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ABSTRACT 

Currently, VLSI design has established a dominant role in the electronics 
industry. Automated tools have enabled designers to manipulate more transistors on a 
design project and shorten the design cycle. In particular, logic synthesis tools have 
contributed significantly to reduce the design cycle time. In full-custom designs, manual 
generation of transistor netlists for each functional block is performed, but this is an 
extremely time-consuming task. In this sense, it becomes comfortable to have efficient 
algorithms to derive transistor networks automatically. There are several kinds of 
transistor networks arrangements. These different networks present different behaviors 
in terms of area, delay and power consumption. Thus, not only automatic transistor 
networks generation is important, but also an automated technique to evaluate and to 
compare the distinct switch networks is fundamental to guide designers that need to 
achieve efficient circuit implementations. This evaluation not necessarily needs to be an 
expensive electrical characterization process. It can be obtained through estimation 
processes capable of delivering good information about the logic cells behavior. This 
idea is useful for those designers that desire to generate and to evaluate potential 
transistor network implementations to feed standard-cell flow designs (using cell 
libraries), or for those designers who target the use of library-free technology mapping 
concept (using automatic cells generators). In this context, this work presents an 
automated transistor network generator able to delivery different kinds of networks in 
several logic styles. In order to compare the obtained networks, some estimation 
techniques are employed. A comparison is done over a set of Boolean function 
benchmarks, showing the advantages of using alternative logic styles over the 
traditional Complementary Series-Parallel CMOS (CSP CMOS). 
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Geração Automática e Avaliação de Redes de  
Transistores em Diferentes Estilos Lógicos 

RESUMO 

O projeto e o desenvolvimento de circuitos integrados é um dos mais 
importantes e aquecidos segmentos da indústria eletrônica da atualidade. Neste cenário, 
ferramentas de automação têm possibilitado aos projetistas manipular uma elevada 
quantidade de transistores em circuitos cada vez mais complexos, diminuindo, assim, o 
tempo de projeto. Em especial, ferramentas de síntese lógica têm contribuído 
significativamente para reduzir o ciclo de desenvolvimento. Na metodologia de projeto 
full-custom, cada bloco funcional tem sua geração realizada de forma manual, desde a 
implementação das redes de transistores até a geração do leiaute. Entretanto, esta tarefa 
é extremamente custosa em tempo de projeto. Neste contexto, torna-se confortável ter a 
disposição algoritmos dedicados para derivar redes de transistores automaticamente. 
Diversos tipos de arranjos de transistores são encontrados na literatura. Estas diferentes 
redes de transistores apresentam diferentes comportamentos em termos de consumo de 
área, consumo de potência e velocidade. Desta forma, não apenas a geração automática 
de redes de transistores é importante, mas também técnicas automatizadas para avaliar e 
comparar estas distintas redes de chaves é de fundamental importância para guiar o 
projetista que deseja alcançar implementações de circuitos eficientes. Estas avaliações 
não precisam ser necessariamente processos custosos de caracterização elétrica. Elas 
podem ser realizadas através de estimativas capazes de fornecer informações acuradas 
sobre o comportamento das redes. Esta idéia pode ser utilizada por projetistas que 
desejam gerar e avaliar potenciais soluções em redes de transistores para alimentar 
fluxos standard-cell (utilizando bibliotecas de células), ou por aqueles que utilizam a 
abordagem de mapeamento tecnológico library-free (fazendo uso de geradores de 
células). Neste contexto, este trabalho apresenta um gerador automático de redes de 
transistores capaz de fornecer diferentes tipos de redes em diversos estilos lógicos. Para 
comparar as redes geradas, algumas técnicas de estimativa são empregadas. 
Comparações são realizadas sobre conjuntos distintos de funções Booleanas, 
demonstrando as vantagens da utilização de lógicas alternativas em relação ao difundido 
padrão CMOS. 

 

 

Palavras-chave:  Redes de Transistores, Células Lógicas, Mapeamento Tecnológico, 
Teoria de Chaves, Estilos Lógicos CMOS. 
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1 INTRODUCTION 

Microelectronics became the key technology of many industry branches like 
information technology, telecommunication, medical equipment and consumer 
electronics. The ability of microelectronics to process, transport and store data digitally 
made many new applications possible. The continuously increasing level of integration 
of electronic devices on a single substrate has led to the fabrication of increasingly 
complex systems. An Integrated Circuit (IC) is an electronic system consisting of a 
number of miniaturized electronic devices, such as transistors, resistors, capacitors and 
inductors, built on a monolithic semiconductor substrate. The large majority of the 
current ICs are implemented in the Metal-Oxide-Semiconductor (MOS) technology 
(WESTE, 2005; RABAEY, 2003). 

The IC design can be divided into two broad categories: analog and digital 
design. Analog design is used in the development of operational amplifiers, linear 
regulators, phase-locked loops, oscillators and active filters. Analog design is more 
concerned with the physics of the semiconductor devices such as gain, matching, power 
dissipation, and resistance. Fidelity of analog signal amplification and filtering is 
usually critical and as a result, analog ICs use larger area active devices than digital 
designs and are usually less dense in circuitry. In the other hand, digital IC design is 
used to produce components such as microprocessors, FPGAs (Field-Programmable 
Gate-Arrays), memories and digital ASICs (Application-Specific Integrated Circuits). 
Digital design focuses on logical correctness, maximizing circuit density, and placing 
circuits so that clock and timing signals are routed efficiently.  

Since the advent of the technology for constructing ICs, integration density and 
performance of these electronic systems have gone through an astounding revolution 
driven by the ability of integrating in a single system more and more transistors, the 
devices responsible by most of the complexity of digital ICs. Indeed, the increase in the 
number of transistors that can be integrated in a single die has grown exponentially in 
the last three decades, as predicted by the so called Moore’s Law (INTEL, 2007; 
MOORE, 1965). Figure 1.1 illustrates how this increase prediction has been proved 
correct so far. Although it has been frequently stated that such increase might cease in a 
few years due to physical limitations of IC manufacturing technologies, new design 
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methodologies and fabrication process breakthroughs have proven that such cease can 
be postponed (MOORE, 2003). 

 

 

Figure 1.1: Moore’s Law graph showing the exponential increase in the number of 
transistors along the last three decades for the microprocessors family from Intel 

(INTEL, 2007). 

