
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

LEOMAR SOARES DA ROSA JUNIOR

Automatic Generation and Evaluation

of Transistor Networks in Different

Logic Styles

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor in Microelectronics.

Prof. Dr. André I. Reis
Advisor

Prof. Dr. Renato P. Ribas
Co-advisor

Porto Alegre, July 2008.

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquiria Linck Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PGMicro: Prof. Henri Ivanov Boudinov
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Rosa Junior, Leomar Soares da

Automatic Generation and Evalution of Transistor Networks in
Different Logic Styles / Leomar Soares da Rosa Junior – Porto
Alegre: Programa de Pós-Graduação em Microeletrônica, 2008.

147 f.: il.

Tese (doutorado) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica. Porto Alegre,
BR – RS, 2008. Advisor: André I. Reis; Co-advisor: Renato P.
Ribas.

1.Redes de transistores. 2.Células lógicas 3.Mapeamento
tecnológico. 4.Teoria de chaves 5.Estilos lógicos 6.Estimativas de
células I. Reis, André Inácio. II. Ribas, Renato Perez. III. Título.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my parents, Leomar Soares da Rosa and
Maria Cecília Machado da Rosa, for their patience, encouragement and love. They were
always supporting me and encouraging me with their best wishes.

I would also like to thank my aunt, Gilda Maria da Silva Machado, for her
support. All this time that I was far from home she treated me as her son.

I acknowledge my fiancée, Pamela Bilhafan Disconzi. Although we were some
kilometers apart, I felt we never were. She shared my all ups and downs over the phone
and email and stood by me.

I would like to thank CAPES and Nangate for financial support. And also
thank all my colleagues from Nangate-UFRGS Research Lab. They were always willing
to help and give their best suggestions.

Finally, I would like to express my sincere gratitude to my advisors, André
Inácio Reis and Renato Perez Ribas, for their brilliant guidance and their patience. They
were always close and ready to guide me when the things seemed dark and the project
seemed endless.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS.. 7

LIST OF FIGURES.. 8

LIST OF TABLES.. 11

ABSTRACT .. 13

RESUMO... 13

1 INTRODUCTION .. 15

1.1 Proposal of this Thesis.. 20

2 LOGIC SYNTHESIS AND SWITCH NETWORKS.................................... 22

2.1 Basic Concepts and Terminology.. 22

2.2 A Brief History of Switching Network.. 32

2.3 Logic Switches... 33

2.4 Network Generation ... 38

2.5 Network Optimization.. 42

2.5.1 Factorization Through Functional Composition .. 45

2.5.2 BDD Network Optimization through Unateness (OpBDD)............................... 48

2.5.3 Lower Bound BDD Network (LBBDD) .. 51

2.6 Network Ordering .. 55

2.7 Conclusions ... 57

3 CMOS LOGIC STYLES ... 58

3.1 Logic Styles.. 58

3.1.1 Complementary Series-Parallel CMOS (CSP) Network 59

3.1.2 Gates with Minimum Transistor Chains (NCSP)... 61

3.1.3 Mux-Based Network .. 61

3.1.4 BDD-based Networks... 64

3.2 Classification of Two Terminal Disjoint Networks 65

3.3 MOS Transistor as a Non-ideal Switch .. 67

3.4 Transistor Sizing... 70

3.4.1 Logical Effort and Transistor Networks... 70

3.5 Conclusions ... 71

4 ESTIMATION OF COSTS ... 72

4.1 Profile and Parameters Extraction ... 72

4.2 Timing Estimation .. 73

4.3 Dynamic Power Estimation ... 75

4.4 Static Power Estimation... 78

4.4.1 A Simple Subthreshold Leakage Estimation.. 79

4.4.2 Gate Leakage Estimation.. 81

4.4.3 Accurate Analytical Method for Static Current Estimation 81

4.5 Area Estimation .. 84

4.5.1 Searching Eulerian Paths .. 84

4.5.2 Gate Matching .. 86

4.5.3 Width and Area Estimation .. 88

4.5.4 Validating Area Estimation .. 89

4.6 Conclusions ... 90

5 EXPERIMENTAL RESULTS .. 91

5.1 Results for Genlib 44-6 up to 4-input ... 92

5.2 Results for Additional Logic Cells of a Library Container 95

5.2.1 XOR Logic Functions... 96

5.2.2 Cout Function of a Full Adder.. 98

5.3 Results for NPN-class Logic Functions up to 5-input 98

5.4 Results for Logic Functions Unfeasible in CSP ... 102

5.5 Branch-based vs. Factorized Functions.. 103

5.6 Fanin and Other Characteristics of P-class Functions up to 4 Inputs....... 106

5.7 Final Considerations .. 107

6 CONCLUSIONS AND FUTURE WORKS ... 108

REFERENCES ... 110

APPENDIX A AN ACADEMIC LIBRARY DESCRIPTION 117

APPENDIX B XOR TRANSISTOR SCHEMATICS .. 119

APPENDIX C COUT_FA TRANSISTOR SCHEMATICS.................................. 124

APPENDIX D LOGIC FUNCTIONS USED FOR THE EXPERIMENTAL
RESULTS.. 127

APPENDIX E DEVELOPED TOOLS .. 131

APPENDIX F LIST OF PUBLICATIONS... 142

APPENDIX G GERAÇÃO AUTOMÁTICA E AVALIAÇÃO DE REDES DE
TRANSISTORES EM DIFERENTES ESTILOS LÓGICOS 144

LIST OF ABBREVIATIONS

ASIC Application-Specific Integrated Circuits

BDD Binary Decision Diagram

CAD Computer Aided Design

CMOS Complementary Metal Oxide Semiconductor

CSP Complementary Series-Parallel

CUDD Colorado University Decision Diagram

FPGA Field-Programmable Gate-Arrays

IC Integrated Circuit

LBBDD Lower Bound Binary Decision Diagram

LO Larger Order

MOS Metal Oxide Semiconductor

MOSFET Metal Oxide Semiconductor Field Effect Transistor

NCSP Non-Complementary Series-Parallel

NO Not Smaller and Larger Order

OpBDD Optimized Binary Decision Diagram

POS Product-Of-Sums

PTL Pass Transistor Logic

PTM Predictive Technology Model

ROBDD Reduced and Ordered Binary Decision Diagram

SO Smaller Order

SoC System-On-Chip

SOP Sum-Of-Products

SP-BDD Series-Parallel Binary Decision Diagram

TBDD Terminal Suppressed Binary Decision Diagram

TM-BDD Transistor Mapped Binary Decision Diagram

UFRGS Universidade Federal do Rio Grande do Sul

ULSI Ultra Large Scale Integration

VLSI Very Large Scale Integration

LIST OF FIGURES

Figure 1.1: Moore’s Law graph showing the exponential increase in the number of
transistors along the last three decades for the microprocessors family from
Intel ... 16

Figure 1.2: Digital circuit design methodology using predefined cell library 18

Figure 1.3: Circuit optimization using complex gates.. 18

Figure 1.4: Digital circuit design methodology using virtual library............................. 19

Figure 2.1: Karnaugh map illustration.. 26

Figure 2.2: BDD of 3-input AND function. .. 30

Figure 2.3: BDD reduction: (a) eliminating nodes whose two children are isomorphic
and (b) merging isomorphic sub-graphs. .. 30

Figure 2.4: Different variable ordering ROBDDs representing a same logic function.. 31

Figure 2.5: Symbolic notation for PMOS and NMOS transistors.................................. 33

Figure 2.6: Two logic networks representing arbitrary logic functions. 33

Figure 2.7: (a) Planar network, (b) non-planar network... 34

Figure 2.8: (a) Series-parallel network, (b) bridge network. .. 35

Figure 2.9: (b) Dual networks obtained through (a) dual graphs. 36

Figure 2.10: Branch-based network. .. 37

Figure 2.11: (a) Single-rail network, (b) dual-rail network.. 37

Figure 2.12: (a) Disjoint planes, (b) non-disjoint planes. ... 38

Figure 2.13: (a) Network derived from the on-set and its dual network, (b) network
derived from the off-set and its dual implementation................................. 39

Figure 2.14: Logically complementary networks obtained from the on-set and the off-set
equations... 39

Figure 2.15: BDD node and associated switches. .. 40

Figure 2.16: Networks derived from a BDD. ... 41

Figure 2.17: Bridge network implementation... 42

Figure 2.18: Karnaugh map for the Boolean function f. .. 43

Figure 2.19: Multilevel representations.. 44

Figure 2.20: Factorization through composition .. 47

Figure 2.21: Network derived from a BDD.. 48

Figure 2.22: Switches controlled by variable a are used to choose between cofactors f0
and f1. ... 50

Figure 2.23: BDD and derived switch network.. 51

Figure 2.24: Duplication strategies for a switch network... 53

Figure 2.25: BDD and optimized switch network.. 54

Figure 2.26: Two BDDs and their derived transistor networks...................................... 56

Figure 3.1: Logic styles: (a) Static CMOS, (b) PTL using only NMOS transistors, (c)
PTL using transmission gates. .. 59

Figure 3.2: NMOS logic rules: (a) series devices produce an AND operation, (b) parallel
devices produce an OR one. ... 60

Figure 3.3: NCSP implementation for equations (3.1) and (3.2). 61

Figure 3.4: Mux_8x1 implementing a logic function... 62

Figure 3.5: Mux_4x1: (a) generic symbol, (b) implementing function from Figure 3.4 63

Figure 3.6: (a) Mux using tri-state inverters, (b) mux_4x1 transistor network. 63

Figure 3.7: Optimized mux_4x1 transistor network... 64

Figure 3.8: (a) BDD representation, (b) pull-up network and (c) pull-down network
derived from it. ... 65

Figure 3.9: Classification of two terminal disjoint networks. .. 66

Figure 3.10: Networks from: (a) group 1, (b) group 2, (c) group 3, (d) group 4, (e) group
5, (f) group 6, (g) group 7, (h) group 8. .. 67

Figure 3.11: MOS transistor structure. ... 68

Figure 3.12: MOS transistor channel dimensions. ... 69

Figure 3.13: Two circuits for the same logic function. .. 71

Figure 4.1: RC ladder for Elmore delay. .. 74

Figure 4.2: Capacitance model: (a) MOSFET and (b) simplified approach. 76

Figure 4.3: Complex gate. .. 77

Figure 4.4: Hspice vs. estimated power consumption. ... 78

Figure 4.5: (b) Equivalent conductance for the transistor network described in (a). 79

Figure 4.6: A 4-input transistor network. ... 80

Figure 4.7: Subthreshold leakage currents in the CMOS structure from Figure 4.6, for
each input vector... 80

Figure 4.8: Possible bias condition for NMOS transistors in digital circuits. 81

Figure 4.9: Total leakage estimation comparison for different CMOS gates................... 84

Figure 4.10: (a) PMOS transistor network and (b) NMOS transistor network showing
possible Eulerian paths. .. 85

Figure 4.11: Partial tree for the cell in Figure 4.10, before (a, b) and after (c) the gate
matching algorithm... 87

Figure 4.12: Two possible symbolic layouts for the cell in Figure 4.10, showing matched
(a) and mismatched gates (b).. 88

Figure 4.13: Relevant distances extracted from technology process documentation....... 89

Figure 4.14: Results for the validation of the area estimation.. 90

Figure 5.1: Delay results for 500 cells from NPN-class up to 5-input. 99

Figure 5.2: Dynamic consumption results for 500 cells from NPN-class up to 5-input. . 99

Figure 5.3: Increase and decrease in transistor count when comparing to CSP............. 100

Figure 5.4: Worst delay for 423 cells that do not respect the minimum number of
transistors in series when implemented in CSP.. 100

Figure 5.5: Average fanin for 423 cells that do not respect the minimum number of
transistors in series when implemented in CSP.. 101

Figure 5.6: Experiment showing the reduction in transistor count and the increase in the
transistor length when mixing LBBDD and Dual network generations..... 101

LIST OF TABLES

Table 2.1: Truth table for the 2-input basic functions. ... 24

Table 2.2: Relation between minterms and lines of the truth table. 25

Table 2.3: Relation between maxterms and lines of the truth table. 26

Table 2.4: Covering table for function f. .. 27

Table 2.5: Two P-class equivalent functions.. 28

Table 2.6: Four N(in)-class equivalent functions. .. 28

Table 2.7: Two equivalent functions after output inversion... 29

Table 2.8: Truth table for function f, individualized by pull-up and pull-down planes. 49

Table 2.9: Truth table for function f and pull-up PU(f) as a function of a, f0 and f1. 50

Table 2.10: Transistor edge candidate to become a short-circuit. 50

Table 3.1: Logical effort values for circuits in Figure 3.13.. 71

Table 4.1: Intrinsic capacitances modeling. ... 76

Table 4.2: Distances used to validate the area estimation. ... 90

Table 5.1: Average delay results (in seconds) for Genlib 44-6 up to 4-input. 93

Table 5.2: Average power consumption (in Watts) for Genlib 44-6 up to 4-input. 94

Table 5.3: Average leakage current (in Amperes) for Genlib 44-6 up to 4-input. 94

Table 5.4: Area results (in square microm.) obtained for Genlib 44-6 up to 4-input..... 95

Table 5.5: Transistor count for XOR logic functions... 96

Table 5.6: Transistor in series for XOR logic functions. ... 96

Table 5.7: Average delay (in seconds) for XOR logic functions. 97

Table 5.8: Dynamic consumption (in Watts) for XOR logic functions.......................... 97

Table 5.9: Leakage current (in Amperes) for XOR logic functions. 97

Table 5.10: Area results (in square micrometers) for XOR logic functions................... 97

Table 5.11: Delay results (in seconds) for Cout function of a full adder. 98

Table 5.12: Dynamic consumption (in Watts) for Cout function of a full adder. 98

Table 5.13: Leakage current (in Amperes) for Cout function of a full adder................. 98

Table 5.14: Area results (in square micrometers) for Cout function of a full adder. 98

Table 5.15: Number of transistor in series ... 102

Table 5.16: Delay results (in seconds).. 102

Table 5.17: Power results (in Watts) .. 103

Table 5.18: Leakage current (in Amperes)... 103

Table 5.19: Average delay results (in seconds) for fact. and non-factorized forms..... 104

Table 5.20: Power consumption (in Watts) for factorized and non-factorized forms.. 104

Table 5.21: Leakage current (in Amperes) for factorized and non-factorized forms... 105

Table 5.22: Area (in micrometers) for factorized and non-factorized forms. 105

Table 5.23: Comparison of different methods for P-class logic functions up to 4
variables.. 107

ABSTRACT

Currently, VLSI design has established a dominant role in the electronics
industry. Automated tools have enabled designers to manipulate more transistors on a
design project and shorten the design cycle. In particular, logic synthesis tools have
contributed significantly to reduce the design cycle time. In full-custom designs, manual
generation of transistor netlists for each functional block is performed, but this is an
extremely time-consuming task. In this sense, it becomes comfortable to have efficient
algorithms to derive transistor networks automatically. There are several kinds of
transistor networks arrangements. These different networks present different behaviors
in terms of area, delay and power consumption. Thus, not only automatic transistor
networks generation is important, but also an automated technique to evaluate and to
compare the distinct switch networks is fundamental to guide designers that need to
achieve efficient circuit implementations. This evaluation not necessarily needs to be an
expensive electrical characterization process. It can be obtained through estimation
processes capable of delivering good information about the logic cells behavior. This
idea is useful for those designers that desire to generate and to evaluate potential
transistor network implementations to feed standard-cell flow designs (using cell
libraries), or for those designers who target the use of library-free technology mapping
concept (using automatic cells generators). In this context, this work presents an
automated transistor network generator able to delivery different kinds of networks in
several logic styles. In order to compare the obtained networks, some estimation
techniques are employed. A comparison is done over a set of Boolean function
benchmarks, showing the advantages of using alternative logic styles over the
traditional Complementary Series-Parallel CMOS (CSP CMOS).

Keywords: Transistor Networks, Logic Cells, Technology Mapping, Switch Theory,
CMOS Logic Styles.

Geração Automática e Avaliação de Redes de
Transistores em Diferentes Estilos Lógicos

RESUMO

O projeto e o desenvolvimento de circuitos integrados é um dos mais
importantes e aquecidos segmentos da indústria eletrônica da atualidade. Neste cenário,
ferramentas de automação têm possibilitado aos projetistas manipular uma elevada
quantidade de transistores em circuitos cada vez mais complexos, diminuindo, assim, o
tempo de projeto. Em especial, ferramentas de síntese lógica têm contribuído
significativamente para reduzir o ciclo de desenvolvimento. Na metodologia de projeto
full-custom, cada bloco funcional tem sua geração realizada de forma manual, desde a
implementação das redes de transistores até a geração do leiaute. Entretanto, esta tarefa
é extremamente custosa em tempo de projeto. Neste contexto, torna-se confortável ter a
disposição algoritmos dedicados para derivar redes de transistores automaticamente.
Diversos tipos de arranjos de transistores são encontrados na literatura. Estas diferentes
redes de transistores apresentam diferentes comportamentos em termos de consumo de
área, consumo de potência e velocidade. Desta forma, não apenas a geração automática
de redes de transistores é importante, mas também técnicas automatizadas para avaliar e
comparar estas distintas redes de chaves é de fundamental importância para guiar o
projetista que deseja alcançar implementações de circuitos eficientes. Estas avaliações
não precisam ser necessariamente processos custosos de caracterização elétrica. Elas
podem ser realizadas através de estimativas capazes de fornecer informações acuradas
sobre o comportamento das redes. Esta idéia pode ser utilizada por projetistas que
desejam gerar e avaliar potenciais soluções em redes de transistores para alimentar
fluxos standard-cell (utilizando bibliotecas de células), ou por aqueles que utilizam a
abordagem de mapeamento tecnológico library-free (fazendo uso de geradores de
células). Neste contexto, este trabalho apresenta um gerador automático de redes de
transistores capaz de fornecer diferentes tipos de redes em diversos estilos lógicos. Para
comparar as redes geradas, algumas técnicas de estimativa são empregadas.
Comparações são realizadas sobre conjuntos distintos de funções Booleanas,
demonstrando as vantagens da utilização de lógicas alternativas em relação ao difundido
padrão CMOS.

Palavras-chave: Redes de Transistores, Células Lógicas, Mapeamento Tecnológico,
Teoria de Chaves, Estilos Lógicos CMOS.

15

1 INTRODUCTION

Microelectronics became the key technology of many industry branches like
information technology, telecommunication, medical equipment and consumer
electronics. The ability of microelectronics to process, transport and store data digitally
made many new applications possible. The continuously increasing level of integration
of electronic devices on a single substrate has led to the fabrication of increasingly
complex systems. An Integrated Circuit (IC) is an electronic system consisting of a
number of miniaturized electronic devices, such as transistors, resistors, capacitors and
inductors, built on a monolithic semiconductor substrate. The large majority of the
current ICs are implemented in the Metal-Oxide-Semiconductor (MOS) technology
(WESTE, 2005; RABAEY, 2003).

The IC design can be divided into two broad categories: analog and digital
design. Analog design is used in the development of operational amplifiers, linear
regulators, phase-locked loops, oscillators and active filters. Analog design is more
concerned with the physics of the semiconductor devices such as gain, matching, power
dissipation, and resistance. Fidelity of analog signal amplification and filtering is
usually critical and as a result, analog ICs use larger area active devices than digital
designs and are usually less dense in circuitry. In the other hand, digital IC design is
used to produce components such as microprocessors, FPGAs (Field-Programmable
Gate-Arrays), memories and digital ASICs (Application-Specific Integrated Circuits).
Digital design focuses on logical correctness, maximizing circuit density, and placing
circuits so that clock and timing signals are routed efficiently.

Since the advent of the technology for constructing ICs, integration density and
performance of these electronic systems have gone through an astounding revolution
driven by the ability of integrating in a single system more and more transistors, the
devices responsible by most of the complexity of digital ICs. Indeed, the increase in the
number of transistors that can be integrated in a single die has grown exponentially in
the last three decades, as predicted by the so called Moore’s Law (INTEL, 2007;
MOORE, 1965). Figure 1.1 illustrates how this increase prediction has been proved
correct so far. Although it has been frequently stated that such increase might cease in a
few years due to physical limitations of IC manufacturing technologies, new design

16

methodologies and fabrication process breakthroughs have proven that such cease can
be postponed (MOORE, 2003).

Figure 1.1: Moore’s Law graph showing the exponential increase in the number of
transistors along the last three decades for the microprocessors family from Intel

(INTEL, 2007).

Essentially, there are two main flows when designing digital ICs that lead to
two contrasting situations: fast design and high-performance design. Fast design here
means short time-to-market; for this kind of approach for IC design, a standard-cell
design methodology is the most commonly used approach. On the other hand, design
for high-performance uses a full-custom design methodology, as this kind of design is
completely customized to the high performance in terms of area, speed and power
consumption (DEMICHELI, 1994).

In full-custom design the logic and physical synthesis attain usually the highest
performance and smallest size, making use of the most advanced technologies (CHEN,
2000). It is the most technology dependent design approach, since each switch element
present in every cell is manually fine-tuned in order to explore all the performance
advantages that a given technology can deliver. The benefits of full-custom design in
general include reduced area, performance improvements and also the ability to
integrate analog components and other pre-designed components such as
microprocessor cores that form a System-on-Chip (SoC). The disadvantages of full-
custom can include increased manufacturing and design time, and much higher skill
requirements on the part of the design team.

The proposal of standard-cell design is to reduce the implementation effort by
reusing a library of cells. The advantage of this approach is that the cells only need to be

17

designed and verified once for a given technology, and they can be reused many times,
thus amortizing the design cost. The disadvantage is that the constrained nature of the
library, especially due to the limited number of cells, reduces the possibility of fine-
tuning the design (RABAEY, 2005). According to Scott (1994), the quality of a
synthesized design based on standard-cells depends on three main components: (a) the
synthesis tool, (b) the place and route tools, and (c) the target cell library. Choosing the
right cell library may have a significant impact on the characteristics of a circuit
(VUJKOVIC, 2002; SECHEN, 2003).

Cell library is a finite set of logic cells that implements different Boolean
functions with different drive strengths and topologies. Traditionally, the technology
mapping methods rely on static pre-characterized libraries aiming delay, area and power
optimizations. Each cell in the library is fully characterized through many simulations,
resulting in a set of accurate information about the behavior of the cell. According to
Sechen (2003), the design and characterization costs of a library are expensive.
Therefore, commercial libraries are typically composed of few hundred combinational
cells and sequential elements (latches and flip-flops) for which layouts have been
optimized for a particular technology. As a result, designers are restricted to use these
cells in their circuits. An example of a well-known and widely used academic library is
presented in Appendix A.

Technology mapping is the procedure of expressing a given Boolean network
in terms of logic cells or gates. Typically, the objective function aims the optimal use of
all gates in the library to implement a circuit with critical-path delay less than a target
value and minimum area. The most existing techniques for technology mapping are
based on pre-characterized cell libraries (KEUTZER, 1987; KUKIMOTO, 1998;
STOK, 1999; MISCHENKO, 2005). These techniques are also known as library-based
methodology. Ideally, technology mapping algorithms and tools should be able to
satisfy several goals and to handle different libraries. It is a quite hard task since the cell
libraries normally have a different set of cells that implements a limited set of logic
functions. A library of fixed size restricts the choices for covering a given circuit. Figure
1.2 shows the typical design flow considering technology mapping methodologies based
on libraries with a fixed size.

Some works in the literature try to optimize logic cells on specific circuits and
implementations. Typical optimizations have been limited to the design of buffers and
inverter chains, implemented to minimize power consumption (MA, 1994) and delay
(VEMURA, 1991; PRUNTY, 1992). Other ones try to optimize logic cells from
existing cell libraries in order to adjust them to the circuit requirements (FISHER,
1996). Recent researches advocate that transistor-level optimizations are a powerful
technique to improve the circuit performance (PANDA, 1998; BHATTACHARYA,
2002; YOSHIDA, 2006). In Roy (2005) some parts of the circuit are removed and
replaced by optimized cells to attain the technical specification. This replacement is
done as a post-processing step, after the circuit has been defined by the technology
mapping task. In this strategy, the final circuit is composed by two types of cells,

18

derived from commercial library container and handcrafted complex gates. Figure 1.3
illustrates this idea, indicating a considerable propagation delay gain for the circuit.

Figure 1.2: Digital circuit design methodology using predefined cell library
(MARQUES, 2007).

Figure 1.3: Circuit optimization using complex gates (ROY, 2005).

Usually, cell libraries are composed of a few tens of logic cells, due to the
engineering effort to design and characterize each one. These cells have been previously

19

tested and validated, and all information about their behavior is described in a database
which, in turn, is used during the technology mapping procedure.

Some researchers have observed that large cell libraries could lead to a better
circuit implementation (VUJKOVIC, 2002). However, the number of potential logic
function increases exponentially with the number of inputs. Therefore, it is not possible
to characterize and implement all existing functions in a huge library. The processes of
electrical characterization and layout generation are extremely computing demand,
making the possibility of having large cell libraries unfeasible (SECHEN, 1996).

Other approaches for technology mapping propose techniques based on
automatic cell generators. These approaches are known as library-free (BERKELAAR,
1988; REIS, 1998; STOK, 1999; JIANG, 2001; CORREIA, 2004; MARQUES, 2007).
Instead of having a predefined static library, they assume that arbitrary cells can be
generated on-the-fly through a cell generator, increasing the matching search space. The
mapping algorithm defines the set of cells required in the circuit implementation, and
this virtual library is used as input for a cell generator which provides the logic cell
layouts that are further used in the physical synthesis. Figure 1.4 illustrates the logic
synthesis flow of this approach.

Figure 1.4: Digital circuit design methodology using virtual library (MARQUES, 2007).

Notice that, the quality of mapped circuits is highly dependent on the richness
of the library in terms of the number of implemented logic functions, drive strengths

20

and topologies. Libraries that implements a large number of Boolean functions leads to
better results when compared to sparsely populated libraries. In Keutzer (1987) the
impact of a library size was investigated. In this work it was demonstrated that a better
area optimization can be achieved using large libraries. As Jiang (2001) has observed,
the most recent device technologies encourage the usage of complex gates in deep-
submicron circuits. It leads to better circuit performance. But, the main barrier for
virtual library approach is the dependency of a good layout generator and the lack of
accurate information about the cell behavior. Due to this, static pre-characterized
libraries are still popular in the industry. This work addresses two problems associated
with this flow. The first one is to find good quality transistor networks to implement the
cells in the library. The second one is to use fast models to estimate cell area, timing and
power on-the-fly.

