrenance not overcome the
communication and thread creation costs.

7.4 MPIl and CUDA Implementation

Some simulation were also made, exploring GPU parallelism.

Figure 7.5 presents the total execution time for the threeluéions considered in
this work (see Section 6.5.2). In this figure, the first threkimns show the sequential
execution time for each mesh resolution. The sequentiautia time not include the
use of GPUs. The other columns of the graphic present thaitgadime usingl, 2, 4,
and8 GPUs.

The results of the Figure 7.5 show that the use of one GPU esdbe total execution
time more thar x in relation to the execution using only CPU processing. Téagiction
is more expressive as more GPUs are used in the simulations.

Figure 7.6, and Figure 7.7 present the execution time ofrifti@lization and iterative
step of the model for a mesh resolution of 100 Km, and 50 Knpegetvely. These results
demonstrate that the execution time for the initializastep is constant independently of
the number of GPUs used. On the other hand, the executiondirties iterative step
decreases as more GPUs are included in the computationdasas evaluated.

Figure 7.8 shows the speed up of the iterative step of the husdeg 1 to 8 GPUs in
simulations with mesh resolution of 100 Km, and 50 Km. Fomadish resolution cases,

89

350 T T

T T
Execution Time ———
Initialization ExXx=x

300 - 1

250 y

200 - 1

Total Execution Time (s)

100 1

50

Processes

Figure 7.6: Initialization and iterative step executianeifor simulations using00 Km
of mesh resolution in a CUDA/MPI mixed implementation.

1600 T T

T A N T
Execution Time C——
Initialization KxXxX=

1400 4

1200 - 1

1000 - 1

800 - 1

Total Execution Time (s)

600 - B

400 | 4

200

Processes

Figure 7.7: Initialization and iterative step executiangifor simulations using0 Km of
mesh resolution in a CUDA/MPI mixed implementation.

90

T T
5T Resolution of 100 Km —+—
Resolution of 50 Km —<—

Speed up

Processes

Figure 7.8: Speed up evaluation using different number di&#r simulations ofl 00
Km and50 Km of mesh resolution.

the speed up increases as more GPUs are used. The graphgalbowhat a mesh with
high resolution (50 Km) has more speed up than a mesh with éswlution (100 Km)
because the difference granularity among the processgh.msh resolutions have more
data structures to compute.

7.5 Conclusion

This chapter presented performance results of paralleleim@ntations of an atmo-
spheric model using MPI, OpenMP and CUDA programming iaiees. We measured
the execution time and speed up of a prototype version of OLAM cluster system
composed by multi-core, multiprocessor and GPU architecthat is, a multi-level par-
allelism environment. In order to evaluate the differentaial implementations of the
model, we present partial and comparative execution tintespeed up using to 32
quad-core processors and 1 to 8 GPUs units of a cluster.

The partial measurement results shown that MPI and MPI coedbwith OpenMP
implementations can increase the parallel performandesc@itmospheric model as more
processes and/or threads are used. The u32 MIPI processes achieved an speed up of
21. This speed up could to be larger if more functions of theatiee step of the model
were wrote for the prototype. Thus, more data structurdsgevile computed, increasing
the granularity of the processes, and reducing the impaitteoinitialization step in the
total execution time of the model. This possibility could@increase the performance
of implementations using mixed OpenMP threads and MP| mse® However, as a
prototype, we not implement all functionalities of curdgratmospheric models in this
thesis.

The restrict use of MPI parallelism in the implementatiortteg model improves a
better execution time in relation to the combined use of Mitl ®@penMP parallelism,
if we compare the same number of MPI processes again the sivibprocesses and

91

OpenMP threads. A similar result was also obtained in Cin&pt€his occurs because the
MPI parallel implementation includes all iterative stepled model whether the OpenMP
parallelism is restricted to some functions of the iteattep of the model. Although
OpenMP threads provides less performance than restricRicpkbcesses, its use in sim-
ulations with OMR can supply better execution time resutshe iterative step after an
OMR call, as presented in Chapter 5.

CUDA combined with MPI version of the prototype was also aaséd. In the tests,
the execution of the model using only one GPU increasethe performance in relation
to a sequential execution restricted to one CPU. We alsaiateathe performance of the
prototype computing in more than one GPU. In Chapter 6, tkpeement was restricted
to 2 GPUs. In this chapter we use 8 GPUs. The results showthiig are an increase
of speed up, as more GPUs are used, for all mesh resolutitatses®in the tests.

All implementations using mixed programming interfacesgented scalable solu-
tions for the prototype of OLAM. In this context, other atrpbgric models could also to
be improved by the addition of other kind of parallel task®ider to explore multiple
levels of parallelism. The same could be expected for otppli@tions kind.

92

8 CONCLUSION AND FUTURE WORKS

Recent performance improvements in both general-purpude@ecial-purpose pro-
cessors have come primarily from increased on-chip péisaie On-chip parallelism
with multi-core processors and GPU accelerators can nowraatty to be used for run-
ning concurrently applications developed using approgdi@rogramming libraries. This
new manner to support parallelism has received significdem®@on in the past of a few
years because the large number of cores that can be usednimuroently executions.
There are also a tendency to increase the number of coresUra@& multi-core proces-
sors in the next years, contributing to provide exa-escgéems. Thus, the shift to an
increasing on-chip parallelism will place new burdens ditvgare application.

On-chip parallelism is of considerable interest to a broggeup of parallel applica-
tions for high-end supercomputers. These applications hdarge processing load and
each new developed architecture brings the possibilitynforeasing the performance of
the executions. A significative set of these applicatioesralated to data simulations of
domain decomposition problems, like weather and climgjickd forecasts.

Multi-core and GPU provide a limited parallelism approashthe applications. Fur-
thermore, in currently architectures, there are also [gdisah levels among processors
and among computers. Each parallelism level was desigrred $pecific processing
granularity. In order to use the best performance of the eaderp it is necessary to con-
sider all parallel levels to distribute a concurrent apdien. However, nothing parallel
programming interface abstracts all these different paravels.

In this context, this thesis investigated how differenelevof parallelism can be ex-
plored in atmospheric models, including models that previtesh refinement at execu-
tion time, using classical parallel programming interfadéd/e used the notion of parallel
tasks as a way to abstract the parallel granularity (presgskreads) for a concurrent
application. A parallel task for an atmospheric model impatation was defined by
data structures that store the physical atmospheric stadifunctions (methods) that ma-
nipulate these data structures, simulating the atmospbenditions during the elapse of
time.

Multi-level parallelism for a prototype version of OLAM wasovided by the combi-
nation of MPI with OpenMP or CUDA programming interfaces.

MPI processes were created at the beginning of the simaldilew threads OpenMP
or CUDA were launched for the iterative part of the simulatid a prototype version of
OLAM code. Thus, it was possible to exploit parallelism atitiple levels of hardware, at
both shared memory systems (multiprocessors and mukisgoand distributed memory
systems (multicomputer).

We also propose an Online Mesh Refinement (OMR) approaclafatipl distributed
unstructured meshes. Nothing atmospheric model providshrefinement at execution

93

time. The objective of the OMR implementation in the contaixhis work was to show
how dynamic high performance applications can benefit ifuitson parallel multi-level

architectures. The OMR implementation allows local me$ineenent at execution time,
increasing the resolution for a discrete representaticnpdrt of the domain. This solu-
tion offers higher mesh resolution for atmospheric modetk l@w performance impact,
providing also better numerical results.

Experimental measurements for simulations of the muhgllearallelism implemen-
tation were made. We obtained execution time and speed ujisésr the simulation of
the prototype, using different mesh resolution sizes. EBséstevaluate the implementa-
tions using MPI, and mixed versions of MPI and OpenMP, and &l CUDA.

The adoption of MPI processes improved a significative spgedi the tests, the use
of 32 processes achieved a speed uplofThe speed up could to be larger if all functions
of the iterative step of a typical atmospheric model werdidbed in the simulations. Thus,
more data structures could to be computed, increasing Hreutarity of the processes.

The mixed OpenMP/MPI implementation provided thread armtgss parallelism.
The experimental results shown that the use of OpenMP cardhiith MPI reduced the
execution time of the simulations. The use4othreads in each MPI process number
increased the performance in more tl2anin relation to the simulation using only one
MPI process in each quad-core processor. Although Openk#adis provides less per-
formance than restricted MPI processes, OpenMP parafieisuseful for load balance
in simulations with OMR.

The results of the mixed CUDA/MPI parallelization versidmogs/n that the use of one
GPU reduces the total execution time more thanin relation to the execution using
only CPU processing. This reduction is more expressive ag 1B®Us are used in the
simulations.

All these performance results indicate that is possiblesthuce the execution time
of atmospheric simulations using different levels of patelm, through the combined
use of parallel programming interfaces. Therefore, morshmesolution to describe the
Earth’s atmosphere can be adopted, and consequently thericahforecasts are more
accurate.