 

Essentially, there are two main flows when designing digital ICs that lead to 
two contrasting situations: fast design and high-performance design. Fast design here 
means short time-to-market; for this kind of approach for IC design, a standard-cell 
design methodology is the most commonly used approach. On the other hand, design 
for high-performance uses a full-custom design methodology, as this kind of design is 
completely customized to the high performance in terms of area, speed and power 
consumption (DEMICHELI, 1994).  

In full-custom design the logic and physical synthesis attain usually the highest 
performance and smallest size, making use of the most advanced technologies (CHEN, 
2000). It is the most technology dependent design approach, since each switch element 
present in every cell is manually fine-tuned in order to explore all the performance 
advantages that a given technology can deliver. The benefits of full-custom design in 
general include reduced area, performance improvements and also the ability to 
integrate analog components and other pre-designed components such as 
microprocessor cores that form a System-on-Chip (SoC). The disadvantages of full-
custom can include increased manufacturing and design time, and much higher skill 
requirements on the part of the design team. 

The proposal of standard-cell design is to reduce the implementation effort by 
reusing a library of cells. The advantage of this approach is that the cells only need to be 
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designed and verified once for a given technology, and they can be reused many times, 
thus amortizing the design cost. The disadvantage is that the constrained nature of the 
library, especially due to the limited number of cells, reduces the possibility of fine-
tuning the design (RABAEY, 2005). According to Scott (1994), the quality of a 
synthesized design based on standard-cells depends on three main components: (a) the 
synthesis tool, (b) the place and route tools, and (c) the target cell library. Choosing the 
right cell library may have a significant impact on the characteristics of a circuit 
(VUJKOVIC, 2002; SECHEN, 2003).  

Cell library is a finite set of logic cells that implements different Boolean 
functions with different drive strengths and topologies. Traditionally, the technology 
mapping methods rely on static pre-characterized libraries aiming delay, area and power 
optimizations. Each cell in the library is fully characterized through many simulations, 
resulting in a set of accurate information about the behavior of the cell. According to 
Sechen (2003), the design and characterization costs of a library are expensive. 
Therefore, commercial libraries are typically composed of few hundred combinational 
cells and sequential elements (latches and flip-flops) for which layouts have been 
optimized for a particular technology. As a result, designers are restricted to use these 
cells in their circuits. An example of a well-known and widely used academic library is 
presented in Appendix A.  

Technology mapping is the procedure of expressing a given Boolean network 
in terms of logic cells or gates. Typically, the objective function aims the optimal use of 
all gates in the library to implement a circuit with critical-path delay less than a target 
value and minimum area. The most existing techniques for technology mapping are 
based on pre-characterized cell libraries (KEUTZER, 1987; KUKIMOTO, 1998;  
STOK, 1999; MISCHENKO, 2005). These techniques are also known as library-based 
methodology. Ideally, technology mapping algorithms and tools should be able to 
satisfy several goals and to handle different libraries. It is a quite hard task since the cell 
libraries normally have a different set of cells that implements a limited set of logic 
functions. A library of fixed size restricts the choices for covering a given circuit. Figure 
1.2 shows the typical design flow considering technology mapping methodologies based 
on libraries with a fixed size. 

Some works in the literature try to optimize logic cells on specific circuits and 
implementations. Typical optimizations have been limited to the design of buffers and 
inverter chains, implemented to minimize power consumption (MA, 1994) and delay 
(VEMURA, 1991; PRUNTY, 1992). Other ones try to optimize logic cells from 
existing cell libraries in order to adjust them to the circuit requirements (FISHER, 
1996). Recent researches advocate that transistor-level optimizations are a powerful 
technique to improve the circuit performance (PANDA, 1998; BHATTACHARYA, 
2002; YOSHIDA, 2006). In Roy (2005) some parts of the circuit are removed and 
replaced by optimized cells to attain the technical specification. This replacement is 
done as a post-processing step, after the circuit has been defined by the technology 
mapping task. In this strategy, the final circuit is composed by two types of cells, 
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derived from commercial library container and handcrafted complex gates. Figure 1.3 
illustrates this idea, indicating a considerable propagation delay gain for the circuit. 

 

 

Figure 1.2: Digital circuit design methodology using predefined cell library 
(MARQUES, 2007). 

 

 

Figure 1.3: Circuit optimization using complex gates (ROY, 2005). 

 

Usually, cell libraries are composed of a few tens of logic cells, due to the 
engineering effort to design and characterize each one. These cells have been previously 
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tested and validated, and all information about their behavior is described in a database 
which, in turn, is used during the technology mapping procedure. 

Some researchers have observed that large cell libraries could lead to a better 
circuit implementation (VUJKOVIC, 2002). However, the number of potential logic 
function increases exponentially with the number of inputs. Therefore, it is not possible 
to characterize and implement all existing functions in a huge library. The processes of 
electrical characterization and layout generation are extremely computing demand, 
making the possibility of having large cell libraries unfeasible (SECHEN, 1996). 

Other approaches for technology mapping propose techniques based on 
automatic cell generators. These approaches are known as library-free (BERKELAAR, 
1988; REIS, 1998; STOK, 1999; JIANG, 2001; CORREIA, 2004; MARQUES, 2007). 
Instead of having a predefined static library, they assume that arbitrary cells can be 
generated on-the-fly through a cell generator, increasing the matching search space. The 
mapping algorithm defines the set of cells required in the circuit implementation, and 
this virtual library is used as input for a cell generator which provides the logic cell 
layouts that are further used in the physical synthesis. Figure 1.4 illustrates the logic 
synthesis flow of this approach. 

 

 

Figure 1.4: Digital circuit design methodology using virtual library (MARQUES, 2007). 

 

Notice that, the quality of mapped circuits is highly dependent on the richness 
of the library in terms of the number of implemented logic functions, drive strengths 
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and topologies. Libraries that implements a large number of Boolean functions leads to 
better results when compared to sparsely populated libraries. In Keutzer (1987) the 
impact of a library size was investigated. In this work it was demonstrated that a better 
area optimization can be achieved using large libraries. As Jiang (2001) has observed, 
the most recent device technologies encourage the usage of complex gates in deep-
submicron circuits. It leads to better circuit performance. But, the main barrier for 
virtual library approach is the dependency of a good layout generator and the lack of 
accurate information about the cell behavior. Due to this, static pre-characterized 
libraries are still popular in the industry. This work addresses two problems associated 
with this flow. The first one is to find good quality transistor networks to implement the 
cells in the library. The second one is to use fast models to estimate cell area, timing and 
power on-the-fly. 

