Detecting Bad Smellsin AspectJ

Eduardo Kessler Piveta! , Marcelo Hecht!
M arcelo Soares Pimenta! , Roberto Tom Price!

instituto de Informatica
Universidade Federal do Rio Grande do Sul
Av. Bento Gongalves, 9500 - Campus do Vale - Bloco IV
Bairro Agronomia - Porto Alegre - RS -Brasil
CEP 91501-970 Caixa Postal: 15064

epivetae@inf.ufrgs.br, mhechtegmail.com, mpimenta@inf.ufrgs.br, tomprice@terra.com.br

Abstract. This paper defines algorithmsto automatically detect five types of bad
smells that occur in aspect-oriented systems, more specifically those written us-
ing the AspectJ language. We provide a prototype implementation to evaluate
the detection algorithms in a case study, where bad smells are detected in three
well-known AspectJ systems.

1. Introduction

Aspect-oriented software development improves the separation of concerns by providing
abstraction and composition mechanisms that deal specifically with the modularization of
crosscutting concerns [Kiczales et al. 1997]. The most common abstraction mechanisms
are aspects, pointcuts, advice and inter-type declarations. Although the use of aspects
might help in the modularization of crosscutting concerns, their use can introduce prob-
lems either particular to the use of aspects or similar to those found in objects, such as:
pieces of code abandoned in a module and no longer used, code duplication and classes
with too many or too few responsibilities.

These problems usually difficult reuse in several development process activities
[Boehm and Sullivan 2000] and can be minimized by the identification of their symp-
toms and the removal of their causes. These symptoms (called bad smells by Fowler
[Fowler et al. 2000]) may be seen as signs or warnings, indicating potential problems in
the software [Elssamadisy and Schalliol 2002]. The problems could be removed or mini-
mized by using appropriated refactorings to change the application design.

There are catalogs and descriptions of bad smells for object-oriented systems
(such as [Fowler et al. 2000], [M.P. Monteiro 2005]), but their detection in aspect-
oriented systems is still not enough explored. Monteiro and Fernandes discuss bad smells
that arise in object-oriented systems [M.P. Monteiro 2005], indicating refactoring oppor-
tunities for code extraction from objects to aspects, without extensively discussing bad
smells that occurs in aspect oriented systems. Piveta et al [Piveta et al. 2005] discuss sev-
eral bad smells in the context of aspect-oriented systems. However, the authors do not
provide mechanisms to automatically detect occurrences of those smells.

This paper focuses on automatic detection of bad smells in the context of the
AspectJ language [Kiczales et al. 2001]. The main goal is to provide algorithms and a
prototype implementation to detect five types of bad smells defined in [Piveta et al. 2005]:

anonymous pointcut definition, large aspect, lazy aspect, feature envy and abstract method
introduction.

The remainder of this paper is structured as follows: in section 2., some mecha-
nisms to bad smells detection are detailed as well as a implementation of an AspectJ bad
smells detector, using an AST visitor based approach. In section 3., a case study with
well-known aspect oriented systems is conducted. The chosen systems are: the AspectJ
examples!, Aspect] Design Patterns, [Hannemann and Kiczales 2002] and the GlassBox
Inspector?. Section 4. describes related work and section 5. details final considerations.

2. Algorithmsto Bad Smells Detection

Fowler [Fowler et al. 2000] presents bad smells as a way to identify problems in existing
software artifacts. This is accomplished by suggesting possible symptoms that can appear
in the artifacts, indicating areas that usually can be improved by refactoring. The use of
refactoring techniques attacks the causes of those problems, causing the symptoms to be
minimized or removed.

Some refactorings have been proposed to enable the code manipulation in
aspect-oriented systems (such as: [Garciaetal. 2004], [Hanenberg et al. 2003],
[lwamoto and Zhao 2003], [Monteiro and Fernandes 2004], [M.P. Monteiro 2005]).
These refactorings help to remove or minimize the occurrence of bad smells in aspect
oriented code.

In this section, we describe how bad smells in aspect-oriented systems could be
detected in Aspectd programs. A brief textual description, a more formal definition and
algorithms are provided for each type of bad smell. A detailed discussion about the nature
of bad smells in aspect oriented systems can be found in [Piveta et al. 2005].

2.1. Detecting Anonymous Pointcut Definitions

In Aspectd, as pieces of advice are not named, sometimes it is necessary to rely on the
pointcut definition to have an idea of the affected points. The use of the pointcut definition
predicate directly in an advice may reduce legibility and hide the predicate’s intention. A
name that clearly defines the pointcut intention could be defined and referenced by any
advice or declare construction.