The contribution of this thesis is both online mesh refinehaei exploration of mul-
tiple level of parallelism in atmospheric models.

This work improves the refinement of unstructured meshesetution time. Un-
structured meshes are less considered in domain decomposdrks due the difficulty
to describe the relation among the discrete elements. Tihémsoprovided in this work
could to be considered in other kind of unstructured meshes.

The use of multiple representation forms of a parallel tasksolution to compute on
different levels of hardware parallelism. This approachasessary, specially for large
applications, to maximize the performance of the execstidine combined use of CPU
and GPU is now a tendency for atmospheric models. Reseattfoestast centers are
expending efforts to rewrite piece of meteorological cazlbétter perform in multi-core
and many-core architectures.

Future Work

In this work we use MPI, OpenMP and CUDA to improve multipledks of paral-
lelism for climatological models. However, a combined testing the three interfaces
was not made. Although the simulations using MPI and CUDAriiaices present good
execution time results, experiments considering the thregfaces can to emerge also
excellent performance.

94

The OpenMP implementation could to be rewrote to change kheepof the loop
parallelism. The currently implementation considers tbheotirrency of each function
inner the iterative step. However, all iterative step cawlde computed by OpenMP
threads, as occurs in the parallelization using MPI praeeds this case, some variables
need to be set as private, in order to maintain the accurattyeasults.

Another parallel programming interface, like Intel ThrermpBuilding Blocks (TBB)
and/or Message-Passing Interface 2, that offer run timatiore of processes, could be
also evaluated in order to maximize the use of the hardwa®urees by atmospheric
simulations.

We are planning to evaluate the behavior of the atmospherdeiprototype in GPU
architectures changing the number of CUDA threads. Althotng number of threads
was also evaluated in some simulations, it was restrictedlipone mesh resolution size.
The addition of more threads can increase the performaniteahodel in some specific
mesh resolutions or number of GPUs used in the simulations.

Cooperation

This thesis was developed under cooperation projects.

The work conducted in this thesis is part of tAemosfera Massivgroject, a co-
operation among GPPDnistituto de Informatica - UFRGSwith another brazilian re-
search groups, like LNCC, INPE and CPTEC. The project wapatipd by CNPgddital
Grandes Desafigs

The general purpose of this research project was to studgnibesct of new multi-core
architectures and the multiple levels of parallelism in @eedlogical and environmental
models. These cooperation produced some works, that wétsiped as articles in con-
ference proceedings.

This thesis was also developed as part of an internatiorgderation betweemsti-
tuto de Informética - UFRG&ndTechnische Universitat BerlirGermany. A sandwich
doctoral was made in tifeachgebiet Kommunikations- und Betriebssysteme (KBSji- In
tut fur Telekommunikationssystemehe period of October, 2010 and June, 2011, under
supervision of prof. Hans-Ulrich Heiss. The interchangs s@pported by CNPg/DAAD.

In this period it was made the implementation of the onlinesimesfinement to the
atmospheric prototype. Some tests was also conductedustcbf the KBS group. The
results of this part of the work were published in the CLCARI &BAC-PAD confer-
ences. See: (SCHEPKE et al., 2011a) and (SCHEPKE et al.p2011

Publications
During the doctoral studies some papers are submitted gma\agr in workshops
and conferences, as listed below:

e Performance Evaluation of an Atmospheric Simulation MasheMulti-Core Envi-
ronments - Proceedings of Conferencia Latino Americanaataplitacion de Alto
Rendimiento (CLCAR 2010) (SCHEPKE et al., 2010).

e Improving Core Selection on a Multicore Cluster to Incretise Scalability of an
Atmospheric Model Simulation - Proceedings of XXIX Iberibatin-American
Congress on Computational Methods in Engineering, 2018nBsiAires. Mecanica
Computacional Vol. XXIX. Buenos Aires : Asociacion Argemdi de Mecanica
Computacional (CILAMCE 2010) (OSTHOFF et al., 2010).

¢ |/O Performance Evaluation on Multicore Clusters with Aspberic Model Envi-
ronment - 1st Workshop on Applications for Multi and Many Edrchitectures

95

(WAMMCA 2010) - 22nd International Symposium on Computechitecture and
High Performance computing (SBAC-PAD 2010) (OSTHOFF ¢t2410).

e Online Mesh Refinement in Parallel Meteorological Appilicas - Proceedings of
Conferencia Latino Americana de Computacién de Alto Reretito (SCHEPKE
etal., 2011a).

¢ I/O Performance of a Large Atmospheric Model using PVFS eAales 20éme
Rencontres francophones du parallélisme (RENPAR'11) [&Dd&t al., 2011).

e GPU for Accelerators Performance Evaluation on Atmospkkreel’'s Application
System - Proceedings of XXX Iberian-Latin-American Corsgren Computational
Methods in Engineering, 2011, Ouro Preto. Mecanica Congal Vol. XXX
(CILAMCE 2011) (OSTHOFF et al., 2011b).

e Improving Performance on Atmospheric Models through a tyQpenMP/MPI
Implementation - The 9th IEEE International Symposium omaka and Dis-
tributed Processing with Applications (ISPA 2011) (OSTHGH al., 2011a).

e Why Online Dynamic Mesh Refinement is Better for Paralleh@liological Mod-
els - 23th International Symposium on Computer Architestand High Perfor-
mance Computing (SBAC-PAD 2011) (SCHEPKE et al., 2011b).

e Trace-based Visualization as a Tool to Understand Appdinatl/O Performance -
2st Workshop on Applications for Multi and Many Core Arcloitgres (WAMMCA
2011) - 23nd International Symposium on Computer Architecaind High Perfor-
mance computing (SBAC-PAD 2011) (KASSICK et al., 2011).

e Evaluation of Programming Models for Atmospheric Applioat- IADIS Interna-
tional Conference Applied Computing 2011 (OSTHOFF et &11,1).

e Exploring Multi-Level Parallelism in Atmospheric Applitans - Xl Workshop
em Sistemas Computacionais de Alto Desempenho (WSCAD-8%2) 2SCHEPKE;
MAILLARD, 2012).

Some of the previous papers where the basis to write and ttsputvo journal arti-
cles, as presented below:

e Atmospheric Models Hybrid OpenMP/MPI Implementation Medire Cluster Eval-
uation - International Journal of Information Technolog@emmunications and
Convergence (IJITCC) (OSTHOFF et al., 2012).

e Online Mesh Refinement for Parallel Atmospheric Models elinational Journal
of Parallel Programming (IJPP) - approved and waiting fdljpation (SCHEPKE
etal., 2012).

A book chapter was also produced together with other researc

¢ Improving Atmospheric Model Performance on a Multi-Coreisler System - At-
mospheric Model Applications (OSTHOFF et al., 2011).

This chapter presents in the Atmospheric Model Applicatibnok some aspects evalu-
ated during the doctor degree work.

All these publications are important in the design of thesth@nd to evidence the
proposed solutions adopted in the work.

96

REFERENCES

ADCROFT, A.; HILL, C.; MARSHALL, J. Representation of topaphy by shaved cells
in a height coordinate ocean mod&onthly Weather Review, Boston, MA, v.125,
p.2293-2315, 1997.

AMD. Model Number Methodology for AMD Opteron 6000 Series Proces
sors. Available at: <http://www.amd.com/us/products/server/processof@éeries-
platform/pages/6000-series-model-number-methodadsgy-. Last access: June, 2011.

ANDREWS, G. R.Foundations of Multithreaded, Parallel, and Distributed Pro-
gramming. Reading, Massachusetts: Addison-Wesley, 2001. 664p.

ASANOQVIC, K. et al. The Landscape of Parallel Computing ResearchA View from
Berkeley. Berkeley, CA: EECS Department, University of ifdahia, Berkeley, 2006.
(UCB/EECS-2006-183).

ASANOVIC, K. et al. A view of the parallel computing landseaommunications of
the ACM, New York, NY, USA, v.10, n.52, p.56—-67, 2009.

AVISSAR, R.; PIELKE, R. A parameterization of heterogengedand surfaces for at-
mospheric numerical-models and its impact on regional aretegy. Monthly Weather
Review, Boston, MA, v.117, p.2113-2136, 1989.

BERGMAN, K. et al.ExaScale Computing Study Technology Challenges in Achieving
Exascale Systems. Peter Kogge, Editor & Study Lead. 2008.

BERNHOLDT, D. E. Component architectures in the next gein@naof ultrascale scien-
tific computing: challenges and opportunities. In: COMPRRA’'07: PROCEEDINGS
OF THE 2007 SYMPOSIUM ON COMPONENT AND FRAMEWORK TECHNOL-
OGY IN HIGH-PERFORMANCE AND SCIENTIFIC COMPUTING, 2007, MeYork,
NY, USA. Anais. .. ACM, 2007. p.1-10.