 

1.1 Proposal of this Thesis 

 

According to the previously statements, this work addresses the digital cell 
implementation and optimization at the transistor cell level. It is known that different 
logic styles result in transistor networks with different electrical and physical behavior. 
Although several transistor network styles are available, the standard-cell industry keeps 
using the standard CMOS. The library-free approach is a promising solution, but it 
presents the disadvantage of lacking the characterization information. The 
characterization process is expensive in terms of CPU, making impracticable the use of 
this technique to generate and evaluate cells on-the-fly. An alternative is the use of 
estimation techniques. By using fast and efficient methods to obtain estimative about 
the logic cells behavior, it is possible to generate library cells considering these 
estimated information as costs, avoiding the characterization process. 

The estimation approach, adopted as solution in this work, not only can be used 
to feed library-free technology mapping flow, but also as a method to generate 
information about the behavior of cells to compose library containers. Thus, it is 
possible to generate specific libraries composed of cells with estimated costs regarding 
area, timing and power. These libraries are suitable to be used in traditional standard-
cells design flow. The circuits can be mapped, tested and simulated. Once they meet the 
design constraints, them the designer can effectively implement the layout of the cells to 
obtain the final circuit. Commercial layout generators are available in the market, like 
the Nangate Library Creator, which accepts Spice netlist description as input to 
automatically generate the cell layout (NANGATE, 2008).  

In this sense, this thesis proposes an automated flow for generating transistor 
cell networks in different logic styles and a technique to obtain information about the 
behavior of these cells through estimation methods. Furthermore, scientific 
contributions of this thesis are also: 
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• A new BDD-based transistor network logic style that respects the 
minimum number of switches in series to implement a given logic 
function; 

• A factorization algorithm to optimize logic expressions and electrical 
networks; 

• CAD tools for logic synthesis of Boolean functions, as well as for 
automatic generation and evaluation of transistor networks. 
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2 LOGIC SYNTHESIS AND SWITCH NETWORKS 

Integrated circuits design presents a set of concepts and terminologies very 
specific and necessary for the understanding of the field. More specifically, logic 
synthesis definitions must be reviewed in order to permit the whole understanding of 
this work. The goal of this chapter is to present the conceptual framework on top of 
which work is built. This chapter is organized as follows. Firstly, this chapter introduces 
these concepts that will be used in following chapters. Secondly, this chapter presents a 
brief discussion about the history of switch theory and about logic switches. Finally, it 
discusses possible optimizations performed at the logic level, presenting a factorization 
method to achieve minimum literal Boolean expressions and a new kind of transistor 
network derived from BDD. For the following chapters, it is assumed that the reader has 
the knowledge of definitions described herein. 

 

2.1 Basic Concepts and Terminology 

 

The Boolean set B is defined as a two element set, B = {0, 1}, whose elements 
are interpreted as logic values, typically ‘0’ = false and ‘1’ = true. An n-dimensional 
Boolean set B

n is composed of all the distinct Boolean vectors of length ‘n’. For 
instance B0

={∅}, B1
=B={0, 1}, B2

={00, 01, 10, 11} and B3={000, 001, 010, 011, 100, 

101, 110, 111}. It is easy to observe that B
n has 2

n elements. A Boolean function 
describes how to determine a Boolean value output based on some logic calculation 
from Boolean input vectors of length ‘n’. A Boolean function is a function of the form 
f: B

n
 → B, where B = {0, 1} is the Boolean domain and where ‘n’ is a non-negative 

integer. A Boolean function f: Bn
 → B can be viewed as a function whose domain is 

composed of the set of all n-bit Boolean vectors (that means B
n, which contains 2n 

elements) and whose image is composed of unidimensional Boolean vectors (i.e. B1
=B, 

which contains two elements). So every distinct n-input Boolean vector of Bn can point 
to a distinct one dimensional Boolean vector. This way, a function f: B

n
 → B has 2

n 
input positions pointing to a fixed value from B. As changing the value pointed by a 
single input vector changes the logic function, there are 

n22  such functions, as the 
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output has 2n positions that can be associated to two distinct values from B. In the case 
where n = 0, the function is simply a constant element of B.  Boolean functions are also 
called logic functions. 

Boolean variables are variables defined in the Boolean domain and generally 
assigned using alphanumeric characters. Examples of Boolean variables are: a, b, c, x0, 
x1, y2; if they are defined over the Boolean set. Boolean variable can assume arbitrary 
values in the Boolean domain B, i.e. Boolean variables can assume the values ‘0’ or ‘1’. 

There are three basic Boolean operators: AND (“*”), OR (“+”) and NOT (“!”), 
which can be applied to Boolean values or functions. AND operator returns one (or true) 
when all the operands are true and returns false for the other cases. OR operator returns 
zero (or false) when all the operands are false and returns true otherwise. AND and OR 
operators are binary operators, as they require at least two elements to perform the 
operation. NOT operator, also called inversion or negation operator, is unary and can be 
applied to one element alone. NOT operator returns zero when the operand is one and 
vice-versa. The operands may be Boolean functions or Boolean constants. 

Phase or polarity of a Boolean variable indicates if it is used in its direct or 
inverted form. Positive phase specifies the use of a variable without inversion, while 
negative phase specifies the use of its complement. A variable in its negative phase is 
noticed by the anteriority of a NOT operator (‘!’) as, for instance, !a, !t, etc. Literal is 
an instance of a Boolean variable in its positive or negative phase. Examples of literals 
are: a, !a, ,x0, !y2. Notice that a and x0 are positive literals, while !a and !y2 are 
negative literals. 

Input vector is an element that indicates the value of each Boolean variable in 
a given Boolean function. For a certain number of variables there is 2n input vectors, 
where n is the total number of Boolean variables. 