Definition 01 Let A = {call, execution, get, set, initialization, preinitialization, staticini-
tialization, handler, adviceexecution, within, withincode, cflow, cflowbelow, if} be the set
representing all the primitive pointcuts in AspectJ that are not related to context exposure.
Let B be the set of the tokens in a given pointcut definition. The pointcut definition is an
anonymous pointcut definition if and only if the predicate Vb € B—Ja € A|b = aistrue.

An implementation of a function to detect anonymous pointcut definition is
showed in Listing 1. First, a set named primitive, containing all pointcuts not concerned
with context exposure is created (line 2). After, the string s containing the pointcut pred-
icate is divided into tokens (line 7), which are individually compared with the primitive
set. If the set contains s, the method returns true, false otherwise.

lhttp://www.eclipse.org/aspectj/doc/released/progguide/examples.html
2http: //www.glassbox.com

protected boolean isAnAnonymousPointcut(String s) {
Collection primitive = new ArrayList();
primitive.add(”call”);
primitive .add(”execution”);

boolean temp = false;
String [] result = s.replace(”(”,”.”).replace(”)”,”.").split("\\s”);
for (int x=0; x<result.length; x++)
if (primitive.contains(result[x])){
temp = true; break;
}

return temp;

}

Listing 1. A Java implementation of the isAnAnonymousPointcut function

The detection of anonymous pointcuts in Aspect] and AJDT could be done us-
ing a visitor, which visits advice declarations looking for the use of anonymous point-
cuts. Listing 2 shows the implementation of such visitor. It visits all AdviceDeclaration,
After AdviceDeclaration, AroundAdviceDeclaration and BeforeAdviceDeclaration nodes.
Whenever the function isAnAnonymousPointcut returns true, a BadSmellsEvent instance
is created to gather information about the bad smell (lines 9-11).

public class AnonymousPointcutASTVisitor extends BadSmellsASTVisitor {
private boolean visitAdvice (AdviceDeclaration node) {
isSAnAnonymous(node. getPointcut());
return false;

}

protected void isAnAnonymous(PointcutDesignator pd) {
if (pd instanceof DefaultPointcut)
if (isAnAnonymousPointcut (((DefaultPointcut)pd).getDetail ())){
BadSmellsEvent event = new BadSmellsEvent();
event.setType (”Anonymous_Pointcut_Definition”);

Listing 2. An AST visitor that detects the anonymous pointcut bad smell

2.2. Detecting L arge Aspects

Whenever an aspect tries to deal with more than one concern, it could be divided in as
many aspects as there are concerns. This smell is usually discovered when the developer
finds several unrelated aspect members (fields, pointcuts, inter-type declarations) in the
same aspect.

Definition 02 Consider an aspect «. The crosscutting members of o are the collection
of all advice, pointcuts, declare constructions and inter type declarations directly defined
in «. Consider 7 as the number of crosscutting members of «. Given a threshold 7, an
aspect is considered a large one whenever the predicate >= 7 holds. The function to
determinate if an aspect isa large one, could be defined as. f(a) =n >=1

The threshold could be defined by the user of the function, or given as a constant.
The detection in AspectJ could be implemented as a visitor (see Listing 3). All TypeDec-
laration nodes are inspected in the end of the visiting process (line 2). Whenever the node

e

e

P O OWOoO~NOO O WNPE

P O OWOo~NO Ol WN K-

is an aspect, the number of declared members is obtained and compared to the 7 value,
defined in a constant named TAU available in a class named Consts (lines 4-5). If the
number of crosscutting members is equal or higher than TAU, the aspect is marked as a
large aspect, false otherwise.

public class LargeAspectASTVisitor extends BadSmellsASTVisitor {
public void endVisit(TypeDeclaration node) {
super .endVisit(node) ;
if (((AjTypeDeclaration) node).isAspect())
if (getNumberOfMembers() >= Consts.TAU){
BadSmellsEvent event = new BadSmellsEvent();
event.setType(”Large_Aspect”);

Listing 3. AST visitor responsible for the detection of the Large Aspect bad smell

2.3. Detecting Lazy Aspects

This bad smell, initially defined in [M.P. Monteiro 2005], occurs if an aspect has few
responsibilities, and its elimination could result in benefits at the maintenance phase.
Sometimes, this responsibility reduction is related to previous refactoring or to unex-
pected changes in requirements (planned changes that did not occur, for instance).

Definition 03 Consider an aspect «. The crosscutting members of « are the collection
of all advice, pointcuts, declare constructions and inter type declarations directly defined
in . Consider n as the number of crosscutting members of «. An aspect is considered
a lazy one whenever the predicate == 0 holds. The function could be defined as:

To detect lazy aspects, a similar approach to the Large Aspect bad smell is taken.