BLUMOFE, R. D. et al. Cilk: An Efficient Multithreaded RuntenSystem. In: JOUR-
NAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1995, San Frarsto, CA,
USA. Anais... Elsevier, 1995. p.207-216.

BOITO, F. Z. et al. I/O Performance of a Large Atmospheric Modsing PVFS. In:
ACTES DES 20EME RENCONTRES FRANCOPHONES DU PARALLELISMEHR-
PAR’11), 2011, Saint-Malo, FrancAnais... INRIA, 2011.

BROWN, S. D. et alField Programmable Gate Arrays. Berlin, Germany: Springer,
1997.

97

BUYYA, R. High-Performance Cluster Computing: Architectures and Systems. USA:
Prentice Hall, 1999.

BYNA, S.; SUN, X.-H.; HOLMGREN, D. Modeling Data Access Cention in Mul-
ticore Architectures. In: ICPADS '09: PROCEEDINGS OF THEO2015TH INTER-
NATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, @09,
Washington, DC, USAAnais. .. IEEE Computer Society, 2009. p.213-219.

CARVALHO, A. de. Grand Challenges for Computer Science Research in Brazil
2006 - 2016Workshop Report, 2006; Available athttp://sistemas.sbc.org.br/Arquivos
ComunicacaoDesafios_ingles.pdiLast access: Sep. 2010.

CHAMBERLAIN, B. L.; CALLAHAN, D.; ZIMA, H. P. Parallel Progammability and
the Chapel Languagéternational Journal of High Performance Computing Appli -
cations London, v.21, n.3, p.291-312, August 2007.

CHANDRA, R. Parallel Programming in OpenMP. San Francisco, CA, USA: Morgan
Kaufmann Publishers, 2001.

CHARLES, P. et al. X10: an object-oriented approach to noifieun cluster computing.
SIGPLAN Not., New York, NY, USA, v.40, n.10, p.519-538, 2005.

COHEN, J.; GARLAND, M. Solving Computational Problems wiBPU Computing.
Computing in Science and EngineeringLos Alamitos, CA, USA, v.11, p.58-63, 20009.

CURTIS-MAURY, M. et al. An evaluation of OpenMP on currentda@merging multi-
threaded/multicore processors. In. OPENMP SHARED MEMORRRLLEL PRO-
GRAMMING, 2005., 2008, Heidelberg, Berliftroceedings. . .Springer-Verlag, 2008.
p.133-144. (IWOMP’05/IWOMP’06).

DEBREU, L.; VOULAND, C.; BLAYO, E. AGRIF: Adaptive Grid Refiament In For-
tran.Comput. Geosci, Tarrytown, NY, USA, v.34, n.1, p.8-13, 2008.

DONGARRA, J. Trends in High Performance Computimge Computer Journal, Ox-
ford, UK, v.47, n.4, p.399-403, 2004.

DONGARRA, J. et al. The Impact of Multicore on Computatioislience Software.
CTWatch Quarterly , Urbana, IL, v.3, n.1, February 2007.

DONGARRA, J. et al. The International Exascale SoftwargdetoRoadmaplnterna-
tional Journal of High Performance Computing Applications, London, v.25, n.1, p.3—
60, 2011.

DONGARRA, J. et al. (Ed.)The Sourcebook of Parallel Computing San Francisco,
CA, USA: Elsevier, 2002.

EXA CORPORATION.PowerFLOW for CFD - Driving Fluid Flow Simulation Tech-
nology Into the next Century. Available at: <http://www.exa.com/newsite/frames/pow
erflowmaster.html>. Last access: Aug. 2010.

FANG, H. et al. Lattice Boltzmann method for simulating thecous flow in large disten-
sible blood vessel$2hysical Review E New York, USA, v.65, n.5, p.1-11, May 2002.

98

FAZENDA, A. L. et al.First Time User Guide (BRAMS Version 4.2) 2011.

FOSTER, I.; KESSELMAN, CThe Grid: Blueprint for a New Computing Infrastruc-
ture. 2.ed. San Francisco, CA, USA: Morgan Kaufmann, 2008p8

FRIGO, M. Multithreaded Programming in Cilk. In: PASCO '0Proceedings of the
2007 International Workshop on Parallel Symbolic Compatat2007, New York, NY,
USA. Anais... ACM, 2007. p.13-14.

FRIGO, M.; LEISERSON, C. E.; RANDALL, K. H. The Implementati of the Cilk-5
Multithreaded Language. In: IN PROCEEDINGS OF THE SIGPLAN 'CONFER-
ENCE ON PROGRAM LANGUAGE DESIGN AND IMPLEMENTATION, 1998, &
York, NY, USA. Anais. .. ACM, 1998. p.212-223.

GALANTE, G. Métodos Multigrid Paralelos em Malhas Nao Estruturadas Aplicados
a Simulacéao de Problemas de Dinamica de Fluidos Computaciahe Transferencia
de Calor. 2006. 130p. Dissertacao (Mestrado em Ciéncia da Comm)tacdnstituto de
Informatica, UFRGS, Porto Alegre.

GARLAND, M. et al. Parallel Computing Experiences with CUDIEEE Micro , Los
Alamitos, CA, USA, v.28, n.4, p.13-27, 2008.

GEIST, A. et al.PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial foetN
worked Parallel Computing. Cambridge, MA, USA: MIT Presg94.

GEPNER, P.; KOWALIK, M. F. Multi-Core Processors: New WayAohieve High Sys-
tem Performance. In: INTERNATIONAL SYMPOSIUM ON PARALLEL @VIPUT-
ING IN ELECTRICAL ENGINEERING (PARELEC’06), 2006, Washitan, DC, USA.
Anais. .. Institute of Electrical and Electronics Engineers (IEEE)Q6. p.9-13.

GROPP, W. et al. High-performance, portable implementatiche MPI Message Pass-
ing Interface StandardRarallel Computing, Cambridge, MA, USA, v.22, n.6, p.789—
828, 1996.

HACKENBERG, D.; JUCKELAND, G.; BRUNST, H. Performance aysik of multi-
level parallelism: inter-node, intra-node and hardwareebgrators.Concurrency and
Computation: Practice and Experience [S.l.], v.24, n.1, p.62-72, 2012.

HORNUNG, R.; TRANGENSTEIN, J. Adaptive Mesh Refinement andltevel It-

eration for Flow in Porous Medialournal of Computational Physics [S.l.], v.136,

p.522-545, 1997. Available at: <http://www.math.duke/egohnt/amr.html>. Last ac-
cess: Mar. 2006.

HUANG, C. et al. Performance evaluation of adaptive MPI.ACM SIGPLAN SYM-
POSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING,
2006, New York, NY, USAProceedings. . ACM, 2006. p.12-21. (PPoPP’06).

INTEL. Intel VTune - Intel Software Network. Available at: <http://www.intel.com/
software/products/vtune>. Last access: Oct. 2011.

INTEL. Intel Xeon Processor 6000 Sequencdvailable at: <http://www.intel.com/pro
ducts/server/processor/xeon6000/index:htiast access: June, 2011.

99

INTEL. Teraflops Research Chip Available at: <http://techresearch.intel.com/Project
Details.aspx?1d=154. Last access: June, 2011.

KALE, L. V.; KRISHNAN, S. CHARM++: a portable concurrent adgjt oriented system
based on c++SIGPLAN Not., New York, NY, USA, v.28, p.91-108, October 1993.

KASSICK, R. V. et al. Trace-based Visualization as a Tool toderstand Applica-
tions I/O Performance. In: WORKSHOP ON APPLICATIONS FOR MULAND
MANY CORE ARCHITECTURES (WAMMCA) - 23ND INTERNATIONAL SYMFO-
SIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUT-
ING (SBAC-PAD 2011), 2., 2011, Vitoria, E&nais. .. IEEE, 2011.

KIRK, D. B.; W. HWU, W. m. Programming Massively Parallel ProcessorsA Hands-
on Approach. 1st.ed. San Francisco, CA, USA: Morgan Kaufmaa10.

LAM/MPI Parallel Computing. Available at: <http://wwwiampi.org>. Last access:
Jul. 2012.

LINFORD, J. C.Accelerating Atmospheric Modeling Through Emerging Multi-core
Technologies 2010. PhD Dissertation — Department of Computer ScienaginaT-
ech, Blacksburg, Virginia, USA.

LINFORD, J. C.; SANDU, A. Scalable heterogeneous parailhelfor atmospheric mod-
eling and simulationJ. Supercomputing Hingham, MA, USA, v.56, n.3, p.300-327,
Jun. 2011.

LOCKARD, D. P.; LUO, L.-S.; SINGER, B. A.Evaluation of the Lattice-
Boltzmann Equation Solver PowerFLOW for Aerodynamic Applications. Avail-
abel in: <http://www.engr.uky.edu/vac/public_html/CWMIBpowerflow.pdf>. Accessed
in: Oct. 2011.