Boolean expressions or Boolean equations are representations of a Boolean 
function. Each Boolean function is distinct, as it represents just one association f : Bn → 

B. However, it is possible to write a Boolean function in different forms using Boolean 
operators. For example, the two following Boolean equations represent the same 
Boolean function: 

  
Eq1 = a * (b * c) + d * (e + c) (2.1) 

Eq2 = c * (a * b + d) + d * e (2.2) 

 

Boolean functions can also be represented in tabular form known as truth 
table. In a truth table representation, the output values are shown according to all 
possible input combinations. In other words, the truth table is a representation form 
where all function values are specified for all domain function. The truth table can be 
built for any number of input variables. However, all possible combinations for these 
input variables must be present. It means that each line of the truth table represents an 
input vector and its respective output value. Table 2.1 illustrates truth tables for basic 
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Boolean functions with two inputs A and B. Notice that those are functions defined as 
B

2→B; which means that the input vectors [A,B] can assume any of the four (22=4) 
values in B2

={00, 01, 10, 11}. The AND and OR operators were already defined above. 
The operator XOR returns ‘1’ when an odd number of inputs are equal to ‘1’. The 
operators NAND, NOR and XNOR are the inverted versions of AND, OR and XOR, 
respectively. 

 

Table 2.1: Truth table for the 2-input basic functions. 

A B AND OR XOR NAND NOR XNOR 

0 0 0 0 0 1 1 1 
0 1 0 1 1 1 0 0 
1 0 0 1 1 1 0 0 
1 1 1 1 0 0 0 1 

 

For a given Boolean function, the set of input vectors that produces an output 
value ‘1’ is called on-set. In the same way, the set of input vectors that produces an 
output value ‘0’  is called off-set. 

A product of literals is an AND logic operation between these literals. 
(a*b*c*e) and (!a*c*!d) are examples of products. The sum-of-products (SOP) 
representation is the Boolean equation composed of OR logic operation in between two 
or more products. The following equations are examples of SOP: 

 

Eq3 = !a * b * !c * d + a * b * !c * !d + !a * !b * c * d (2.3) 

Eq4 = x0 * !x1 * x2 + x1 * x2 * !x3 + !x0 * x1 * !x2 * x3 (2.4) 

Eq5 = (a * b * c) + (!a * c * d) + (b * !c * !d) (2.5) 

 

There is a straightforward manner to derive a SOP representation from a truth 
table. To do that, it is only necessary to extract all lines (products), that present output 
values one in the truth table, and to implement OR operations between these products. 
Such equation is known as a Boolean equation in the SOP canonical form. Canonical 
forms have this name because they preserve a one-to-one relation with the truth table, 
meaning that there is only one canonical SOP per Boolean function, even if many 
different non-canonical equations can exist. Some of the non-canonical equations can 
present a reduced number of literals compared to canonical SOPs. As a consequence, a 
canonical SOP is not necessarily the minimal representation for most Boolean functions. 
The procedure of building a SOP with minimum number of literals is more elaborate, 
and can be done with algorithms like Quine-McCluskey (QUINE, 1955; 
MCCLUSKEY, 1956). It is important to notice that all variables must be present in each 
product to guarantee that the equation is in the canonical form. Moreover, it cannot 
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contain repeated products. An example of equation in canonical form is the equation 
(2.3). 

The product-of-sums (POS) representation is very similar to the sum-of-
products one. The difference is that the Boolean equation is composed of AND logic 
operation in between two or more sums of literals. Also, to build the sums, all lines that 
present output value ‘0’ in the truth table are considered. Notice that, similar to SOP, all 
variables must be present in each sum to guarantee the POS in the canonical form. 
Again, a canonical POS is not necessarily the minimal representation of Boolean 
functions. 

A product containing all variables that compose the function is called 
minterm. A minterm keeps a unique relation with just one line of the truth table. The 
Table 2.2 illustrates a truth table for a 3-input function and the minterms for each line.  

 

Table 2.2: Relation between minterms and lines of the truth table. 

A B C Minterm Equation 
0 0 0 m0 !A*!B*!C 
0 0 1 m1 !A*!B*C 
0 1 0 m2 !A*B*!C 
0 1 1 m3 !A*B*C 
1 0 0 m4 A*!B*!C 
1 0 1 m5 A*!B*C 
1 1 0 m6 A*B*!C 
1 1 1 m7 A*B*C 

 

Implicant minterms are all minterms whose the function value is equal to ‘1’. 
Thus, as mentioned before, a canonical SOP is the one composed of all implicant 
minterms of a given logic function. 

A sum containing all variables that compose the function is called maxterm. A 
maxterm also keeps a unique relation with just one line of the truth table. The Table 2.3 
illustrates a truth table for a 3-input function and the maxterms for each line.  

Cube is a set of minterms. While a minterm presents a relation with just one 
line of the truth table, a cube presents a relation with one line or a set of lines of the 
truth table. For instance, considering the two minterms (!a*b*c*!d) and (!a*b*c*d), that 
compose the equation f = (!a*b*c*!d) + (!a*b*c*d), it is possible to group them 
through equation manipulations, as follow: 

 

(!a*b*c*!d) + (!a*b*c*d) = (!a*b*c) * (!d + d) = (!a*b*c) * 1 = (!a*b*c) (2.6) 
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This new simplified product (!a*b*c), derived from the two given minterms, is 
called a cube. When a cube is only composed of implicant minterms, this cube is called 
an implicant cube. 

 

Table 2.3: Relation between maxterms and lines of the truth table. 

A B C Maxterm Equation 
0 0 0 M0 A+B+C 
0 0 1 M1 A+B+!C 
0 1 0 M2 A+!B+C 
0 1 1 M3 A+!B+!C 
1 0 0 M4 !A+B+C 
1 0 1 M5 !A+B+!C 
1 1 0 M6 !A+!B+C 
1 1 1 M7 !A+!B+!C 

 

The Karnaugh map representation is an indexed matrix that permits to 
identify the adjacent minterms. Figure 2.1 illustrates a 4-input Karnaugh map for the 
minterms (!a*b*c*!d) and (!a*b*c*d). In this example, the values in the columns 
represent the logic values for variables ‘a’ and ‘b’, while the values in the lines 
represent the logic values for variables c and d. 

 

 

Figure 2.1: Karnaugh map illustration. 