The LazyAspectASTVisitor creates bad smell events whenever an aspect without crosscut-
ting members is found (see Listing 4).

public class LazyAspectASTVisitor extends BadSmellsASTVisitor {
public void endVisit(TypeDeclaration node) {
super . endVisit (node);
if (((AjTypeDeclaration) node).isAspect())
if (getNumberOfMembers() == 0){
BadSmellsEvent event = new BadSmellsEvent();
event.setType(”Lazy_Aspect”);

Listing 4. AST visitor responsible for the detection of the Lazy Aspect bad smell

2.4. Detecting Feature Envy

In Aspectd, pointcuts could be defined in aspects and also in classes. If a single aspect
uses a class-defined pointcut, it is interesting to move the pointcut from the class to the
aspect that uses it. The same problem might occur also in classes. It happens when a
class extensively refers to members of another class instead of referring to its own. In this
paper, we deal only with the detection of pointcuts in classes.

e

P O OWOoO~NOO O WN PR

1
2
3
4
5
6

Definition 04 If the number of pointcutsin a class y is given by 7, the class suffers from
the feature envy bad smell if the predicate » > 0 holds. The function could be defined as:

fx)=n>0

The implementation using AspectJ is pretty straightforward (see Listing 5). The
program checks all nodes representing types (aspects, classes and interfaces) and verifies
if a class does not implement a pointcut in its body. If this happens, an event is gener-
ated. Note that the visit(PointcutDeclaration node) method (line 5) is executed only if the
method visit(TypeDeclaration node) (line 2) returns true.

public class FeatureEnvyASTVisitor extends BadSmellsASTVisitor {
public boolean visit(TypeDeclaration node) {
return (!((AjTypeDeclaration) node).isAspect() || node.islnterface());

public boolean visit(PointcutDeclaration node){
BadSmellsEvent event = new BadSmellsEvent();
event.setType (”Feature_Envy”);

return false;
}
}

Listing 5. AST visitor responsible for the detection of the Feature Envy bad smell

2.5. Detecting Abstract Method Introductions

Aspects could be used to add state and behavior into existing classes. This is made through
the inter-type declaration mechanism. This mechanism allows methods and/or fields to
be inserted in classes defined by the aspect. However, the use of this functionality may
cause problems when abstract methods are inserted in application classes.

This introduction forces the developer to provide concrete implementations to the
introduced methods in every affected classes and sub-classes. This dependency unneces-
sarily increases the coupling between the aspect and the affected classes.

The introduction of abstract methods through an inter-type declaration should be
avoided, since it demands providing implementation for these methods every time a sub-
class of the affected class is created.

Definition 05 If the set of modifiers of a inter type method declaration ¢ is given by m(:)
and the abstract modifier is given by «, the function that describesif an inter type method
declaration is an abstract one could be defined as f(:) = a € m(:). If the result of
the function evaluation is true, then the inter type declaration is an abstract one, false
otherwise.

An algorithm that detects this kind of smell could be seen in Listing 6. A visit
method is defined to visit all inter type method declarations (line 2). If the node has
abstract modifier, the inter type declaration is abstract, false otherwise (line 4).

public class AbstractMethodlIntroductionASTVisitor extends BadSmellsASTVisitor {
public boolean visit(InterTypeMethodDeclaration node){
String name = node.getName().toString();
if (Modifier.isAbstract(node.getModifiers())){
BadSmellsEvent event = new BadSmellsEvent();
event.setType (”Abstract_Method_Introduction”);

O O oo~

e

Listing 6. An AST visitor that detects if an inter type method declaration is abstract

2.6. A Bad Smell Detector

A bad smell detector was implemented to test the algorithms described in this paper.
It explores the AST support® available in the AJDT* project and is implemented as an
Eclipse plugin.

This plugin extends both the Eclipse environment and the AspectJ environment.
The AspectJ extension (Figure 1) was developed to provide mechanisms to find the bad
smells discussed in this paper. The Eclipse extensions are available to provide visual
information about the detected smells.

@ org.aspectj.org.eclipse.jdt.core.dom.AJAS TVisitor

| B MetricsAjASTVisitor |

A

| © BadSmellsASTVisitor |

A

3 AnonymousPointcutASTVisitor | | ® AbstractMethodintroductionASTVisitor | @ LazyAspectASTVisitor

® FeatureEnvyASTVisitor | | @ LargeAspectASTVisitor I | @ PrivilegedAspectASTVisitor |

Figure 1. Class hierarchy of the AspectJ extension

The classes of the AspectJ extension package are briefly described here:

AjJAST Visitor This class implements a visitor for abstract syntax trees. For each different
concrete AST node type T there are some methods that could be used, such as
visit(T node) or endVisit(T node), to visit a given node and perform some arbitrary
operation. This class is provided by the AspectJ reference implementation.