1.1 Proposal of this Thesis

According to the previously statements, this work addresses the digital cell
implementation and optimization at the transistor cell level. It is known that different
logic styles result in transistor networks with different electrical and physical behavior.
Although several transistor network styles are available, the standard-cell industry keeps
using the standard CMOS. The library-free approach is a promising solution, but it
presents the disadvantage of lacking the characterization information. The
characterization process is expensive in terms of CPU, making impracticable the use of
this technique to generate and evaluate cells on-the-fly. An alternative is the use of
estimation techniques. By using fast and efficient methods to obtain estimative about
the logic cells behavior, it is possible to generate library cells considering these
estimated information as costs, avoiding the characterization process.

The estimation approach, adopted as solution in this work, not only can be used
to feed library-free technology mapping flow, but also as a method to generate
information about the behavior of cells to compose library containers. Thus, it is
possible to generate specific libraries composed of cells with estimated costs regarding
area, timing and power. These libraries are suitable to be used in traditional standard-
cells design flow. The circuits can be mapped, tested and simulated. Once they meet the
design constraints, them the designer can effectively implement the layout of the cells to
obtain the final circuit. Commercial layout generators are available in the market, like
the Nangate Library Creator, which accepts Spice netlist description as input to
automatically generate the cell layout (NANGATE, 2008).

In this sense, this thesis proposes an automated flow for generating transistor
cell networks in different logic styles and a technique to obtain information about the
behavior of these cells through estimation methods. Furthermore, scientific
contributions of this thesis are also:

21

• A new BDD-based transistor network logic style that respects the
minimum number of switches in series to implement a given logic
function;

• A factorization algorithm to optimize logic expressions and electrical
networks;

• CAD tools for logic synthesis of Boolean functions, as well as for
automatic generation and evaluation of transistor networks.

22

2 LOGIC SYNTHESIS AND SWITCH NETWORKS

Integrated circuits design presents a set of concepts and terminologies very
specific and necessary for the understanding of the field. More specifically, logic
synthesis definitions must be reviewed in order to permit the whole understanding of
this work. The goal of this chapter is to present the conceptual framework on top of
which work is built. This chapter is organized as follows. Firstly, this chapter introduces
these concepts that will be used in following chapters. Secondly, this chapter presents a
brief discussion about the history of switch theory and about logic switches. Finally, it
discusses possible optimizations performed at the logic level, presenting a factorization
method to achieve minimum literal Boolean expressions and a new kind of transistor
network derived from BDD. For the following chapters, it is assumed that the reader has
the knowledge of definitions described herein.

2.1 Basic Concepts and Terminology

The Boolean set B is defined as a two element set, B = {0, 1}, whose elements
are interpreted as logic values, typically ‘0’ = false and ‘1’ = true. An n-dimensional
Boolean set B

n is composed of all the distinct Boolean vectors of length ‘n’. For
instance B0

={∅}, B1
=B={0, 1}, B2

={00, 01, 10, 11} and B3={000, 001, 010, 011, 100,

101, 110, 111}. It is easy to observe that B
n has 2

n elements. A Boolean function
describes how to determine a Boolean value output based on some logic calculation
from Boolean input vectors of length ‘n’. A Boolean function is a function of the form
f: B

n
 → B, where B = {0, 1} is the Boolean domain and where ‘n’ is a non-negative

integer. A Boolean function f: Bn
 → B can be viewed as a function whose domain is

composed of the set of all n-bit Boolean vectors (that means B
n, which contains 2n

elements) and whose image is composed of unidimensional Boolean vectors (i.e. B1
=B,

which contains two elements). So every distinct n-input Boolean vector of Bn can point
to a distinct one dimensional Boolean vector. This way, a function f: B

n
 → B has 2

n
input positions pointing to a fixed value from B. As changing the value pointed by a
single input vector changes the logic function, there are

n22 such functions, as the

23

output has 2n positions that can be associated to two distinct values from B. In the case
where n = 0, the function is simply a constant element of B. Boolean functions are also
called logic functions.

Boolean variables are variables defined in the Boolean domain and generally
assigned using alphanumeric characters. Examples of Boolean variables are: a, b, c, x0,
x1, y2; if they are defined over the Boolean set. Boolean variable can assume arbitrary
values in the Boolean domain B, i.e. Boolean variables can assume the values ‘0’ or ‘1’.

There are three basic Boolean operators: AND (“*”), OR (“+”) and NOT (“!”),
which can be applied to Boolean values or functions. AND operator returns one (or true)
when all the operands are true and returns false for the other cases. OR operator returns
zero (or false) when all the operands are false and returns true otherwise. AND and OR
operators are binary operators, as they require at least two elements to perform the
operation. NOT operator, also called inversion or negation operator, is unary and can be
applied to one element alone. NOT operator returns zero when the operand is one and
vice-versa. The operands may be Boolean functions or Boolean constants.

Phase or polarity of a Boolean variable indicates if it is used in its direct or
inverted form. Positive phase specifies the use of a variable without inversion, while
negative phase specifies the use of its complement. A variable in its negative phase is
noticed by the anteriority of a NOT operator (‘!’) as, for instance, !a, !t, etc. Literal is
an instance of a Boolean variable in its positive or negative phase. Examples of literals
are: a, !a, ,x0, !y2. Notice that a and x0 are positive literals, while !a and !y2 are
negative literals.

Input vector is an element that indicates the value of each Boolean variable in
a given Boolean function. For a certain number of variables there is 2n input vectors,
where n is the total number of Boolean variables.

Boolean expressions or Boolean equations are representations of a Boolean
function. Each Boolean function is distinct, as it represents just one association f : Bn →

B. However, it is possible to write a Boolean function in different forms using Boolean
operators. For example, the two following Boolean equations represent the same
Boolean function:

Eq1 = a * (b * c) + d * (e + c) (2.1)

Eq2 = c * (a * b + d) + d * e (2.2)

Boolean functions can also be represented in tabular form known as truth
table. In a truth table representation, the output values are shown according to all
possible input combinations. In other words, the truth table is a representation form
where all function values are specified for all domain function. The truth table can be
built for any number of input variables. However, all possible combinations for these
input variables must be present. It means that each line of the truth table represents an
input vector and its respective output value. Table 2.1 illustrates truth tables for basic

24

Boolean functions with two inputs A and B. Notice that those are functions defined as
B

2→B; which means that the input vectors [A,B] can assume any of the four (22=4)
values in B2

={00, 01, 10, 11}. The AND and OR operators were already defined above.
The operator XOR returns ‘1’ when an odd number of inputs are equal to ‘1’. The
operators NAND, NOR and XNOR are the inverted versions of AND, OR and XOR,
respectively.

Table 2.1: Truth table for the 2-input basic functions.

A B AND OR XOR NAND NOR XNOR

0 0 0 0 0 1 1 1
0 1 0 1 1 1 0 0
1 0 0 1 1 1 0 0
1 1 1 1 0 0 0 1

For a given Boolean function, the set of input vectors that produces an output
value ‘1’ is called on-set. In the same way, the set of input vectors that produces an
output value ‘0’ is called off-set.

A product of literals is an AND logic operation between these literals.
(a*b*c*e) and (!a*c*!d) are examples of products. The sum-of-products (SOP)
representation is the Boolean equation composed of OR logic operation in between two
or more products. The following equations are examples of SOP:

Eq3 = !a * b * !c * d + a * b * !c * !d + !a * !b * c * d (2.3)

Eq4 = x0 * !x1 * x2 + x1 * x2 * !x3 + !x0 * x1 * !x2 * x3 (2.4)

Eq5 = (a * b * c) + (!a * c * d) + (b * !c * !d) (2.5)

There is a straightforward manner to derive a SOP representation from a truth
table. To do that, it is only necessary to extract all lines (products), that present output
values one in the truth table, and to implement OR operations between these products.
Such equation is known as a Boolean equation in the SOP canonical form. Canonical
forms have this name because they preserve a one-to-one relation with the truth table,
meaning that there is only one canonical SOP per Boolean function, even if many
different non-canonical equations can exist. Some of the non-canonical equations can
present a reduced number of literals compared to canonical SOPs. As a consequence, a
canonical SOP is not necessarily the minimal representation for most Boolean functions.
The procedure of building a SOP with minimum number of literals is more elaborate,
and can be done with algorithms like Quine-McCluskey (QUINE, 1955;
MCCLUSKEY, 1956). It is important to notice that all variables must be present in each
product to guarantee that the equation is in the canonical form. Moreover, it cannot

25

contain repeated products. An example of equation in canonical form is the equation
(2.3).

The product-of-sums (POS) representation is very similar to the sum-of-
products one. The difference is that the Boolean equation is composed of AND logic
operation in between two or more sums of literals. Also, to build the sums, all lines that
present output value ‘0’ in the truth table are considered. Notice that, similar to SOP, all
variables must be present in each sum to guarantee the POS in the canonical form.
Again, a canonical POS is not necessarily the minimal representation of Boolean
functions.

A product containing all variables that compose the function is called
minterm. A minterm keeps a unique relation with just one line of the truth table. The
Table 2.2 illustrates a truth table for a 3-input function and the minterms for each line.

Table 2.2: Relation between minterms and lines of the truth table.

A B C Minterm Equation
0 0 0 m0 !A*!B*!C
0 0 1 m1 !A*!B*C
0 1 0 m2 !A*B*!C
0 1 1 m3 !A*B*C
1 0 0 m4 A*!B*!C
1 0 1 m5 A*!B*C
1 1 0 m6 A*B*!C
1 1 1 m7 A*B*C

Implicant minterms are all minterms whose the function value is equal to ‘1’.
Thus, as mentioned before, a canonical SOP is the one composed of all implicant
minterms of a given logic function.

A sum containing all variables that compose the function is called maxterm. A
maxterm also keeps a unique relation with just one line of the truth table. The Table 2.3
illustrates a truth table for a 3-input function and the maxterms for each line.

Cube is a set of minterms. While a minterm presents a relation with just one
line of the truth table, a cube presents a relation with one line or a set of lines of the
truth table. For instance, considering the two minterms (!a*b*c*!d) and (!a*b*c*d), that
compose the equation f = (!a*b*c*!d) + (!a*b*c*d), it is possible to group them
through equation manipulations, as follow:

(!a*b*c*!d) + (!a*b*c*d) = (!a*b*c) * (!d + d) = (!a*b*c) * 1 = (!a*b*c) (2.6)

26

This new simplified product (!a*b*c), derived from the two given minterms, is
called a cube. When a cube is only composed of implicant minterms, this cube is called
an implicant cube.

Table 2.3: Relation between maxterms and lines of the truth table.

A B C Maxterm Equation
0 0 0 M0 A+B+C
0 0 1 M1 A+B+!C
0 1 0 M2 A+!B+C
0 1 1 M3 A+!B+!C
1 0 0 M4 !A+B+C
1 0 1 M5 !A+B+!C
1 1 0 M6 !A+!B+C
1 1 1 M7 !A+!B+!C

The Karnaugh map representation is an indexed matrix that permits to
identify the adjacent minterms. Figure 2.1 illustrates a 4-input Karnaugh map for the
minterms (!a*b*c*!d) and (!a*b*c*d). In this example, the values in the columns
represent the logic values for variables ‘a’ and ‘b’, while the values in the lines
represent the logic values for variables c and d.

Figure 2.1: Karnaugh map illustration.

As shown in the example, it is possible to group the two adjacent minterms to
obtain a cube. When a cube cannot be grouped with any other cube or existing minterm,
in order to form a larger cube, then this cube is called a prime cube.

When grouping adjacent minterms to compose cubes, some important
definitions become apparent. The first one is related to the cube literal cost of a SOP.
The cube literal cost of a SOP is the maximum number of literals in a single cube of the
SOP. Consider the function given by the following prime irredundant SOP.

f = !a*!b*!d + !a*b*!c + a*!d*!e + a*c*d + b*c*!d*e (2.7)

27

The cube literal cost of this SOP is four, as it has cubes with up to four literals.

The second definition is related to the prime irredundant SOP with
minimum cube literal cost (SCHNEIDER, 2007). A prime irredundant SOP with
minimum cube literal cost for function f is a prime irredundant SOP where the
maximum number of literals in a single cube is minimum for function f. Consider the
function given by the following prime irredundant SOP.

f = !a*!b*!d + !a*b*!c + a*!d*!e + a*c*d + !a*!d*e + a*b*c (2.8)

The cube literal cost of this SOP is three, as it has only cubes with three
literals. The prime irredundant SOPs given by equations (2.7) and (2.8) represent the
same logic function. It is possible to show that the SOP in equation (2.8) is a prime
irredundant SOP with minimum cube literal cost for function f, as no solution
containing cubes with at most two literals is possible for f.

Consider now, as an example, the function f given by equations (2.7) and (2.8).
The cubes !a*b*!c and a*c*d are essential primes, the remaining cubes and minterms
are shown in the covering table of Table 2.4. It is possible to see that the cube
b*c*!d*e, with four literals, would be chosen in a minimum literal cost SOP solution
like that presented in equation (2.7). However, this cube can be deleted from the
covering table, leading to the minimum cube literal cost SOP presented in equation
(2.8). The deletion of cubes with three literals would lead to an unfeasible covering
table, as no minterm could be covered.

Table 2.4: Covering table for function f.

 minterms
cubes 0 1 4 5 13 16 20 24 28 29

!a*!c*!d ● ●
!c*!d*!e ● ● ●
!b*!d*!e ● ● ● ●
!a*!b*!d ● ● ● ●
!a*!d*e ● ● ●

b*c*!d*e ● ●
a*b*c ● ●
a*c*!e ● ●
a*!d*!e ● ● ● ●

As mentioned before, for a given number of input variables there is a well-
defined number of functions. This number is given by

n22 , where ‘n’ is the number of
input variables (SASAO, 2000). According to this statement, the number of 2-input
functions is 16, 3-input functions is 256, 4-input functions is 65,536, 5-input functions
is 4,294,967,296, and so on. This exponential relation lead to a search space almost

28

intractable if many operations need to be repeated in a set of functions with more than
4-input. The set of n-input functions can be classified into different classes (set of
functions) for different reasons: one is to reduce the search space, other is to group
functions with equivalent or similar implementations. These sets are known as
equivalence classes, and they may be obtained through input permutation/inversion as
well as output inversion. P-class, N(in)-class, N(out)-class, NP-class, PN-class, and
NPN-class are the possible reduced sets (SASAO, 2000; CORREIA, 2001). A class is a
subset of logically equivalent functions as a result of a specific operation or their
combination.

The first possible operation to obtain equivalent functions is the permutation of
inputs. Table 2.5 presents an example of that operation. Notice that the input vectors are
ordered differently for the truth tables of f2 (ABC ordering) and f4 (BCA ordering). The
two functions are equivalent as once the permutation of inputs is done the truth tables
are identical. Thus, f2 and f4 are equivalent by permutation, and can be gathered in a P-
class set. The second operation to achieve equivalent functions is the inversion of
inputs. In a similar way, Table 2.6 shows an example of obtaining an N(in)-class of 4
equivalent functions from this operation. In this case, f1, f2, f4 and f8 are equivalents.
The last operation used is the inversion of the output. Table 2.7 illustrates this operation.
Notice that the three operations can be combined. For instance, NP-classes are obtained
after combining permutation and inversion of inputs. PN-classes are obtained through
permutation of inputs and inversion of outputs. For NPN-classes all operations are
performed.

Table 2.5: Two P-class equivalent functions.

ABC f2=AB+C BCA f4=A+BC

000 0 000 0
001 1 001 1
010 0 010 0
011 1 011 1
100 0 100 0
101 1 101 1
110 1 110 1
111 1 111 1

Table 2.6: Four N(in)-class equivalent functions.

AB f1 A!B f2 !AB f4 !A!B f8

00 1 01 0 10 0 11 0
01 0 00 1 11 0 10 0
10 0 11 0 00 1 01 0
11 0 10 0 01 0 00 1

29

Table 2.7: Two equivalent functions after output inversion.

AB f9 f6

00 1 0
01 0 1
10 0 1
11 1 0

Another possible classification of functions is related to their polarity behavior.
Positive unate function is the one that presents a positive (0→1) transition in its output
when a positive input variation occurs in one (or more) of its inputs. The AND function
(f=a*b) is a positive unate function. Negative unate function, in turn, is the one that
presents a negative transition (1→0) in its output when a positive input transition occurs
in one (or more) of its inputs. The NAND function (f=!a+!b) is a negative unate
function. Binate function may present both positive and negative behavior in its output
when a positive (or negative) transitions are applied in one (or more) of its inputs,
depending on the values of the other inputs. The XOR function (f=!a*b+a*!b) is a
binate function. Notice that, unate or binate behavior in a given logic function is always
related to one of its inputs; for instance the function f=!a*b+a*!c is binate on variable
‘a’, positive unate on variable ‘b’, negative unate on variable ‘c’ and does not depend
on variable ‘d’. When all inputs of a logic function have monotonic increasing behavior,
then it is said that the function is positive unate in all variables. The same occurs for the
monotonic decreasing behavior, which determines that the function is negative unate in
all variables. AND and OR logic functions are positive unate in all input variables. On
the other hand, NAND and NOR ones are negative unate in all input variables. XOR
function is an example of binate function in all variables.

Binary Decision Diagram (BDD) is a data structure that can be used to
represent a Boolean function. The function can be represented as a rooted, directed,
acyclic graph, which consists of decision nodes and two terminal nodes called 0-

terminal and 1-terminal. Each decision node is labeled by a Boolean variable and has
two child nodes called child-0 and child-1. The edge from a node to a child-0 represents
an assignment of the variable to zero. The edge from a node to a child-1 represents an
assignment of the variable to one (LEE, 1959).

Figure 2.2 illustrates a BDD of 3-input AND function. In this example, the
function f is ‘1’ only if X1=1, X2=1 and X3=1. In case a variable is equal to ‘0’, the
function f presents the value ‘0’ at the output. Notice that, the nodes in a BDD are
sequentially evaluated until arriving in a terminal node.

30

Figure 2.2: BDD of 3-input AND function.

The basic idea from which the data structure was created is the Shannon’s
decomposition. A switching function is split into two sub-functions, knows as
cofactors, by assigning one variable. If such a sub-function is considered as sub-tree, it
can be represented by a binary decision tree. BDDs are considered the state-of-the-art
structure for logic synthesis because they can be efficiently used as compact and
suitable representation of logic functions (EBENDT, 2005).

In Bryant (1986) a special class of BDDs is proposed. This class is known as
Reduce and Ordered BDD (ROBDD). A ROBDD presents a fixed variable ordering
and redundancy removal of BDD edges. The fixed variable ordering guarantees that a
variable is evaluated just once along the BDD paths. The reduction of a BDD is based
on two rules. The first one consists of removing BDD nodes that have their two edges
connected to the same node. The second consists of sharing isomorphic nodes in the
structure. Figure 2.3 illustrates these two rules.

(a)

(b)

Figure 2.3: BDD reduction: (a) eliminating nodes whose two children are isomorphic
and (b) merging isomorphic sub-graphs.

31

Due to the fixed variable ordering in ROBDDs, the canonical form concept
becomes noticeable. As presented before, the canonical concept is the capability of
representing a logic function in a unique form. That is, equivalent functions are
represented for isomorphic structures. Notice that, in ROBDDs, the canonical concept is
valid only for a given fixed variable ordering. It means that two ROBDDs representing
a function f with variable ordering o1 and o2 are guaranteed to be canonical if and only
if o1 = o2.

Another important issue of using BDDs to represent logic functions is related
to the variable ordering. The size of the BDD is determined by the function being
represented and the chosen ordering of the variables. For some functions, the size of a
BDD may vary between a linear to an exponential range depending upon the ordering of
the variables. As presented in Drechsler (1998) and Bollig (1996) the problem of
finding the best variable ordering is NP-hard. However, there exist efficient heuristics
to deal with the problem and to obtain acceptable orders in a reasonable CPU execution
time (EBENDT, 2005). Figure 2.4 shows two BDD representing the same logic
function, but with different variable orderings.

Figure 2.4: Different variable ordering ROBDDs representing a same logic function.

Examples of academic BDD packages used to manipulate Boolean functions
are the CUDD (Colorado University Decision Diagram) developed in University of

32

Colorado (CUDD, 2008), and the BuDDy developed in Information Technology
University of Copenhagen (BUDDY, 2008).

2.2 A Brief History of Switching Network

Switch theory is an old discipline. Back in the 30´s, when Claude E. Shannon
started his work, the main logic elements were electromechanical, for instance, switches
and relays. Vacuum tubes, diodes and transistors were used to make logic elements. In
Shannon (1938) an analysis about relay networks and switching circuit implementation
is presented. In Shannon (1953a) an investigation about how many contacts are
necessary and sufficient to simultaneously realize all 16 switching functions of two
variables was made. In Shannon (1853b) a machine built using selector switches and
relays was conceived for helping the design of circuits composed of logic elements. In
those days, the logic elements were very expensive. Also, networks to be realized were
relatively small, allowing manual logic design procedures. In this context, during the
50´s (MOORE, 1958) and in the 60´s (HARRISSON, 1965), catalogs of minimum
switch implementations were produced for the set of 4-input functions. Notice that,
since old researches were done using relays, only the total number of switches was
considered, without further investigation on how the arrangements of switches affect
other characteristics of the circuit, like maximum number of devices in series and
parallel. Recently, a method to determine the exact lower bound for the number of
switches in series to implement a combinational logic cell was proposed in Schneider
(2007). This opened the way for the generation of efficient networks having minimum
length transistor chains. In the pioneer catalogs of Moore (1958) and Harrisson (1965),
the lengths of transistor chains was not taken into account. Additionally, Moore and
Harrisson proved that for most Boolean functions, the minimum implementation was
not a series/parallel implementation. However, most of the library-free approaches are
restricted to series-parallel implementations (BERKELAAR, 1988; REIS, 1998;
CORREIA, 2004). Some exceptions are (JIANG, 2001) and (MARQUES, 2007). Jiang
mixes pass-transistors with series-parallel implementations. Marques uses the lower
bound from Schneider (2007) combined with the method presented here for the
automatic generation of transistor networks with minimum chains in order to minimize
the depth of a circuit in terms of transistor count. The work proposed here concentrate at
the cell level, and investigates more efficient area and delay methods to optimize
transistor networks taking into account the length of chains and the overall transistor
counts.

33

2.3 Logic Switches

Several different methods have been proposed for implementing switch
networks. The resulting networks may present different properties, which are not
described in a comprehensive way in the literature.

The basic element to implement networks is the switch. This element can be
called as direct switch, when it conducts by applying a ‘1’ logic value in its control
terminal, or complementary switch, when it conducts by applying a ‘0’ logic value in
its control terminal. By composing these elements, it is possible to build arrangements,
known as logic networks, to allow the interconnection between two different terminals
according to a given logic function that this network represents.

Depending of the technology used, these switches can be implemented as
physical devices. In the currently CMOS technology, they are represented by the
NMOS transistor (direct switch) and the PMOS transistor (complementary switch).
Figure 2.5 illustrates the symbolic notation of these elements, and Figure 2.6 presents
some logic networks representing arbitrary logic function.

Figure 2.5: Symbolic notation for PMOS and NMOS transistors.

f = a*b + b*!c + !a*!c*d

f = a*!b + !a*c + !b*!d

(a) (b)

Figure 2.6: Two logic networks representing arbitrary logic functions.

34

When looking at a single two terminal network, it may present the following
properties:

• Planar – Networks corresponding to a planar graph (HARARY, 1994).
This king of graph can be drawn in the plane without crossing lines. In
the case of networks, it is additionally required that the terminals be
externally connected without crossing any lines. Planar networks have a
dual graph, which has the interesting property of being the logically
complementary. Figure 2.7a illustrates a planar network, while Figure
2.7b illustrates a non-planar network.

• Series-parallel – When all switches in the network are connected in
series or in parallel recursively. A network is series-parallel if and only
if there is no embedded network having a Wheatstone bridge
configuration (DUFFIN, 1965). All series-parallel networks are planar.
This king of network is exemplified in Figure 2.8a.

• Bridge network – A network with an embedded network containing
the Wheatstone bridge configuration. A bridge network may or may not
be planar. A bridge network is never a series-parallel network. Figure
2.8b presents a bridge network.

Also, some lemmas can be derived from these properties:

Lemma 1: all series-parallel networks are planar.

Lemma 2: all planar networks have a dual graph (from which a logically
complementary network can be derived).

Lemma 3: all-non planar networks are bridge networks.

Lemma 4: bridge networks may or may not be planar.

(a) (b)

Figure 2.7: (a) Planar network, (b) non-planar network.

35

(a) (b)

Figure 2.8: (a) Series-parallel network, (b) bridge network.

When thinking about networks composed of two planes and about
complementary properties, they can be basically classified as logically and/or
topologically complementary.

A network is said to be logically complementary when there is one and only
one of the networks conducting for every input vector condition. A topologically
complementary network is the one that presents dual planes. Figure 2.9 exemplifies
this idea. The usual method of construction of the dual is the following:

1. In a given planar graph, place a point in every region of the graph. In
Figure 2.9a this points are labeled as 1, 2, 3 and 4.

2. Draw all lines connecting these points through one branch of the graph.
It is illustrated by the dotted lines in Figure 2.9a.

Notice that the external points, which are not inside to any internal face of the
graph, correspond to the terminals. It is done for the engineering purpose. Pay attention,
in graph theory, it is not necessary to set two external points to build the dual graph
(HARRISSON, 1965).

It is important to keep in mind that dual networks are implemented through
dual graphs. These networks are logically complementary, but they are not derived from
complementary graphs. Complementary graphs are a totally different concept, which do
not lead to generation of logically complementary networks.

36

(a) (b)

Figure 2.9: (b) Dual networks obtained through (a) dual graphs.

In the example presented in Figure 2.9b, the dual networks are bridge
networks. But the same principle can be used to generate series-parallel networks, if the
original graph is a series-parallel implementation. Another important point is related to
the planar characteristic. If such graph is not planar, then it is not possible to derive the
dual graph from it (HARARY, 1994). In this case, algorithms for graph planarization
could be applied.

Branch-based is a logic network where the transistor arrangements are
composed only by branches. It presents purely series-transistors connections to attach
two terminal nodes (PIGUET, 1984; PIGUET, 1994; PIGUET, 1995; NÈVE, 2001).
The main advantage of transistor branches is the absence of interconnections among
branches, which is a positive characteristic in terms of physical design representation
point of view. The construction of branch-based networks is rather simple. It takes a
sum-of-products and translates each product into an AND-stack in the network. Figure
2.10 presents an example of a branch-based network.

37

Figure 2.10: Branch-based network.