LUCQUIN, B.; PIRONNEAU, O.Introduction to Scientific Computing. New York,
USA: J. Wiley & Sons, 1998. 380p.

MACNEICE, P. et al. PARAMESH: A parallel adaptive mesh refiret commu-
nity toolkit. Computer Physics Communications Amsterdam, The Netherlands, The
Netherlands, v.126, n.3, p.330-354, 2000.

MARSHALL, J. et al. A Finite-Volume Incompressible NaviStokes Model for Studies
of Ocean on Parallel Computeurnal of Geophysical ResearchWashington, DC,
USA, v.102, n.C3, p.5753-5766, 1997.

MEDEIROS, C. B. Grand Research Challenges in Computer &eienBrazil. Com-
puter, Los Alamitos, CA, USA, v.41, p.59-65, 2008.

MICHALAKES, J.; VACHHARAJANI, M. GPU Acceleration of Numécal Weather
PredictionParallel Processing Letters[S.l.], v.18, n.4, p.531-548, 2008.

MITCHELL, W. F. PHAML user’s guide. Technical Report NISTIR 7374, National
Institute of Standards and Technology, Gaithersburg, MIDG2 Software available at:
http://math.nist.gov/phaml.

100

MPICH home page. Available at: <http://www-unix.mcs.gok/mpi/mpich1>. Last ac-
cess: Jul. 2012.

MUSSER, D. R.; SAINI, ASTL Tutorial and Reference Guide - C++ Programming
with the Standard Template Library . Reading, Massachusetts: Addison-Wesley, 2004.

NICKOLLS, J.; DALLY, W. The GPU Computing ErdEEE Micro , Washington, DC,
v.30, n.2, p.56—69, Mar. 2010.

NICKOLLS, J. et al. Scalable Parallel Programming with CUQAIeue New York, NY,
USA, v.6, n.2, p.40-53, 2008.

NUMRICH, R. W.; REID, J. Co-array Fortran for parallel pragnming.SIGPLAN For-
tran Forum, New York, NY, USA, v.17, n.2, p.1-31, 1998.

NVIDIA. High Performance Computing - Supercomputing with Tesla GP$. Avalil-
able at: <http://www.nvidia.com/object/tesla_computing_sadas. htmt>. Last access:
June, 2012.

OPEN MPI: Open Source High Performance Computing. Avaglabét:
<http://www.open-mpi.org>. Last access: Jul. 2012.

OSTHOFF, C. et al. Improving Core Selection on a Multicorestér to Increase the Scal-
ability of an Atmospheric Model Simulation. In: XXIX IBERIN-LATIN-AMERICAN
CONGRESS ON COMPUTATIONAL METHODS IN ENGINEERING, 2010, BXOS
AIRES. MECANICA COMPUTACIONAL VOL. XXIX. BUENOS AIRES : ASQ
CIACION ARGENTINA DE MECANICA COMPUTACIONAL, 2010, Buenogires,
Argentina.Proceedings. . .Asociacion Argentina de Mecanica Computacional (AMCA),
2010. p.3143-3153.

OSTHOFF, C. et al. /0 Performance Evaluation on Multicolesters with Atmo-
spheric Model Environment. In: WORKSHOP ON APPLICATIONS RMULTI AND
MANY CORE ARCHITECTURES (WAMMCA) - 22ND INTERNATIONAL SYMPRD-
SIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUT-
ING (SBAC-PAD 2010), 1., 2010, Petrépol&nais. .. IEEE, 2010. p.49-54.

OSTHOFF, C. et al. Evaluation of Programming Models for Asploeric Application.
In: 1ADIS INTERNATIONAL CONFERENCE APPLIED COMPUTING 20112011,
Rio de Janeiro, RJ, Brazinais. .. IADIS Press, 2011.

OSTHOFF, C. et al. Improving Atmospheric Model Performannea Multi-Core Clus-
ter System. In: YUCEL, I. (Ed.)Atmospheric Model Applications. Rijeka, Croatia:
InTech, 2011. p.1-24.

OSTHOFF, C. et al. Improving Performance on Atmospheric 8edhrough a Hybrid
OpenMP/MPI Implementation. In: THE 9TH IEEE INTERNATIONARYMPOSIUM
ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONSIEPA
2011), 2011a, Busan, KoreAnais. .. IEEE Technical Committee on Scalable Comput-
ing, 2011a. p.69-74.

OSTHOFF, C. et al. GPU for Accelerators Performance Evalnabn Atmosphere
Model's Application System. In: XXX IBERIAN-LATIN-AMERIGAN CONGRESS

101

ON COMPUTATIONAL METHODS IN ENGINEERING, 2011, OURO PRETO.
MECANICA COMPUTACIONAL VOL. XXX, 2011b, Ouro Preto, BrazilProceed-
ings. .. Asociacion Argentina de Mecénica Computacional (AMCA)126. p.—.

OSTHOFF, C. et al. Atmospheric Models Hybrid OpenMP/MPI lempentation Multi-
core Cluster Evaluatiorinternational Journal of Information Technology, Commu-
nications and ConvergenceOlney, Bucks, UK, v.2, n.3, p.212-233, 2012.

PANETTA, J. et al. Computational Characteristics of PraducSeismic Migration an its
Performance on Novel Processor Architectures. In: SBAO-RA07, 2007, Gramado.
Anais. .. IEEE, 2007. p.11-18.

PHEATT, C. Intel Threading Building Blockslournal of Computing Sciences in Col-
leges USA, v.23, n.4, p.298-298, 2008.

PIELKE, R. A.; AL. et. A comprehensive meteorological madglsystem-RAMSMe-
teor. Atmos. Phys, Berlin, v.49, p.69-91, 1992.

PITAC Report to the Presiden€Computational Science Ensuring America’'s Com-
petitiveness. EUA, June, 2005, Available at<http://www.nitrd.gov/pitac/reports/
20050609 _computational/computational pdEast access: Sep. 2010.

PLEWA, T.; LINDE, T.; WEIRS, V. G.Adaptive Mesh Refinement - Theory and Ap-
plications. Berlin: Springer, 2003.

RAUBER, T.; RUNGER, GParallel Programming: for Multicore and Cluster Systems.
Berlin: Springer Publishing Company, Incorporated, 2010.

SCHEPKE, C. et al. Performance Evaluation of an Atmosph®iriculation Model on
Multi-Core Environments. In:. CONFERENCIA LATINO AMERICAN DE COM-
PUTACION DE ALTO RENDIMIENTO, 2010, Gramado, RS, Brazitroceedings. ..
Instituto de Informéatica/UFRGS, 2010. p.330-332.

SCHEPKE, C. et al. Online Mesh Refinement in Parallel Metegioal Applica-
tions. In:. CONFERENCIA LATINO AMERICANA DE COMPUTACION DE ATO
RENDIMIENTO, 2011, Colima, MexicaProceedings. . .-, 2011. p.—.

SCHEPKE, C. et al. Why Online Dynamic Mesh Refinement is Bdtde Parallel Cli-
matological Models. In: INTERNATIONAL SYMPOSIUM ON COMPLWHR ARCHI-
TECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2011),22011,
Vitéria, Espirito SantoAnais. .. IEEE, 2011.

SCHEPKE, C. et al. Online Mesh Refinement for Parallel Atnhesjz ModelsInterna-
tional Journal of Parallel Programming, Berlin, p.—, 2012.

SCHEPKE, C.; MAILLARD, N. Performance Improvement of the&lkel Lattice Boltz-
mann Method. In: SBAC-PAD 2007 / 19TH INTERNATIONAL SYMPO3V ON

COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING, 200
GramadoAnais. .. IEEE Computer Society, 2007. p.71-78.

SCHEPKE, C.; MAILLARD, N. Exploring Multi-Level Parallesim in Atmospheric Ap-
plications. In: Xl WORKSHOP EM SISTEMAS COMPUTACIONAIS BALTO DE-
SEMPENHO (WSCAD-SSC 2012), 2012, Petropolis, RBais. .. IEEE, 2012.

102

SCHEPKE, C.; NAVAUX, P. O. A.; MAILLARD, N. Parallel LatticBoltzmann Method
with Blocked Partitioning.International Journal of Parallel Programming, Berlin,
v.37,n.6, p.593-611, 2009.

SCHMIDT, G. A. et al. Present-Day Atmospheric Simulationsing GISS ModelE:
Comparison to In Situ, Satellite, and Reanalysis Dadarnal of Climate, Boston, MA,
v.19, n.2, p.153, 2006.