MetricsAjAST Visitor This class collects meta-information about the visited AST. It
holds data about advice, pointcuts, inter type declaration fields, inter type dec-
laration methods, declare constructions and size related metrics.

BadSmellsAST Visitor This visitor is responsible for reading information from eclipse
files and collecting data to be displayed in the user interface. It is the direct super-
class of all the bad smells AST visitors.

Other Classes There are other visitors defined to each type of bad smell being de-
tected. Examples are: AnonymousPointcutASTMisitor, AbstractMethodintro-
ductionASTMisitor, LazyAspectASTVisitor, FeatureEnvyASTVisitor, LargeAspec-
tASTVisitor and PrivilegedAspectAST\isitor®.

3The developments in the AST support are still in progress and they are covered by enhancement https://bugs.eclipse.
org/bugs/show_bug.cgi?id=110465.

“http://www.eclipse.org/ajdt

5This bad smell is not discussed in this paper

3. Case Study

This case study uses well-known aspect oriented programs available as open source. The
selected systems give different flavors of Aspectd programs as they include tutorial ex-
amples, academic software, open source software and commercial application of the lan-
guage.

The first system selected is the collection of examples shipped with the AspectJ
language reference implementation (IBM). These examples aim to show the usage of the
different constructions available to the language user. The second system is a collection
of the GoF design patterns [Gamma et al. 1995] implemented using AspectJ. This collec-
tion was developed by Hannemman and Kiczales [Hannemann and Kiczales 2002] and it
is used in other research papers [Garcia et al. 2005, M.P. Monteiro 2005]. The third sys-
tem is a commercial product, developed by GlassBox Corporation and available as Open
Source at Java.Net®. The GlassBox Inspector aims to deliver performance monitoring and
troubleshoot mechanisms for J2EE applications using AspectJ and JMX.

In Figure 2, a view showing some occurrences of bad smells in the selected
projects is shown. This view is populated whenever the user requires the activation of
the detection plugin. For each bad smell, the following information is provided: project
name, file name, type of bad smell and additional details.

Prnblems|Javadoc|Dec|aratinn|Prngress M\ el

I Project | File Mame | Type | Details

Anonymous Poinkcak ..

call{Singleton+.newt.. 1)

AJDesignPatterns SingletonProtocol, &)

|&%| AIDesignPatkerns
E AJDesignPatkerns
E AJDesignPatterns
E AIDesignPatkerns

SortingSkrategy . aj

Queuestatebspect, aj
Queuestatesspect. aj
Queuestatebspect, aj

Anonymous Poinkcak ...
Anonymous Poinkcuk ...
Anonymous Poinkcak L.,
Anonymous Poinkcak ..

call{ink Sorker,sark{ink))
initializationnew))

calliboolean Queuestate+.ins. ..
calllboolean Queuestate+.re...

E AJDesignPatterns StrakegyProbocol, aj Lazy fAspect StrategyProbocol
|e's| AJDesignPatterns MementoProtocol, &) Lazy Aspeck IMementoProtocol
|&% AIDesignPatkerns FlyweightPratocal, aj Lazv Aspect FlyweightPratocal

=

|es| AJDesignPatkerns
|5 AJDesignPatkerns
E AJDesignPatkerns
|e%| AJExamples

|&%| AJExamples

|&%s BIExamples

|e'%| AJExamples

|e%| AJExamples

E AIExamples

|&'%| AJExamples

E AIExamples

_—
1.2 #IFvaramlac

ZompositeProtocol, &)
BooleanInkterpretation. aj
ClickChain, aj
GetInfo.java
Timing.jawa
TimerLog.java
TimerLog.java
Debug.java
BoundPaint. java
BoundPoink, java
Billirg. aj

Fricrdan:? =i

Lazy fAspect
Large Aspect
Large Aspect

Anonymous Poinkcak L.,
Anonymous Poinbout
Anonymous Poinkcak ..
Anonymous Poinkcat ..
Anonymous Poinkout
Anonymous Poinkcak ..