 

As shown in the example, it is possible to group the two adjacent minterms to 
obtain a cube. When a cube cannot be grouped with any other cube or existing minterm, 
in order to form a larger cube, then this cube is called a prime cube. 

When grouping adjacent minterms to compose cubes, some important 
definitions become apparent. The first one is related to the cube literal cost of a SOP. 
The cube literal cost of a SOP is the maximum number of literals in a single cube of the 
SOP. Consider the function given by the following prime irredundant SOP. 

 

f = !a*!b*!d + !a*b*!c + a*!d*!e + a*c*d + b*c*!d*e (2.7) 
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The cube literal cost of this SOP is four, as it has cubes with up to four literals. 

The second definition is related to the prime irredundant SOP with 
minimum cube literal cost (SCHNEIDER, 2007). A prime irredundant SOP with 
minimum cube literal cost for function f is a prime irredundant SOP where the 
maximum number of literals in a single cube is minimum for function f. Consider the 
function given by the following prime irredundant SOP. 

 

f = !a*!b*!d + !a*b*!c + a*!d*!e + a*c*d + !a*!d*e + a*b*c (2.8) 

 

The cube literal cost of this SOP is three, as it has only cubes with three 
literals. The prime irredundant SOPs given by equations (2.7) and (2.8) represent the 
same logic function. It is possible to show that the SOP in equation (2.8) is a prime 
irredundant SOP with minimum cube literal cost for function f, as no solution 
containing cubes with at most two literals is possible for f. 

Consider now, as an example, the function f given by equations (2.7) and (2.8). 
The cubes !a*b*!c and a*c*d are essential primes, the remaining cubes and minterms 
are shown in the covering table of Table 2.4. It is possible to see that the cube 
b*c*!d*e, with four literals, would be chosen in a minimum literal cost SOP solution 
like that presented in equation (2.7). However, this cube can be deleted from the 
covering table, leading to the minimum cube literal cost SOP presented in equation 
(2.8). The deletion of cubes with three literals would lead to an unfeasible covering 
table, as no minterm could be covered.  

 

Table 2.4: Covering table for function f. 

 minterms 
cubes 0 1 4 5 13 16 20 24 28 29 

!a*!c*!d ● ●         
!c*!d*!e ●     ●  ●   
!b*!d*!e ●  ●   ● ●    
!a*!b*!d ● ● ● ●       
!a*!d*e  ●  ● ●      

b*c*!d*e     ●     ● 
a*b*c         ● ● 
a*c*!e       ●  ●  
a*!d*!e      ● ● ● ●  

 

As mentioned before, for a given number of input variables there is a well-
defined number of functions. This number is given by 

n22 , where ‘n’ is the number of 
input variables (SASAO, 2000). According to this statement, the number of 2-input 
functions is 16, 3-input functions is 256, 4-input functions is 65,536, 5-input functions 
is 4,294,967,296, and so on. This exponential relation lead to a search space almost 
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intractable if many operations need to be repeated in a set of functions with more than 
4-input. The set of n-input functions can be classified into different classes (set of 
functions) for different reasons: one is to reduce the search space, other is to group 
functions with equivalent or similar implementations. These sets are known as 
equivalence classes, and they may be obtained through input permutation/inversion as 
well as output inversion. P-class, N(in)-class, N(out)-class, NP-class, PN-class, and 
NPN-class are the possible reduced sets (SASAO, 2000; CORREIA, 2001). A class is a 
subset of logically equivalent functions as a result of a specific operation or their 
combination.  

The first possible operation to obtain equivalent functions is the permutation of 
inputs. Table 2.5 presents an example of that operation. Notice that the input vectors are 
ordered differently for the truth tables of f2 (ABC ordering) and f4 (BCA ordering). The 
two functions are equivalent as once the permutation of inputs is done the truth tables 
are identical. Thus, f2 and f4 are equivalent by permutation, and can be gathered in a P-
class set. The second operation to achieve equivalent functions is the inversion of 
inputs. In a similar way, Table 2.6 shows an example of obtaining an N(in)-class of 4 
equivalent functions from this operation. In this case, f1, f2, f4 and f8 are equivalents. 
The last operation used is the inversion of the output. Table 2.7 illustrates this operation. 
Notice that the three operations can be combined. For instance, NP-classes are obtained 
after combining permutation and inversion of inputs.  PN-classes are obtained through 
permutation of inputs and inversion of outputs. For NPN-classes all operations are 
performed. 

 

Table 2.5: Two P-class equivalent functions. 

ABC f2=AB+C BCA f4=A+BC 

000 0 000 0 
001 1 001 1 
010 0 010 0 
011 1 011 1 
100 0 100 0 
101 1 101 1 
110 1 110 1 
111 1 111 1 

 

Table 2.6: Four N(in)-class equivalent functions. 

AB f1 A!B f2 !AB f4 !A!B f8 

00 1 01 0 10 0 11 0 
01 0 00 1 11 0 10 0 
10 0 11 0 00 1 01 0 
11 0 10 0 01 0 00 1 
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Table 2.7: Two equivalent functions after output inversion. 

AB f9 f6 

00 1 0 
01 0 1 
10 0 1 
11 1 0 

 

Another possible classification of functions is related to their polarity behavior. 
Positive unate function is the one that presents a positive (0→1) transition in its output 
when a positive input variation occurs in one (or more) of its inputs. The AND function 
(f=a*b) is a positive unate function. Negative unate function, in turn, is the one that 
presents a negative transition (1→0) in its output when a positive input transition occurs 
in one (or more) of its inputs. The NAND function (f=!a+!b) is a negative unate 
function. Binate function may present both positive and negative behavior in its output 
when a positive (or negative) transitions are applied in one (or more) of its inputs, 
depending on the values of the other inputs. The XOR function (f=!a*b+a*!b) is a 
binate function. Notice that, unate or binate behavior in a given logic function is always 
related to one of its inputs; for instance the function f=!a*b+a*!c is binate on variable 
‘a’, positive unate on variable ‘b’, negative unate on variable ‘c’ and does not depend 
on variable ‘d’. When all inputs of a logic function have monotonic increasing behavior, 
then it is said that the function is positive unate in all variables. The same occurs for the 
monotonic decreasing behavior, which determines that the function is negative unate in 
all variables. AND and OR logic functions are positive unate in all input variables. On 
the other hand, NAND and NOR ones are negative unate in all input variables. XOR 
function is an example of binate function in all variables. 