SHALF, J. Memory Subsystem Performance and QuadCore PredictionsIn
Presentation at NERSC User Group Meeting, September 177.28@¢ailable at:
<http://www.nersc.gov/about/NUG/meeting_info/Segbatts/Shalf-NUG2006_QuadC
ore.pdf>. Last access: Oct. 2010.

SHAMEEM, A.; ROBERTS, JMulti-Core Programming - Increasing Performance
through Software Multithreading . Hillsboro, OR: Intel, 2005.

SHIMOKAWABE, T. et al. An 80-Fold Speedup, 15.0 TFlops FulPG Acceleration of
Non-Hydrostatic Weather Model ASUCA Production Code. '€ WIEEE INTERNA-
TIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORK
ING, STORAGE AND ANALYSIS, 2010., 2010, Washington, DC, USAoceedings. ..
IEEE Computer Society, 2010. p.1-11. (SC "10).

SILVA, R. R. da et al. Modelo OLAM (Ocean-Land-Atmospher®dél): descricao, apli-
cagOes, e perspectivaevista Brasileira de Meteorologia [online] Sdo José dos Cam-
pos, SP, v.24, n.2, p.144-157, 20009.

SIMS, J. S. et al. Accelerating Scientific Discovery ThroWgbtmputation and Visual-
ization.Journal of Research of the National Institute of Standards ad Technology,
Gaithersburg, MD, v.105, n.6, p.875-894, Nov.-Dec. 2000.

SNIR, M. et al. MPI-The Complete Reference, Volume 1 the mpi core. 2nd. (Re-
vised).ed. Cambridge, MA, USA: MIT Press, 1998.

SOUTO, R. P. et al. Processing Mesoscale Climatology in d Bnvironment. In: CC-
GRID’07, 2007, Rio de Janeir®roceedings...Hoes Lane: IEEE Computer Society,
2007. p.363-370.

TOP 500.Top 500 Supercomputing Site Available at: <http://www.top500.0rg. Last
access: June, 2011.

VASQUEZ, T.Weather Forecasting Red Book Garland TX, USA: Weather Graphics
Technologies, 2006. 304p.

VOSS, M. Intel; Threading Building Blocks: Programming fourrent and Future Mul-
ticore PlatformsIEEE/ACM International Symposium on Code Generation and Op
timization, Los Alamitos, CA, USA, v.0, p.XX, 2009.

WALKO, R. L.; AVISSAR, R. The Ocean-Land-Atmosphere Mod&€ILAM). Part I:
Shallow-Water Testdlonthly Weather Review, Boston, MA, v.136, n.11, p.4033-4044,
2008.

WALKO, R. L.; AVISSAR, R. OLAM : Ocean-Land-Atmosphere Model - Model Input
Parameters - Version 3.0. Durham, NC, USA: Duke UnivergiQ8.

103

WASHINGTON, W. M.; PARKINSON, C. L.An Introduction to Three Dimensional
Climate Modeling. 2.ed. Herndon, VA, USA: University Science Books, 2005.

WEILAND, M. Chapel, Fortress and X10 novel languages for HPC. Edinburgh-UK:
University of Edinburgh, 2007. Technical Report.

WENNEKER, I.; SEGAL, A.; WESSELING, P. A Mach-uniform unstitured staggered
grid methodlInternational Journal of Numerical Methods in Fluids, New York, USA,
v.40, n.9, p.1209-1235, 2002.

WILKINSON, B.; ALLEN, M. Parallel Programming: Using Networked Workstations
and Parallel Computers. New Jersey: Prentice Hall, 1998.

WILLHALM, T.; POPOVICI, N. Putting Intel Threading Buildig Blocks to Work.
In: IWMSE '08: PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSH®
ON MULTICORE SOFTWARE ENGINEERING, 2008, New York, NY, USAnais...
ACM, 2008. p.3-4.

XAVIER, C. et al. Multi-level Parallelism in the Computatial Modeling of the Heart.
In: SBAC-PAD 2007, 2007, GramadAnais. .. IEEE, 2007. p.3-10.

YELICK, K. et al. Titanium: A high-performance Java diale€Concurrency: Practice
and Experience Trier, Germany, v.10, n.11-13, p.825-836, 1998.

YELLICK, K.; BONACHEA, D.; WALLACE, C. A Proposal for a UPC Memory Con-
sistency Model, v1.0Berkeley, CA: Lawrence Berkeley National Lab, 2004. Tecah
report. (LBNL-54983).

ZHURAVLEYV, S.; BLAGODUROV, S.; FEDOROVA, A. Addressing Stel Resource
Contention in Multicore Processors via ScheduliB§GPLAN Not., New York, NY,
USA, v.45, n.3, p.129-142, 2010.

ZUMBUSCH, G.Parallel Multilevel Methods: adaptive mesh refinement and loadbal-
ancing. [S.l.]: Teubner, 2003.

104

APPENDIX A RESUMO EM PORTUGUES

A qualidade das solucdes obtidas em aplicacdes climataégilimitada pela capaci-
dade computacional e o tempo disponivel para a execucainaalagdes. Quanto maior
for a capacidade dos computadores utilizados no processanmeaior sera a resolugédo
da malha que pode ser adotada para representar a atmoststidées, consequentemente,
mais acurada sera a precisdo numérica das solugodes.

Com o surgimento das arquiteturas multi-core e a adocéo tes @&a a computacao
de propdsito geral, existem atualmente diferentes niveipatalelismo. Hoje ha par-
alelismo interno ao processador, entre processadoresseceniputadores.

Com o objetivo de extrair ao maximo a performance dos condpus atuais, €
necessario utilizar todos os niveis de paralelismo disgimdurante a execucgéo de apli-
cacdes concorrentes. No entanto, nenhuma interface deapragao paralela explora
simultaneamente bem os diferentes niveis de paralelisiateries.

Neste contexto, esta tese propde 0 uso combinado de ddsret¢rfaces de progra-
macao paralela com o objetivo de prover performance paieagpks climatoldgicas. A
execugao das simulagdes mostra que o uso de CPUs multi-é8Rs, em sistemas
paralelos, pode reduzir consideravelmente o tempo de e&edlas aplicacdes.

A.1 Introducao

Atualmente ha diversas classes de aplicagfes, com o abjitigrover solugdes para
problema cientificos e de engenharia, que demandam umaleong! capacidade de
computacdo. Ao mesmo tempo, ha um constante increment@aaidade de processa-
mento dos sistemas de alta performance disponiveis pawdesides. Este incremento é
alcancado através da replicacéo dos recursos de hardwarando possivel a execucdo
concorrente de software sobre hardware paralelo.

Hoje ha diferentes niveis de paralelismo oferecidos petpstaturas computacionais.
O paralelismo pode ser expresso internamente em um prdoesasraves das arquite-
turas multicores; interno a um computador, usando multgssadoresraphics Pro-
cessing Unit§GPUs) (GARLAND et al., 2008) Eield-Programmable Gate Array$P-
GAs) (BROWN et al., 1997); e entre computadores, formansk@sias paralelos e dis-
tribuidos comalustersou grids.

Uma vez que existem diferentes niveis de paralelismo, hdandiferentes inter-
faces de programacéao paralela adotadas para gerar codigmsi@ntes. Entretanto, cada
interface de programacao geralmente atua sobre um nivetiéisp de paralelismo. N&ao
ha uma interface de programacéo unificada que abstrai t@doveis de hardware par-
alelo disponiveis.

A Tabela A.1 apresenta uma comparacéao entre diferentefaces de programagéao

105

Table A.1: Diferentes niveis de paralelismo cobertos periaces de programacao.
Nivel Paralelo Cilk | OpenMP | TBB | PGAS | MPI | CUDA/OpenCL
Memogria Distribuida X X

Interprocessadores | X X X X X

Intraprocessadores | X X X X

GPGPU X

paralela, que podem ser adotadas no desenvolvimento deprag, para a utilizacdo dos
diferentes niveis paralelos disponibilizados pelas &tjuias.

A nocdo de tarefa paralela é representada de diferentesiopeias interfaces de
programacao relacionadas nesta tabela. CILK e TBB supartdivamente esta nogao.
A definicdo de tarefa ndo é tdo bem definida em MPI. Nesta auerfie programacao
paralela, cada processo € a propria tarefa paralela.

Para explorar todos os recursos de hardware disponiveismdieterminado ambi-
ente de execugédo é necessario combinar diferentes irgemdi@gprogramacéo paralela no
codigo concorrente.

Neste contexto, esta tese discute como € possivel explibeaerdes niveis de par-
alelismo em simulag6es de modelos atmosféricos. Modeatossdéricos demandam uma
quantidade significativa de processamento. Além dissontgrelacdo entre a precisdo
das solu¢des numéricas e a capacidade computacional. dQuaidr a capacidade de
processamento dos recursos usados, melhor é a precisdodpisqy considerada nas
simulagdes.