Anonymous Poinkcak .
Abstract Method Inkro

A hekeack Makhod Trkea

CompositeProbocol
BooleanInterpretation
ClickChain

execukion(® goli)

call{void Connection, completed))
call(* Tirer.stark())

calli* Timer stop()

callivoid Ship,inflictDarmageid. ..
execution(void Poink, setk(ink))
execukion(yoid Point, setyink)
callrate

maink

Figure 2. A view showing the bad smells in the case study

In an attempt to define appropriated thresholds for the Large Aspect bad smell,
the examples chosen (plus AJHotDraw [van Deursen et al. 2005]) were measured regard-
ing the number of crosscutting members of its aspects. The data was analyzed and
the negative binomial statistical distribution with the following parameters was selected:
NegBin(3,0.43034). This distribution was selected from the results of the Chi-Square
test application in the input data.

Shttps://glassbox-inspector.dev.java.net/

NegBin(3, 0.43034)

v 0.25 ? -
0.20+
% 0.15+
@
o
1]
<
0.10
0.05--
0.00 # i BB BA
o e ¢ 3 2 e
Number of Crosscutting Members
94.4% _ 5.6% >
-Infinity 9.80

Figure 3. The binomial distribution used to represent the number of crosscutting members in aspects

Using this theoretical distribution, representing a subset of the existing aspect ori-
ented systems, one can choose a coherent 7 value. In this case, 94.4% of the aspects have
less than ten crosscutting members. The Figure 3 shows the relation between aspects
and crosscutting members. The dark bars represent the number of crosscutting members
per percentage of aspect. The red lines represent the negative binomial distribution used.
In this case study, aspects with ten or more crosscutting members are marked as large

aspects.

In next sections, each system is detailed as following: first, a brief description
about the system under evaluation is presented. After that, a table summarizing the de-
tected bad smells is presented and each type of bad smell is discussed regarding its in-
stances in the application.

3.1. System 1: AspectJ Examples

The AspectJ examples provide illustrative source code to teach the users on the develop-
ment of aspect-oriented programs using the language. These examples are divided into
categories, such as: development aspects, tracing using aspects, production aspects and
reusable aspects.

Each example works with different facets of the language. The domains used in
those examples vary from telecom simulation and space war game to tracing systems.
There is also an implementation of a reusable Observer pattern [Gamma et al. 1995] as
an example.

In Table 1, the occurrences of each bad smell are summarized. The anonymous
pointcut definition bad smell is the one that appears most (7 cases). No instance of a lazy
aspect was found and a large aspect was detected in one of the examples. Feature envy
and abstract method introduction appear in a few aspects.

Type Number of Occurrences
Classes 46
Aspects 27
Interfaces 5
Bad Smell

Anonymous Pointcut Definition 22 of 52 advice
Large Aspect 1 of 27 aspects
Lazy Aspect 0 of 27 aspects
Feature Envy 1 of 46 classes
Abstract Method Introduction 3 of 28 inter-type methods

Table 1. Bad Smells in AspectJ Examples

As an example of the anonymous pointcut definition bad smell, the pointcut de-
moExecs() & & !'execution(* go()) && goCut() declared in an aspect named GetInfo is
composed by two defined pointcuts (demoExecs and goCut) and an anonymous pointcut
definition (!execution(* go())). This last piece could be extracted in a new pointcut and
its name used instead of the literal predicate. The resulting composition would be, for
example: demoExecs() & & !'goExecs() & & goCut(). Other detected occurrences of this
bad smell could be found in the Timing, TimerLog, Debug and BoundPoint aspects.

The high number of occurrences of this specific bad smell is due to the nature of
the examples. Each example is intended to cover specific features of the language, without
taking reuse concerns in all applications. While good design techniques are desired, some
of them may introduce unnecessary complexity to those that are trying to learn a new
language (the main audience of the examples).

The aspect detected as a large aspect is the Debug aspect. It defines advice deal-
ing with different concerns simultaneously. This aspect collects points regarding user
interface modification, changes in the registry contents, and ship collisions, among other
concerns. Although all of these features are related to system debugging, they could be di-
vided in several aspects, each one with a different perspective on debugging. The opposite
(lazy aspects) were not found in the examples.

Feature envy is present in the Ship class, which implements a spaceship in the
SoaceWar example. This class contains a pointcut definition that is used only in the
EnsureShiplsAlive aspect. The coupling between class and aspect is reduced, and the
aspect’s cohesion is improved if the pointcut definition moves to the aspect.

An abstract method introduction exists in the Billing aspect, which charges for
telephone calls according to the type and length of a performed call. So, the user of the
class that receives the introduction should be aware of which aspects affect the code, and
then, add methods to the aspect. This dependency could increase the solution’s complex-

ity.