Additionally, logic networks can be also classified as single-rail or dual-rail.
Single-rail networks provide the connection between two nodes. Dual-rail networks are
capable of attaching one node to other two terminals, which very frequently are one for
the direct polarity signal and one for the inverted polarity signal. Also, in dual-rail
structures, a codification using the direct and inverted signal is done in order to
guarantee the right signal propagation along circuit paths. Dual-rail logic is commonly
used to build asynchronous circuits. Figure 2.11 illustrates the concept of a single and a
dual-rail network.

(a) (b)

Figure 2.11: (a) Single-rail network, (b) dual-rail network.

Basically, logic network can be constructed with their logic planes in a shared
structure or not. In figure 2.12a the logical network is composed of two disjoint planes,
where the pull-up and pull-down networks are implemented separately. Figure 2.12b
illustrates a logic network built in a non-disjoint plane, where the pull-up and pull-
down networks are sharing switch elements in a single plane.

38

(a) (b)

Figure 2.12: (a) Disjoint planes, (b) non-disjoint planes.

The pull-up plane is the one that connects the output terminal to the ‘1’ logic
value, while the pull-down plane connects the output to the ‘0’ logic value.

2.4 Network Generation

Two main approaches exist to synthesize switch networks. The first approach
is the equation-based solution. In this approach, an equation is translated to a switch
arrangement. The methods following this approach are devoted to the synthesis of
series-parallel implementations, since bridge networks cannot be obtained through
series-parallel association. Figure 2.13a shows a logic network obtained from the on-set
equation presented in equation (2.9). Figure 2.13b illustrates a logic network obtained
from the off-set equation presented in equation (2.10).

on-set = a*b + b*!c + !a*!c*d (2.9)

off-set = a*!b + !a*c + !b*!d (2.10)

Notice that, in both cases, it is possible to attain the topologically and logically
complementary networks using the dual graph generation.

39

(a) (b)

Figure 2.13: (a) Network derived from the on-set and its dual network,
(b) network derived from the off-set and its dual implementation.

Also it is possible to obtain the logically complementary network directly using
the on-set equation to implement a given logic plane and using the off-set equation to
generate the other. In this case, the obtained networks are not topologically
complementary. Figure 2.14 illustrates this idea, showing the networks achieved from
equation (2.9) and (2.10).

Figure 2.14: Logically complementary networks obtained from
the on-set and the off-set equations.

40

The second approach is a graph-based solution. In this approach a graph that
represents the function is created (as a BDD, for instance), optimized and then a switch
network is derived from this graph. This kind of approach is interesting as it can be used
to derive both series-parallel as well as non series-parallel (bridge) implementations
(ROSA, 2006).

The basic action when deriving a switch network from a BDD is to associate a
controlled switch to each arc of a BDD node. This concept is illustrated in Figure 2.15,
which shows a BDD node and four possible ways to associate switches: transmition
gates, NMOS transistors only, PMOS transistors only, and mixed PMOS/NMOS
transistors (POLI, 2003).

Figure 2.15: BDD node and associated switches.

When a non-disjoint transistor network is built with a pair of PMOS and
NMOS transistors associated to BDD edges, there is the possibility to derive disjoint
networks from it. The procedure is straightforward, as it is illustrated in Figure 2.16.
Notice that in the first case, Figure 2.16a, the network in a non-disjoint and a dual-rail
implementation. On the other hand, Figure 2.16b and 2.16c are disjoint and single-rail
implementations.

41

Figure 2.16: Networks derived from a BDD.

As an effect of using disjoint planes, the number of switches into the logic
networks remains the same, but the number of nodes increases. Another important point
is that, as the number of nodes increases while the number of elements remains the
same, the number of connections to be performed among elements is reduced. This
effect is visible in Figure 2.16.

The most recent work regarding switch network synthesis was developed by
Kagaris (2007). In this work the authors proposed a methodology to achieve bridge
networks in order to optimize the circuit in terms of transistor count. A preliminary
version of it appears in (KAGARIS, 2006). The switch network is built explicitly by
computing the most economical placement for the next product term of the function in
the currently constructed transistor network. The most economical placement is chosen
each time among several alternatives, one of which is bridging.

The basic idea of the algorithm is, from a SOP expression, to construct edges in
a graph that correspond to transistors in a switch network. These edges are paths in the
network and they are positioned and/or replaced in order to represent the logic function
in the input SOP expression. Figure 2.17 exemplifies this procedure for a given set of
terms.

42

Figure 2.17: Bridge network implementation (KAGARIS, 2007).

Observe that this approach is able to generate complex gates using bridges
arrangements. Nevertheless, depending of the input logic function only series-parallel
networks may be achieved. Another important point is related to the logically
complementary plain. The method presented in the work must be applied separated for
the on-set and off-set SOPs. Thus, the two logic plains are generated in a separated way,
not necessarily leading to topologically complementary solutions.

2.5 Network Optimization

One important step for the first approach is the minimization of the logic
expressions. There are several methods to find the best expression descriptions. The
basic idea is to find the expression with minimal number of literals. Thus, this
description can be directly converted into a switch network that will present a one-to-
one correspondence in numbers of literals and switch elements.

Karnaugh maps (KARNAUGH, 1953) and Quine-McCluskey (QUINE,
1955; MCCLUSKEY, 1956) are the main exhaustive search techniques for two-level
minimization. Although they are typically not practical algorithms, they are easy to use
and simple to understand. The Espresso algorithm (MCGEER, 1993) is a heuristic
method for two-level minimization that is computationally less expensive and presents
good results. An example of two-level minimization can be seen in the Figure 2.18. It

43

shows the Karnaugh map for the Boolean function f. The minimal cover in terms of
literals for the on-set is composed by four cubes. It can be represented through the
equation (2.11). Equation (2.12) shows the minimal cover in terms of literals for the off-
set of the function f. Another possibility to the minimal cover in terms of literal is to
perform a minimum cube literal cost cover, as presented in Section 2.1.

Figure 2.18: Karnaugh map for the Boolean function f.

on-set(f) = !a*c*d + !a*b*!c + a*!c*d + a*b*c (2.11)

off-set(f) = !a*c*d + !a*b*!c + a*!c*d + a*b*c (2.12)

Both equations (2.11) and (2.12) can also be represented as factorized forms.
According to Brayton (1987), a factorized form can be defined as a representation of a
logic function that is either a single literal or a sum or product of factorized forms. It is
very similar to a parenthesized algebraic expression. This parenthesized representation
seems to be the most appropriate representation for use in multilevel logic synthesis. As
an example, consider the representations in the Figure 2.19. The parenthesized
expression can be seen as a logical operator tree. Any representation with more than
two levels is called a multilevel representation. In this example, the logical operator
tree has depth four.

Some methods for obtaining different factorized forms for a given logic
function are available in the literature. These factorization methods range from purely
algebraic ones, which are quite fast, to so-called Boolean ones, which are slower but
are able to give better results. Since obtaining an optimal factorization for an arbitrary
Boolean function is an NP-hard problem, all practical algorithms for factoring are
heuristic and provide a correct, logically equivalent formula, but not necessarily a
minimal solution.

44

Figure 2.19: Multilevel representations.

Accorting to Mintz (2005), factorization is the procedure of deriving a
factorized form from a SOP form of a function. For example, if f = a*e+a*d+b*c then
one possible factorization of f is a*(e+d)+b*c. In most logic synthesis systems Boolean
functions are internally stored in the SOP form (SENTOVICH, 1992; KARMA, 2008).
However, the number of elements in a switch network is more accurately represented by
the number of literals in the factorized form of the network. This means that an efficient
factorization method is required in order to minimize a switch network. An exact
method for computing the best factorized form of a Boolean function was presented by
Lawler (1964). Also, heuristics methods were proposed to provide a correct, logically
equivalent form, but not necessarily a minimal length solution in tolerable computing
time (BRAYTON, 1987; MINTZ, 2005).

The factorization does not influence the number of switches in series, if only
algebraic operations are applied. Boolean factorization can change the number of
switches in series. Both kinds of factorization (Boolean and Algebraic) affect the
number of parallel branches in a network. As a result, factorization can reduce the
number of switches in series in the dual of a series-parallel network. Consider the
example given by the following on-set and off-set equations:

on-set = c*f + c*b*e + f*b*e + b*a*d + c*e*a*d + f*b*a*d + f*e*a*d (2.13)

off-set = !c*!f + !c*!b*!e + !c*!b*!a + !c*!b*!d + !c*!e*!a + !c*!e*!d +

!f*!b*!e + !f*!b*!a + !f*!b*!d + !f*!e*!a + !f*!e*!d
(2.14)

Equation (2.13) has four literals in the smallest cube. Equation (2.14) has three
literals in the smallest cube. This way, the switch network for equations (2.13) and
(2.14) is either a 3-4 (PU-PD) implementation or a 4-3 (PU-PD) implementation,
depending on polarity assignment. Without factorization, the topologically
complementary solution from equation (2.13) would be 4-7 (PU-PD) implementations,

45

while the topologically complementary solution from equation (2.14) would be a 3-11
(PU-PD) implementations. The equation (2.14) can be factorized into equation (2.15).
Equation (2.15) can be used to implement a topologically complementary switch
network that respects the minimum number of elements in series.

off-set = (!c+!f) * (!b*!e + (!a+!d) * (!b+!e)) + (!c*!f) (2.15)

Notice that in the example above, the use of factorization allowed to achieve a
solution that respects the minimum number of switches in series. However, there are
examples in which factorization can reduce the overall number of switches, but it will
not be sufficient to guarantee the minimum stack elements implementation given by the
lower bound introduced by Schneider (2007).

2.5.1 Factorization Through Functional Composition

To obtain minimized literal cost expressions we propose a factorization method
through functional composition. The main idea of this approach is to use each literal of
the original equation to compose new terms and to combine these terms to each other in
order to achieve a logically equivalent factorized expression. By combining small terms
(with small number of literals) to generate new ones with more literals, it is possible to
achieve minimized literal cost equivalent expressions in an iterative procedure.

The method consists in the following steps:

1. The input Boolean function to be factorized is added to a BDD.

2. For the cofactors of the function:

• Verify if each literal that composes the sub function contains the
cofactor, is contained in the cofactor, or not contains neither is
contained in the cofactor. If the literal contains the cofactor,
then it is said to be Larger Order (LO) than the cofactor. If the
literal is contained in the cofactor it is said to be Smaller Order
(SO) than the cofactor. If the literal not contains neither is
contained, it is said to be Not Smaller or Larger Order (NO).

• All literals are stored in a bucket of 1-element. Only literals that
appear in the function are stored, disregarding literals in other
polarities. This is done to optimize the algorithm, minimizing
the number of combinations in the later steps.

46

• If a literal is equivalent to the input function, then this literal is
the factorized form. It is not need to compose any term to obtain
the minimized literal cost equivalent expression.

• All elements in the bucket are combined to generate new terms.
These compositions are performed according to the following
rules: LO AND LO, LO AND NO, NO AND NO, SO OR SO,
SO OR NO, NO OR NO.

• The resulting composed elements with ‘n’ literals are stored in
buckets of n-elements if they represent different sub functions
of those combined and stored before. This is a Boolean
equivalence verification, which permits to eliminate several
terms that do not need to be combined with any other.

• Compositions are performed to generate all possible sub
functions of ‘n’ literals. This way, compositions of elements
with ‘n’ literals are generated until any new composition could
be obtained, where ‘n’ goes from 2 to the maximum number of
literals in a same term.

3. All terms stored in the buckets of the cofactors are unified in a same
bucket of n-elements, discarding the NO elements. The idea is to use
only the sub functions which are contained (SO) or which contains
(LO) the original input function to perform the following combinations.

4. The literal that is the root variable in the BDD is stored in the same
bucket. If this variable appears in positive and negative polarity in the
input function, then both literals are stored.

5. Compositions are performed for all elements in the buckets, as
described before. But in this step SO AND LO and SO OR LO
combinations are also performed, since a final factorized form may be a
composition of this sort. They main difference in this step is that the
compositions are performed until to achieve an equivalent term to the
input function. When this situation occurs, the minimized literal cost
equivalent expression was found.

The drawback of this method is that for a large number of literals the algorithm
becomes slow. This is an exhaustive solution for finding the factorized form. It is
feasible for functions with 5 inputs (no more than 10 literals). For functions with a large
number of literals the execution time increases due to the possible number of
combinations. Also, the larger is the number of generated terms, the larger is the
memory need.

Figure 2.20 exemplifies the proposed algorithm. The BDD for the input
function is illustrated in figure 2.20a. The Karnaugh Map of this function is presented in

47

2.20b. The cofactors and their respectively Karnaugh Maps are show in 2.20c and
2.20d. Figures 2.20e and 2.20f present the buckets obtained from the cofactors. Finally,
in Figures 2.20g and 2.20h, the unified bucket and the factorized expression are
depicted.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.20: Factorization through composition

48

2.5.2 BDD Network Optimization through Unateness (OpBDD)

It is possible to use the unateness property of some nodes in the BDD to
introduce short-circuits (wires) that do not affect the functionality of the derived
network (ROSA, 2006). This approach was first used by Isaeva (1999) and Poli (2003)
to reduce the transistor count.

2.5.2.1 Short-circuits and Unateness

The first concept to be understood is presented in Table 2.8, which illustrates
the truth table from the function presented in Figure 2.21 separated according to the two
disjoint planes. This table states the straightforward fact that when using disjoint pull-up
and pull-down planes, one plane is responsible for generating the logic ‘1’, while the
other is responsible for generating the logic ‘0’. The logic plane that is not producing a
logic value at the output produces a high impedance value Z. This concept will be used
to prove theorem 1.

Figure 2.21: Network derived from a BDD.

 Theorem 1: Given a node ‘N’ in a pull-up network to be derived from a BDD,
the active-1 arc of the node is a candidate to become a short-circuit, if the function
represented by node ‘N’ is a negative unate function with respect to the control variable
‘a’.

Proof: A node of BDD represents a Shannon decomposition such as the
function represented by the node is given by the equation f = !a*f0 + a*f1, where f1 =

49

f(a=1) and f0 = f(a=0). This equation states that f may be constructed from f0 and f1
through a pair of switches that chooses between f0 and f1, as illustrated in Figure 2.15a.
The truth table of this portion of the circuit states the value of f as a function of ‘a’, f0
and f1 is obtained as depicted in Table 2.9. Consider now the faulty circuit in Figure
2.22b, where the active-1 edge became a short-circuit. In order to the fault to be
observable at f, the following conditions are necessary.

a) Variable ‘a’ cannot be equal to ‘1’, as in this case, the arc would have the
functionality of a short-circuit and the fault would not be detected.

b) The value of the co-factors f0 and f1 must be different, in order to produce
an observable fault at f.

c) The cofactor f1 must be equal to logic one. If f1=0, it would contribute to f
with a high impedance value Z, therefore the fault would not be detected, since a short
connected to a high impedance value does not affect functionality. Notice that this
requirement is a consequence of the creation of a disjoint pull-up plane.

As a consequence, the only combination of logic values that can detect the fault
is a=0, f0=0, f1=1. However, if the function f is negative unate in variable ‘a’, by
definition (of negative unateness) f0=0 ⇒ f1=0. As a consequence, if f is negative
unate, the necessary conditions to detect the fault will never occur. This way the faulty
circuit has the same functionality of the original one and the 1-active arc can become a
short-circuit.

Corollary: As the considerations for proving theorem 1 are local to the node,
the introduction of a short-circuit in the final network must be validated case-by-case
before acceptation. Short-circuits may lead to the introduction of sneak-paths, in some
cases.

Table 2.8: Truth table for function f, individualized by pull-up and pull-down planes.

a b c f PU(f) PD(f)
0 0 0 1 1 Z
0 0 1 0 Z 0
0 1 0 1 1 Z
0 1 1 0 Z 0
1 0 0 1 1 Z
1 0 1 0 Z 0
1 1 0 0 Z 0
1 1 1 0 Z 0

50

Table 2.9: Truth table for function f and pull-up PU(f) as a function of a, f0 and f1.

a f0 f1 f PU(f) Fault
0 0 0 0 Z undetected
0 0 1 0 Z detected
0 1 0 1 1 undetected
0 1 1 1 1 undetected
1 0 0 0 Z undetected
1 0 1 1 1 undetected
1 1 0 0 Z undetected
1 1 1 1 Z undetected

Similarly, this procedure of replacing transistors by short-circuits may be
applied to the pull-down network. Table 2.10 illustrates the optimizations that may be
done for each network plane, according to the unate characteristics.

Table 2.10: Transistor edge candidate to become a short-circuit.

 PMOS Network (pull-up) NMOS Network (pull-down)
Positive Unate Edge 0 is candidate Edge 1 is candidate
Negative Unate Edge 1 is candidate Edge 0 is candidate

Figure 2.22: Switches controlled by variable a are used
to choose between cofactors f0 and f1.

2.5.2.2 Dominance and Open-Circuits

The introduction of short-circuits, as described previously, can introduce a
dominance relationship between paths. A path P1 in a network dominates a path P2 if
P1-on ⇒ P2-on. This is the case of the pull-down network presented in Figure 2.21c.
There are three paths connecting the terminals: P1 = a*b, P2 = !a*c and P3 = a*!b*c.
The path P2 could be simplified to P2 = c, by forcing the active-0 arc of variable ‘a’ to
become a short-circuit. After this reduction, P2 dominates P3, because P2-on ⇒ P3-on.

51

As a consequence, P3 is not needed for achieving the right functionality for the circuit,
and P3 is removed by making the active-0 arc of variable ‘b’ an open circuit.

2.5.3 Lower Bound BDD Network (LBBDD)

Sometimes not only optimizations through unateness are sufficient to guarantee
that the generated network will respect the minimum number of transistors in series.
Essentially, that occurs because some transistors, which are candidates for optimization,
cannot be replaced by a short-circuit or by an open-circuit during the optimization
process since this might lead to an introduction of invalid paths into the circuit. Figure
2.23 illustrates this concept, where a BDD and its derived disjoint plane are shown. The
circled transistors in the switch network, Figure 2.23b, are candidates for being replaced
by short-circuits. The T2 transistor can be replaced by a short-circuit as this
optimization does not affect the original behavior of the logic function. However, the T3
transistor cannot be optimized because it might activate the invalid path through T4 and
T6 arcs, changing the logic function behavior. To assure the correct functionality of the
network, node duplication can be applied to the original BDD or network structure.

Node duplication can be performed through different ways. Basically, we can
analyze the process in two separated approaches: the structural choice and the
duplication strategy.

(a) (b)

Figure 2.23: BDD and derived switch network.

52

2.5.3.1 The Structural Choice

First of all, it is necessary to choose the appropriate structure to duplicate nodes
of a given logic function. Generally, BDDs packages are implemented with ROBDDs
structures. This is due to ROBDDs being a special class of BDDs that have a reduced
and ordered structure to represent logic functions. Therefore, it will be required a
different structure to keep the modified BDDs, if a ROBBD package is used to store and
implement transistor networks. Another alternative to apply node duplication is to do it
directly into the transistor network. In this method, the BDD structure that stores the
logic function is not modified and the duplications are performed in the network nodes.
As a consequence, all new transistors created during the duplications can be stored in
the existing transistor list and no new structure is necessary to keep the modifications.
This alternative is extremely efficient in terms of memory requirement and execution
time as the algorithms for performing it are considerably simple.

2.5.3.2 Duplication Strategy

Another issue about node duplication is related to the choice of the BDD node
which the duplication will be applied. The Figure 2.24 illustrates two different
duplications performed on a switch network derived from the same BDD presented
previously on Figure 2.23. In order to allow transistor T3 to become a short-circuit, two
specific duplications may be applied to the network. The first option is to duplicate node
‘C’ of the BDD, consequently, to duplicate T7 and T8 transistor in the network. Figure
2.24b illustrates this idea. The second option is to perform the duplication on the node
‘B’, which has the candidate transistor connected. This is shown in the Figure 2.24c,
where T1 transistor is duplicated. The main reason for evaluating these strategies is to
determine the number of switches that will compose the network. In this example, the
two switch networks respect the minimum transistor stack. However, the second one is
better as it has one transistor less than the first implementation. If considering circuits
composed by a significant number of gates, the increase of unnecessary switches might
become a problem in terms of area consumption.

53

Figure 2.24: Duplication strategies for a switch network.

2.5.3.3 Implemented Methodology to Achieve Minimum Transistor Stacks

By using the observations described previously, an optimization method for
generating networks with minimum transistor stacks from BDDs was implemented
(ROSA, 2007). In this proposed approach, the duplications are performed directly in the
transistor network to avoid the need of any additional structure to store data and also to
avoid unnecessary use of memory. In addition, the two duplication strategies were
implemented to guarantee a network with a minimum number of transistors. The
implemented method is basically divided into two steps to achieve the lower bound of
transistors in series. These steps are presented as it follows.

Step 1: In this first step a network with disjoint pull-up and pull-down planes is
generated. In sequence, all the unate nodes in the BDD are identified and the potential
transistor candidates are separated into a reference list to be optimized subsequently. All
candidates that are separately connected to a given node are turned into short-circuits. If
there is a node which has both a candidate and a non-candidate transistor connected, a
duplication process is applied and the candidate is replaced by a short-circuit.
Furthermore, the second strategy of node duplication is performed. Thus, two networks
are generated and the best one is chosen (the one which has the lower number of
transistors). This procedure is executed as many times as necessary in order to guarantee
that all candidate transistors are replaced by short-circuits. After performing all
duplications and replacements, a comparison between the lower bound and the number
of transistor in series of the network is performed. If the network respects the minimum
number of transistor in series the process is finalized, if it does not, the second step is
executed.

54

Step 2: Generally, the execution of step 1 is sufficient to guarantee that the
network length respect the minimum number of transistor chain. However, sometimes it
is necessary to remove some transistors that cannot be identified as candidates through
unateness. This situation is illustrated in the Figure 2.25, which the BDD and a derived
switch network are shown. After executing all possible optimizations, the transistor
network, Figure 2.25b, presents three transistors in series. The minimum number of
switches in series for this function is two, what means at least one transistor in this
network must be removed. To solve this problem the method analyzes all the paths in
the network. The transistors that belong to those paths that exceed the lower bound are
selected as candidates to be removed. One by one, they are replaced by short-circuits
and a functional simulation is performed to verify the network reliability. If the
simulation result is as expected and there is no more paths exceeding the lower bound,
the process is finalized. If the result is not as expected, the previous network is restored,
another transistor is removed and the network is simulated again. This process is
repeated until the method acquires a network that respects the minimum transistor
stacks and that corresponds to the original logic function. In this example the T6
transistor will be removed and, as a consequence, T11 and T15 will be just as well.

Figure 2.25: BDD and optimized switch network.

55

2.6 Network Ordering

Switch ordering is another approach used to reach network optimizations. The
idea is to organize the internal switch arrangement in order to get a better network
implementation in terms of a given cost. This concept basically may be classified as
structural ordering or graph-oriented ordering.

In structural ordering the network is generated in a first step, and, in a second
step, the switches are placed according to some rules to minimize a specified cost. Only
elements connected in series in the network can be ordered to produce a new network.
This is a heavy restriction as it depends on the initial topology of the network. For
example, it is possible to favor some input signals putting the switches that control these
signals close to the output. Thus, the network will present better performance for a
certain input signals, since the distance to the output of the switches controlled by these
signals will be minimized. The method proposed by Carlson (1992) is an example of
structural ordering technique.

In graph-oriented ordering, the data structure is ordered before generating the
switch network. The idea is the same that structural ordering, but in this case the switch
network will be generated in a given ordering previously defined in the data structure;
this way, all orderings are possible and there is no restriction imposed by the original
graph. The method proposed by Cardoso (2008) is an example of graph-oriented
ordering technique performed in BDD.

The BDD size may present from a linear to an exponential relation according
to the number of variables present in the graph, depending of the represented logic
function and the variable ordering. It was demonstrated that finding the BDD ordering
that present the minimal number of nodes is a NP-hard problem (BOLLIG, 1996;
DRECHSLER, 1998). The amount of possible ordering is determined by the factorial of
the variables present in the logic function. Thus, it is only possible to obtain good
solutions using exhaustive approaches for a small number of variables considering
acceptable execution time. In the practice, heuristic methods like sifting (RUDELL,
1993) may deliver good results in reasonable time for larger BDDs. The sifting method
consists to sequentially swap a variable for all BDD levels and, in a greedy strategy, to
fix it in the position that the BDD presents the smaller number of nodes. In general,
BDD ordering methods are based in the swap of adjacent variables.

Notice that finding the best BDD ordering means to find the BDD with
minimum number of edges. If think that each edge of the BDD is translated in a
transistor element, this strategy is extremely important in order to achieve more
optimized networks. Figure 2.26 illustrates two BDDs representing the same logic
function and the transistor networks obtained from them. Small BDDs are translated in
small networks.

For this work two approaches were implemented. The first one is an exhaustive
solution, were all variable ordering are tested. This approach can be applied for BDD up

56

to eight variables. For BDD with more than eight variables, the sifting algorithm was
implemented.

Figure 2.26: Two BDDs and their derived transistor networks.

57

2.7 Conclusions

This chapter presented some basic concepts and terminologies regarding logic
synthesis and switch networks. A brief history about switch theory was shown, as well
as networks generation and optimization. A method to factorize Boolean functions was
presented in order to achieve minimum literal cost expressions, and a transistor network
derived from BDD, capable of respecting the minimum number of transistors in series,
was also proposed.

58

3 CMOS LOGIC STYLES

There are several works in the literature about transistor networks and CMOS
logic styles. This chapter discusses this topic, presenting alternative logic styles to the
traditional CMOS standard. In the sequence, a classification is done for two terminal
disjoint networks. Timing, power and layout are also discussed herein.

3.1 Logic Styles

Logic styles are basically classified as being dynamic or static topologies.
Dynamic styles rely on temporary storage of signal values on the capacitance of high-
impedance circuit nodes (THORP, 2003). The implementation approach of dynamic
circuits is simpler and faster but their design and operation are more prone to failure
because of the increased sensitivity to noise. The most common dynamic logic styles are
Domino and its variants Dual Domino, Multiple-Output Domino, NORA Domino and
Zipper Domino (WESTE, 2005). On the other hand, static styles guarantee that, under
fixed input vectors, each gate output is connected to either Vdd or Vss via a low
resistance path. Also, the outputs of the gate assume at all times the value of the
Boolean function implemented by the circuit, meaning the circuit does not need to be
pre-charged or pre-discharged. Some of the most common static logic styles are Static
CMOS, Pseudo-NMOS, DCVSL and PTL (RABAEY, 2005).