Esta tese propde o uso combinado de diferentes interfacegodeamacéo paralela
para aumentar a performance de aplicacdes climatoloégieasa avaliar a viabilidade
das solugdes propostas, foram desenvolvidas versGeslpardé aplicacdes que usam as
interfaces de programacfdessage-Passing Interfa¢kiPIl) (SNIR et al., 1998)0Open
Multi-ProcessingOpenMP) (CHANDRA, 2001) €ompute Unified Device Architecture
(CUDA) (KIRK; W. HWU, 2010). Deste modo é possivel a execudas implemen-
tacdes em sistemas de memaoria compartilhada (Multi-coudtj-processadores e GPU)
e distribuida (multi-computadores).

A.2 Trabalhos Relacionados

Programas hibridos que combinam multiplos paradigmas rddgtiaacdo, tais como
troca de mensagens efowlti-threading com bibliotecas de aceleracdo de hardware, séo
relativamente raros até o momento (HACKENBERG; JUCKELANERUNST, 2012).
Porém, este tipo de programacgdo tem se tornado cada vez omaisrce importante,
devido a existéncia de diferentes sistemas hibridos dele®@mpenho, como é o caso de
clustersformados por processadomasilti-coreda INTEL ou AMD, Cell da IBM e GPUs
da NVidia.

Diversos trabalhos descrevem o usona@ti-coree GPUs para o processamento de
aplicacOes das areas de decomposicdo de dominios, dindosdtuidos e, especifica-
mente também, previsbes atmosféricas (COHEN; GARLAND9200

(LINFORD; SANDU, 2011) examina métodos para prover perémoe em simu-
lacGes de transporte de componentes da atmosfera em déaslertensdes. Uma fungéo
com abordagernffloadé usada em um médulo de transporte bidimensional e uma abor-

106

dagem de processamento steeamvetorial € usada no médulo de transporte tridimen-
sional. Dois métodos para o transporte ndo continuo de dsuticssa memaria principal e

o local de armazenamento no acelerador de hardware sdo@mopéLINFORD, 2010).
Os resultados do estudo demonstram que processadalesoreheterogéneos tem po-
tencial para provespeed ugara simulacdes geofisicas.

(MICHALAKES; VACHHARAJANI, 2008) discute os resultados dpeed uppara
um trecho de codigo executado intensivamente pelo modelosééricoWeather Re-
search and ForecafWRF). Testes mostram que a performance pode ser incred@enta
8x em execuc¢des usando uma variedade de GPUs NVIDIA. Esta pe@lteracao de
codigo no modelo aumentaspeed umlobal do modelo atmosférico eh23 x.

Em outro trabalho, (SHIMOKAWABE et al., 2010), é apresentadna implemen-
tacdo completa em CUDA de um modelo atmosférico japonéstaeealolucdo, similar
ao WRF. A execucao experimental desse modelo erolustercom528 GPUs NVIDIA
alcancou um incremento dpeed upde 80x e possibilitou um escalonamento de
TFlops, usando precisédo simples, para um dominio dividid®856 x 6052 x 48 ele-
mentos de malha.

WRF e ASUCA sao exemplos de modelos de simulacdo atmostédal ou seja,
modelos que atuam somente sobre uma determinada parteakdextnterrestre, necessi-
tando obter informagdes a respeito das condi¢des de cordermodelos globais. Neste
trabalho, implementacdes paralelas para um modelo atnusfglobal sdo propostas
com o objetivo de executar simula¢gdes experimentaiclester compostos de proces-
sadoresnulti-coree GPUs.

A.3 Paralelismo Multi-Nivel

Atualmente a composicdo dos ambientes computacionaitejuera bastante het-
erogénea. De um lado, existem arquiteturas formadaslpsterse grids. Por outro lado,
as arquiteturasnulti-core oferecem diferentes unidades de processamento no proprio
chip. Consequentemente, o uso combinado de diferentes atgagedacaba provendo
ambientes com multiplos niveis de paralelismo.

Em um paralelismo multi-nivel ha diferentes niveis de agéto paralela. Estes
niveis podem ser internos ao processadoul{j-core interno ao computador (multi-
processadores) ou entre multiplos computadaresterse grids), criando, por fim, uma
hierarquia de abstrac&o paralela, conforme mostrado nad=fgl. A granularidade das
tarefas que podem rodar em cada nivel aumenta a medida qemt@imnivel de par-
alelismo, ou sejathreadspodem ser utilizados para explorar o paralelismo interno ao
processador enquanto processos comunicantes podem setaslenclusters

O gerenciamento de cada nivel de abstracdo paralela é feit@s de mecanismos
especificos:

e A nivel de processador O fluxo de instrugdes é definido pelo nucleo do sistema
operacional ou pela implementacéo dos registradores nidquam hardware. As-
sim, o contro é feito por instru¢cdes eaasembler

¢ A nivel de nuclo do sistema operacional O fluxo de instrucdes é definido por
processos othreads O controle do fluxo de instrugdes é feito através de chamadas
ao sistema operacional.

¢ A nivel de gerenciamento demiddleware - O conjunto de instru¢cfes é agrupado,

107

e —— === === ===

1 NO INO|
I NO —INO|
HCluster ! :Cluster |

,,,,,,,,,,,,,,,,,,

Figure A.1: Diferentes niveis de concorréncia em arquidstparalelas.

formando um processo comunicante. O controle € feito ardeébibliotecas de
comunicacao inter-processos.

Por isso, geralmente € de responsabilidade do programadodiierentes ferramentas
para implementar um programa que explore os varios niveisuagdelismo.

A.4 Interfaces de Programacéao Paralela

O processo de implementacéo de aplicagfes de alto deseongaithplificado pela
existéncia de diversas ferramentas de programacéao @ar&lefas ferramentas abstraem
tanto sistemas compartilhados como distribuidos e provéa abordagem de desen-
volvimento padréo para diversos paradigmas de progranpegatela.

A.4.1 Message-Passing Interface

Bibliotecas de troca de mensagens foram desenvolvidasabsteair a camada de
rede gocket} e para oferecer uma interface clara de funcdes de coméicke dados.
Estas bibliotecas foram utilizas para o desenvolvimentdidersas aplicacdes de alta
performance na década de 90 e inicio da ultima década.

A biblioteca de comunicacdo Message-Passing Interfacé) (@ dos mecanismos
amplamente utilizado para simplificar a programacéao plaréBROPP et al., 1996). MPI
possui um amplo conjunto de func¢des que podem ser utilizzdamplementacdes par-
alelas e distribuidas. Estes recursos sdo necessariosepalpéer performance paralela e
séo usadas frequentemente em muitos tipos de aplicacao.

A.4.2 OpenMP

OpenMP (Open Multi-Processing) € uma API de programacéa aayuiteturas de
memoria compartilhada (CHANDRA, 2001), (CURTIS-MAURY dt,2008). A API

108

prové diretivas que permitem a expressao de paralelismadizscem partes de codigo e
lagos, e o paralelismo de tarefas.

A API de OpenMP consiste de diretivas de compilacdo, métdddsblioteca e var-
iaveis de ambiente que descrevem como a carga de trabalbseodompartilhada entre
diferenteghreadsexecutando em diferentes processos ou, atualmeortes O progra-
mador pode definir o nimero direads que serdo executados, através da chamada de
métodos da biblioteca ou através da configuracéo de vasideeambiente.

Além disso, o grafo de tarefas no paralelismo de dados podgeserminado pelo
programador ou pelo compilador. O padrao OpenMP nao esgecifn algoritmo de
escalonamento. Isto é atribuido a implementacéo da API, ddigque o balanceamento
de carga seja feito da melhor forma possivel.

A.4.3 Compute Unified Device Architecture

Compute Unified Device Architecture (CUDA) é uma arqutetdeacomputacéo e
programacao paralela desenvolvido pela nVidia (NICKOLL&Ig 2008). CUDA posi-
bilita 0 uso de Graphics Processing Units (GPU), como agtjuias programaveis de alto
desempenho. Isto simplifica a programacéao de softwaregridmpossivel a execugao do
mesmo em placas de video.

O uso de placas de video para executar uma aplicacdo normelfega para a exe-
cucdo em CPU é chamado de General-Purpose computing oni&r &pbcessing Units
(GPGPU) (GARLAND et al., 2008). A primeira vantagem do usoGl¢DA é o uso
de memdria compartilhada para um rapido acesso de endexmdgtyarios de memoria.
Desde a versao 3.1, CUDA tem suporte a recurséo, tipo paritefite de dados de pre-
cisdo duplae rendenizacéo de texturas.

O modelo de programacéo consiste de extensdes da linguage@+&, para pro-
gramas sequenciais, que pode ser executado erkeunel CUDA (NICKOLLS et al.,
2008). Okernelé uma func¢éo similar a um cddigo C e roda paralelamente emsdive
threads sendo este mapeado pela prépria GPU (KIRK; W. HWU, 2010)ehtanto, o
programador é responsavel pela transferéncia de dades@tr e GPU.