Binary Decision Diagram (BDD) is a data structure that can be used to 
represent a Boolean function. The function can be represented as a rooted, directed, 
acyclic graph, which consists of decision nodes and two terminal nodes called 0-

terminal and 1-terminal. Each decision node is labeled by a Boolean variable and has 
two child nodes called child-0 and child-1. The edge from a node to a child-0 represents 
an assignment of the variable to zero. The edge from a node to a child-1 represents an 
assignment of the variable to one (LEE, 1959). 

Figure 2.2 illustrates a BDD of 3-input AND function. In this example, the 
function f is ‘1’ only if X1=1, X2=1 and X3=1. In case a variable is equal to ‘0’, the 
function f presents the value ‘0’ at the output. Notice that, the nodes in a BDD are 
sequentially evaluated until arriving in a terminal node. 
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Figure 2.2: BDD of 3-input AND function. 

 

The basic idea from which the data structure was created is the Shannon’s 
decomposition. A switching function is split into two sub-functions, knows as 
cofactors, by assigning one variable. If such a sub-function is considered as sub-tree, it 
can be represented by a binary decision tree. BDDs are considered the state-of-the-art 
structure for logic synthesis because they can be efficiently used as compact and 
suitable representation of logic functions (EBENDT, 2005).  

In Bryant (1986) a special class of BDDs is proposed. This class is known as 
Reduce and Ordered BDD (ROBDD). A ROBDD presents a fixed variable ordering 
and redundancy removal of BDD edges. The fixed variable ordering guarantees that a 
variable is evaluated just once along the BDD paths. The reduction of a BDD is based 
on two rules. The first one consists of removing BDD nodes that have their two edges 
connected to the same node. The second consists of sharing isomorphic nodes in the 
structure. Figure 2.3 illustrates these two rules. 

 

 
(a) 

 
(b) 

Figure 2.3: BDD reduction: (a) eliminating nodes whose two children are isomorphic 
and (b) merging isomorphic sub-graphs. 
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Due to the fixed variable ordering in ROBDDs, the canonical form concept 
becomes noticeable. As presented before, the canonical concept is the capability of 
representing a logic function in a unique form. That is, equivalent functions are 
represented for isomorphic structures. Notice that, in ROBDDs, the canonical concept is 
valid only for a given fixed variable ordering. It means that two ROBDDs representing 
a function f with variable ordering o1 and o2 are guaranteed to be canonical if and only 
if o1 = o2. 

Another important issue of using BDDs to represent logic functions is related 
to the variable ordering. The size of the BDD is determined by the function being 
represented and the chosen ordering of the variables. For some functions, the size of a 
BDD may vary between a linear to an exponential range depending upon the ordering of 
the variables. As presented in Drechsler (1998) and Bollig (1996) the problem of 
finding the best variable ordering is NP-hard. However, there exist efficient heuristics 
to deal with the problem and to obtain acceptable orders in a reasonable CPU execution 
time (EBENDT, 2005). Figure 2.4 shows two BDD representing the same logic 
function, but with different variable orderings.   

 

 

Figure 2.4: Different variable ordering ROBDDs representing a same logic function. 

 

Examples of academic BDD packages used to manipulate Boolean functions 
are the CUDD (Colorado University Decision Diagram) developed in University of 
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Colorado (CUDD, 2008), and the BuDDy developed in Information Technology 
University of Copenhagen (BUDDY, 2008). 

  

2.2 A Brief History of Switching Network 

 

Switch theory is an old discipline. Back in the 30´s, when Claude E. Shannon 
started his work, the main logic elements were electromechanical, for instance, switches 
and relays. Vacuum tubes, diodes and transistors were used to make logic elements. In 
Shannon (1938) an analysis about relay networks and switching circuit implementation 
is presented. In Shannon (1953a) an investigation about how many contacts are 
necessary and sufficient to simultaneously realize all 16 switching functions of two 
variables was made. In Shannon (1853b) a machine built using selector switches and 
relays was conceived for helping the design of circuits composed of logic elements. In 
those days, the logic elements were very expensive. Also, networks to be realized were 
relatively small, allowing manual logic design procedures. In this context, during the 
50´s (MOORE, 1958) and in the 60´s (HARRISSON, 1965), catalogs of minimum 
switch implementations were produced for the set of 4-input functions. Notice that, 
since old researches were done using relays, only the total number of switches was 
considered, without further investigation on how the arrangements of switches affect 
other characteristics of the circuit, like maximum number of devices in series and 
parallel. Recently, a method to determine the exact lower bound for the number of 
switches in series to implement a combinational logic cell was proposed in Schneider 
(2007). This opened the way for the generation of efficient networks having minimum 
length transistor chains. In the pioneer catalogs of Moore (1958) and Harrisson (1965), 
the lengths of transistor chains was not taken into account. Additionally, Moore and 
Harrisson proved that for most Boolean functions, the minimum implementation was 
not a series/parallel implementation. However, most of the library-free approaches are 
restricted to series-parallel implementations (BERKELAAR, 1988; REIS, 1998; 
CORREIA, 2004). Some exceptions are (JIANG, 2001) and (MARQUES, 2007). Jiang 
mixes pass-transistors with series-parallel implementations. Marques uses the lower 
bound from Schneider (2007) combined with the method presented here for the 
automatic generation of transistor networks with minimum chains in order to minimize 
the depth of a circuit in terms of transistor count. The work proposed here concentrate at 
the cell level, and investigates more efficient area and delay methods to optimize 
transistor networks taking into account the length of chains and the overall transistor 
counts.  
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2.3 Logic Switches 

 

Several different methods have been proposed for implementing switch 
networks. The resulting networks may present different properties, which are not 
described in a comprehensive way in the literature.   

The basic element to implement networks is the switch. This element can be 
called as direct switch, when it conducts by applying a ‘1’ logic value in its control 
terminal, or complementary switch, when it conducts by applying a ‘0’ logic value in 
its control terminal. By composing these elements, it is possible to build arrangements, 
known as logic networks, to allow the interconnection between two different terminals 
according to a given logic function that this network represents. 

