

Efeitos de palmares e nadadeiras sobre a

organização espaço-temporal do nado crawl

Eric Marcos Thomas, bolsista PIBIC-CNPq

Orientador: Flávio Antônio de Souza Castro
Laboratório de Pesquisa do Exercício - Escola de Educação Física
souza.castro@ufrgs.br

Introdução

Palmares e nadadeiras: equipamentos utilizados no treinamento de natação a fim de incrementar força e técnica, de modo a melhorar o desempenho. Pouco se saiba dos efeitos desses equipamentos sobre a organização dos nados. Nado crawl é realizado em diferentes modelos de coordenação, de acordo com as relações entre as fases propulsivas das braçadas: captura, sobreposição ou oposição, quantificados pelo índice de coordenação (IdC).

Objetivos: dentificar as possíveis alterações geradas pelo uso de palmares e nadadeiras sobre o desempenho, as durações das diferentes fases das braçadas e o IdC no nado crawl, executado em máxima intensidade.

Métodos

Amostra: 11 nadadores do sexo masculino (25,8 5,5 anos de idade; 75,2 9,0 kg de massa corporal e 177 6,5 cm de estatura, com 12,4 7,4 anos de experiência em treinamento de natação). Protocolo: repetições de 50 m em nado crawl, em máxima intensidade, sob ordem aleatória em três dias diferentes: uma repetição sem qualquer equipamento (SE), uma repetição com palmares (CP) e uma repetição com nadadeiras (CN). Obtidas imagens (60 Hz) subaquáticas (Figura 1) do plano sagital dos nadadores que foram analisadas a fim de se obter duração média dos ciclos de braçadas e das fases das braçadas (A: entrada e apoio; B: puxada; C: empurrada e D: recuperação) e o IdC, todas em % da duração média dos ciclos.

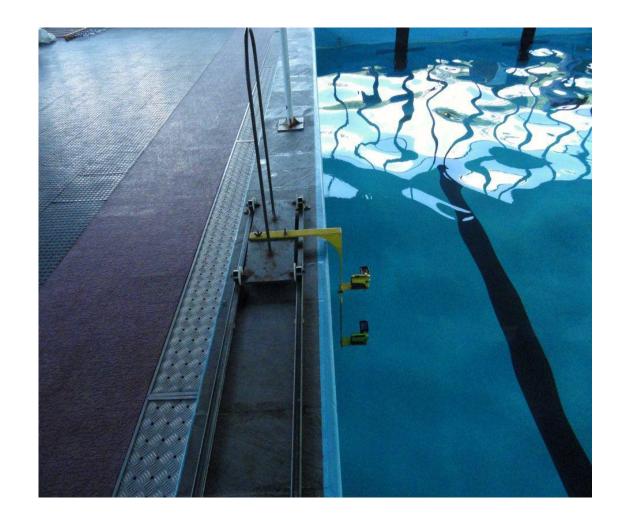


Figura 1 – Câmeras para otenção das imagens subaquáticas Análise dos vídeos realizada por três avaliadores de modo independente a fim de se identificar as fases das braçadas (Figura 2). Tempos para realização de cada repetição de 50 m foram registrados e tratados como desempenho.

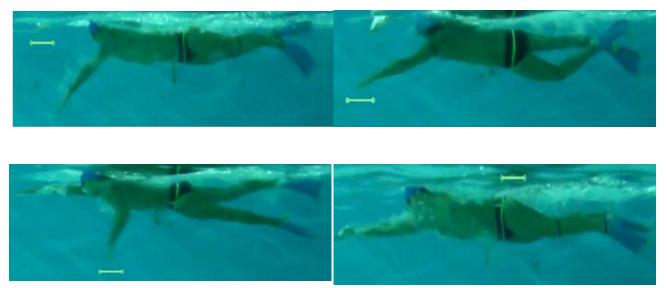


Figura 2 – Fases das braçadas.

Os dados foram descritos na forma de média e desvio-padrão; aplicação de ANOVA para medidas repetidas e post-hoc de Bonferroni, para alfa < 0,05.

Resultados

Tabela 1 apresenta os dados de desempenho entre as condições sem equipamento (SE), com palmar (CP) e com nadadeiras (CN).

Tabela 1 – Resultados de desempenho (s) em média DP para SE, CP e CN; * diferença entre CN e as outras condições; n = 11.

	SE	СР	CN
Média (s)	28,5	28,2	25,7*
DP (s)	2,0	1,9	1,3

Não foram encontradas diferenças entre as percenatagens de duração de cada fase das braçadas analisadas em função dos equipamentos. Tabela 2 apresenta os resultados de duração percentual das fases.

Tabela 2 – Duração % das fases de braçadas em média DP nas situações SE, CP e CN; ao longo dos 50 m; n = 11.

	SE	СР	CN
Fase A (%)	$31,5 \pm 5,3$	$32,4 \pm 3,4$	$31,0 \pm 7,7$
Fase B (%)	21,5 ± 5,2	22,7 ± 3,1	22,0 ± 4,1
Fase C (%)	24,9 ± 4,1	24,8 ± 3,5	24,2 ± 4,5
Fase D (%)	21,9 ± 5,1	$22,5 \pm 3,5$	$22,3 \pm 5,2$

Independente dos equipamentos, o IdC se manteve constante, indicando coordenação em modelo de captura. Tabela 3 apresenta os dados de IdC.

Tabela 3 – IdC em média DP nas situações SE, CP e CN; ao longo dos 50 m; n = 11.

	IdC1 (%)		IdC2(%)				
	0 – 25 m	25 - 50 m	0 – 25 m	25 - 50 m			
SE	- 4,7 ± 7,9	-0.4 ± 7.3	-1,5 ± 10,1	-3,1 ± 11,3			
СР	-1,7 ± 5,4	-1,6 ± 6,4	$-6,5 \pm 9,4$	$-5,2 \pm 6,0$			
CN	-2,4 ± 10,8	-2.8 ± 8.9	-6.0 ± 7.0	-7.0 ± 8.0			

Conclusão

Palmares e nadadeiras, em repetições máximas de 50 m executadas em nado crawl, não alteram a organização espaço-temporal do nado.

Referências

Gourgoulis V, Aggeloussis N, Vezos N, Mavromatis G. Effect of two different sized hand paddles on front crawl stroke kinematics. J Sports Med Phys 2006; 46(2): 232–237.

Gourgoulis V, Aggeloussis N, Vezos N, Antoniou P, Mavromatis G. Hand orientation in hand paddles swimming. Int J Sports Med 2008; 29(5): 429–434.

Telles T, Barbosa AC, Campos MH, Junior OA. Effect of hand paddles and parachute on the index of coordination of competitive crawl-strokers. J Sports Sci 2011; 29(4): 431–438. Zamparo P, Pendergast DR, Termin B, Minetti AE. Economy and efficiency of swimming at the surface with fins of different size and stiffness. Eur J Appl Physiol 2006; 96(4): 459–470. Zamparo P, Pendergast DR, Termin B, Minetti AE. How fins affect the economy and efficiency of human swimming. J Exp Biol 2002; 205(17): 2665-2676.