The most used logic styles used in the industry are the complementary
series/parallel CMOS (indicated here as CSP) and the pass-transistor logic (PTL),
both static and single-rail topologies. Accordingly to Weste (2005), the usual static
CMOS has the important characteristic of low static power consumption, if compared to
dynamic logic. Significant power is only drawn when the MOS transistors devices are
switching between on and off states. Traditionally, logic cells have been implemented
using static CMOS due to its good performance, advantageous noise immunity, and
easy and widely known design methodology (LAI, 2006). On the other hand, PTL logic
style is a promising alternative, since it may employs NMOS transistors only that have
small capacitance, which may reduce the power dissipation while offering similar

59

performance as static CMOS (BERTACCO, 1997). Also, PTL presents a potential
reduction of transistors count. For instance, PTL logic style is known for better
implementations as compared to static CMOS in case of arithmetic circuits, such as
adders and multipliers where Exclusive-ORs (XORs) dominate (RUPESH, 2004).
Figure 3.1 illustrates the static CMOS (CSP) and PTL logic styles.

(a) (b) (c)

Figure 3.1: Logic styles: (a) Static CMOS, (b) PTL using only NMOS transistors,
(c) PTL using transmission gates.

This thesis focuses on generating and evaluating static, single-rail and disjoint
networks. The next sections will present some logic styles that follow these
characteristics.

3.1.1 Complementary Series-Parallel CMOS (CSP) Network

The CSP is currently the most used and well established logic style applied by
the industry. This style is essentially an extension of the CMOS inverter to multiple
inputs. The major advantage of the CSP structure is the low sensitivity to noise, good
performance and low power consumption with almost no static power consumption for
technologies with transistor channel length down to 130nm (WESTE, 2005).

CSP gate is a combination of two networks, one to build a pull-up plane and
another to build a pull-down plane. Figure 3.1a shows a logic gate where all the inputs
are distributed to both the pull-up and pull-down planes. As mentioned before, the goal
of the pull-up plane is to provide a connection between the output and Vdd anytime the
output of the logic gate is meant to be ‘1’, based on the input signals. In the same way,
the task of the pull-down is to connect the output to Vss when the output of the logic
gate is meant to be ‘0’. The pull-up and pull-down networks are constructed in a

60

mutually exclusive mode such that one and only one of the networks is conducting in
steady state. In this way, once the transients have settled, a path always exists between
Vdd and the output, realizing a high output (representing logic ‘1’), or, alternatively,
between Vss and the output for a low output (representing logic ‘0’). This is equivalent
to stating that the output node is always a low-impedance node in steady state.

While constructing CSP pull-up and pull-down networks, the following
observations should be considered:

• The pull-down is constructed using NMOS devices, while PMOS
transistors are used in the pull-up. The primary reason for this choice is
that NMOS transistors produce “strong zeros” and PMOS devices
produce “strong ones” (RABAEY, 2005).

• A set of construction rules can be derived to construct logic functions.
NMOS devices connected in series correspond to an AND function, as
shown in Figure 3.2a. Similarly, NMOS transistors connected in
parallel represent an OR function, as illustrated in Figure 3.2b.

• Using similar arguments, construction rules for PMOS networks can be
formulated. But in this case, the complementary property can be
considered. This means that a parallel connection of transistors in the
pull-up network corresponds to a series connection of the
corresponding devices in the pull-down network, and vice versa.
Therefore, to construct CSP logic, one of the networks is implemented
using combinations of series and parallel devices. The other network is
obtained using the duality principle by traversing the hierarchy,
replacing series sub-nets with parallel sub-nets, and parallel sub-nets
with series sub-nets. The complete CSP logic is constructed by
combining the pull-up with the pull-down (WAGNER, 2006).

(a) Series (b) Parallel

Figure 3.2: NMOS logic rules: (a) series devices produce an AND operation,
(b) parallel devices produce an OR one.

Notice that the idea of constructing a CSP logic network is the same that was
present in Section 2.4. During the 90´s, some BDD-based methods were proposed to
generate this kind of network (REIS, 1995; GAVRILOV, 1999; LIU, 1999). In practice,

61

they are not useful since there is no need to have a complex and CPU costly algorithm
to achieve a transistor network that can be directly derived from an equation description.

3.1.2 Gates with Minimum Transistor Chains (NCSP)

It is possible to derive transistor implementations for a given logic function,
while guaranteeing minimum length transistor stack in the derived network
(SCHNEIDER, 2006; ROSA, 2007). The methodology to determine the minimum
possible length for the implementation of a logic function is the one presented in
Section 2.1, where a minimum cube literal cost SOP is applied. After that, to obtain
gates with minimum length pull-up and pull-down chains, the method generates a pull-
up plane from the on-set equation and a pull-down plane from the off-set equation, as
presented in Section 2.4. If it is desired, the inversion of the input logic function f leads
to a “deMorgan” implementation that exchanges the pull-up and pull-down planes.
Figure 3.3 shows the NCSP implementations for the function represented by equations
(3.1) and (3.2).

on-set = a*b + b*c + a*c*d (3.1)

off-set = !a*!b + !a*!c + !b*!d + !b*!c (3.2)

(a) 3-2 cell for direct f (b) 2-3 cell for inverted f

Figure 3.3: NCSP implementation for equations (3.1) and (3.2).

3.1.3 Mux-Based Network

A multiplexer is a combinational circuit that has 2
n binary inputs and ‘n’

control inputs. Its output corresponds to the binary input selected by the control inputs.
According to Ercegovac (2000), a 2n inputs multiplexer may be used to implement any
logic function with ‘n’ inputs. It is possible if the input variables of the function are

62

used as control inputs of the multiplexer, and the output values of the function are used
as binary inputs, to be selected by control inputs. Figure 3.4 shows a multiplexer
implementing an arbitrary function.

Figure 3.4: Mux_8x1 implementing a logic function.

However, it is possible to reduce the multiplexer input number if, beyond the
constants ‘0’ and ‘1’, a variable or its complement is connected to the multiplexer data
inputs. Thus, a 2n

 multiplexer can implement any function of n+1 variables. To find the
signal that should be connected to the multiplexer inputs, it is necessary to perform a
simplification over the SOP of the function, choosing the variable to be used as input.
The following equations exemplify this procedure:

out = !a*!b*e1 + !a*b*e2 + a*!b*e3 + a*b*e4 (3.3)

out = !a*!b*e1 + !a*b*e2 + a*!b*1 + a*b*0 (3.4)

out = !a*!b*c + !a*b*!c + a*!b (3.5)

Figure 3.5 illustrates the multiplexer obtained for the simplification described
above.

63

(a) (b)

Figure 3.5: Mux_4x1: (a) generic symbol, (b) implementing
function from Figure 3.4

From the electrical point of view, a multiplexer may be implemented using tri-
state inverters. It is a quite simple procedure, since the generated structure is regular. To
do this, it is necessary to connect the control variables of the multiplexer to the control
variables of the tri-state inverters, and connect input signals of the inverters to the input
signals of the multiplexer. Figure 3.6a illustrates this idea and Figure 3.6b shows a
transistor network for the mux of figure 3.5.

(a) (b)

Figure 3.6: (a) Mux using tri-state inverters, (b) mux_4x1 transistor network.

Notice that, there is the possibility to optimize the mux-based network.
Usually, it is done when a transistor input is permanently connected to Vdd or Vss. This
situation leads to short-circuit and open-circuit transistors insertion in the network.
These transistors may be removed from the network without modifying its logical

64

behavior. Figure 3.7 exemplifies this idea, where the total number of transistors in the
network is minimized.

Figure 3.7: Optimized mux_4x1 transistor network.

3.1.4 BDD-based Networks

Using the switches association described in Section 2.4, and the tricks
described in Sections 2.5.2 and 2.5.3, disjoint BDD networks can be implemented. To
do that, the pull-up plane is built using PMOS transistors, while the pull-down plane is
built using NMOS transistors. Figure 3.8 shows a BDD and the disjoint networks
derived from it.

Notice that this logic style is capable of delivering bridge networks, which are
not possible in the previous networks. Also, like NCSP networks, it is possible to
achieve networks that respect the minimum number of transistors in series.

65

Figure 3.8: (a) BDD representation, (b) pull-up network and (c) pull-down network
derived from it.

3.2 Classification of Two Terminal Disjoint Networks

When analyzing pairs of networks it is possible to identify the following
properties:

• Series-parallel complementary – When the graphs of pull-up and
pull-down networks are series-parallel and one is the dual of the other.
Notice that from a graph theory point of view, dual and complementary
graphs are distinct concepts.

• Topologically complementary – When the graphs of pull-up and pull-
down networks are dual. With respect to the previous definition, the
request of being series-parallel was removed.

• Logically complementary – When there is one and only one of the
networks conducting for every input vector condition.

• Self-dual – When pull-up and pull-down have exactly the same
topology, including the variables controlling the switches.

• Short circuit – When there is one input vector where both pull-up and
pull-down networks conduct, such that Vdd and Vss are short circuited.

66

• Tri-state – When there is one input vector where neither pull-up nor
pull-down network conducts. Consequently the output is let on high
impedance state.

Figure 3.9: Classification of two terminal disjoint networks.

Figure 3.9 illustrates the classification described above. Notice that there is
only one network of type 1. This network is the inverter, which is self-dual, series-
parallel, topologically and logically complementary. The group 2 is composed of all
series-parallel complementary networks. For example, NAND2, NOR2 belong to group
2. These networks are also topologically and logically complementary. Groups 3, 4, 5,
6, 7 and 8 do not present series-parallel complementarity. Group 3 is composed of
networks which are topologically complementary, logically complementary but not self-
dual nor series-parallel. Group 4 is composed of networks which are logically
complementary but not topologically complementary nor self-dual nor series-parallel. A
mux-based XOR2 network is an example of network from group 4. Group 5 is
composed of networks which are topologically complementary, logically
complementary and auto-dual, but series-parallel. Group 6 is composed of networks
which are logically complementary and self-dual but not topologically complementary
nor series-parallel complementary, even each of the planes is individually series-
parallel. An alternative XOR3 implementation is a network from group 6. Group 7 is
composed of cells that are auto-dual and are not complementary (series-parallel,
topologically or logically). The Müller cell, widely used in asynchronous circuits, can

67

be considered as a group 7 network if the memory stage at the output is disregarded.
Finally, group 8 is composed of cells that are neither auto-dual nor complementary
(series-parallel, topologically or logically). A tri-state network is an example of group 8.
Figure 3.10 shows an example of network that composes each group of the
classification presented before.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.10: Networks from: (a) group 1, (b) group 2, (c) group 3, (d) group 4,
(e) group 5, (f) group 6, (g) group 7, (h) group 8.

3.3 MOS Transistor as a Non-ideal Switch

As mentioned before, MOS (Metal Oxide Semiconductor) transistor is a logical
switch capable of switch-on and to switch-off an electrical path according to the control
signal applied to its ‘gate’ terminal. Transistors are built over a semiconductor substrate,

68

generally a Si-substrate. Two regions of the substrate contain a high concentration of
ions, and are called ‘source’ and ‘drain’ terminals. These regions are separated by a
channel under a strip of polysilicon, known as ‘gate’. Between the gate terminal and the
substrate portion (‘bulk’) is inserted an insulator to avoid the direct contact of both. The
gate terminal controls the ions induction in the bulk region, representing the portion
between source and drain, allowing a current flowing through these regions. Figure 3.11
illustrates a MOS transistor structure.

Figure 3.11: MOS transistor structure.

Two physical dimensions are of special interest in the MOS transistors. These
dimensions are called transistor width (W) and transistor length (L), indicated in
Figure 3.11. They are presented under the gate terminal, in the channel of the transistor.
The main electrical characteristics of a MOS transistor are determined according to their
dimensions (W and L) and the oxide thickness over the transistor channel.

Unfortunately, MOS transistor is not an ideal switch. These elements do not
conduct when ideal logic ‘1’ or logic ‘0’ are applied to their gates. A behavior closer to
the real functionality condition is that the gate voltage of a MOS transistor must present
a given bias differential to the source terminal. This minimal voltage that allows the
transistor conduction is known as threshold voltage (Vth). The threshold voltage of
PMOS and NMOS transistors may change according to the technology process and bulk
potential. The important fact is that the transistors start or stop their conduction states
when this voltage differential occurs in their terminals. Thus, the Vth affects the delay
properties of the logic cell.

Another essential element that influences the logic cell performance is the
channel resistance (Ron) when the transistor is conducting. The resistance definition of
an electrical path may be expressed considering a current crossing a tri-dimensional
conductor block, as shown in Figure 3.12. The larger is the block length, the larger is
the resistance. On the other side, the larger is the block width, the smaller is the
resistance. In a simple analysis, it could be modeled as:

69

Ron = (ρ * L) / (W * T) (3.6)

where ρ is the intrinsic resistance of the material that composes the block.

Figure 3.12: MOS transistor channel dimensions.

The MOS transistor channel can be analyzed as a tri-dimensional block (as
illustrated in Figure 3.12). The designer can modify the transistor width and length to
achieve the desired conduction behavior. However, it is necessary to respect the sizing
constraints (minimum dimension for W and L) defined in the technology.

On the other hand, the gate terminal of the MOS transistor represents a
capacitor. It can be viewed as a parallel plate capacitor with the gate on top and channel
on bottom, with a thin oxide dielectric between. This situation collaborates for a non-
ideal transistor behavior, since that gate capacitance influences the transistor operation.
Most transistors used in logic design are of minimum manufacturable length because
this results in highest speed and lowest power consumption. In addition to the gate, the
source and the drain also represent capacitances. These capacitors are formed between
the drain or source diffusion and the substrate, and are charged or discharged according
to the bias condition over the transistor. These capacitances are not fundamental to the
operation of the devices, but do impact circuit performance and hence are called
parasitic capacitors. Notice that the drain and source capacitances are also dependent
of the transistor width. The larger is the W, more capacitance will be present in the
device.

All these elements (W, L, Ron, Vth, and capacitances) impact in the logic
networks characteristics. Timing, power and area present different behaviors according
to the variation of these elements in a given transistor arrangement. In a general way, by
performing an adequate transistor sizing it is possible to achieve better networks
implementation.

70

3.4 Transistor Sizing

The designer of a VLSI circuit must consider not only functional correctness
but timing behavior. Usually, there is some specification of how quickly the circuit must
produce its output. Once a schematic, transistor-level description of the circuit is
produced, it must be forced to meet the delay constraint. This is done by assigning sizes
to the transistors.

Increasing the size of transistors in a VLSI circuit tends to decrease the delay
through the circuit, but at the cost of increasing its area. While transistor area is usually
only a small component of the total chip area, that is only because transistor sizes are
usually reasonable. Minimizing delay can result in huge transistors. Beyond a certain
point, however, larger transistors actually increase delay.

To perform the transistor sizing in this work, the Logical Effort method was
implemented (SUTHERLAND, 1999). The next section discusses this method.

3.4.1 Logical Effort and Transistor Networks

The logical effort is a gain based method that allows to compare how costly it
is for a given logic gate to compute the Boolean function it implements, comparatively
to a reference inverter. This way, the gain across paths in a circuit are distributed
evenly, and gates which do not have an high effort to compute logic (logical effort) will
contribute with electrical effort, driving more significant output capacitances relative to
their input. A straightforward method to compute the logical effort is described in
(SUTHERLAND, 1999). It considers that the transistors in a complex gate have to be
sized to have the same drive strength of a reference inverter. As an example, consider
the circuits described in Figure 3.13a and Figure 3.13b, which implement the same logic
function. The transistor sizes are shown on both figures, relative to a reference inverter
where the NMOS transistor has size ‘1’ and the PMOS transistor has size ‘λ’. The
logical effort for every input is the fanin (input capacitance) divided by the input
capacitance of the reference inverter (1+λ). In the case of input ‘A’ the logical effort
values are (5+6λ)/(1+λ) for Figure 3.13a and (5+4λ)/(1+λ) for Figure 3.13b. The circuit
in Figure 3.13b has a reduced logic effort, as its pull up plane has less series transistors,
which allow driving the same current with smaller transistors. Table 3.1 presents the
logical effort values for both circuits. The sizing of the networks and the logical effort
computations were done in accordance with the methods presented in (SUTHERLAND,
1999). The transistors sizing consider the transistor chains for every path between the
output and the power source. The network in Figure 3.13b tends to have a smaller
intrinsic delay when compared to the network of Figure 3.13a, as the transistors will
have smaller sizes to deliver the same output current. This reduces parasitic
capacitances and the intrinsic delay.

71

(a) (b)

Figure 3.13: Two circuits for the same logic function.

Table 3.1: Logical effort values for circuits in Figure 3.13.

Circuit A B C D Total
Figure
3.13a

(5+6λ)/(1+λ) (2+2λ)/(1+λ) (5+6λ)/(1+λ) (3+3λ)/(1+λ)
(15+17λ)/

(1+λ)
Figure
3.13b

(5+4λ)/(1+λ) (2+2λ)/(1+λ) (5+4λ)/(1+λ) (3+2λ)/(1+λ)
(15+12λ)/

(1+λ)

3.5 Conclusions

This chapter discussed some alternative logic styles to the CMOS standard. A
classification for two terminal disjoint networks was compiled in order to demonstrate
the richness of the switch theory. Also, a discussion regarding the MOS transistor as a
non-ideal switch element was done. Finally, the transistor sizing was explored and the
logical effort method was presented.

72

4 ESTIMATION OF COSTS

To compare the different network implementations, some estimation methods
can be applied. This chapter presents some methods used in this work to evaluate the
networks. For delay evaluation, the Elmore delay model is used. For dynamic power
dissipation, a method that considers the intrinsic capacitance of the transistor network is
utilized. To evaluate the leakage behavior, this work makes use of three different
leakage estimation models, which considers both gate and subthreshold leakage current.
Finally, to evaluate area, a naïve and simple method is present.

4.1 Profile and Parameters Extraction

In order to evaluate a transistor network, it is needed to discover some
information regarding the topology. This information is used by the estimation methods
during the analyses or calculation process. Examples of this kind of information are:

• Number of nodes in a network;
• Number of transistors;
• Number of transistors connected per node;
• Number of branches;
• Number of paths between the output and the source nodes;
• Shortest path in a network;
• Larger path in a network;
• Size of transistor;
• Equivalent transistor size in a given path;
• Fanin;
• Distance between two nodes in a network;
• Etc.

73

Several algorithms were implemented to obtain all this information. Other
necessary data to estimate the behavior of the networks are dependent of the technology
process in which the transistor networks will be investigated. This information are used
here as external parameters, obtained through Spice simulations. They are extracted
once for a given technology process and saved in a parameter input file. So, this file is
used by the estimation methods when necessary. Examples of this sort of data are:

• Channel resistance of PMOS and NMOS transistors;
• Drain and source capacitances (as function of the transistor width);
• Threshold voltage;
• Vdd voltage;
• Etc.

As it is not the focus of this work, the parameters extraction will not be
discussed here. But it is important to know that they exist. More information about the
parameters extraction may be found in the references of each estimation method.

4.2 Timing Estimation

The performance of CMOS circuits can be characterized by the time needed to
charge and/or discharge the intrinsic capacitors of these circuits. In fact, the existence of
parasite elements (capacitances and resistances) impacts directly in the electrical signal
propagation on the circuits. Some definitions about time can be considered when
analyzing a given logic circuit:

• Rise time (tr): It corresponds to the time needed to change the signal
from ‘0’ logic to ‘1’ logic. This time is usually measured when the
signal changes from 10% to 90% of its voltage variation in the output.

• Fall time (tf): It corresponds to the time needed to change the signal
from ‘1’ logic to ‘0’ logic. This time is usually measured when the
signal changes from 90% to 10% of its voltage variation in the output.

• Delay time (td): It corresponds to the maximum time from the input
signal crossing 50% to the output signal crossing 50%. As this delay
generally is not the same for ‘0’ to ‘1’ and for ‘1’ to ‘0’ transitions, it is
common to separate it in tdhl (delay time high-to-low) and tdlh (delay
time low-to-high).

74

According to Weste (2005), quick delay estimation is essential to designing
critical paths of digital circuits. Although timing analyzers or circuit simulators can
compute very detailed switching waveforms and accurately predict delay, good
designers cannot be dependent on simulation alone. Also, simple models are important
because they allow rapidly estimating delay, understanding its origin, and figuring out
how it can be reduced.

One of the most used methods to estimate delay, the Elmore delay model
(ELMORE, 1948), is based on the computation of the delay in an equivalent RC circuit.
In this model, each transistor is modeled as a resistance between their source and drain
terminals, and all parasite capacitances are modeled as grounded capacitances. Viewing
‘on’ transistors as resistors, it is possible to see that a chain of transistors can be
represented as an RC ladder as shown in Figure 4.1.

Figure 4.1: RC ladder for Elmore delay.

The Elmore delay model estimates the delay of an RC ladder as the sum over
each node in the ladder of the resistance Rn-i between that node and a supply multiplied
by the capacitance on the node. The equation (4.1) models the Elmore delay.

iCR in∑ −= *τ (4.1)

It is known that the Elmore delay model represents a simple approximation of
the actual delay, but, according to Rabaey (2005), it is acceptable for fast estimation. It
offers the designer a powerful mechanism for providing a quick estimate of the delay of
transistor networks.

The Elmore delay model, described in details and validated in (SCHNEIDER,
2004), was implemented in this work to compare the delay of different transistor
networks implementation of same functions. The capacitances and resistances (for
NMOS and PMOS transistors) are parameters used for the calculation. As mentioned
before, these parameters are extracted through Spice simulation for a given technology
process. The delay model considers the transistor width dependence during the
calculation procedure. In this implementation, τ is calculated only for a single input
signal variation. In other words, only one input variable is changed in each analysis.

75

4.3 Dynamic Power Estimation

Power dissipation is no longer a secondary issue in CMOS digital design (LIU,
1994). The increasing complexity and high-performance requirements of modern
integrated circuits have led to high power consumption. Transistor level simulators with
continuous-time modeling of the devices, like Spice, can be very expensive in terms of
storage and computation time. Hence, a great effort has been devoted in the
development of accurate analytical expressions power models (NAJM, 1994;
BOGLIOLO, 1997; ALIOTO, 2007).

The dynamic switching power dissipation was the dominant factor compared to
the other components of power dissipation in digital CMOS circuits for technologies
down to 0.18 micrometers, where it is about 90% of total circuit dissipation (PARK,
2006). Short–circuit power is the second source of total power dissipation. During a
transient on input signal, there will be a period in which both NMOS and PMOS
transistor will conduct simultaneously, causing a current flow through the direct path
existing between power supply and ground terminals. This effect usually happens for
very small intervals. However, according to Veendrick (1984), this component
represents less than 20% of the dynamic switching power consumption if the NMOS
and PMOS transistors are sized in order to balance the rise/fall signal slopes at input and
output nodes. Considering that, in this work only the dynamic switching power
dissipation will be considered to investigate the dynamic power behavior of the
networks.

Traditional gate-level power estimations are based on the simplified
assumption that the supply current required by a CMOS circuit is essentially spent in
charging load capacitances at outputs of the switching gates (TSUI, 1993). These output
capacitances are mainly composed by the input capacitances of next interconnected
gates. However, intrinsic capacitances also contribute for the power dissipation and
cannot be neglected in the cell power estimation analysis, being a significant element in
the cell power estimation analysis. In this context, a simplified analytical model to
estimate intrinsic power consumption based on the charge required by intrinsic
capacitances associated to a CMOS cell is presented by Chiappetta (2008).

The MOS capacitances can be divided in gate (CG), depletion (CDB and CDS)
and overlap (CGD and CGS) capacitances, as shown in Figure 4.2a. However, a
simplified model that considers only the intrinsic capacitance, illustrated in Figure 4.2b,
is used. The drain and source capacitances are defined as follow:

GDDBD CCC +=
 (4.2)

GSSBS CCC +=
 (4.3)

76

(a) (b)

Figure 4.2: Capacitance model: (a) MOSFET and (b) simplified approach.

Disregarding the process variability, the drain and source area can be
considered the same and, consequently, CDB = CSB = CDEP.

In the proposed analysis, MOS transistor is evaluated in cutoff and saturation
regions. According to Weste (2005), linear region is ignored since it is a transitory state
and it does not compromise the model accuracy. According to Uyemura (1999), CGD is
considered always zero and CGS is 2/3*CG in saturation mode.

Based on previous statement, the intrinsic capacitance can be modeled as
shown in Table 4.1.

Table 4.1: Intrinsic capacitances modeling.

Capacitance Cutoff State Saturation State
CD CDEP(w) CDEP (w)

CS CDEP (w) CDEP (w) + 2/3*CG(w)

All capacitances are a linear function of the transistor width and are modeled as
follow:

BwAwC += *)((4.4)

where, A and B are constant values extracted from electrical simulations using
different transistor width.

The power dissipated by the intrinsic capacitances of a CMOS gate is the one
used to charge them. The discharge current is supplied by the charge stored in the
capacitances and should not be accounted in total power consumption. Considering the
previous statement, the power dissipated by the intrinsic capacitances is the one when
the output changes from ‘0’ to ‘1’. The total intrinsic power consumption of a CMOS
gate for a specific transition in the input vector is given by equation (4.5).

() 2* ddi VCP ∑= (4.5)

77

This method presented by Chiappetta (2008) was implemented to evaluate the
intrinsic power consumption of logic gates. The steps of the algorithm consist in the
follow:

• In a given input vector x, which leads the output to a logic ‘0’ value,
identify all transistor bias conditions.

• In a given input vector y, that changes the output state from ‘0 to ‘1’,
identify all transistor bias conditions.

• For each network node, calculate the node capacitance considering all
transistors capacitances connected to this node.

• A sum of capacitance is done for all nodes that changed their logic
states from ‘0’ to ‘1’ (charged nodes).

• The intrinsic power consumption is computed by multiplying this
obtained capacitance (through the sum) by Vdd

2.

To validate the implemented method, a complex gate (Figure 4.3), sized with
Logical Effort, was simulated in Hspice using the CMOS PTM 130 nanometers
technology process at 80ºC. The simulated results are compared to the estimated ones in
Figure 4.4.

Figure 4.3: Complex gate.

78

2E-15

3E-15

4E-15

5E-15

6E-15

7E-15

8E-15

9E-15

1E-14

1,1E-14

1
0

1
1

 -
 0

0
1

1

1
0

1
1

 -
 1

0
0

1

1
0

1
1

 -
 1

0
1

0

1
1

0
0

 -
 0

1
0

0

1
1

0
0

 -
 1

0
0

0

1
1

0
1

 -
 0

1
0

1

1
1

0
1

 -
 1

0
0

1

1
1

1
0

 -
 0

1
1

0

1
1

1
0

 -
 1

0
1

0

1
1

1
1

 -
 0

1
1

1

Vectors

D
y

n
a

m
ic

 P
o

w
e

r
(W

a
tt

s
)

Hspice

Estimated

Figure 4.4: Hspice vs. estimated power consumption.