O modelo de programacédo CUDA ¢ ideal para aplicacbes comnaltd de par-
alelismo e para aplicagées que ndo possuem dependénciasenarefas. Entretanto,
h& limitagdes em CUDA que incluem o controle de coerénciaddol®s usados e uma
auséncia de suporte para a execu¢do de multkglogels Assim, um ganho significativo
de performance depende do conhecimento sobre a arquitEt@&®U e sobre o modelo
de programacéao CUDA.

A.5 Ocean-Land-Atmosphere Model

Ocean-Land-Atmosphere Model (OLAM) foi 0 modelo atmosféréscolhido com a
finalidade de avaliar as interfaces de programacéo papatlemente descritas (WALKO;
AVISSAR, 2008a).

OLAM €& um exemplo tipico de problema de decomposicao de domima classe
de aplicagBes que frequentemente ocorre em muitas areddndeac Além disso, esta
aplicacao real tem uma quantidade significativa de carggutanional, sendo um bom
candidato para a avaliagcédo de performance.

109

Figure A.2: Projecéo dos elementos triangulares da sepedd modelo em esferas con-
céntricas para gerar multiplos niveis verticais.

A.5.1 Implementacdo do Modelo

Ocean-Land-Atmosphere Model (OLAM) € um modelo atmoséépiara a represen-
tacdo e simulacdo de toda a superficie terrestre. O modekiste essencialmente em
discretizar através da técnica de volumes finitos as egsagBavier-Stokes, aplicadas
sobre uma atmosfera planetéria, com a formulacdo de equag@erespeitem as leis
de conservacdo de massa, momento e temperatura potendelpgeracées numéri-
cas que incluem a divisdo do tempo (MARSHALL et al., 1997). vOkimes finitos
sao definidos horizontalmente por um conjunto de elemenggjulares formando uma
malha global e sub-divididos verticalmente pelas camattaesdéricas, formando uma
espécie de prisma orientado verticalmente com uma basguiar.

A Figura A.2 mostra um exemplo de malhas decompostas. OLAMuasa abor-
dagem néo estruturada de malha e representa cada ponttalrdiscreto através de um
anico indice linear (WALKO; AVISSAR, 2008a). Informac¢desgueridas de um ponto
local da topologia da malha podem ser armazenadas e acessa&@s de estruturas de
dados que definem a relacédo entre os pontos.

OLAM foi inicialmente desenvolvido e paralelizado com MBhda processo MPI é
responséavel por operar fungdes sobre um determinado subtdodurante a etagtera-
tiva. Cada processo determina seu sub-dominio da malha globabddo com setank
MPI. Uma vez definido a distribuicdo dos sub-dominios ensr@rocessosirficializa-
céo), cada processo descarta a malha global e mantém em mep@nasasua respectiva
parte da malha, a fim de que a mesma seja processada. Trocasiegeres sao feitas
entre os processos cujos dominios sejam vizinhos, em @dadb, a fim de atualizar as
estruturas de dados localizadas nas bordas da malha.

A.5.2 Protétipo do Modelo

Uma versao simplificada de OLAM foi implementada em C, com jetol de al-
cancar as metas propostas neste artigo. Esta versao padeinclui as principais car-
acteristicas do modelo, incluindo decomposicdo de domimafinamento de malhas,
distribuicdo paralela de dados, encapsulamento de chanhielapara o envio e rece-
bimento de dados e todas as estruturas de dados e funcéssérexx a fim de que o

110

modelo possa ser executado. Este prototipo prové um moblsiato de paralelismo de
tarefas para aplicacdes climatologicas.

Embora OLAM tenha sido inicialmente implementado com MRty@ escolha natu-
ral para a paralelizacdo do codigo e o usgdegmasOpenMP nos principais lagos do
codigo. Para tanto, foram feitas modifica¢cdes no cédigmppatdo original, adicionando
instrugcdes que permitam a decomposicéo de lagos em désrexécucdes concorrentes,
através da criacdo dbreadsOpenMP. O paralelismo OpenMP foi combinado com a
implementacéo feita com MPI. Assim, € possivel ter uma dotraa de execucao con-
corrente em sistemas de memaria compartilhada.

Outra interface de programacao paralela para prover fiaratemulti-nivel que foi
adotado € CUDA. Para tanto, algumas func¢des da implementhg@rotétipo OLAM
foram reescritas, convertendo o cédigo C destas em codigerdel CUDA. Também
foram necessarias a implementacao de fun¢des que encagsalecacédo e desalocacao
de memoria, além da copia de dados entre CPUs e GPUs.

Para reduzir o numero de aloca¢des de memorkenmel CUDA, todas os vetores de
variaveis temporarias a serem utilizados pelas funcdasfatocados antes da chamada
da parte iterativa do modelo e desalocadas depois do téuessa etapa. Além disso,
em cada passo da etapa iterativa, antes da chamada de gqhatgpd® dokernel CUDA,
foi necessario a copia de dados da CPU para a GPU e, ap6s g@&xelcupasso iterativo
a copia de dados da GPU para a CPU.

As fungdes dkernel CUDA também foram embutidas na implementacdo MPI. Com
isso, trés diferentes niveis de paralelismo (GRidsese processadores podem ser uti-
lizados em simulagfes atmosféricas.

A.6 Avaliacdo de Performance

Esta secdo apresenta o0 ambiente de simulacao, parameéxecdeao e as medicoes
de tempo de execucdo e sigeed upfetuadas.

A.6.1 Ambiente de Simulagéo

Todas as medicdes experimentais foram obtidas utilizamtlesster Newtoro Centro
Nacional de Supercomputacadestecluster é interconectado através da tecnologia de
redelnfiniBande tem atualmente 28 Sun Fire X2200+ nds (cada um com 2 pratessa
Quad-Core AMD Opteron de 2,2 GHz e 16 GB RAM) e 8 GPUs nVididar&d.070.

Em todas as execucdes foram simulattasioras de interacdo da atmosfera. Cada
etapa da interacdo simub@ segundos do tempo real da condi¢cdo atmosférica. O eixo
vertical da atmosfera foi dividido e28 camadas, conforme padrdes utilizados em centros
de climatologia.

A distancia média entre cada ponto discreto da superfiolgagjfoi em torno de100
Km, 67 Km d 50 Km. Em simulagdes utilizando GPUs, o numerthdeadsCUDA foi
fixado em128.

A.6.2 Implementagdo com MPI

Um primeiro teste foi feito com o objetivo de analisar o impato use de processos
MPI no tempo total de execucéo.

A Figura A.3 e a Figura A.4 apresentam o tempo de execucdoggundos) resul-
tante de uma simulagéo atmosférica, usando uma malh@dém e 50 Km de resolugéo
horizontal. Os gréficos dessas figuras mostram o tempo ®&aletucéo e o tempo gasto

111

T
Total ——
1800 - Inicializagdo XXX

1600 -]
1400 .

1200 B

1000 .

800 -]

Tempo de Execucéo (s)

600 -]

400 .

200 —

Processos

Figure A.3: Tempo de execucdo usandal @e32 processos para uma simulacdo de uma
malha del 00 Km de resolucéo.

na execugao da inicializagéo, usandad de32 processos MPI.

Cada coluna do grafico representa o tempo total de execucaaipadeterminado
namero de processos. Pode-se observar que este tempadecrasdida que mais pro-
cessos sao utilizados. Consequentemente ha ganho denpeanta.

A segunda medicéo (area quadriculada) de cada grupo desposceepresenta o
tempo de execucao da etapa de inicializagdo do modelo. tdenguracéo dessa etapa
é de aproximadamentd5 s para uma resolucdo de malhald® Km e 415 s para uma
malha comb0K'm de resolucdo. O tempo gasto com a etapa de inicializacacséarne,
independente do numero de processos utilizado nas sinesladdelacdo entre o tempo
de inicializacdo e o tempo total de execucéo decresce a enqdiel malhas com maior
nivel de resolugéo séo utilizadas.

A.6.3 Implementacdo com MPI e OpenMP

O uso dethreadsOpenMP foi avaliado em algumas simulagfes atmosféricas, co
siderando malhas com resoluc¢éo horizontal @eKm.

A Figura A.5 apresenta o tempo total de execucéo (em segudedasna simulacdo
atmosférica utilizando dé a 8 processos MPI. Nos testes, a performance de execucao
utilizando del a8 threadsOpenMP foi comparada para cada nimero de processos MPI.
Cada coluna branca preenchida no grafico representa o teengindlacéo usando so-
mente processos MPI. As demais colunas mostram o tempo degéixedos processos
MPI com a incluséo déhreadsOpenMP.