3.2. System 2: Aspectd Design Patterns

Hanneman and Kiczales [Hannemann and Kiczales 2002] describe an experiment where
the gang of four (GoF) design patterns [Gamma et al. 1995] were implemented in both
Java and AspectJ. The authors state that aspect-oriented implementations have improved
modularity in 17 of the 23 studied cases.

The degree in which the enhancement occurs depends on the relationship among

the roles played by the classes and objects within the pattern. Those patterns where an
object plays more than one role, or where several objects play the same role, had the most
significant improvement.

Garcia et al [Garcia et al. 2005] performed measurements on implementations of
the GoF design patterns using quality metrics referring to separation of concerns, cou-
pling, cohesion, and code size. The authors state that, in several cases, the aspect-oriented
solution improved the separation of concerns relative to the participating roles of the de-
sign patterns.

Table 2 shows the occurrences of each type of bad smell. The anonymous pointcut
definition bad smell appears in five situations. Lazy aspectswere found four times and two
large aspectswere detected in the patterns. Feature envy and abstract method introduction
do not appear in these examples.

Type Number of Occurrences
Classes 88
Aspects 42
Interfaces 16
Bad Smell

Anonymous Pointcut Definition 5 of 15 advice
Large Aspect 2 of 42 aspects
Lazy Aspect 4 of 42 aspects
Feature Envy 0 of 88 classes
Abstract Method Introduction 0 of 39 inter-type methods

Table 2. Bad Smells in AspectJ Design Patterns

A first occurrence of the anonymous pointcut bad smell occurs in the Sngleton-
Protocol aspect: call((Sngleton+).new(..)) && !protectionExclusions(). Instead, a com-
posed pointcut could be used (singletonCreation() & & !protectionExclusions()).

The second occurrence belongs to an aspect named SortingStrategy. The predi-
cate contains a call primitive: call(int[] Sorter.sort(int[])). This predicate affects only the
calls to the Sorter.sort method. It appears in an around advice. The advice code could
be inserted directly in the sort method. The same happens with the pointcut initializa-
tion(new()) & & target(queue) in the QueueStateAspect. The code triggered by the advice
could be inlined in the constructor. Other examples of this smell could be found in the
QueueSateAspect aspect.

The lazy aspect bad smell appears in four aspects: StrategyProtocol, MementoPro-
tocol, FlyweightProtocol and CompositeProtocol. These aspects do not have any cross-
cutting members and could be safely converted to classes. Whenever an aspect does not
have members implementing crosscutting concerns a class could (and should, if possible)
be used instead.

The first large aspect is the BooleanlInterpretation aspect. It is responsible for
adding methods to perform the replace and copy operations in the following classes: An-
dExpression, BooleanConstant, OrExpression, VariableExpression, NotExpression. To
provide those methods, ten inter type method declarations were used. The aspect could
be broken in two aspects (one for the copy additions, another for the replace operations)
or into five separated aspects: one for each affected class.

The second large aspect (named ClickChain) uses four parent declarations

(Frame, Panel and Button implements Handler and Click implements Request) and de-
fines inter type declaration methods to add handle and accept behavior to the Button,
Panel and Frame classes. It also defines a pointcuts to handle clicks in the ChainOfRe-
sponsibility pattern implementation. This aspect could be divided per affected classes
(one aspect for affected class) or per operation (handle or accept).

Occurrences of the feature envy and abstract method introduction were not de-
tected in the examples.

3.3. System 3: Glassbox I nspector

The Glassbox Inspector project uses AspectJ and JMX to monitor performance for
Java/J2EE applications. It provides information to identify specific problems, capture
statistics, monitor database calls etc. The version used in this case study was version 1.0
beta.

Table 3 summarizes the occurrences of bad smells in the Glassbox. The anony-
mous pointcut definition bad smell appears in seven places in the system. Two large
aspects and one lazy aspect are present in the source code. Feature envy and abstract
method introduction do not appear in these examples.

Type Number of Occurrences
Classes 12
Aspects 26
Interfaces 7
Bad Smell

Anonymous Pointcut Definition 7 of 27 advice
Large Aspect 2 of 26 aspects
Lazy Aspect 1 of 26 aspects
Feature Envy 0 of 12 classes
Abstract Method Introduction 0 of 17 inter-type methods

Table 3. Bad Smells in GlassBox

The first three anonymous pointcuts appear in the TraceJdbc aspect. The predicate
call(* java.sgl..*(..)) || call(* javax.sgl..*(..)) is the same in all advice. The predicate
could be extracted in a single pointcut definition and the name of the new pointcut used
in the pieces of advice. Other occurrences of the same bad smell could be found in the
LogManagement, AbstractOperationMonitor and AbstractRequestMonitor aspects.