The obtained results present a difference from the Hspice simulations.
However, for the purpose of this work, the model can be used to compare different cells
implementing same logic functions, since it is capable of delivering an approximated
behavior of the real values.

4.4 Static Power Estimation

Static power consumption is nowadays a crucial design parameter in digital
circuits due to emergent mobile products. Leakage currents, the main responsible for
static power dissipation during idle mode, are increasing dramatically in sub-100
nanometers processes (ROADMAP, 2004). Subthreshold leakage rises due to threshold
voltage scaling while gate leakage current increases due to scaling of oxide thickness
(ROY, 2003).

To face this new challenge, a great effort has been done in developing models
and estimators for design support. The ‘stack effect’ observed with off-transistor (i.e.,
devices that are turned off) in series arrangement is quite important for subthreshold
current prediction (GU, 1996; CHENG, 1998). Differently from subthreshold leakage,
gate oxide tunneling currents are observed in both on- and off-devices, according to the
transistor biasing (RAO, 2003).

This section presents three different leakage estimation methods. The first one
is dedicated to evaluate the subthreshold leakage only. The second is dedicated to
evaluate the gate leakage. Finally, the third is an iterative and accurate method to
estimate gate and subthreshold leakage in digital circuits.

79

4.4.1 A Simple Subthreshold Leakage Estimation

The idea of this method is based on the device electrical conductance
association, that is, the conduction of parallel devices are summed while in series
arrangements the equivalent conductance is inversely proportional to the number of
devices. Being Gt[n] the conductance of the n-index transistor in the arrangement of
Figure 4.5a, the equivalent conductance Geq is illustrated in Figure 4.5b.

(a)

(b)

Figure 4.5: (b) Equivalent conductance for the transistor network described in (a).

As discussed in (GU, 1996), in the case of series transistor the leakage
reduction from a single off-device to two stacked off-transistors depends also on the
fabrication process parameters. As a result, a constant K must be included in the last
step of the calculation procedure in order to calibrate the final result. This K value is
obtained by relating the leakage current of two-stack and single off-device
configurations. In this sense, two constants Kn and Kp may be derived according to
NMOS and PMOS arrangements, respectively.

Figure 4.7 illustrates the results obtained for this method over the transistor
arrangement presented in Figure 4.6. The Hspice simulations were carried out by using
the CMOS PTM 180 nanometers parameters at 80ºC.

80

Figure 4.6: A 4-input transistor network.

Figure 4.7: Subthreshold leakage currents in the CMOS structure from Figure 4.6, for
each input vector.

As it can be seen, the correlation with Hspice presents non-accurate results.
However, using this method it is possible to identify the input vector that produces less
leakage consumption. If the main goal of the designer is only to find the appropriate
vector to put the circuit in standby mode, so this approach may be useful.

Also, it is important to notice that this method is suitable for technology
processes over 130 nanometers. When analyzing more recent technologies, as 90 or 65
nanometers, the gate leakage component is added to the total leakage consumption,
making unfeasible the use of this method.

81

4.4.2 Gate Leakage Estimation

The gate leakage occurs when transistors are turned ON and OFF. Gate leakage
current is independently in both, turned ON or OFF, transistor states. When transistor is
turned OFF the current flows by the overlap source and drain regions. In the case where
the transistor is turned ON, the current uses the overlap source/drain regions and the
transistor channel. For these reasons, gate leakage is usually higher in such condition.

Considering previous statement, an easy method to investigate gate leakage
current is evaluating the transistor bias conditions. Figure 4.8 presents all eight possible
bias conditions for a NMOS transistor. Figure 4.8f and 4.8g can be ignored because they
represent transient states and do not occur in steady state. In Figure 4.8a and 4.8h gate
leakage is not present because all terminals have the same potential. In the other
conditions gate leakage has to be computed.

Assuming that, the idea to compute gate leakage is very simple. For a given
technology process the gate leakage for these transistor bias conditions are measured.
So, when analyzing a transistor network, it is only necessary to discover the bias
condition for each element in the network. The total gate leakage is the sum of the gate
leakage of all transistors.

Figure 4.8: Possible bias condition for NMOS transistors in digital circuits.

4.4.3 Accurate Analytical Method for Static Current Estimation

The interaction among leakage mechanisms cannot be ignored in the analysis
of static consumption. Some works in the literature evaluate separately the subthreshold
and the gate components, leading to non-accurate results (CHENG, 1998; ROSSELLÓ,
2005; YANG, 2005). An iterative gate and subthreshold estimation method was

82

proposed by Butzen (2008) in order to delivery better results. The main advantage of
this method is its capability of calculating leakage for logic cells with more than two
logic levels. This approach was implemented here with some modifications to make
possible its application in Wheatstone-bridge networks.

In the terminology used in this solution, on-plane and off-plane indicate the
conducting and not conducting planes, respectively. From the off-plane it is extracted
the off-network which represents the actual electrical circuit responsible for isolating the
supply (Vdd/Gnd) to the output terminal.

Subthreshold and gate leakage currents are modeled by equation (4.6) and
(4.7), respectively, where W is the transistor width and VT is the thermal voltage. Vgs,

Vds and Vbs are respectively the gate-, drain- and bulk-to-source voltages. The terms
IS0, η, γ, n, Ig0 and K are constant values extracted from electrical simulation in a pre-
characterization procedure of the target technology.












−=

−++

T

ds

T

bsdsgs

V

V

nV

VVV

SS eWeII 10

γη

 (4.6)

gsV

K

gg eWII

−

= ..0 (4.7)

The steps of the implemented algorithm are:

a) Identification of the off-plane, according to the input logic combination
or the output logic level.

b) Extraction of the off-network from the off-plane considering the on/off
devices status. On-devices are short-circuited and replaced by current
sources representing the gate leakage current contribution of the
transistor. Notice that, when on-devices short-circuit internal nodes
eventually parallel off-devices and transistor clusters (sub-networks)
are removed. In this case, for each removed device a respective current
source must be added at this node to maintain the effect of its gate
leakage in the total leakage calculation. Moreover, a voltage drop ∆V
throw on-devices connected to the output node is observed and they
cannot be considered as ideal short-circuits. It means that the other
device terminal assume Vdd-∆V in the case of NMOS pull-down off-
plane and Gnd+∆V for the PMOS pull-up off-plane.

c) Identification of the DC polarity (biasing) of each off-device present in
the off-network. It is a straightforward task when treating purely series-
parallel transistor arrangements. In the case of non-series-parallel

83

configurations, a procedure has to be performed taking into account the
distance of transistor drain and source terminals to supply and output
terminals. The distance here is understood as the number of off-devices
in the shortest path to reach the network terminals (Vdd/Gnd supply and
output). When the arrangement is symmetric, it is decided randomly
with negligible loss in accuracy.

d) Ordering of the internal nodes in the off-network with unknown
voltages. This ordering is done according to the internal nodes distance
to the output node. Again, for nodes with the same distance to the
output terminal, the distance to the supply terminal is considered,
giving priority to the node far from that. In the case of symmetric
arrangements this choice is random.

e) Calculation of the drain-to-source voltage (Vds) of each transistor by
applying the Kirchhoff’s Current Law (KCL) at each internal node. All
subthreshold and gate leakage currents related to each node are taken
into account. Differently from numerical solvers, like electrical
simulators, the purpose here is to calculate in the predefined order of
step (d). All unknown node voltages are temporarily considered as
ground or power voltages, for pull-down NMOS and pull-up PMOS
off-planes, respectively.

f) Definition of the voltage at each node based on the transistor Vds
voltages, previously calculated in step (e). Starting from supply
Vdd/Gnd terminal, compute the voltage of each unknown node
summing the Vds value of each transistor in the path node-supply,
respecting the inverse node order established in step (d). In the case that
the node has more than one possible voltage value, i.e. there is more
than one path to reach the supply terminal; the node potential is
determined by the highest value obtained.

g) Estimation of the total leakage current considering the internal node
voltages previously determined in step (f). It corresponds to the sum of
all leakage currents flowing from the Vdd terminal or to the Gnd one.
For instance, consider the second option, i.e. the currents flowing to
Gnd. The total leakage is given by the sum of the subthreshold current
of all transistors connected directly to Gnd terminal, the gate leakage of
on- and off-devices in the off-plane, and the gate leakage of on-devices
in the on-plane.

To validate the implemented method, 42 logic gates extracted from Genlib 44-
6, with up to six inputs, were evaluated. Results obtained with the proposed method
were compared against Hspice and against the method presented in (YANG, 2005),
where subthreshold and gate oxide currents are evaluated separately and then summed.

84

This comparison is depicted in Figure 4.9. The electrical simulations were carried out
by using the CMOS PTM 45nm parameters (ZHAO, 2006), at 80ºC.

Figure 4.9: Total leakage estimation comparison for different CMOS gates.

4.5 Area Estimation

When regarding area, it is important to utilize logic cells with small layout
design to guarantee better implementations of digital circuits. In order to achieve such a
goal, it is desirable that the transistors composing the logic planes of a given logic cell
can be aligned. Such a situation would eliminate the need for unnecessary internal
connections between the transistor gates, possibly minimizing cell dimensions.

In this context, a solution is presented to achieve networks with maximal
matching between transistor gates at a symbolic layout (topological level).
Furthermore, a naïve calculation procedure estimates the layout width using design rules
extracted from the technology process. This approach cannot delivery the exact layout
area as the internal routing is not evaluated. However, it is capable of delivering good
information when comparing different layout implementation.

4.5.1 Searching Eulerian Paths

In graph theory, Eulerian paths are paths that visit each edge in a graph exactly
once. They were first discussed by Leonhard Euler while solving the famous problem of
the Seven Bridges of Königsberg in 1736 (EVEN, 1979). Graphs containing such paths

85

are called traversable. A graph is traversable when it contains zero or two vertices of
odd degree (DROZDEL, 2002). Fleury’s algorithm (UEHARA, 1981) is widely used
for searching Eulerian paths in traversable graphs. In short, the algorithm involves
starting from one of the two odd vertices and traversing the graph, crossing all edges
only once and finally arriving at the other odd vertex. If there are no odd vertices, any
vertex can be used as a starting point. In modern microelectronics, this concept is very
important, since a network of transistors can be represented as a multigraph where
Eulerian paths may be used to define the positioning of transistors in a layout
implementation.

(a)

(b)

Figure 4.10: (a) PMOS transistor network and (b) NMOS transistor network showing
possible Eulerian paths.

When a graph contains more than two vertices of odd degree, dummy edges
may be inserted between them, making their degrees even. If enough dummy edges are
inserted, any connected graph can be made traversable. Figure 4.10b illustrates the
insertion of a dummy transistor (XQ) in a NMOS transistor network containing four
nodes of odd degree. Note that the dummy transistor can be inserted between any pair of
odd nodes.

Given a transistor network containing ‘n’ nodes of odd degree (n > 0), the
number of dummy transistors required to make it traversable (d) can be obtained from
the equation d = (n – 2)/2. For the example illustrated in Figure 4.10b, only one dummy
edge is necessary.

A given logic plane in a disjoint transistor network may contain several
Eulerian paths. In order to find all possible paths, the following steps are applied:

1. Each logic plane in the transistor network is converted into a
multigraph representation.

2. The number of dummy edges to be inserted in the graph is determined
using the equation described above.

86

3. Dummy edges are inserted between all possible pairs of odd vertices.

4. The multigraph is then traversed, starting at each of the odd vertices (or
all the vertices, if there are none). The number of dummy edges used in
a path is limited to the amount obtained in step 2.

5. All Eulerian paths found are stored in a tree-like structure to be
analyzed by the gate matching algorithm. The tree nodes represent the
gates of transistors in the network, and paths between the root and the
leaves represent Eulerian paths. Figure 4.11 shows partial path trees for
each of the logic planes illustrated in Figure 4.10.

4.5.2 Gate Matching

The gate matching process consists on finding a pair of Eulerian paths – one
for the NMOS plane and one for the PMOS plane of the same transistor network –
containing the same sequence of transistor controlling signals. It is important because
aligning gates reduces the complexity of internal connections between the NMOS and
PMOS planes. In this context, a good match could benefit the routing procedure, which
is one of the most critical steps when generating a cell layout implementation. In
addition, the layout area requirements could be minimized, since there is no need for
extra rows to connect the crossing polysilicon gates. This leads to a smaller layout
implementation, and avoids the use of an extra layer of metal in order to connect
unaligned gates. Figure 4.12 illustrates two possible symbolic layout solutions (aligned
and unaligned) for the cell shown in Figure 4.10.

To achieve gate matching, the following algorithm is proposed:

• Two trees obtained as described in Section 4.5.1 are simultaneously
traversed in a recursive manner, starting at their roots.

• Each node in a tree is compared to its counterpart in the other tree. If a
given node does not exist in one of the trees, it is removed, along with
its child nodes.

• At the end of the algorithm, only corresponding nodes remain. These
nodes represent matching gates in a pair of Eulerian paths.

Figure 4.11c illustrates the partial tree for the cell described in Figure 4.10 after
the gate matching algorithm has concluded. Note that only one tree is shown, since the
two resulting trees are identical.

87

(a)

(b)

(c)

Figure 4.11: Partial tree for the cell in Figure 4.10, before (a, b) and after (c) the gate
matching algorithm.

88

(a)

(b)

Figure 4.12: Two possible symbolic layouts for the cell in Figure 4.10, showing
matched (a) and mismatched gates (b).

4.5.3 Width and Area Estimation

Once a gate matching is defined it is possible to evaluate the area width. The
first step consists in to extract five relevant distances from the technology process
documentation. These distances are the following:

1. Distance from polysilicon to the left diffusion area, considering contact;

2. Distance from polysilicon to the right diffusion area, considering
contact;

3. Distance from channel to channel, considering contact;

4. Distance from channel to channel, disregarding contact;

89

5. Distance from channel to channel, considering a break.

Figure 4.13 illustrates the distances described above. All these distances will
feed the calculation procedure, as it will be seen in the sequence.

Figure 4.13: Relevant distances extracted from technology process documentation.

In a second step, by analyzing the Spice netlist cell description, the number of
occurrence of contacts, breaks and transistor gates are annotated for each logic plane
(PMOS and NMOS).

Finally, using these information and the distances previously obtained from the
technology process documentation, it is possible to calculate the cell width by
multiplying the distance values and the occurrence information.

Notice that the cell height is not investigated. So, in order to calculate the cell
area, it is also necessary to set a cell height value. In the practice, thinking about logic
libraries, all cells present the same height. For the purposes of comparing two different
area implementations it is possible to set a same arbitrary height value for both. The
estimated values may present a huge difference from the real area values. However, the
comparison between the cell implementations is still valid and may be used as criteria to
choose the smallest one.

4.5.4 Validating Area Estimation

To validate the area estimation technique a subset of cells extracted from
Genlib 44-6 up to 4 inputs was used. All logic functions were implemented in CSP logic
style. The UMC 130 nanometers technology process was utilized. To generate layout
for these cells, the Nangate Cell Generator (NANGATE, 2008) was used. This
commercial tool accepts transistor netlist description as input and delivers the final
layout of the cells.

The used distances to estimate the cell width are described in Table 4.2. The
cells height was fixed in 5.33 micrometers to compute the area. Figure 4.14 presents the
results obtained for the real layout and the estimated one.

90

Table 4.2: Distances used to validate the area estimation.

Distance Value
1 0.51 µm
2 0.51 µm
3 0.51 µm
4 0.36 µm
5 1.02 µm

6

7

8

9

10

11

12

13

14

15

16

C
ELL

1

C
ELL

14
18

C
ELL

14
19

C
ELL

17
18

C
ELL

17
53

C
ELL

17
54

C
ELL

17
55

C
ELL

17
7

C
ELL

19
28

C
ELL

2

C
ELL

20
07

C
ELL

25
6

C
ELL

3

C
ELL

31
69

C
ELL

31
70

C
ELL

34
69

C
ELL

4

Cells

A
re

a
 (

s
q

u
a

re
 m

ic
ro

m
e

te
rs

)

Estimated

Commercial Tool

Figure 4.14: Results for the validation of the area estimation.

As mentioned before, the values are quite different. However, the area values
obtained through the estimation present a good correlation with the real generated
layout. This strong correlation permits to use this area estimation technique to compare
different logic cells implementation, since it gives a good idea about the silicon needs of
these cells.

4.6 Conclusions

This chapter presented some estimation methods to investigate area, dynamic
consumption, delay, and leakage behavior of different logic cells implementation. All
methods demonstrated a good an acceptable result approximation of the real values. The
iterative gate and subthreshold leakage estimation method is an exception. This method
presents a very accurate correlation with Hspice results as demonstrated in the
validation experiment.

91

5 EXPERIMENTAL RESULTS

This chapter presents the experimental results for different sets of logic
functions. All logic functions were implemented in the following logic styles:

• CSP
• NCSP
• BDD
• OpBDD
• LBBDD

After automatically generated, all transistor networks were sized using the
logical effort method. The minimal transistor width for NMOS and PMOS transistors
was 0.3 and 0.6 micrometers respectively.

The idea of using diverse sets of logic functions is to make possible to analyze
the electrical and physical behavior of these cells when implemented in different logic
styles. To compare the cells implementation, the estimation methods described in
chapter 4 were used. For investigating the leakage behavior, the iterative gate and
subthreshold leakage estimation method, presented in Section 4.4.3, was applied. For
delay, the Elmore delay model was used. For area analysis all cells were set with a
height of 5.33 micrometers (dimension used for cells with 13 rows in library
containers). Finally, to evaluate the power consumption, the intrinsic power
consumption method, presented in Section 4.3, was utilized.

Area, delay and dynamic consumption were evaluated over transistor networks
using 130 nanometer technology. For leakage evaluation, 45 nanometers technology
was used. It is due to the fact that 130 nanometer processes do not consider gate leakage
current. Therefore, the parameters used for estimating area, delay and dynamic
consumption were extracted using a CMOS 130 nanometers technology process. For
leakage analysis, the parameters were extracted from PTM 45 nanometers technology
process.

The following sections will discuss the results obtained for each set of logic
functions.

92

5.1 Results for Genlib 44-6 up to 4-input

The first set of logic functions was extracted from the Genlib 44-6 cell library.
All logic functions up to 4-input were implemented in the different logic styles
previously described. These logic functions are negative unate, that means all input
variables in the transistor networks are in just one polarity. All equations are originally
factorized, and they do not present repeated literals in their description. The 44-6
information means that all functions, when implemented in CSP logic, present up to 4
transistors in series, 4 parallel branches, and no more than 6 logic levels. A particularity
of this set is the lack of XOR functions.

As mentioned before, the number of transistor in series directly affects the
delay characteristics of logic cells. In this sense, it is expected that NCSP and LBBDD
logics present better results in terms of delay. However, when generating transistor
networks from unate functions, the OpBDD logic style may deliver the same networks
than LBBDD, since the optimization process is basically similar. In fact, LBBDD
networks are optimizations over the OpBDD ones. As the OpBDD achieves the minimal
network implementations, the LBBDD generation process cannot get more optimized
transistor arrangements.

Another important point concerns CSP and NCSP. For unate functions without
repeated literals, NCSP logic cannot obtain benefits in terms of transistor count and
number of transistor in series. A CSP network is the best implementation for an unate
logic function when it does not present repeated literals and it is the minimum literal
cost factorized form. Thus, NCSP logic will deliver the same network.

This way, for the Genlib 44-6 logic functions, CSP, NCSP, OpBDD and
LBBDD will generate the same transistor networks. The only difference in these
networks could be the transistor order in the internal arrangements. However, using a
BDD ordering or a structural ordering procedure, it is possible to reach exactly equal
networks.

Table 5.1 shows the obtained average delay results for each logic cell. The
values are in seconds. As it can be seen, CSP, NCSP, OpBDD and LBBDD present
same delay values. BDD networks present worst results because they have more
transistors than the other networks.

Notice that the Cell0 presents the same delay for all logic styles. This cell is an
inverter.

93

Table 5.1: Average delay results (in seconds) for Genlib 44-6 up to 4-input.

 CSP / NCSP / OpBDD / LBBDD BDD
Cell0 3,53E-12 3,53E-12
Cell1 1,79E-11 4,53E-11
Cell2 2,82E-11 4,56E-11
Cell3 3,76E-11 1,77E-10
Cell4 6,08E-11 1,93E-10
Cell5 4,10E-11 2,20E-10
Cell6 1,15E-10 2,04E-10
Cell7 6,65E-11 7,04E-10
Cell8 7,08E-11 5,10E-10
Cell9 7,57E-11 4,33E-10

Cell10 9,55E-11 5,47E-10
Cell11 1,64E-10 5,71E-10
Cell12 1,31E-10 6,41E-10
Cell13 5,89E-11 5,69E-10
Cell14 7,54E-11 5,23E-10
Cell15 1,80E-10 7,15E-10
Cell16 3,34E-10 6,24E-10

Table 5.2 shows the average intrinsic power consumption obtained for this set
of cells. The values are in Watts. As expected, the results are similar to those obtained
in the delay analysis. CSP, NCSP, OpBDD and LBBDD present the same power
consumption behavior.

In Table 5.3, the estimated leakage currents are shown. The results are in
Amperes and represent the average value. Notice that these results are for 45
nanometers technology process, differently than the dynamic power consumption that
was obtained considering the 130 nanometers technology.

Once more, the leakage values obtained for CSP, NCSP, OpBDD and LBBDD
are equivalent. Transistor stacks in BDD networks tend to be larger. From a static
consumption point of view it is good, because the greater is the transistor stack, the
smaller is the leakage current flowing in the network.

94

Table 5.2: Average power consumption (in Watts) for Genlib 44-6 up to 4-input.

 CSP / NCSP / OpBDD / LBBDD BDD
Cell0 3,88E-16 3,88E-16
Cell1 1,41E-15 2,18E-15
Cell2 1,29E-15 2,04E-15
Cell3 2,06E-15 6,44E-15
Cell4 3,03E-15 5,07E-15
Cell5 2,83E-15 6,44E-15
Cell6 2,69E-15 4,85E-15
Cell7 4,99E-15 1,40E-14
Cell8 4,48E-15 1,31E-14
Cell9 3,42E-15 9,53E-15

Cell10 4,84E-15 1,18E-14
Cell11 5,33E-15 9,23E-15
Cell12 4,86E-15 1,37E-14
Cell13 4,77E-15 1,31E-14
Cell14 3,54E-15 9,91E-15
Cell15 4,79E-15 1,18E-14
Cell16 4,62E-15 8,92E-15

Table 5.3: Average leakage current (in Amperes) for Genlib 44-6 up to 4-input.

 CSP / NCSP / OpBDD / LBBDD BDD
Cell0 8,07E-08 8,07E-08
Cell1 1,02E-07 7,54E-08
Cell2 9,62E-08 8,51E-08
Cell3 1,29E-07 1,41E-07
Cell4 9,69E-08 9,28E-08
Cell5 1,26E-07 1,48E-07
Cell6 8,57E-08 1,00E-07
Cell7 1,50E-07 1,96E-07
Cell8 1,29E-07 2,13E-07
Cell9 1,77E-07 2,78E-07

Cell10 1,24E-07 1,59E-07
Cell11 8,56E-08 8,52E-08
Cell12 1,43E-07 2,18E-07
Cell13 1,31E-07 2,30E-07
Cell14 1,77E-07 2,78E-07
Cell15 1,14E-07 1,77E-07
Cell16 6,92E-08 1,05E-07

Finally, Table 5.4 presents the results about area for the set of logic functions
extracted from Genlib 44-6. The values are in square micrometers.

As previously expected, CSP, NCSP, OpBDD, and LBBDD presented equal
area results. BDD networks present a high area penalty. In this logic, all transistor

95

associated to the BDD edges are available in the network. This fact collaborates to
increase the network areas if comparing to OpBDD and LBBDD logics.

Table 5.4: Area results (in square micrometers) obtained for Genlib 44-6 up to 4-input.

 CSP / NCSP / OpBDD / LBBDD BDD
Cell0 6,23 6,23
Cell1 8,15 13,59
Cell2 8,15 13,59
Cell3 11,67 26,86
Cell4 11,67 26,06
Cell5 11,67 26,86
Cell6 11,67 26,06
Cell7 14,39 38,53
Cell8 14,39 38,53
Cell9 13,59 35,01

Cell10 13,59 34,21
Cell11 13,59 37,73
Cell12 14,39 38,53
Cell13 14,39 38,53
Cell14 13,59 35,01
Cell15 13,59 34,21
Cell16 13,59 37,73

5.2 Results for Additional Logic Cells of a Library Container

As mentioned in the previous section, the Genlib 44-6 library does not contains
XOR-like cells. These kinds of cells are binate, since they present the variables in
negative and positive polarities. Commercial libraries generally have these cells
implemented in different logic style than CSP. It occurs because XOR4 cells, for
instance, when implemented in CSP delivery more than 4 transistors in series. So,
XOR4 in CSP logic style is unfeasible. NCSP and LBBDD make possible the
implementation of XOR4.

Another interesting cell to be implemented is the Cout function of a full adder.
This function is unate, and it presents repeated literals in its description. Also, Genlib
44-6 library does not contain this logic function.

The next sub sections investigate these logic functions implementation. For
example, a designer may add the best achieved networks of these functions to expand
the library cell.

96

5.2.1 XOR Logic Functions

To evaluate XOR-like logic functions, three XOR were considered: XOR2,
XOR3 and XOR4. These functions were factorized in order to deliver the most
optimized transistor network. Table 5.5 shows the total transistor count for these cells in
each logic style, disregarding the inverters needed to feed the complementary inputs.

Table 5.5: Transistor count for XOR logic functions.

 CSP / NCSP BDD / OpBDD / LBBDD
XOR2 8 8
XOR3 20 16
XOR4 44 24

Table 5.6 shows the number of transistor ion series in both planes of each
implementation.

Table 5.6: Transistor in series for XOR logic functions.

CSP NCSP / BDD / OpBDD / LBBDD
PU PD PU PD

XOR2 2 2 2 2
XOR3 3 4 3 3
XOR4 4 8 4 4

The CSP and NCSP networks implementation present exactly the same
transistor count. However, the CSP has a large number of transistors in series in one of
logic planes. This occurs because one plane is the dual of the other. In the NCSP logic,
PU and PD planes are generated from the on- and off-set equations respectively. Thus,
both planes present the same size in the transistor stacks.