Depending of the technology used, these switches can be implemented as 
physical devices. In the currently CMOS technology, they are represented by the 
NMOS transistor (direct switch) and the PMOS transistor (complementary switch). 
Figure 2.5 illustrates the symbolic notation of these elements, and Figure 2.6 presents 
some logic networks representing arbitrary logic function. 

 

 

Figure 2.5: Symbolic notation for PMOS and NMOS transistors. 

 

 

f = a*b + b*!c + !a*!c*d 

 

 

f = a*!b + !a*c + !b*!d 

(a) (b) 

Figure 2.6: Two logic networks representing arbitrary logic functions. 
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When looking at a single two terminal network, it may present the following 
properties: 

• Planar – Networks corresponding to a planar graph (HARARY, 1994). 
This king of graph can be drawn in the plane without crossing lines. In 
the case of networks, it is additionally required that the terminals be 
externally connected without crossing any lines. Planar networks have a 
dual graph, which has the interesting property of being the logically 
complementary. Figure 2.7a illustrates a planar network, while Figure 
2.7b illustrates a non-planar network. 

• Series-parallel – When all switches in the network are connected in 
series or in parallel recursively. A network is series-parallel if and only 
if there is no embedded network having a Wheatstone bridge 
configuration (DUFFIN, 1965). All series-parallel networks are planar. 
This king of network is exemplified in Figure 2.8a. 

• Bridge network – A network with an embedded network containing 
the Wheatstone bridge configuration. A bridge network may or may not 
be planar. A bridge network is never a series-parallel network. Figure 
2.8b presents a bridge network. 

 

Also, some lemmas can be derived from these properties: 

Lemma 1: all series-parallel networks are planar. 

Lemma 2: all planar networks have a dual graph (from which a logically 
complementary network can be derived). 

Lemma 3: all-non planar networks are bridge networks. 

Lemma 4: bridge networks may or may not be planar. 

 

  

(a) (b) 

Figure 2.7: (a) Planar network, (b) non-planar network. 
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(a) (b) 

Figure 2.8: (a) Series-parallel network, (b) bridge network. 

 

When thinking about networks composed of two planes and about 
complementary properties, they can be basically classified as logically and/or 
topologically complementary.  

A network is said to be logically complementary when there is one and only 
one of the networks conducting for every input vector condition. A topologically 
complementary network is the one that presents dual planes. Figure 2.9 exemplifies 
this idea. The usual method of construction of the dual is the following: 

 

1. In a given planar graph, place a point in every region of the graph. In 
Figure 2.9a this points are labeled as 1, 2, 3 and 4. 

2. Draw all lines connecting these points through one branch of the graph. 
It is illustrated by the dotted lines in Figure 2.9a. 

 

Notice that the external points, which are not inside to any internal face of the 
graph, correspond to the terminals. It is done for the engineering purpose. Pay attention, 
in graph theory, it is not necessary to set two external points to build the dual graph 
(HARRISSON, 1965). 

It is important to keep in mind that dual networks are implemented through 
dual graphs. These networks are logically complementary, but they are not derived from 
complementary graphs. Complementary graphs are a totally different concept, which do 
not lead to generation of logically complementary networks. 
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(a) (b) 

Figure 2.9: (b) Dual networks obtained through (a) dual graphs. 

 

In the example presented in Figure 2.9b, the dual networks are bridge 
networks. But the same principle can be used to generate series-parallel networks, if the 
original graph is a series-parallel implementation. Another important point is related to 
the planar characteristic. If such graph is not planar, then it is not possible to derive the 
dual graph from it (HARARY, 1994). In this case, algorithms for graph planarization 
could be applied. 

Branch-based is a logic network where the transistor arrangements are 
composed only by branches. It presents purely series-transistors connections to attach 
two terminal nodes (PIGUET, 1984; PIGUET, 1994; PIGUET, 1995; NÈVE, 2001). 
The main advantage of transistor branches is the absence of interconnections among 
branches, which is a positive characteristic in terms of physical design representation 
point of view. The construction of branch-based networks is rather simple. It takes a 
sum-of-products and translates each product into an AND-stack in the network. Figure 
2.10 presents an example of a branch-based network. 
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Figure 2.10: Branch-based network. 

 

Additionally, logic networks can be also classified as single-rail or dual-rail. 
Single-rail networks provide the connection between two nodes. Dual-rail networks are 
capable of attaching one node to other two terminals, which very frequently are one for 
the direct polarity signal and one for the inverted polarity signal. Also, in dual-rail 
structures, a codification using the direct and inverted signal is done in order to 
guarantee the right signal propagation along circuit paths. Dual-rail logic is commonly 
used to build asynchronous circuits. Figure 2.11 illustrates the concept of a single and a 
dual-rail network. 

 

 

(a) (b) 

Figure 2.11: (a) Single-rail network, (b) dual-rail network. 

 

Basically, logic network can be constructed with their logic planes in a shared 
structure or not. In figure 2.12a the logical network is composed of two disjoint planes, 
where the pull-up and pull-down networks are implemented separately. Figure 2.12b 
illustrates a logic network built in a non-disjoint plane, where the pull-up and pull-
down networks are sharing switch elements in a single plane. 
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(a) (b) 

Figure 2.12: (a) Disjoint planes, (b) non-disjoint planes. 

 

The pull-up plane is the one that connects the output terminal to the ‘1’ logic 
value, while the pull-down plane connects the output to the ‘0’ logic value. 

 

2.4 Network Generation 

 

Two main approaches exist to synthesize switch networks. The first approach 
is the equation-based solution. In this approach, an equation is translated to a switch 
arrangement. The methods following this approach are devoted to the synthesis of 
series-parallel implementations, since bridge networks cannot be obtained through 
series-parallel association. Figure 2.13a shows a logic network obtained from the on-set 
equation presented in equation (2.9). Figure 2.13b illustrates a logic network obtained 
from the off-set equation presented in equation (2.10). 

 

on-set = a*b + b*!c + !a*!c*d (2.9) 

off-set = a*!b + !a*c + !b*!d (2.10) 

 

Notice that, in both cases, it is possible to attain the topologically and logically 
complementary networks using the dual graph generation.  
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(a) (b) 

Figure 2.13: (a) Network derived from the on-set and its dual network, 
(b) network derived from the off-set and its dual implementation. 