Two aspects were detected as large ones. The aspect named LogManagement has
thirteen crosscutting members. Eight of them are inter type method declarations that
provide basic functionality for classes that should be logged. Instead of having methods
such as: logError(...), logWarn(...), loginfo(...) and logDebug(...), the developers could
replace them by a general solution, passing the severity as a formal argument: log(...,
Severity severity).

The ErrorHandling aspect has eleven crosscutting members but does not need to
be reduced. There is a pointcut named handlingScope that composes five other pointcuts
and is used by an around advice. This advice ensures that errors in the monitoring code
will not damage the underlying application code. As the pointcut predicate is a large one,
the developers split the predicate into five others.

One lazy aspect was detected in the Glassbox Inspector. The AbstractResource-

Monitor aspect does not have crosscutting members, but it could not be converted to a
class because it extends the AbstractRequestMonitor aspect (in AspectJ, classes could not
extend aspects).

Feature envy and abstract method introduction were not detected in the Glassbox
Inspector.

4. Related Work

The method described by Simon et al [Simon et al. 2001] uses metrics to detect bad
smells. In particular, the method tries to detect candidates for the following refactor-
ings: Move Method, Move Attribute, Extract Class and Inline Class. An equation is
presented to evaluate the cohesion of methods and attributes inside the classes of a sys-
tem. The results are converted to a three-dimensional Cartesian coordinate system, and
then rendered visually. Similar approaches are used in [Lanza and Ducasse 2002] and
[van Emden and Moonen 2002].

The Daikon tool presented in [Kataoka et al. 2001] uses program invariant detec-
tion to find suitable applications of refactorings. Invariants are values that remain constant
every time some piece of code is executed, and indicate the possible application of refac-
torings. The detection process implicates in the instrumentation of the code for analysis
during runtime, and the execution of a comprehensive set of tests, so the tool can analyze
a wide range of possible interactions.

Tourwé and Mens [Tourw and Mens 2003] propose the use of logic meta-
programming. Logic programming statements are used to detect bad smells such as ob-
solete parameters and inappropriate interfaces.

The tactics of [Balazinska et al. 2000] and [Ducasse et al. 1999] are similar in that
both attempt to find repeated sections of source code throughout a software system. The
former approach focuses on Java code — and thus involves the parsing of the code, while
the latter tries to remain language independent, considering the source code only as text
strings. As a result of this, the first, while more limited in scope, can make use of infor-
mation (such as the context in which a method is used) to provide a more precise analysis.
A few other approaches to automate the detection of bad smells in software systems are
presented in [Mens and Tourwe 2004].

5. Conclusion

In this paper we discussed some algorithms to detect bad smells in Aspectd programs.
The defined algorithms could be extended to deal with more special cases of each type of
bad smell. Other algorithms could also be defined for different types of bad smells, such
as privileged aspects, code duplication and inappropriate intimacy.

The provided implementation could be extended to support those other kinds of
smells. Additional systems may be subject of further investigation. The appropriate de-
tection and removal of bad smells could affect quality attributes in the software being
modified and each refactoring might be evaluated regarding those attributes.

The evaluated systems in the case study have, in general, a low number of smells.
The one that appears more frequently is the anonymous pointcut definition. This smell

is usually removed whenever the predicate is used in more than one advice/inter-type
declaration or when the aspect is an abstract one.

Some smells such as feature envy and abstract method introduction are less fre-
quently detected. The large aspect detection depends on the definition of significant
thresholds. This definition could be gathered from the analysis of existing systems or
provided by the users of the detection tool. Lazy aspect occurrences are associated with
aspects that do not have crosscutting members and could be replaced by classes without
problems.

6. Acknowledgments

We would like to thank: the Aspect) team and Andrew Huff for providing the initial
AST support in Aspect], Andy Clement and Helen Hawkins for their constant and quick
feedback about the AST implementation, Rafael Chaves for providing useful directions
on Eclipse plugin development and Deise Saccol for her comments on drafts of this pa-
per. This work has been partially supported by CNPq under grant No.140046/2006-2 for
Eduardo Piveta.

References

[Balazinska et al. 2000] Balazinska, M., Merlo, E., Dagenais, M., Lage, B., and Kontogian-
nis, K. (2000). Advanced clone-analysis to support object-oriented system refactoring.
In WCRE '00: Proceedings of the Seventh Working Conference on Reverse Engineer-
ing (WCRE’ 00), page 98, Washington, DC, USA. IEEE Computer Society.

[Boehm and Sullivan 2000] Boehm, B. W. and Sullivan, K. J. (2000). Software economics:
aroadmap. In ICSE - Future of SE Track, pages 319-343.