BDD, OpBDD and LBBDD networks are equal. The generation algorithm for
these networks cannot achieve small networks. All transistors in the network derived
from BDD are necessary and cannot be removed. This occurs because the XOR logic
function is binate in all variables. Appendix B presents the schematic representations for
these switch networks.

Table 5.7 shows the average delay obtained for the networks. All values are
shown in seconds. XOR2, as expected, presents equal values for all implementations.
XOR3 is better when using NCSP or BDDs implementations. For XOR4 logic function,
the best choice is the BDDs implementation, which present smaller transistor stack and
transistor count. As predictable, CSP is the worst implementation due to the larger
transistor stack presented in one of the logic planes.

97

Table 5.7: Average delay (in seconds) for XOR logic functions.

 CSP NCSP BDD / OpBDD / LBBDD
XOR2 7,34E-11 7,34E-11 7,34E-11
XOR3 5,38E-10 3,45E-10 3,43E-10
XOR4 3,14E-09 1,14E-09 1,07E-09

Table 5.8 shows the dynamic power consumption. Like the results obtained for
delay, it is possible to see similar behavior in this analysis. CSP has same transistor
count than NCSP. However, the number of transistors per node in CSP is larger than
NCSP. It means more capacitance per node, leading to more dynamic consumption.

Table 5.8: Dynamic consumption (in Watts) for XOR logic functions.

 CSP NCSP BDD / OpBDD / LBBDD
XOR2 2,69E-15 2,69E-15 2,69E-15
XOR3 1,23E-14 7,00E-15 6,68E-15
XOR4 4,55E-14 1,60E-14 1,26E-14

In Table 5.9, the achieved leakage current results are shown. The results are in
Amperes. In terms of minimum leakage, CSP presents the smallest value. It is due to the
fact that CSP has the largest transistor stack (greater is the stack, smaller is the leakage).

Table 5.9: Leakage current (in Amperes) for XOR logic functions.

 CSP NCSP BDD / OpBDD / LBBDD
XOR2 2,26E-07 2,26E-07 2,26E-07
XOR3 5,04E-07 4,52E-07 5,22E-07
XOR4 1,15E-06 8,06E-07 9,53E-07

Table 5.10: Area results (in square micrometers) for XOR logic functions.

 CSP NCSP BDD / OpBDD / LBBDD
XOR2 18,22 18,22 18,22
XOR3 43,49 43,49 42,21
XOR4 82,66 82,66 58,36

Table 5.10 illustrates the results in terms of area. The values are depicted in
square micrometers. The estimated area results demonstrate that the transistor count
may be used do give a good idea about the cell area. In this case, the fixed height is
sufficiently enough to guarantee that internal network may be routed without
performing transistor folding or enlarging the cell width.

98

5.2.2 Cout Function of a Full Adder

This logic function is very interesting to be analyzed. This cell is widely used
in arithmetical circuit implementations. The Cout function can be expressed as cout =

a*b + a*c + b*c. As this cell appears several times in regular adders and multipliers, it
is important to use the most optimized version as it possible. Appendix C shows the
transistor schematics for this logic function implemented in the target logic styles.

Table 5.11 presents the delay results. Table 5.12 presents the power
consumption results. In Table 5.13 the leakage current is shown. At last, the obtained
areas are described in Table 5.14.

Table 5.11: Delay results (in seconds) for Cout function of a full adder.

 CSP NCSP BDD OpBDD LBBDD
CoutFA 1,00E-10 8,26E-11 2,83E-10 1,42E-10 8,26E-11

Table 5.12: Dynamic consumption (in Watts) for Cout function of a full adder.

 CSP NCSP BDD OpBDD LBBDD
CoutFA 4,40E-15 3,77E-15 6,25E-15 5,80E-15 3,77E-15

Table 5.13: Leakage current (in Amperes) for Cout function of a full adder.

 CSP NCSP BDD OpBDD LBBDD
CoutFA 2,10E-07 1,83E-07 2,42E-07 2,58E-07 1,83E-07

Table 5.14: Area results (in square micrometers) for Cout function of a full adder.

 CSP NCSP BDD OpBDD LBBDD
CoutFA 28,78 28,78 33,73 33,09 28,78

The best implementations for the Cout function of a full adder are LBBDD and
NCSP. They are faster, present better results in terms of consumption, and are smaller
than the other implementations. It is due to the fact that they present small transistor
count and transistor stacks.

5.3 Results for NPN-class Logic Functions up to 5-input

In order to analyze the impact of different network implementations, 500
arbitrary logic functions extracted from the NPN-class up to 5-input were selected. The
total number of logic functions from NPN-class up to 5-input is 616625. This amount

99

makes unfeasible the network generation for all this set. Figure 5.1 presents the delay
results. Figure 5.2 shows the dynamic consumption for the cells.

As it is possible to see, the results demonstrate that in general NCSP and
LBBDD are the best choice to implement logic cells.

Figure 5.1: Delay results for 500 cells from NPN-class up to 5-input.

Figure 5.2: Dynamic consumption results for 500 cells from NPN-class up to 5-input.

Figure 5.3 presents the increase and decrease of transistor count for LBBDD,
OpBDD and NCSP when comparing to CSP. NCSP is the logic style that implements a
large number of cells without modifying the transistor count. LBBDD is capable of
achieving the largest reduction of transistors between all logic styles.

100

Figure 5.3: Increase and decrease in transistor count when comparing to CSP.

A subset of CSP networks that not respect the minimum number of transistors
in series was selected from the total of 500 cells. For this obtained set of 423 cells,
Figure 5.4 shows the worst achieved delay. Due to the large transistor stacks, CSP
presents the worst results. LBBDD and NCSP can deliver more efficient networks.
Figure 5.5 illustrates the average fanin for this subset of cells.

Figure 5.4: Worst delay for 423 cells that do not respect the minimum number of
transistors in series when implemented in CSP.

101

Figure 5.5: Average fanin for 423 cells that do not respect the minimum number of
transistors in series when implemented in CSP.

From the total 500 cells implemented in LBBDD logic style, it was selected
those that presented a bridge arrangement in at least one logic plane. For those cells, if
the logic plane with a bridge arrangement presents a small transistor count than the
complementary plane, it was generated a new plane using the duality property in order
to minimize the total transistor count. Figure 5.6 presents the results obtained in this
experiment for the 184 networks found. The blue line shows the reduction in transistor
count, while the red line shows the increase in the transistor length. This increase can
occur due to the fact that a plane is the dual of the other. When a given plane presents
more than 4 parallel branches, the dual one derived from it will present transistor chains
with more than 4 elements.

Figure 5.6: Experiment showing the reduction in transistor count and the increase in the
transistor length when mixing LBBDD and Dual network generations.

102

5.4 Results for Logic Functions Unfeasible in CSP

Some logic functions extracted from (SCHNEIDER, 2007) were also used as
benchmark functions in this thesis. These cells cannot be implemented in CSP logic
since they present a huge number of transistor in series at least in one logic plane. Table
5.15 illustrates the transistor stacks for CSP, NCSP and LBBDD implementations.

NCSP and LBBDD logic styles respect the minimal number of transistor in
series. This way, they permit to implement these logic functions as complex gates. On
the other hand, CSP cannot be implemented in one single gate. These functions need to
be decomposed in small ones in order to generate CSP transistor networks.

Table 5.16 shows the delay results for NCSP and LBBDD logic. Table 5.17
illustrates the power consumption. In Table 5.18, the leakage current is depicted.

Both logic styles presented similar results for the set of logic functions. In
some cases LBBDD demonstrates a small advantage over NCSP. In others, NCSP
shows a tiny gain. This experiment proves that it is important to analyze carefully at
transistor level before choosing which complex transistor network will be used to
compose the logic circuit.

Table 5.15: Number of transistor in series for functions from (SCHNEIDER, 2007).

NCSP LBBDD
PU PD PU PD

F1 14 4 3 4
F2 15 4 3 4
F3 14 4 4 4
F4 15 4 4 4
F5 14 4 4 4
F6 16 3 3 4
F7 17 3 3 4

Table 5.16: Delay results (in seconds) for functions from (SCHNEIDER, 2007).

 NCSP LBBDD
F1 1,12E-09 1,12E-09
F2 1,31E-09 1,34E-09
F3 1,09E-09 1,02E-09
F4 1,25E-09 9,89E-10
F5 8,15E-10 9,72E-10
F6 1,15E-09 1,15E-09
F7 9,53E-10 9,42E-10

103

Table 5.17: Power results (in Watts) for functions from (SCHNEIDER, 2007).

 NCSP LBBDD
F1 2,32E-14 2,33E-14
F2 2,85E-14 2,86E-14
F3 3,36E-14 2,66E-14
F4 3,80E-14 2,69E-14
F5 2,10E-14 2,68E-14
F6 2,92E-14 2,92E-14
F7 2,67E-14 2,35E-14

Table 5.18: Leakage current (in Amperes) for functions from (SCHNEIDER, 2007).

 NCSP LBBDD
F1 4,62E-07 4,41E-07
F2 4,99E-07 4,97E-07
F3 5,13E-07 5,29E-07
F4 5,16E-07 5,64E-07
F5 4,98E-07 5,34E-07
F6 5,52E-07 5,51E-07
F7 4,70E-07 5,18E-07

5.5 Branch-based vs. Factorized Functions

Another experiment was performed to investigate the impact over networks
implemented using factorized and non-factorized forms. The set of logic functions
extracted from Genlib 44-6 up to 4 inputs was used to implement CSP logic style. The
networks were firstly implemented from the factorized form. A conversion from the
factorized form to SOP representation was done. These SOP expressions were used to
generate the second group of transistor networks.

Table 5.19 shows the delay results. Table 5.20 illustrates the power
consumption. In table 5.21, the leakage is depicted. Finally, in Figure 5.22, the obtained
areas are shown.

When the factorized form differs from the SOP form, the results point to a
considerable gain for networks implemented from the optimized expression. This gain
occurs in all cost axis: delay, power, and area.

104

Table 5.19: Average delay results (in seconds) for factorized and non-factorized forms.

 Factorized CSP Non-factorized CSP
Cell0 3,53E-12 3,53E-12
Cell1 9,55E-11 1,68E-10
Cell2 1,64E-10 1,64E-10
Cell3 9,16E-11 1,33E-10
Cell4 5,89E-11 5,89E-11
Cell5 7,54E-11 7,54E-11
Cell6 1,80E-10 1,80E-10
Cell7 3,34E-10 3,34E-10
Cell8 1,79E-11 1,79E-11
Cell9 2,82E-11 2,82E-11

Cell10 3,76E-11 7,46E-11
Cell11 6,08E-11 6,08E-11
Cell12 4,10E-11 4,10E-11
Cell13 1,15E-10 1,15E-10
Cell14 6,65E-11 1,20E-10
Cell15 7,08E-11 2,06E-10
Cell16 7,57E-11 4,52E-10

Table 5.20: Power consumption (in Watts) for factorized and non-factorized forms.

 Factorized CSP Non-factorized CSP
Cell0 3,88E-16 3,88E-16
Cell1 4,84E-15 7,65E-15
Cell2 5,33E-15 5,33E-15
Cell3 2,88E-15 4,16E-15
Cell4 2,86E-15 2,86E-15
Cell5 3,54E-15 3,54E-15
Cell6 4,79E-15 4,79E-15
Cell7 4,62E-15 4,62E-15
Cell8 1,41E-15 1,41E-15
Cell9 1,29E-15 1,29E-15

Cell10 2,06E-15 3,90E-15
Cell11 3,03E-15 3,03E-15
Cell12 1,97E-15 1,97E-15
Cell13 2,69E-15 2,69E-15
Cell14 3,02E-15 6,00E-15
Cell15 2,91E-15 7,60E-15
Cell16 3,42E-15 1,17E-14

105

Table 5.21: Leakage current (in Amperes) for factorized and non-factorized forms.

 Factorized CSP Non-factorized CSP
Cell0 8,07E-08 8,07E-08
Cell1 1,24E-07 1,45E-07
Cell2 8,56E-08 8,56E-08
Cell3 1,70E-07 1,85E-07
Cell4 1,58E-07 1,58E-07
Cell5 1,77E-07 1,77E-07
Cell6 1,14E-07 1,14E-07
Cell7 6,92E-08 6,92E-08
Cell8 1,02E-07 1,02E-07
Cell9 9,62E-08 9,62E-08

Cell10 1,43E-07 1,64E-07
Cell11 9,69E-08 9,69E-08
Cell12 1,40E-07 1,40E-07
Cell13 8,57E-08 8,57E-08
Cell14 1,78E-07 1,56E-07
Cell15 1,56E-07 2,06E-07
Cell16 1,77E-07 2,23E-07

Table 5.22: Area (in micrometers) for factorized and non-factorized forms.

 Factorized CSP Non-factorized CSP
Cell0 6,23 6,23
Cell1 8,15 8,15
Cell2 8,15 8,15
Cell3 11,67 13,59
Cell4 11,67 11,67
Cell5 11,67 11,67
Cell6 11,67 11,67
Cell7 14,39 17,10
Cell8 14,39 19,02
Cell9 13,59 24,46

Cell10 13,59 19,82
Cell11 13,59 13,59
Cell12 14,39 14,39
Cell13 14,39 17,10
Cell14 13,59 13,59
Cell15 13,59 13,59
Cell16 13,59 13,59

106

5.6 Fanin and Other Characteristics of P-class Logic Functions up to
4 Inputs

A comparative experiment to show how the topology of transistor networks
influences the logical effort (fanin) of logic gates was also performed.

The set of evaluated functions include all the 3982 P-classes representing the
set of non-constant 4-input logic functions. This set of functions was chosen because it
contains simple functions that are more likely to be used in real designs as cells. For all
the 3982 target functions, the network types described above were generated. Results
are reported in Table 5.23. The data for each generation method are described in one
column. For each method, the sum of the total number of transistors, length of longest
transistor chain for pull-up (∑PU), length of the longest transistor chain for pull-down
(∑PD), logical effort (average per cell input), number of functions that do not respect
the lower bounds and the number of unfeasible functions is shown. The LBBDD is a
clear winner for total number of transistors. This happens because even if some nodes
are duplicated when generating the network, it is possible to remove several transistors,
which compensates the duplication with advantages. LBBDD and NCSP respect the
minimum number of transistor in series to implement the logic functions, so these
methods have equal ∑PU lengths and ∑PD lengths, as shown in Table 5.23. However
the total number of transistors is smaller for the LBBDD, which explains the advantage
this method also has in terms of logical effort. Notice that the CSP respect the LB for
the PU, as expected.

CSP, BDD and OpBDD methods produce functions not respecting the lower
bounds. The BDD method is the one that produces the highest number of functions not
respecting the minimum transistor stacks. However, all the functions it produces have at
most 4 transistor in series (worst case path length for a BDD), and therefore they are
considered feasible with a single cell. The only method to produce networks with more
than 4 transistors in series is CSP. This is a result of using dual networks, which will
result in excessive number of transistors in series when making a dual of a network that
has many transistors in parallel. It is also observed that for networks with the same
chain lengths, the one with a smaller transistor count is the winner.

Notice that these results show only the total values obtained in each logic style.
Although they could point to the fact that the NCSP and LBBDD are strong candidates
to generate optimized transistor networks, specific logic functions may present similar
results when implemented in other logic styles.

107

Table 5.23: Comparison of different methods for P-class logic functions up to 4
variables.

 CSP NCSP BDD OpBDD LBBDD
∑ # transistors 75530 75889 76774 73438 72307
∑PU length 11954 11954 15538 14227 11954
∑PD length 17009 14242 15538 15321 14242

Aver. logical effort 4.54 3.83 4.35 4.07 3.68
#f not respecting LB 2312 0 3148 2373 0

of unfeasible f 1546 0 0 0 0

5.7 Final Considerations

This chapter presented some experimental results with different sets of logic
functions. These sets were implemented in different logic styles and were compared to
demonstrate that depending on the target logic function there is a possibility of
achieving a better implementation in terms of delay, power or area.

The set of logic functions used to perform the experiments of this chapter are
described in Appendix D of this thesis.

108

6 CONCLUSIONS AND FUTURE WORKS

This work presented an automated flow for generating and evaluating transistor
cell networks. The main goal of the work proposed herein was to develop an approach
able to generate logic cell networks on-the-fly, considering different logic styles, and
evaluate these networks using estimative techniques.

In a first moment, a review about switch theory was done. A switch network
classification was compiled in order to clarify the switch network properties and to
present the richness of the switch theory. Also, we proposed a factorization method to
optimized Boolean expressions. These optimized expressions are suitable to be used as
input to implement efficient transistor networks, as it was presented in the experimental
results.

Several generation methods for transistor networks were presented, from the
traditional CSP logic style to the new NCSP proposed by Schneider (2007), which is a
network solution that achieves the minimum length for transistor chains needed to
implement a given logic function. A review on graph-based networks implementation
was done, discussing the most relevant researches on this field. In the sequence, a new
static and disjoint logic style was proposed. This logic, called LBBDD, is a BDD-based
solution and demonstrated to be very promising. Like NCSP, this logic style delivers
networks with minimum number of transistors in series in pull-up and pull-down planes.
The advantage over the NCSP is that factorization is not necessary to achieve optimized
networks, since the optimizations are performed in the BDD structure. Also, it is
capable of delivering Wheatstone-bridge networks. This kind of network tends to be
more efficient than traditional series-parallel arrangements as it minimizes the total
transistor count. Clearly, the method proposed herein is more general as it can generate
all the (logically complementary) categories in the switch network classification we
proposed.

To evaluate the generated transistor networks, some estimation techniques
were employed. To investigate the delay of different implementations of same logic
functions, the Elmore delay model was implemented. Although this delay model is not
an accurate solution, it is an excellent approach to perform a first-order timing
estimation that delivers good information about the delay behavior of logic cells. To

109

investigate the dynamic power consumption, a method proposed by Chiappetta (2008)
was implemented. This method is based on the intrinsic capacitance computation. Thus,
the short-circuit power dissipation was not considered in this work. To estimate the
leakage current of the generated networks, three models were implemented. The first
one is a simple solution to compute subthreshold leakage only. The second one is a
straightforward approach to compute gate leakage only. Finally, the third model is an
accurate method to estimate subthreshold and gate leakage together. In the experimental
results, the third one was used. However, the other two can be applied when the
designer needs to evaluate only a unique leakage component, disregarding the others.
Finally, to evaluate area we proposed a naïve approach which considers some
technology process distances, extracted from the technology process datasheet, to
compute and estimate the cell width. The cell height has not been investigated in the
current version. So, the height is fixed in a given value in order to achieve the area
results. Notice that this approach is useful when thinking in standard-cells design flow,
since all cells present the same height. Considering a height value that is sufficient to
perform the internal routing of all cells, we can compare the implementations with a
good exactness as demonstrated in the validation experiment.

The results show that LBBDD and NCSP in general are good alternatives to
implement logic functions. However, they are not the best choice for every logic
function. For instance, there is no need to use this kind of network generation when the
target logic function is unate and do not present repeated literals. In this case, CSP
networks are able to attend the minimum implementation in terms of transistor in series
and total count. On the other hand, XOR3 and XOR4 become feasible in LBBDD and
NCSP. The results demonstrated that, for the used set of logic functions, LBBDD also
presents a significant reduction in terms of area if compared to the other logic styles.
This happens because several transistors are removed from the network during the
generation process. Mux-Based networks achieved the worst area results, showing that a
non-factorized form can negatively impact on the generated cell network.

Two CAD tools, presented in Appendix E, were implemented during this work.
They contain several methods and ideas discussed herein. These tools can be used to
help designers to generate and investigate logic cells behavior. As future work it is
intended to implement a technology mapping tool capable of using the networks and
information generated by the methods presented in this thesis.

110

REFERENCES

ALIOTO, M. A Simple and Accurate Model of Input Capacitance for Power Estimation
in CMOS Logic. In: IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS,
CIRCUITS AND SYSTEMS, ICECS, 14., 2007, Marrakech, Marrocos. Proceedings…
New York, USA: IEEE, 2007. p. 431-434.

AVCI, M.; YILDIRIM, T. General Design Method for Complementary Pass Transistor
Logic Circuits. Electronics Letters, [S.l.], v. 39, pt. 1, p. 46-48, Jan. 2003

BERKELAAR, M.; JESS, J. Technology Mapping for Standard-cell Generators. In:
INTERNATIONAL CONFERENCE COMPUTER-AIDED DESIGN, ICCAD, 1988,
Santa Clara, USA. Digest of Technical Papers. New York, USA: IEEE, 1988. p. 470-
473.

BERTACCO, V. et al. Decision Diagrams and Pass Transistor Logic Synthesis.
[S.l.]: Stanford University, 1997. (Technical Report n. CSL-TR-97-748).

BHATTACHARYA, D. et al. Design Optimization with Automated Flex-cell Creation.
In: KEUTZER, K.W. (Ed.). Closing the Gap Between ASIC & Custom: tools and
techniques for high-performance ASIC design. Boston: Kluwer Academic, 2002. p. 14-
23.

BOGLIOLO, A. et al. Gate-Level Power and Current Simulation of CMOS Integrated
Circuits. IEEE Transactions on VLSI Systems, New York, USA, v. 5, n. 4, p. 473-
488, Dec. 1997.

BOLLIG, B.; WEGENER, I. Improving the Variable Ordering of OBDDs Is NP-
Complete. IEEE Transactions on Computers, New York, USA, v. 45, n. 9, p. 993-
1002, Sept. 1996.

BRAYTON, R. Factoring logic functions. IBM Journal of Research and
Development, Riverton, USA, v. 31, n. 2, p. 187-198, Mar. 1987.

BRYANT, R. E. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, New York, USA, v.35, n.8, p. 677-691, Aug. 1986.

BUDDY. Available at: <http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.
dk/research/buddy/index.html>. Visited on: June 2008.

BUTZEN, P.F. et al. Subthreshold and Gate Leakage Estimation in Complex Gates. In:
IEEE INTERNATIONAL WORKSHOP ON LOGIC AND SYNTHESIS, IWLS, 17.,
2008, Lake Tahoe, USA. Proceedings… NewYork, USA: IEEE, 2008.

CARDOSO, T. M. G. et al. Speed-up of ASICs Derived from FPGAs by Transistor
Network Synthesis Including Reordering. In: INTERNATIONAL SYMPOSIUM ON
QUALITY ELECTRONIC DESIGN, ISQED, 9., 2008, San Jose, USA.
Proceedings…New York, USA: IEEE, 2008. p. 47-52.

111

CARLSON, B. S.; CHEN, C. Y. R. Effects of transistor reordering on the performance
of MOS digital circuits. In: MIDWEST SYMPOSIUM ON CIRCUITS AND
SYSTEMS, 1992. Proceedings… [S.l.:s.n.], 1992. v.1, p. 121–124.

CHEN, W.-K. The VLSI Handbook. Boca Raton, USA: CRC Press, 2000.

CHENG, Z. et al. Estimation of Standby Leakage Power in CMOS Circuits Considering
Accurate Modeling of Transistor Stacks. In: INTERNATIONAL SYMPOSIUM ON
LOW POWER ELECTRONICS AND DESIGN, ISLPED, 4., 1998, Monterey, USA.
Proceedings... [S.l.: s.n.], 1998. p. 239-244.

CHIAPPETTA, E.J.D et al. A Simple Model to Estimate Intrinsic Power Consumption
in CMOS Logic Gates. In: STUDENT FORUM ON MICROELECTRONICS, SForum,
8., 2008, Gramado, Brasil. Proceedings... Porto Alegre, Brasil: SBC, 2008.

CORREIA, V.P.; REIS, A.I. Classifying n-Input Boolean Functions. IBERCHIP
WORKSHOP, IWS, 7., 2001, Montevideo, Uruguai. Proceedings… [S.l.: s.n.], 2001. p.
58.

CORREIA, V.; REIS, A. Advanced technology mapping for standard-cell generators.
In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEM DESIGN, SBCCI,
17., 2004, Porto de Galinhas, Brasil. Proceedings…Los Alamitos: IEEE, 2004. p. 254-
259.

CUDD. Available at: <http://vlsi.colorado.edu/~fabio/CUDD/>. Visited on: June 2008.

DEMICHELI, G. Synthesis and Optimization of Digital Circuits. New York, USA:
McGraw-Hill, 1994.

DRECHSLER, R.; BECKER, B. Binary Decision Diagrams: Theory and
Implementation. Boston, USA: Kluwer Academic, 1998.

DROZDEL, A. Estrutura de Dados e Algoritmos em C++. São Paulo, Brasil:
Thomson Learning, 2002.

DUFFIN, R. J. Topology of series-parallel networks. Journal of Mathematical
Analysis and Applications, San Diego, USA, v. 10, p. 303-318, 1965.

EBENDT, R.; FEY, G.; DRECHSLER, R. Advanced BDD Optimization. Dordrecht,
Netherlands: Springer, 2005.

ELMORE, W. The transient response of damped linear networks with particular regard
to wideband amplifiers. Journal Applied Physics, Woodbury, USA, v. 19, n. 1, p. 55-
63, Jan. 1948.

ERCEGOVAC, M.; LANG, T.; MORENO, J.H. Introdução aos Sistemas Digitais.
Porto Alegre, Brasil: Bookman, 2000. p. 229-234.

EVEN, S. Graph Algorithms. London, England: Pitman Publishing, 1979.

FISHER, C. et al. Optimization of Standard Cell Libraries for Low Power, High Speed,
or Minimal Area Designs. In: IEEE CUSTOM INTEGRATED CIRCUITS
CONFERENCE, CICC, 17., 1996, San Diego, USA. Proceedings... New York, USA:
IEEE, 1996. p. 493-496, 1996.

GAVRILOV, S.; GLEBOV, A. BDD Based Circuit Level Structural Optimization for
Digital CMOS. In: INTERNATIONAL WORKSHOP MULTI-ARCHITECTURE
LOW POWER DESIGN, 1., 1999, Moscou, Rússia. Proceedings... [S.l.:s.n.], 1999. 45-
49.

112

GU, R. X.; ELMASRY, M. I. Power Distribution Analysis and Optimization of Deep
Submicron CMOS Digital Circuit. IEEE Journal of Solid-State Circuits, New York,
v.31, n.5, p.707-713, May 1996.

HARARY, F. Graph Theory. [S.l.]: Perseus Books Group, 1994.

HARRISSON, M.A. Introduction to switching and automata theory. [S.l.]:
McGraw-Hill, 1965.

HENTSCHKE, R. Blue Macaw Didactic Placement v0.8b. Available at: <
http://www.inf.ufrgs.br/~renato/bluemacaw/index.html>. Visited on: June 2008.