O uso dethreadsOpenMP prové reducao no tempo total de execugcdo do modelo,
independente do numero tleeadsutilizado. Entretanto, ha uma limitagdo no ganho de
performance quando mais do qiiethreadgprocessos sao usados, uma vez que o tempo
de execugdo da etapa iterativa predomina em relacdo a otetapde execugcdo. Com
isso ha uma limitagé@o de escalabilidade.

112

8000 T T T T T

T
o Total ——1
Inicializagdo KXX=

7000 —

6000 |-]

5000 |]

4000 |]

3000 |]

Tempo de Execucéo (s)

2000 | —

1000 -]

Processos

Figure A.4: Tempo de execucdo usandal Ge32 processos para uma simulacdo de uma
malha de50 Km de resolucéo.

Além disso, o paralelismo OpenMP é restrito a determinadaep do codigo, en-
guanto que o paralelismo MPI inclui toda a parte iterativaddigo. Por causa disso, a
comparacgao entre o tempo de execucédo de simula¢gdes quearsanmtghreadsOpenMP
(1 processo MPI) em relacdo ao uso de somente processos IMRiead OpenMP)
mostra um melhor resultado para o primeiro caso.

A Figura A.6 apresenta speed ugla parte iterativa do modelo. Nos testes sdo com-
parados del a 8 processos MPI. Dé a 8 threadssao criadas e executadas em cada
processo MPI.

Os resultados mostram que o usdlileadsOpenMP aumenta a performance da etapa
iterativa para qualquer numero de processos MPI adotadsso@ambinado de ou 4
threads em cada processo MPI aumenta o speed up em nigdi%ae100%, respectiva-
mente, em relacdo a verséo paralelizada restritamente déimpdra todos os nimeros
de processo MPI utilizados nas simulagdes. No gréafico é y®ssir que o uso de
threads & processos prove um ganho de performance limitado. Istce@mque cada
processdahreadcomputa uma tarefa com baixa granularidade. Assim, a peéioce par-
alela ndo se sobrepdem em relacéo aos custos de comunicde&dacao dagreads

A.6.4 Implementacdo com MPI e CUDA

Algumas simula¢des também foram feitas explorando o pemale em GPUSs.

A Figura 7.5 apresenta o tempo total de execucdo (em segupd@sas trés res-
olucdes de malha consideradas neste trabalho (veja Sob&egd). Nesta figura, as
primeiras trés colunas mostram o tempo de execucao sequdectada resolugdo. A
execucgdo sequencial ndo inclui o uso de GPUs. As outrasamiimgrafico mostram o
tempo de execucédo usando?, 4 e 8 GPUs.

Os resultados da Figura A.7 mostram que o usad &PU reduz o tempo total the
execucdo em mais do qde em relagdo a execucdo usando somente de processamento

113

1Thread ——
2 Threads KXX=X
4 Threads ===z
8 Threads -

RS
B33
[esetotetets
ledetoleete!

16

[RHXHHERRRRRX]
RS
RIRRRRKY
19S02920a9929929.:94

Processos

IR

ORI
Soesreoietetee?
oetoletoletoletolst

8000

R K : m m _ I
B BRI %R0
100,029 00,929, 0920 009 VOO VOO I 999 TTTT
T T
VOO
oo I
|l cccc
FEFEF KX XA
— N < 0
1 1 1 1 1 1 1
o o o o o o o o 1 1 1 1 1 1 1 1 1
8]]]]]]
o [ee] © N o [ce) © N o
M~ © [Te) < (2] N — N — — M - — =
(s) oednoax3 ap [e10] odwa] dn paads

Figure A.5: Tempo total de execucéo usando diferentes raswkthreadsOpenMP em

uma simulagéo com processos MPI.

g dsOpenMP

umero

s

Processos

Figure A.6: Speed upla etapa iterativa usando diferentes n

em uma simulagéo com processos MPI.

114

Resolugdo de 100 Klm I—f
1400 Resolugcéo de 67 Km EXX=X A
Resolugéo de 50 Km Rxzzzz

1200 —

1000 .

800 -]

600 - —

Tempo Total de Execugéo (s)

400 | .

200 -]

sequencial 1 2 4
Processos

Figure A.7: Avaliacdo do tempo de execucéao utilizando difezs nUmeros de GPUs para
simulacdes de resolucdo de malhad @&Km, 67 Km e 50 Km.

CPU. Esta reducéo é mais expressiva a medida que mais GPUsasfas na simulagéo.

A Figura A.8 e Figura A.9 apresenta o tempo de execucédo (eandeg) das etapas
de inicializag&o e iterativa do modelo para uma resolu¢camakas del00 Km e 50
Km, respectivamente. Nestes resultados é possivel ver tpnepn de execucdo da etapa
de inicializag&o é constante, independente do niumero des@P&#lo. Por outro lado, o
tempo de execucéo da etapa iterativa decresce para todasassavaliados quando mais
GPUs séo incluidas na computacao.

A Figura A.7 exibe cspeed upla etapa iterativa do modelo, quando séo usadds de
a8 GPUs nas simulagbes com resolugéao de malhi@)dé&m e 50 Km. Em todas as res-
olucdes de malha utilizadasspeed u@mumenta a medida que mais GPUs sao usados. O
grafico mostra também que uma malha com alta resold@aor) tem maisspeed umlo
gue uma malha com baixa resolucdo((Km), devido a diferenca de granularidade entre
0s processos. Malhas com alta resolucédo tem mais estruterdados para computar.
Consequentemente, a granularidade dos processos € meseraaso.

A.7 Conclusao e Trabalhos Futuros

Esta tese apresentou uma implementacédo paralela de umaretdebdsférico uti-
lizando as interfaces de programacgédo MPI, OpenMP e CUDAfd#ai uma avaliacao
da performance de uma verséo prototipada de OLAM em umatergpacluster com-
posta pomulti-core multi-processadores e GPUs, isto € um ambiente com panatel
multi-nivel.

Com o objetivo de avaliar as diferentes implementacfedglasado modelo, foram
apresentados resultados parciais e comparativos de teenpgeducao e dspeed up
utilizando del a 32 processadores quad-core elda8 GPUs de unctluster Os resul-
tados parciais mensurados mostram que as implementagddglebe MPI combinado

115

T
Total ——
1800 - Inicializagdo XXX

1600 -]

1400 B

1200 i

1000 .

800 -]

Tempo de Execucéo (s)

600 -]

400 .

200 —

sequencial 1 2 4 8
Processos

Figure A.8: Tempo de execucao das etapas de inicializacBativa para simulacdes
usandol 00 Km de resolucédo de malha.

1600 T T T

T
Total —1
Inicializagdo KxXxX=

1400 i

1200 -]

1000 -]

800 -]

Tempo de Execucao (s)

600 - —

400 | .

200

Processos

Figure A.9: Tempo de execucao das etapas de inicializacByativa para simulagdes
usandd0 Km de resolugéo de malha.

116

T
5T Resolucdo de 100 Km ———
Resolugéo de 50 Km EXX=

Speed up

sequencial 1 2 4
Processos

Figure A.10: Avaliacdo dspeed upsando diferentes nimeros de GPUs para simulacdes
de resolucéo de malhas tié) Km e 50 Km.

com OpenMP aumentam a performance paralela do modelo arivosh medida que
mais processos e/dhreadsséao utilizados. O uso de OpenMP maximizapeed up

se 0 numero déhreadsem execucao for o mesmo que o numero de cores existente no
processadori(threadspara um processador quad-core).

O uso restrito de paralelismo MPI na implementagédo do mopgeeé um melhor
tempo de execucdo em relacdo ao uso combinado de paral&liBireoOpenMP, se forem
comparados o0 mesmo nuamero de processos MPI contra a somangoondie processos
MPI ethreadsOpenMP. A implementacao paralela com MPI envolve toda aetefativa
do modelo enquanto que o paralelismo com OpenMP é restiligoimas funcdes da etapa
iterativa.

Por outro lado, a versao implementada com CUDA incremenfmrfarmance em
vezes em relagdo a versdo executada sequencialmente emRun#&A @erformance do
protétipo também foi avaliada em execugdes em mais uma GBlkgdltados mostram
que ha um aumento dgeed uppara todas as resolucdes de malhas adotadas nas simu-
lagbes, a medida que mais GPUs sé&o usadas.

Como trabalhos futuros pretende-se avaliar o comportantEnprotétipo do modelo
atmosférico em arquiteturas GPU, variando o nimerthdsadsCUDA usado. Atual-
mente este niumero esta fixo em 1B&ads A adicdo de maithreadspode incrementar
a performance do modelo em algumas resolucdes de malhdfessec

Outras interfaces de programacéo paralela, cbhmeading Building Blockdalntel e
Message-Passing Interfacedlie oferecem a criagdo de processos em tempo de execugao,
podem ser avaliadas com o objetivo de maximizar o uso dossesue hardware em
simulagfes atmosféricas.