[Ducasse et al. 1999] Ducasse, S., Rieger, M., and Demeyer, S. (1999). A language inde-
pendent approach for detecting duplicated code.

[Elssamadisy and Schalliol 2002] Elssamadisy, A. and Schalliol, G. (2002). Recognizing
and responding to bad smells in extreme programming. In Proceedings of the 24th
International conference on Software Engineering.

[Fowler et al. 2000] Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (2000).
Refactoring: improving the design of existing code. Object Technology Series.
Addison-Wesley.

[Gamma et al. 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design
Patterns - Elements of Reusable Object-Oriented Software. Addison Wesley Profes-
sional Computing Series. Addison-Wesley.

[Garcia et al. 2005] Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C.,
and von Staa, A. (2005). Modularizing design patterns with aspects: A quantita-
tive study. In 4th International Conference on Aspect-Oriented Software Devel opment
(AOSD’05).

[Garcia et al. 2004] Garcia, V. C., Piveta, E. K., Lucrédio, D., Alvaro, A., de Almeida, E. S.,
do Prado, A. F., and Zancanella, L. C. (2004). Manipulating crosscutting concerns. 4th
Latin American Conference on Patterns Languages of Programming (SugarLoafPlop
2004).

[Hanenberg et al. 2003] Hanenberg, S., Oberschulte, C., and Unland, R. (2003). Refactoring
of aspect-oriented software. In Net.Object Days 2003.

[Hannemann and Kiczales 2002] Hannemann, J. and Kiczales, G. (2002). Design pattern
implementation in Java and AspectJ. In Proceedings of the 17th ACM conference on
Object-oriented programming, systems, languages, and applications, pages 161-173.
ACM Press.

[lwamoto and Zhao 2003] Iwamoto, M. and Zhao, J. (2003). Refactoring aspect-oriented
programs. In The 4th AOSD Modeling With UML Wbrkshop, UML’ 2003.

[Kataoka et al. 2001] Kataoka, Y., Ernst, M., Griswold, W., and Notkin, D. (2001). Auto-
mated support for program refactoring using invariants.

[Kiczales et al. 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and
Griswold, W. G. (2001). An overview of AspectJ. In Knudsen, J. L., editor, Proc.
ECOOP 2001, LNCS 2072, pages 327-353, Berlin. Springer-Verlag.

[Kiczales et al. 1997] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Lo-
ingtier, J.-M., and Irwin, J. (1997). Aspect-oriented programming. In Aksit, M. and
Matsuoka, S., editors, 11th Europeen Conf. Object-Oriented Programming, volume
1241 of LNCS pages 220-242. Springer Verlag.

[Lanza and Ducasse 2002] Lanza, M. and Ducasse, S. (2002). Understanding software evo-
lution using a combination of software visualization and software metrics.

[Mens and Tourwe 2004] Mens, T. and Tourwe, T. (2004). A survey of software refactoring.
| EEE Transactions on Software Engineering, 30(2):126-139.

[Monteiro and Fernandes 2004] Monteiro, M. P. and Fernandes, J. M. (2004). Object-to-
aspect refactorings for feature extraction. In Proceedings of the 3rd International Con-
ference on Aspect-Oriented Software Development (AOSD’ 2004). ACM Press.

[M.P. Monteiro 2005] M.P. Monteiro, J. F. (2005). Towards a catalog of aspect-oriented
refactorings. In Mezini, M., editor, Proc. 4th, Int Conf. on Aspect-Oriented Software
Development (AOSD-2005). ACM Press.

[Piveta et al. 2005] Piveta, E., Hecht, M., Pimenta, M., and Price, R. T. (2005). Bad smells
em sistemas orientados a aspectos (in portuguese). Brazlian Symposium on Software
Engineering, SBES 2005, Uberlandia - Brasil.

[Simon et al. 2001] Simon, F., Steinbruckner, F., and Lewerentz, C. (2001). Metrics based
refactoring. In CSMR, pages 30-38.

[Tourw and Mens 2003] Tourw, T. and Mens (2003). Identifying refactoring opportunities
using logic meta programming.

[van Deursen et al. 2005] van Deursen, A., Marin, M., and Moonen, L. (2005). Ajhotdraw
a showcase for refactoring to aspects. In Linking Aspect Technology and Evolution
(AOSD-2005).

[van Emden and Moonen 2002] van Emden, E. and Moonen, L. (2002). Java quality as-
surance by detecting code smells. In Proceedings of the 9th Working Conference on
Reverse Engineering. IEEE Computer Society Press.