ISAEVA, T. Switch-Level BDD-based Synthesis Algorithm. In: INTERNATIONAL
WORKSHOP MULTI-ARCHITECTURE LOW POWER DESIGN, 1., 1999, Moscou,
Rússia. Proceedings... [S.l.:s.n.], 1999. p. 39-44.

JIANG, Y.; SAPATNEKAR, S.; BAMJI, C. Technology mapping for high-performance
static CMOS and pass transistor logic designs. IEEE Transactions on VLSI Systems,
New York, USA, v. 9, n. 5, p. 577-589, Oct. 2001.

KAGARIS, D.; HANIOTAKIS, T. Transistor Level Optimization of Supergates. In:
INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, ISQED,
7., 2006, Santa Clara, USA. Proceedings... New York, USA: IEEE, 2006. p. 1-10.

KAGARIS, D.; HANIOTAKIS, T. A Methodology for Transistor-Efficient Supergate
Design. IEEE Transactions on VLSI Systems, New York, USA, v.15, n.4, p. 488-492,
Apr. 2007.

KARMA. Available at: <http://www.inf.ufrgs.br/nangate/> Visited on: June 2008.

KARNAUGH, M. The Map Method for the Synthesis of Combinational Circuits. AIEE
Transactions: Communications and Electronics, [S.l.], v. 72, pt. 1, p. 593-599, Nov.
1953.

KEUTZER, K. Dagon: Technology binding and local optimization by DAG matching.
In: DESIGN AUTOMATION CONFERENCE, DAC, 24., 1986, Miami, USA.
Proceedings… [S.l.:s.n.], 1987. p. 341-347.

KEUTZER, K.; RICHARDS, D. Computational complexity of logic synthesis and
optimization. In: IEEE INTERNATIONAL WORKSHOP ON LOGIC AND
SYNTHESIS, IWLS, 2., 1989. Proccedings… [S.l.:s.n.], 1989. p. 1-15.

KUKIMOTO, Y.; BRAYTON, R.; SAWKAR, P. Delay-optimal technology mapping
by DAG covering. In: DESIGN AUTOMATION CONFERENCE, DAC, 35., 1998, San
Francisco, USA. Proceedings… [S.l.]: ACM, 1998. p. 348-351.

LAI, Y.; JIANG Y.; CHU, H. BDD Decomposition for Mixed CMOS/PTL Logic
Circuit Synthesis. In: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND
SYSTEMS, ISCAS, 2005, Kobe, Japan. Proceedings… [S.l.:s.n.], 2005. p. 5649-5652.

LAWLER, E.L. An approach to multilevel Boolean minimization. Journal of the
ACM, New York, USA, v.11, n.3, p.283-295, July 1964.

LEE, C. Y. Representation of Switching Circuits by Binary-Decision Programs. Bell
Systems Technical Journal, [S.l.], n.38, p.985-999, 1959.

LIU, D.; SVENSSON, C. Power Consumption Estimation in CMOS VLSI Chips. IEEE
Journal of Solid State Circuits, New York, USA, v. 29, n.6, p. 663-670, June 1994.

113

LIU, C. R.; ABRAHAM, J. A. Transistor Level Synthesis for Static CMOS
Combinational Circuits. In: GREAT LAKES SYMPOSIUM ON VLSI, GLSVLSI, 9.,
1999, Ann Arbor, USA. Proceedings… New York, USA: IEEE, 1999. p. 172-175.

MA, S.; FRANZON P. Energy Control and Accurate Delay Estimation in the Design of
CMOS Buffers. IEEE Journal of Solid-State Circuits, New York, USA, v.29, n.9, p.
1150-1153, Sept. 1994.

MARQUES, F.S.; ROSA, L.S.; RIBAS, R.P.; SAPATNEKAR, S.S.; REIS, A.I. DAG
Based Library-Free Technology Mapping. In: ACM GREAT LAKES SYMPOSIUM
ON VLSI, GLSVLSI, 17., 2007, Lago Maggiore, Italy. Proceedings …[S.l.]: ACM,
2007.

MCCLUSKEY, E. J. Minimization of Boolean Functions. Bell Systems Technical
Journal, [S.l.], v. 35, p. 1417-1444, June 1956.

MCGEER, P. et al. ESPRESSO-SIGNATURE: A new exact minimizer for logic
functions. In: DESIGN AUTOMATION CONFERENCE, DAC, 30., 1993, Dallas,
USA. Proccedings… [S.l.]: ACM, 1993.

MISCHENKO, A. et al. Technology mapping with Boolean matching, supergates
and choices. Berkeley: EECS Dept., UC Berkeley, 2005. (ERL Technical Report).

MINTZ, A.; GOLUMBIC, M.C. Factoring Boolean functions using graph partitioning.
Discrete Applied Mathematics, [S.l.], n.149, p.131-135, May 2005.

MOORE, E.F. Table of four-relay contact networks. In: HIGONNET, R.A.; GREA,
R.A. (Ed.). Logical Design of Electrical Circuits. [S.l.]: McGraw-Hill, 1958.

NAJM, F. A survey of power estimation techniques in VLSI circuits. IEEE
Transactions on VLSI Systems, New York, USA, v. 2, p. 446-455, Dec. 1994.

NANGATE. Available at: < http://www.nangate.com>. Visited on: June 2008.

NÈVE, A.; FLANDRE, D. Branch-Based Logic for High Performance Carry-Select
Adders in 0.25 µm Bulk and Silicon-On-Insulator CMOS Technologies. In:
INTERNATIONAL WORKSHOP-POWER AND TIMING MODELING,
OPTIMIZATION AND SIMULATION, PATMOS, 11., 2001, Yverdon-Les-Bains,
Switzerland. Proceedings… [S.l.]: IEEE, 2001.

PANDA, R. et al. Migration: A new technique to improve synthesized designs through
incremental customization. In: DESIGN AUTOMATION CONFERENCE, DAC, 35.,
1998, San Francisco, USA. Proceedings… [S.l.]: ACM, 1998. p. 388-391.

PARK, J. C.; MOONEY III, V. J. Sleepy Stack Leakage Reduction. IEEE
Transactions on VLSI Systems, New York, USA, v.14, n.11, p.1250-1262, Nov. 2006.

PIGUET, C. et al. A Metal-Oriented Layout Structure for CMOS Logic. IEEE Journal
of Solid-state Circuits, New York, USA, v. 19, n.3, p. 425- 436, June 1984.

PIGUET, C. et al. Low-power low-voltage digital CMOS cell design. In:
INTERNATIONAL WORKSHOP-POWER AND TIMING MODELING,
OPTIMIZATION AND SIMULATION, PATMOS, 4., 1994, Barcelona, Spain.
Proceedings… [S.l.:s.n.], 1994. p. 132–139.

PIGUET, C. et al. Low-power low-voltage standard cell libraries. In: EUROPEAN
SOLID-STATE CIRCUITS CONFERENCE, ESSCIRC, 21., Lille, France.
Proceedings… [S.l.:s.n.], 1995.

114

POLI, R. E. B.; RIBAS R. P.; REIS A. I. Unified Theory to Build Cell-Level Transistor
Networks from BDDs. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND
SYSTEM DESIGN, SBCCI, 16., 2003, São Paulo, Brasil. Proceedings… Los
Alamitos: IEEE, 2003. p. 199–204.

PRUNTY, C. et al. Optimum Tapered Buffer. IEEE Journal of Solid-State Circuits,
New York, USA, v. 27, n.1, p. 118-119, Jan. 1992.

QUINE, W. V. A Way To Simplify Truth Functions. American Mathematical
Monthly, Washington, v. 62, p. 627-631, 1955.

RABAEY, J.M.; CHANDRAKASAN. A.; NIKOLIC, B. Digital Integrated Circuits:
A Design Perspective. 2nd ed. Upper Saddle River: Prentice Hall, 2005.

RAO, R. M. et al. Efficient Technique for Gate Leakage Estimation. In:
INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND
DESIGN, ISLPED, 9., 2003, Seoul, Korea. Proceedings… [S.l.]: ACM, 2003. p. 100-
103.

REIS, A. I.; ROBERT, M.; AUVERGNE, D.; REIS R. Associating CMOS Transistors
with BDD Arcs for Technology Mapping. Electronics Letters, [S.l.], v. 31, n. 14, p.
1118–1120.

REIS, A.I. Assignation Technologique sur Bibliotheques Virtuelles de Portes
Complexes CMOS. 1998. 123 f. These (Doctorate m Electronique, Optronique et
Systemes) - Université de Montpellier, Montpellier, France.

ROADMAP, International Technology Roadmap for Semiconductors. 2004. Available
at: <http://public.itrs.net>. Visited on: June 2008.

ROSA, L.S.; RIBAS, R.P.; REIS, A.I. Fast Transistor Networks from BDDs. In:
SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEM DESIGN, SBCCI, 19.,
2006, Ouro Preto, Brasil. Proceedings… New York: ACM, 2006. p. 137-142

ROSA, L.; RIBAS, R.; REIS, A. A Comparative Study of CMOS Gates with Minimum
Transistor Stacks. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEM
DESIGN, SBCCI, 20., 2007, Rio de Janeiro, Brasil. Proceedings… New York: ACM,
2007. p. 93-98

ROSSELLÓ, J. L.; SEGURA, J. Accurate modeling of leakage currents in nanometer
CMOS technologies. Electronics Letters, [S.l.], v. 41, n. 3, p. 122-123, 2005.

ROY, K. et al. Leakage Current Mechanisms and Leakage Reduction Techniques in
Deep-Submicrometer CMOS Circuits. Proceedings of the IEEE, New York, v. 91, n.
2, p. 302-327, Feb. 2003.

ROY, R.; BHATTACHARYA, D.; BOPPANA, V. Transistor-level optimization of
digital designs with flex cells. IEEE Transactions on Computers, New York, v. 38, n.
2, p. 53-61, Feb. 2005.

RUDELL, R. L. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In:
INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD,
1993, Santa Clara. Digest of Technical Papers. New York, USA: IEEE, 1993. p. 42-
47.

RUPESH, S.S. Synthesis for Nanometer Technologies. 2004. Thesis. University of
Minnesota, Minnesota, USA.

SASAO, T. Switching Theory for Logic Synthesis. Boston: Kluwer Academic, 2000.

115

SCHNEIDER, F.R. Explorando técnicas para estimativa de desempenho em portas
lógicas CMOS. 2004. Graduate Degree Thesis. Engenharia de
Computação.Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

SCHNEIDER, F.R.; RIBAS, R.P.; REIS, A.I. Fast CMOS Logic Style Using Minimum
Transistor Stack for Pull-up and Pull-down Networks. In: IEEE INTERNATIONAL
WORKSHOP ON LOGIC AND SYNTHESIS, IWLS, Vail, USA, 15., 2006.
Proceedings... [S.l.:s.n.], 2006. p. 134-141.

SCHNEIDER, F.R. Building Transistor-Level Networks Following the Lower
Bound on the Number of Stacked Switches. 2007. Master Deegre Thesis. Mestrado
em Ciência da Computação. Universidade Federal do Rio Grande do Sul, Porto Alegre,
Brasil.

SCOTT, K.; KEUTZER, K. Improving Cell Libraries for Synthesis. In: IEEE CUSTOM
INTEGRATED CIRCUITS CONFERENCE, CICC, 1994, San Diego, USA.
Proceedings... New York: IEEE, 1994. p. 128-131.

SECHEN, C.; GUAN, B. Large standard cell libraries and their impact on layout area
and circuit performance. In: INTERNATIONAL CONFERENCE ON COMPUTER
DESIGN, ICCD, 1996, Austin, USA. Proceedings… New York: IEEE, 1996. p. 378-
383.

SECHEN, C. Libraries: lifejacket or straitjacket. In: DESIGN AUTOMATION
CONFERENCE, DAC, 40., 2003, Anaheim, USA. Proceedings... New York: ACM,
2003. p. 642-643.

SENTOVICH, E. et al. SIS: A system for sequential circuit synthesis. Berkeley: EECS
Department, University of California, 1992. (Technical Report n. UCB/ERL M92/41).

SHANNON, C.E. A symbolic Analysis of Relay and Switching Circuits. Transactions
American Institute of Electrical Engineers, New York, v.57, p. 38-80, May 1938.

SHANNON, C.E. Realization of All 16 Switching Functions of Two Variables
Requires 18 Contacts. [S.l.]: Bell Laboratories, 1953a.

SHANNON, C.E. Machine Aid for Switching Circuit Design. [S.l.]: Bell
Laboratories, 1953b.

STOK, L.; LYER, M.A.; SULLIVAN, A.J. Wavefront Technology Mapping. In:
DESIGN, AUTOMATION AND TEST IN EUROPE, DATE, 1999, Munich, Germany.
Proceedings... New York: IEEE, 1999. p. 531–536.

SUTHERLAND, I.; SPROULL, B.; HARRIS, D. Logical Effort: Designing Fast
CMOS Circuits. San Francisco, USA: Morgan Kaufmann, 1999.

THORP, T.J.; YEE, G.S.; SECHEN, C.M. Design and synthesis of dynamic circuits.
IEEE Transactions on VLSI Systems, New York, v. 11, n. 1, p. 141-149, Feb. 2003.

TSUI, C. Y.; PEDRAM, M.; DESPAIN A. Efficient estimation of dynamic power
dissipation under a real delay model. In: INTERNATIONAL CONFERENCE ON
COMPUTER AIDED DESIGN, ICCAD, 1993, Santa Clara. Digest of Technical
Papers. New York, USA: IEEE, 1993. p. 224-228.

UEHARA, T.; VANCLEEMPUT, W. M. Optimal Layout of CMOS Functional Arrays.
IEEE Transactions on Computers, Los Alamitos, v.c-30, n. 5, p. 305-312, May 1981.

UYEMURA, J. P. CMOS Logic Circuit Design. Boston: Kluwer Academic, 1999.

116

VEENDRICK, H.J.M. Short-Circuit Dissipation of Static CMOS Circuitry and its
Impact on the Design of Buffer Circuits. IEEE Journal of Solid State Circuits, New
York, v.SC-19, n.4, p. 468-473, Aug. 1984.

VEMURA, S.R. et al. Variable-taper CMOS buffer. IEEE Journal of Solid-State
Circuits, New York, v.26, n.9, p. 1265-1269, Sept. 1991.

VUJKOVIC, M.; SECHEN, C. Optimized power-delay curve generation for standard
cell ICs. In: INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN,
ICCAD, 2002, San Jose. Digest of Technical Papers. New York, USA: ACM, 2002.

WAGNER, F.; RIBAS, R.; REIS, A. Fundamentos de Circuitos Digitais. Porto
Alegre: Sagra Luzzatto, 2006.

WESTE, N.H.E.; HARRIS, D. CMOS VLSI Design: A Circuits and Systems
Perspective. 3rd ed. Boston: Pearson/Addison Wesley, 2005.

YANG, S. et al. Accurate Stacking Effect Macro-modeling of Leakage Power in Sub-
100nm Circuits. In: INTERNATIONAL CONFERENCE ON VLSI DESIGN, 18.,
2005, Kolkata, India. Proceedings... New York: IEEE, 2005. p. 165-170.

YOSHIDA, H. et al. A Structural Approach for Transistor Circuit Synthesis. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, [S.l.], v.E89-A, n. 12, Dec. 2006.

ZHAO, W.; CAO, Y. New generation of Predictive Technology Model for sub-45nm
early design exploration. IEEE Transactions on Electron Devices, New York, v. 53,
n. 11, p. 2816-2823, Nov. 2006.

ZIESEMER JUNIOR, A.M.; LAZZARI, C.; REIS, R. Automatic Transistor-Level
Layout Generator of CMOS Cells. In: SOUTH SYMPOSIUM ON
MICROELECTRONICS, SIM, 22., 2007, Porto Alegre, Brasil. Proceedings... Porto
Alegre, Brasil: SBC, 2007. p.57-60.

117

APPENDIX A AN ACADEMIC LIBRARY DESCRIPTION

This library description corresponds to a subset of the lib2.genlib that is an
academic library distribute with the SIS technology mapping tool (SENTOVICH,
1992).

GATE inv1 928.00 O=!a;

PIN a INV 0.0514 999.0 0.4200 4.7100 0.4200 3.6000

GATE nand2 1392.00 O=!(a*b);

PIN a INV 0.0777 999.0 0.6400 4.0900 0.4000 2.5700

PIN b INV 0.0716 999.0 0.4600 4.1000 0.3700 2.5700

GATE nand4 2320.00 O=!(a*b*c*d);

PIN a INV 0.1030 999.0 1.2700 3.6200 0.6700 2.3900

PIN b INV 0.0980 999.0 1.0900 3.6100 0.6100 2.3900

PIN c INV 0.0980 999.0 0.8200 3.6200 0.5500 2.4000

PIN d INV 0.1050 999.0 0.5800 3.6200 0.3800 2.3900

GATE nor2 1392.00 O=!(a+b);

PIN a INV 0.0736 999.0 0.3300 3.6400 0.4500 3.6400

PIN b INV 0.0968 999.0 0.5000 3.6400 0.7000 3.6600

GATE nor4 2320.00 O=!(a+b+c+d);

PIN a INV 0.0887 999.0 0.4100 5.9100 1.1600 3.2000

PIN b INV 0.0867 999.0 0.8500 5.9100 1.5300 3.1800

PIN c INV 0.0867 999.0 1.1100 5.9200 1.7500 3.1900

PIN d INV 0.0887 999.0 1.2700 5.9100 1.9400 3.2000

GATE aoi21 1856.00 O=!((a*b)+c);

PIN a INV 0.1029 999.0 0.7500 3.5200 0.6700 2.5300

PIN b INV 0.0908 999.0 0.6700 3.6400 0.6200 2.5200

PIN c INV 0.1110 999.0 0.5800 3.6400 0.2100 1.2800

GATE aoi22 2320.00 O=!((a*b)+(c*d));

PIN a INV 0.1019 999.0 0.9200 3.4600 0.9400 2.7900

PIN b INV 0.0908 999.0 0.8400 3.6400 0.8500 2.7900

PIN c INV 0.0958 999.0 0.6100 3.6400 0.4900 2.9300

PIN d INV 0.0988 999.0 0.7000 3.6400 0.5400 2.9300

Figure A: A subset of the lib2.genlib academic library.

118

A cell is specified in the following format:

GATE <cell_name> <cell_area> <cell_logic_function>

PIN <pin_name> <phase> <input_load> <max_load>
<rise_block_delay> <rise_fanout_delay>
<fall_block_delay> <fall_fanout_delay>

<cell_name> is the name of the cell in the cell library.

<cell_area> defines the relative area cost of the cell. It is a floating point
number, and may be in any unit system convenient for the user.

<cell_logic_function> is an equation written in conventional algebraic notation
using the operators “+” for OR, “*” or nothing (space) for AND, “!” or “’” (post-fixed)
for NOT, and parentheses for grouping. The names of the literals in the equation define
the input pin names for the cell; the name on the left hand side of the equation defines
the output of the cell. The equation terminates with a semicolon.

<pin_name> must be the name of a pin in the <cell_logic_function>, or it * to
specify identical timing information for all pins.

<phase> is INV, NONINV, or UNKNOWN corresponding to whether the
logic function in negative unite, positive unate, or binate in this variable respectively.
This is required for the separate rise-fall delay model.

<input_load> gives the input load of this pin. It is a floating point value, in
arbitrary units convenient for the user.

<max_load> specifies a loading constraint for the cell. It is a floating point
value specifying the maximum load allowed on the output.

<rise_block_delay> and <rise_fanout_delay> are the rise-time parameters for
the timing model. They are floating point values, typically in the units nanoseconds, and
nanoseconds/unit_load respectively.

<fall_block_delay> and <fall_fanout_delay> are the fall-time parameters for
the timing model. They are floating point values, typically in the units nanoseconds, and
nanoseconds/unit_load respectively.

The delay information for the most critical pin is used to determine the delay
for the logic gate.

119

APPENDIX B XOR TRANSISTOR SCHEMATICS

Figure B1: XOR2 in CSP, NCSP, BDD, OpBDD
and LBBDD logic styles.

120

Figure B2: XOR3 in CSP logic style.

Figure B4: XOR3 in NCSP logic style.

121

Figure B5: XOR3 in BDD, OpBDD and LBBDD logic styles.

122

Figure B6: XOR4 in CSP logic style.

123

Figure B8: XOR4 in NCSP logic style.

Figure B9: XOR4 in BDD, OpBDD and LBBDD logic styles.

124

APPENDIX C COUT_FA TRANSISTOR SCHEMATICS

Figure C1: COUT FA in CSP logic style.

125

Figure C3: COUT FA in BDD logic style.

Figure C4: COUT FA in OpBDD logic style.

126

Figure C5: COUT FA in NCSP and LBBDD logic styles.

127

APPENDIX D LOGIC FUNCTIONS USED FOR THE
EXPERIMENTAL RESULTS

Genlib 44-6 up to 4 inputs:

!a
!(a*b)
!(a+b)

!(a*(b+c))
!(a*b*c)
!(a+b*c)
!(a+b+c)

!(a*(b+c*d))
!(a*(b+c+d))

!((a+b)*(c+d))
!(a*b*(c+d))
!(a*b*c*d)

!(a+b*(c+d))
!(a+b*c*d)
!(a*b+c*d)
!(a+b+c*d)
!(a+b+c+d)

Additional logic functions:

(!a*b)+(a*!b)
(!a*(!b*c+b*!c))+(a*(b*c+!b*!c))

(((!c+!b)*!d*(c+b)+(c+!b)*d*(b+!c))*a+((!c+!b)*d*(c+b)+(c+!b)*!d*(b+!c))*!a)!(a+b*(c+d))
(a*b)+(a*c)+(b*c)

500 NPN-classes logic functions up to 5 inputs:

000006B3 000019EE 0001019F 00010AE2 00011BEF
000006B4 000019EF 000101A6 00010AE3 00011BF0
000006B5 000019F1 000101A9 00010AE4 00011BF1
000007BF 000019F3 000101AA 00010AE5 00011BF2
000007E0 000019F6 000101AB 00010AE6 00011BF3
000007E1 000019F7 000101AC 00010AE7 00011BF4
000007E2 000019F8 000101AD 00010AE8 00011BF5
000007E3 000019F9 000101AE 00010AE9 00011BF6
000007E6 000019FA 000101AF 00010AEA 00011BF7
000007E7 000019FB 000101BC 00010AEB 00011BF8

128

000007E9 000019FE 000101BD 00010AEC 00011BF9
000007EB 000019FF 000101BE 00010AED 00011BFA
000007EF 00001BD6 000101BF 00010AEE 00011BFB
000007F0 00001BD7 000101E8 00010AEF 00011BFC
000007F1 00001BD8 000101E9 00010AF0 00011BFD
000007F2 00001BD9 000109E1 00010AF1 00011BFE
000007F3 00001BDB 000109E2 00010AF2 00011BFF
000007F6 00001BDE 000109E3 00010AF3 00011EE0
000007F7 00001BDF 000109E6 00010AF4 00011EE1
000007F8 00001BE4 000109E7 00010AF5 00011EE2
000007F9 00001BE5 000109E8 00010AF6 00011EE3
000007FA 00001BE7 000109E9 00010AF7 00011EE6
000007FB 00001BEC 000109EA 00010AF8 00011EE7
000007FE 00001BED 000109EB 00010AF9 00011EE8
000007FF 00001BEE 000109EE 00010AFA 00011EE9
00000FF0 00001BEF 000109EF 00010AFB 00011EEA
00000FF1 00001BFC 000109F0 00010AFC 00011EEB
00000FF3 00001BFD 000109F1 00010AFD 00011EEE
00000FF6 00001BFF 000109F2 00010AFE 00011EEF
00000FF7 00001EE1 000109F3 00010AFF 00011EF0
00000FFF 00001EE3 000109F6 00010BB0 00011EF1
00001668 00001EE6 000109F7 00010BB1 00011EF2
00001669 00001EE7 000109F8 00010BB2 00011EF3
0000166A 00001EE9 000109F9 00010BB3 00011EF6
0000166B 00001EEB 000109FA 00010BB4 00011EF7
0000166E 00001EEE 000109FB 00010BB5 00011EF8
0000166F 00001EEF 000109FE 00010BB6 00011EF9
0000167E 00001EF1 000109FF 00010BB7 00011EFA
0000167F 00001EF3 00010AA0 00010BB8 00011EFB
00001681 00001EF6 00010AA1 00010BB9 00011EFE
00001683 00001EF7 00010AA2 00010BBA 00011EFF
00001686 00001EF9 00010AA3 00010BBB 00011FF0
00001687 00001EFA 00010AA4 00010BBC 00011FF1
00001689 00001EFB 00010AA5 00010BBD 00011FF2
0000168B 00001EFE 00010AA6 00010BBE 00011FF3
0000168E 00001EFF 00010AA7 00010BBF 00011FF6
0000168F 00001FF1 00010AA8 00010BD0 00011FF7
00001696 00001FF2 00010AA9 00010BD1 00011FF8
00001697 00001FF3 00010AAA 00010BD2 00011FF9
00001698 00001FF6 00010AAB 00010BD3 00011FFA
00001699 00001FF7 00010AAC 00010BD6 00011FFB
0000169A 00001FF8 00010AAD 00010BD7 00011FFE
0000169B 00001FF9 00010AAE 00010BD8 00011FFF
0000169E 00001FFA 00010AAF 00010BD9 00012880
0000169F 00001FFB 00010AB0 00011AFD 00012881
000016A9 00001FFE 00010AB1 00011AFE 00012882
000016AB 00001FFF 00010AB2 00011AFF 00012883
000016AC 00003CC3 00010AB3 00011BB0 00012884
000016AD 00003CC7 00010AB4 00011BB1 00012885
000016AE 00003CCF 00010AB5 00011BB2 00012886
000016AF 00003CD7 00010AB6 00011BB3 00012887
000016BC 00003CDB 00010AB7 00011BB4 00012888

129

000016BD 00003CDF 00010AB8 00011BB5 00012889
000016BE 00003CFF 00010AB9 00011BB6 0001288A
00001796 00003DD6 00010ABA 00011BB7 0001288B
00001797 00003DD7 00010ABB 00011BB8 0001288C
00001798 00003DDA 00010ABC 00011BB9 0001288D
00001799 00003DDB 00010ABD 00011BBA 0001288E
0000179A 00003DDE 00010ABE 00011BBB 0001288F
0000179B 00003DDF 00010ABF 00011BBC 00012894
0000179E 00003DED 00010AC0 00011BBD 00012895
0000179F 00003DEF 00010AC1 00011BBE 00012896
000017A9 00003DFD 00010AC2 00011BBF 00012897
000017AB 00003DFE 00010AC3 00011BD0 00012898
000017AC 00003DFF 00010AC6 00011BD1 00012899
000017AD 00003FFC 00010AC7 00011BD2 0001289A
000017AE 00003FFD 00010AC8 00011BD3 000128AA
000017AF 00003FFF 00010AC9 00011BD6 000128AB
000017BC 00006996 00010ACA 00011BD7 000128AC
000017BD 0001017E 00010ACB 00011BD8 000128AD
000017BE 0001017F 00010ACE 00011BD9 000128AE
000017BF 00010180 00010ACF 00011BDA 000128AF
000017E8 00010181 00010AD0 00011BDB 000128BC
000017E9 00010182 00010AD1 00011BDE 000128BD
000017EA 00010183 00010AD2 00011BDF 000128BE
000017EB 00010186 00010AD3 00011BE0 000128BF
000017EE 00010187 00010AD4 00011BE1 000128C0
000017EF 00010188 00010AD5 00011BE2 000128C1
000017FE 00010189 00010AD6 00011BE3 000128C2
000017FF 0001018A 00010AD7 00011BE4 000128C3
000018E7 0001018B 00010AD8 00011BE5 000128C4
000018EF 0001018E 00010AD9 00011BE6 000128C5
000018FF 0001018F 00010ADA 00011BE7 000128C6
000019E1 00010196 00010ADB 00011BE8 000128C7
000019E3 00010197 00010ADC 00011BE9 000128CA
000019E6 00010198 00010ADD 00011BEA 000128CB
000019E7 00010199 00010ADE 00011BEB 012CDF18
000019E9 0001019A 00010ADF 00011BEC 012CDF19
000019EA 0001019B 00010AE0 00011BED 012CDF1A
000019EB 0001019E 00010AE1 00011BEE 012CDF2A

7 Logic functions unfeasible in CSP:

000101170117173F
000101170117177F
011313370337377F
011313371337377F
011313371337777F
0117177F177F7FFF
0117177F577F7FFF

130

Branch-based vs. factorized logic functions:

!a !a
!(a*b) !(a*b)
!(a+b) !(a+b)

!(a*(b+c)) !((a*b)+(a*c))
!(a*b*c) !(a*b*c)
!(a+b*c) !(a+b*c)
!(a+b+c) !(a+b+c)

!(a*(b+c*d)) !((a*c*d)+(a*b))
!(a*(b+c+d)) !((a*d)+(a*c)+(a*b))

!((a+b)*(c+d)) !((b*d)+(b*c)+(a*d)+(a*c))
!(a*b*(c+d)) !((a*b*d)+(a*b*c))
!(a*b*c*d) !(a*b*c*d)

!(a+b*(c+d)) !((b*d)+(b*c)+(a))
!(a+b*c*d) !(a+b*c*d)
!(a*b+c*d) !(a*b+c*d)
!(a+b+c*d) !(a+b+c*d)

131

APPENDIX E DEVELOPED TOOLS

During the development of this work it became evident the need for a logic
synthesis tool that could be used to optimize logic descriptions, to generate and evaluate
transistor networks, and to estimate some electrical and physical behaviors at logic cells
level. In fact, there are not many available tools in the academy that could be used to
perform some of these tasks. An example is the SIS tool from Berkley (SENTOVICH,
1992), which is a technology mapping tool, that presents scripts to perform
factorization, for instance. More recently, its new brother, called ABC, has incorporated
some old features and presents new algorithms and techniques for technology mapping
purpose (MISCHENKO, 2005). Other examples of CAD tools are: CDF, which
provides the generation of transistor cells layout from an input equation description,
performing some intermediate logic synthesis steps (NANGATE, 2008); Blue Macaw
Didactic Placement Tool, which is an environment to experiment and to learn the
existing VLSI Cell Placement Algorithms and their variations (HENTSCHKE, 2008);
Cellgen that is a tool for generating cell layout from a predefined input spice netlist
(ZIESEMER JUNIOR, 2007). However, these available tools do not provide a wide
cover for logic synthesis problems, or, at least, they do not permit the use of a single and
specific operation. On the other hand, several small tools and scripts are available in
Nangate-UFRGS Research Lab. The majority of these codes and modules were
developed for internal purposes, to support and to assist the development of researches.
A repository and a version control system allow students and researchers to share codes
and to optimize the process of generating new solutions and results.

In this context, an academic environment composed of 3 parts was idealized by
our group. The first one is a logic synthesis tool, which only performs logic
manipulations over Boolean functions. This tool is called KARMA 3. The second one is
an electrical synthesis tool, developed to provide transistor networks generation,
manipulation and evaluation at cell level. This tool is named ELECTRO. The last one is
a physical synthesis tool, proposed to implement, optimize and evaluate the layout of
logic cells. This tool, named LAGARTO, is under development and will complete the
logic cell automated design flow. The produced code herein is presented in part of the
KARMA 3, and it is the main engine for the ELECTRO tool. Both tools were developed
in Java language and they will be presented in the following sub sections.

132

A Tool for Logic Synthesis of Boolean Functions

KARMA 3 tool is a new and expanded version from the original KARMA tool
(KARMA, 2008). The main objective of KARMA was to help users to have a better
understanding of Karnaugh maps, truth-tables, Boolean functions and many concepts of
logic synthesis. Through a friendly graphical user interface the user can interact with the
software in many ways like assigning a Boolean function and running Quine-
McCluskey algorithm to get the prime implicants and see how they are positioned in the
Karnaugh map.

Figure E1: KARMA 3 main window.

The original version was rebuilt to enlarge the number of features and data
manipulations in the logic synthesis field. The current version contains a converter for
different logic descriptions, a logic equivalence verifier, an SOP and POS generator and
analyzer, a factorization unit, and a probability evaluator of signal propagation. In other
words, KARMA 3 is a tool that offers the possibility of manipulating Boolean functions

133

to meet the designer needs in terms of logic description. Figure E1 presents the main
window of KARMA 3.

The first module is the “Logic2Logic”. The purpose of this module is to
translate a given logic description to another. It is possible to convert BLIF description,
truth-table representation, equation description, numerical description or list of
minterms representation in between them. Figure E2 shows the window of this module.

Figure E2: Logic2Logic window.

The “Karnaugh Map” module permits to synthesize using Karnaugh maps. It is
possible to set the function through truth-table or directly in the map, and then run the
Quine-McCluskey algorithm. From this point, the list of prime implicants, the Quine-
McCluskey step-by-step procedure, the covering table, and the equivalent factorized
function can be visualized. Figure E3 illustrates the window of this module.

134

Figure E3: Karnaugh Map window.

In the “Karma Teaching Mode” some games are presented to be used as a
didactic instrument. In this module the user learn and perform some exercises about
Karnaugh maps, viewing and finding adjacent minterms and cubes, selecting cubes, and
covering table. Figure E4 illustrates this module.

The “SOP_POS” module delivers an easy way to obtain the sum-of-products
and the product-of-sums from a given logic input description. Figure E5 shows the
window of this module.

In the “Logic Equivalence” module, illustrated in Figure E6, it is possible to
evaluate if two different logic descriptions are equivalent or not. This equivalence is
done through BDD evaluation, and it returns the truth-table for the input functions
described by the user.

The “Mux-Based” module evaluates all possible configurations of using
variables as pass variables or control variables, and informs the best solution to
implement a transistor cell with a reduced number of elements in a mux-based logic
gate, as presented in section 3.2.1.3. Figure E7 shows this feature.

The last module, called “Probabilities”, permits the user to determine the
probability of occurring a one logic value in the output of a given logic function
according to the occurrence probabilities in the inputs. This module is depicted in
Figure E8.

135

Figure E4: Karma teaching mode window.

Figure E5: SOP_POS window.

136

Figure E6: Logic equivalence window.

Figure E7: Mux-based window.

137

Figure E8: Probabilities window.

All modules of KARMA 3 were developed together with other students and
researchers in the Nangate-UFRGS Research Lab.

A Tool for Automatic Transistor Cells Generation

ELECTRO tool presents some features that permit the user to generate
transistor networks and to evaluate some electrical and physical characteristics through
estimations. It is a fast and easy way to investigate the behavior of possible transistor
networks implementations for a given input logic function. As input, this tool accepts a
Boolean expression description. Also, it is possible to use a Spice netlist input, allowing
the user to manipulate and to evaluate a pre-implemented transistor network.

This tool contains several algorithms and methods implemented during the
development of this work. The following list describes some of them, since the tool is
constantly being improved:

• BDD ordering methods
o Sifiting algorithm
o Exhaustive solution

• Transistor network generation
o CSP logic
o NCSP logic

138

o BDD logic (CMOS derived from BDD)
o OpBDD logic (Optimized BDD logic)
o LBBDD (Lower Bound BDD logic)
o Mux-based logic
o Branch-based logic
o Dual-graph logic

• Transistor network simulator
• Network profile algorithms

o Number of nodes
o Number of transistors
o Number of transistors connected per node
o Number of unate/binate nodes
o Number of inverters
o Number of paths in the transistor networks
o Number of paths in the BDD
o Number of transistor in series in the network
o Smallest and largest paths in the transistor network

• Leakage estimation methods
o Gate leakage
o Subthreshold leakage
o Iterative gate/subthreshold leakage

• Transistor sizing
o Logical Effort method
o Fixed size (minimal or relative to some sizing rule)

• Transistor folding
• Network transistor sharing
• Structural transistor ordering
• Variables occurrence in transistor networks
• Detection of series-parallel or bridge transistor arrangements

The main window from ELECTRO, shown in Figure E9, follows a similar
graphical user interface presented in KARMA 3. All options are grouped in a list
according to their functionalities.

139

Figure E9: ELECTRO main window.

The “Networks” module is a small tool that permits to generate different switch
networks. It is a powerful didactic instrument for teaching switch theory. In this module
it is possible to generate switch networks composed by NMOS transistor, PMOS
transistors, mixed NMOS/PMOS transistors and/or transmition gates. The user can
generate disjoint pull-up and/or pull-down planes in separated steps, or non-disjoint
planes, using or not, mixed NMOS/PMOS transistors. The dual-graph transistor
generation concept is presented in this module in order to demonstrate how it is possible
to obtain a topologically complementary network from a dual graph.

The “Logic Gate” module contains the CMOS logic gates generation. The user
can choose one logic style from the large available list. All logic styles presented in this
thesis are present in this module. Also, some other logic styles, like PTL, are available.
In the future, we will expand it by adding dynamic logic styles.

In the “Sizing” module the user can perform transistor sizing in the network.
The Logical Effort method is available (SUTHERLAND, 1999). Also, a fixed transistor
sizing option is offered, which allows the use of minimal or a relative transistor sizing
according to the input rules.

140

“Profile” is the module that delivers all information about the transistor
networks that do not need to be simulated or estimated. For a given transistor networks
the user can extract information about transistors, nodes, chains and internal transistor
arrangements. It is also possible to investigate some BDD structure characteristics, like
the BDD sizing and the node unateness property.

Figure E10: BDD viewer.

The “Estimation” module includes all developed estimation methods described
in chapter 4. For a given logic gate, the user can evaluate the static power characteristics
(the gate leakage behavior, the subthreshold leakage, and the interaction of these two
leakage components), the dynamic power characteristic, the delay performance and
some physical information. In other words, this module contains information that cannot
be extracted by a simple analysis of the network. It includes state-of-the-art methods to
evaluate area, delay and power characteristics from a certain logic gate.

Finally, the “Viewer” module includes two graphical viewer tools. The first one
is dedicated to BDDs. The user can visualize and manipulate the generated BDD that
represents the logic function. The second is dedicated to the Spice netlist description. A
schematic transistor view is generated to make easy the visualization of transistor

141

arrangements. Figure E10 and Figure E11 illustrate a BDD representation and an
electrical schematic from a given logic function, both generated by the tool.

Figure E11: Schematic viewer.

142

APPENDIX F LIST OF PUBLICATIONS

CARDOSO, T. M. G.; DA ROSA JUNIOR, Leomar Soares; MARQUES, F. S.;
RIBAS, R. P.; REIS, André Inácio. Speed-up of ASICs Derived from FPGAs by
Transistor Network Synthesis Including Reordering. In: 9th IEEE International
Symposium on Quality Electronic Design (ISQED), 2008, San Jose. 9th IEEE
International Symposium on Quality Electronic Design Proceedings. Los Alamitos :
IEEE Computer Society, 2008. p. 47-52.

BUTZEN, P. F.; DA ROSA JUNIOR, Leomar Soares; CHIAPPETTA FILHO, E. J. D.;
MOURA, D.; REIS, André Inácio; RIBAS, R. P. Simple and accurate method for fast
static current estimation in CMOS complex gates with interaction of leakage
mechanisms. In: 18th ACM Great Lakes Symposium on VLSI (GLSVLSI), 2008,
Orlando. Proceedings of the 18th ACM Great Lakes Symposium on VLSI. New York :
ACM, 2008. p. 407-410.

BUTZEN, P. F.; DA ROSA JUNIOR, Leomar Soares; CHIAPPETTA FILHO, E. J. D.;
MOURA, D.; REIS, André Inácio; RIBAS, R. P. Subthreshold and Gate Leakage
Estimation in Complex Gates. In: 17th ACM/IEEE International Workshop on Logic
and Synthesis (IWLS), 2008, Lake Tahoe. Workshop Notes of the 17th ACM/IEEE
International Workshop on Logic and Synthesis, 2008.

DA ROSA JUNIOR, Leomar Soares; MARQUES, F. S.; SCHNEIDER, F.; RIBAS, R.
P.; REIS, André Inácio. A Comparative Study of CMOS Gates with Minimum
Transistor Stacks. In: 20th ACM Symposium on Integrated Circuits and Systems
Design (SBCCI), 2007, Rio de Janeiro. 20th ACM Symposium on Integrated Circuits
and Systems Design Proceedings. New York : ACM, 2007. p. 93-98.

BUTZEN, P. F.; MANCUSO, R.; SCHNEIDER, F.; DA ROSA JUNIOR, Leomar
Soares; REIS, André Inácio; RIBAS, R. P. Leakage Behavior in CMOS and PTL Logic
Styles for Logic Synthesis Orientation. In: 16th ACM/IEEE International Workshop on
Logic and Synthesis (IWLS), 2007, San Diego. Workshop Notes of the 16th
ACM/IEEE International Workshop on Logic and Synthesis, 2007. p. 53-58.

GOMES, M. V.; SILVA, C. A.; BAVARESCO, S.; SARTORI, G. H.; DA ROSA
JUNIOR, Leomar Soares; REIS, André Inácio; RIBAS, R. P. Test Circuit for Functional
Verification of Automatically Generated Cell Library. In: 8th IEEE Latin American
Test Workshop (LATW), 2007, Cuzco. Workshop Notes of the 8th IEEE Latin
American Test Workshop, 2007.

DA ROSA JUNIOR, Leomar Soares; SCHNEIDER, F.; RIBAS, R. P.; REIS, André
Inácio. Analysis of Transistor Networks Generation. In: XIII Workshop Iberchip (IWS),

143

2007, Lima. Workshop Notes of the XIII Workshop Iberchip. Lima : Editorial Hozlo
S.R.L, 2007. p. 383-386.

MARQUES, F. S.; DA ROSA JUNIOR, Leomar Soares; RIBAS, R. P.;
SAPATNEKAR, S.; REIS, André Inácio. DAG based library-free technology mapping.
In: 17th ACM Great Lakes Symposium on VLSI (GLSVLSI), 2007, Lago Maggiore.
17th ACM Great Lakes Symposium on VLSI Proceedings. New York : ACM, 2007. p.
293-298.

GOMES, M. V.; SILVA, C. A.; BAVARESCO, S.; ALEGRETTI, C.; SARTORI, G.
H.; DA ROSA JUNIOR, Leomar Soares; REIS, André Inácio; RIBAS, R. P. Test
Circuit for Functional Verification of Automatically Generated Cell Library. In: 12th
IEEE European Test Symposium (ETS), 2007, Freiburg. 12th IEEE European Test
Symposium Informal Digest of Papers, 2007. p. 101-104.

DA ROSA JUNIOR, Leomar Soares; MARQUES, F. S.; CARDOSO, T. M. G.;
RIBAS, R. P.; SAPATNEKAR, S.; REIS, André Inácio. Fast Disjoint Transistor
Networks from BDDs. In: 19th ACM Symposium on Integrated Circuits and Systems
Design (SBCCI), 2006, Ouro Preto. 19th ACM Symposium on Integrated Circuits and
Systems Design Proceedings. New York : ACM, 2006. p. 137-142.

DA ROSA JUNIOR, Leomar Soares; MARQUES, F. S.; CARDOSO, T. M. G.;
RIBAS, R. P.; REIS, André Inácio. BDDs and transistor networks with minimum pull-
up/pull-down chains. In: 15th ACM/IEEE International Workshop on Logic and
Synthesis (IWLS), 2006, Vail. Workshop Notes of the 15th ACM/IEEE International
Workshop on Logic and Synthesis, 2006. p. 142-149.

144

APPENDIX G GERAÇÃO AUTOMÁTICA E AVALIAÇÃO
DE REDES DE TRANSISTORES EM DIFERENTES
ESTILOS LÓGICOS

Os circuitos digitais estão cada vez mais presentes no dia-a-dia da vida
moderna causando um amplo impacto na sociedade. Esse impacto se deve ao fato de
que circuitos digitais se aplicam diretamente ou auxiliam diferentes áreas do
conhecimento. Exemplos disso são os computadores pessoais, a telefonia móvel celular,
os dispositivos GPS (Global Positioning System), os sistemas automotivos
computadorizados, a computação em equipamentos e dispositivos da medicina e etc.
Esta explosão na presença de circuitos digitais em vários campos do conhecimento pode
ser atribuída, em grande parte, ao avanço das tecnologias de concepção de circuitos
integrados. Este avanço permite a integração de um número cada vez maior de
componentes, possibilitando a concepção de circuitos cada vez maiores e mais
complexos. A alta integração e as novas tecnologias de fabricação disponíveis impõem
novos limites e desafios para a síntese. As principais dificuldades são a adaptação aos
novos parâmetros de tecnologia e o desenvolvimento de projetos em um tempo curto o
suficiente para não comprometer a sua comercialização (time-to-market). Portanto, a
automatização desse processo através do uso intenso de ferramentas de CAD (Computer

Aided Design) é um fator cada vez mais indispensável para alcançar essas metas. Ao
utilizar uma ferramenta de síntese automática, o efeito esperado é a obtenção de
resultados de igual ou melhor qualidade que os realizados manualmente, mas em um
tempo muito mais curto. Em geral, projetos feitos manualmente são muito mais
custosos, mas mais eficientes em termos de área, potência consumida e desempenho.
Portanto, prover ferramentas automatizadas para a concepção de circuitos eficientes é
um desafio e uma oportunidade que se estabelece para atender a crescente demanda do
mercado moderno.

Basicamente existem duas formas de se obter um circuito integrado
(DEMICHELLI, 1994). Estas formas são chamadas de fluxos de síntese e estão
divididas em custom e semicustom. Os fluxos de projeto chamados custom são aqueles
onde todos os passos para obtenção do circuito integrado são executados manualmente
pelos projetistas. Este estilo de projeto possibilita uma alta flexibilidade para a obtenção
do circuito, uma vez que todas as etapas para geração do circuito final podem ser

145

exploradas e otimizadas visando à implementação de um circuito de alta qualidade.
Contudo, os fluxos de projetos custom apresentam um alto custo monetário. Isso se
deve, em parte, a necessidade de um número considerável de recursos humanos para
atender todas as etapas de desenvolvimento. Projetos custom eram muito comuns nos
primeiros anos da microeletrônica, quando os projetos não eram muito grandes e não
existiam ferramentas de síntese automática disponíveis. Os fluxos de projeto chamados
semicustom podem ser divididos em dois estilos distintos: baseados em matrizes e
baseados em células. O estilo baseado em matrizes utiliza matrizes de elementos
configuráveis para descrever a lógica a ser implementada. Um exemplo desse estilo são
os FPGAs (Field Programmable Gate Array), os quais possuem um conjunto de
elementos lógicos interconectados programáveis. O estilo baseado em células é
desenvolvido através da utilização de macro células, células padrão ou células geradas
automaticamente. As macro células são, em geral, blocos construídos pela união de
unidades lógicas menores com alto grau de repetição, como blocos de memória e
circuitos aritméticos. Células padrão são pequenas porções de circuito projetadas
manualmente ou por ferramentas industriais e acadêmicas (NANGATE, 2008). Essas
ferramentas podem servir como geradores ou servidores de células. Quando projetadas
manualmente, estas células costumam ser muito eficientes pelos mesmos motivos que
os circuitos custom. Além disso, são bem caracterizadas, ou seja, suas informações
elétricas e de área são conhecidas com boa precisão. As células geradas
automaticamente são blocos similares às células padrão, mas com a essencial diferença
de terem sido geradas automaticamente por um gerador de células. Segundo Vujkovic
(2002), a geração automática de células pode levar a implementação de circuitos com
desempenho desejável, se comparado com projetos custom. Como células geradas são
criadas de forma automática, o conjunto de células disponíveis para a realização do
mapeamento do circuito não precisa ser tão restrito como os conjuntos pré-projetados de
células padrão. Essa característica, portanto, possibilita ao desenvolvedor um maior
grau de liberdade para explorar a realização da etapa de mapeamento tecnológico e a
obtenção final do circuito. Contudo, como desvantagem, pode-se citar a complexidade
que será agregada na etapa de mapeamento devido ao grande número de células que
podem ser disponibilizadas pelo gerador.

O fluxo de geração de circuitos baseados em células, independentemente das
células que compõem a biblioteca de células terem sido geradas manualmente ou
automaticamente, apresenta como ponto inicial uma descrição comportamental, e como
saída o leiaute do circuito final. Segundo Weste (2005), essa transformação se dá em
três diferentes domínios. O primeiro deles é o domínio da síntese arquitetural, onde a
descrição está no seu mais alto nível e representa uma visão da organização do sistema.
As etapas seguintes ocorrem no domínio da síntese lógica, onde as descrições são
tratadas com modelos lógicos dos componentes e blocos funcionais. O último domínio é
o da síntese física, em que as descrições já estão sob um ponto de vista geométrico
próximo do leiaute final do circuito.

A síntese lógica é dividida em transformações independentes e dependentes de
tecnologia. As transformações independentes de tecnologia são otimizações nas redes

146

booleanas que descrevem cada bloco do circuito. Em seguida, a etapa de mapeamento
tecnológico transforma toda a rede em uma descrição dependente da tecnologia,
traduzindo todo o circuito para um conjunto interconectado de células lógicas
implementadas em uma dada tecnologia alvo. A partir disso, as transformações são ditas
dependentes de tecnologia e são as últimas no domínio da síntese lógica. São exemplos
de otimizações dessa fase o redimensionamento de portas e a duplicação de partes da
lógica. Por fim, a síntese física usa essa descrição dependente de tecnologia como
entrada para etapas como posicionamento das células e roteamento de sinais. O produto
final é um leiaute do circuito que segue a especificação comportamental inicial, pronto
para ser fabricado.

O conjunto das células lógicas disponíveis para a etapa de mapeamento
tecnológico é chamado de biblioteca de células. Ela representa todas as possibilidades
de elementos funcionais daquela tecnologia que podem ser usados para implementar o
comportamento especificado pela rede booleana. Para isso, o conjunto de células que
define uma biblioteca deve ser capaz de implementar qualquer função necessária. Um
exemplo de biblioteca é o conjunto unitário contendo apenas a célula NAND, pois
qualquer função lógica combinacional pode ser implementada com instâncias dessa
porta.

Em um fluxo que utiliza células geradas automaticamente, não se possui um
conjunto especificado de células pré-projetadas. Neste caso o gerador de células atua
como um servidor de células fornecendo células requisitadas pelo mapeamento
tecnológico. Para limitar as células que podem ser utilizadas pelo mapeador são
definidas, em geral, restrições topológicas que definem células aceitáveis em uma
determinada tecnologia através da limitação de características que impeçam a célula de
ter um desempenho aceitável. Tipicamente, o número máximo de transistores em série é
limitado ou restrito a um valor aceitável (BHATTACHARYA, 2002). As restrições
aplicadas especificam um conjunto de células, e o gerador de células disponível deve ser
capaz de gerar qualquer uma dessas. O conjunto de células a serem usadas e que o
gerador é capaz de gerar é chamado de biblioteca virtual. Como desvantagem de
bibliotecas virtuais pode-se citar o fato delas serem fracamente caracterizadas, pois elas
não apresentam informações detalhadas sobre o comportamento elétrico de cada uma de
suas células como nas pré-caracterizadas. No entanto, um gerador automático pode ser
parametrizável, sendo capaz de produzir várias versões da mesma célula com, por
exemplo, diferentes tamanhos de transistor. Esta característica pode ter influência no
projeto de um circuito com restrições de timming (VUJKOVIC, 2002). Outra vantagem
é a rapidez de adaptação a uma nova tecnologia. O tempo de reconfiguração de um
gerador de células para as novas regras de fabricação é consideravelmente menor que a
reconstrução de uma biblioteca pré-caracterizada na nova tecnologia. Essa característica
é uma das principais motivações dos projetos orientados a geradores automáticos de
células.

Um atributo interessante para a utilização de um gerador automático de células
é o fato de que diversos estilos lógicos podem ser implementados automaticamente. Em

147

geral, bibliotecas de células pré-caracterizadas são compostas por células
implementadas em um único estilo lógico, como, por exemplo, CMOS (Complementary

Metal Oxide Semiconductor). Utilizando-se um gerador automático capaz de prover
células lógicas em diversos estilos lógicos, dá-se a liberdade para que projetistas de
circuitos integrados explorem, ainda mais, o espaço de projeto. Esta característica pode
impactar diretamente na qualidade do circuito final, uma vez que a utilização de
diferentes estilos lógicos pode levar a circuitos mais eficientes em termos de área,
potência e atraso (BHATTACHARYA, 2002). Como exemplo, pode-se citar os estilos
lógicos PTL (Pass Transistor Logic) e CMOS não-complementar série/paralelo como
alternativas a serem utilizadas para a composição do circuito.

Neste contexto, este trabalho apresenta um gerador automático de redes de
transistores capaz de fornecer diferentes tipos de redes em diversos estilos lógicos. Para
comparar as redes geradas, algumas técnicas de estimativa são empregadas.
Comparações são realizadas sobre conjuntos distintos de funções Booleanas,
demonstrando as vantagens da utilização de lógicas alternativas em relação ao difundido
padrão CMOS.