 

Also it is possible to obtain the logically complementary network directly using 
the on-set equation to implement a given logic plane and using the off-set equation to 
generate the other. In this case, the obtained networks are not topologically 
complementary. Figure 2.14 illustrates this idea, showing the networks achieved from 
equation (2.9) and (2.10). 

 

 

Figure 2.14: Logically complementary networks obtained from 
the on-set and the off-set equations. 
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The second approach is a graph-based solution. In this approach a graph that 
represents the function is created (as a BDD, for instance), optimized and then a switch 
network is derived from this graph. This kind of approach is interesting as it can be used 
to derive both series-parallel as well as non series-parallel (bridge) implementations 
(ROSA, 2006). 

The basic action when deriving a switch network from a BDD is to associate a 
controlled switch to each arc of a BDD node. This concept is illustrated in Figure 2.15, 
which shows a BDD node and four possible ways to associate switches: transmition 
gates, NMOS transistors only, PMOS transistors only, and mixed PMOS/NMOS 
transistors (POLI, 2003). 

 

 

Figure 2.15: BDD node and associated switches. 

 

When a non-disjoint transistor network is built with a pair of PMOS and 
NMOS transistors associated to BDD edges, there is the possibility to derive disjoint 
networks from it. The procedure is straightforward, as it is illustrated in Figure 2.16. 
Notice that in the first case, Figure 2.16a, the network in a non-disjoint and a dual-rail 
implementation. On the other hand, Figure 2.16b and 2.16c are disjoint and single-rail 
implementations. 
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Figure 2.16: Networks derived from a BDD. 

 

As an effect of using disjoint planes, the number of switches into the logic 
networks remains the same, but the number of nodes increases. Another important point 
is that, as the number of nodes increases while the number of elements remains the 
same, the number of connections to be performed among elements is reduced. This 
effect is visible in Figure 2.16. 

The most recent work regarding switch network synthesis was developed by 
Kagaris (2007). In this work the authors proposed a methodology to achieve bridge 
networks in order to optimize the circuit in terms of transistor count. A preliminary 
version of it appears in (KAGARIS, 2006). The switch network is built explicitly by 
computing the most economical placement for the next product term of the function in 
the currently constructed transistor network. The most economical placement is chosen 
each time among several alternatives, one of which is bridging. 

The basic idea of the algorithm is, from a SOP expression, to construct edges in 
a graph that correspond to transistors in a switch network. These edges are paths in the 
network and they are positioned and/or replaced in order to represent the logic function 
in the input SOP expression. Figure 2.17 exemplifies this procedure for a given set of 
terms. 
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Figure 2.17: Bridge network implementation (KAGARIS, 2007). 

 

Observe that this approach is able to generate complex gates using bridges 
arrangements. Nevertheless, depending of the input logic function only series-parallel 
networks may be achieved. Another important point is related to the logically 
complementary plain. The method presented in the work must be applied separated for 
the on-set and off-set SOPs. Thus, the two logic plains are generated in a separated way, 
not necessarily leading to topologically complementary solutions. 

 

2.5 Network Optimization 

 

One important step for the first approach is the minimization of the logic 
expressions. There are several methods to find the best expression descriptions. The 
basic idea is to find the expression with minimal number of literals. Thus, this 
description can be directly converted into a switch network that will present a one-to-
one correspondence in numbers of literals and switch elements. 

Karnaugh maps (KARNAUGH, 1953) and Quine-McCluskey (QUINE, 
1955; MCCLUSKEY, 1956) are the main exhaustive search techniques for two-level 
minimization. Although they are typically not practical algorithms, they are easy to use 
and simple to understand. The Espresso algorithm (MCGEER, 1993) is a heuristic 
method for two-level minimization that is computationally less expensive and presents 
good results. An example of two-level minimization can be seen in the Figure 2.18. It 
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shows the Karnaugh map for the Boolean function f. The minimal cover in terms of 
literals for the on-set is composed by four cubes. It can be represented through the 
equation (2.11). Equation (2.12) shows the minimal cover in terms of literals for the off-
set of the function f. Another possibility to the minimal cover in terms of literal is to 
perform a minimum cube literal cost cover, as presented in Section 2.1. 

 

 

Figure 2.18: Karnaugh map for the Boolean function f. 

 

on-set(f) = !a*c*d + !a*b*!c + a*!c*d + a*b*c (2.11) 

off-set(f) = !a*c*d + !a*b*!c + a*!c*d + a*b*c (2.12) 

 

Both equations (2.11) and (2.12) can also be represented as factorized forms. 
According to Brayton (1987), a factorized form can be defined as a representation of a 
logic function that is either a single literal or a sum or product of factorized forms. It is 
very similar to a parenthesized algebraic expression. This parenthesized representation 
seems to be the most appropriate representation for use in multilevel logic synthesis. As 
an example, consider the representations in the Figure 2.19. The parenthesized 
expression can be seen as a logical operator tree. Any representation with more than 
two levels is called a multilevel representation. In this example, the logical operator 
tree has depth four. 

Some methods for obtaining different factorized forms for a given logic 
function are available in the literature. These factorization methods range from purely 
algebraic ones, which are quite fast, to so-called Boolean ones, which are slower but 
are able to give better results. Since obtaining an optimal factorization for an arbitrary 
Boolean function is an NP-hard problem, all practical algorithms for factoring are 
heuristic and provide a correct, logically equivalent formula, but not necessarily a 
minimal solution.  
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Figure 2.19: Multilevel representations. 

 

Accorting to Mintz (2005), factorization is the procedure of deriving a 
factorized form from a SOP form of a function. For example, if f = a*e+a*d+b*c then 
one possible factorization of f is a*(e+d)+b*c. In most logic synthesis systems Boolean 
functions are internally stored in the SOP form (SENTOVICH, 1992; KARMA, 2008). 
However, the number of elements in a switch network is more accurately represented by 
the number of literals in the factorized form of the network. This means that an efficient 
factorization method is required in order to minimize a switch network. An exact 
method for computing the best factorized form of a Boolean function was presented by 
Lawler (1964). Also, heuristics methods were proposed to provide a correct, logically 
equivalent form, but not necessarily a minimal length solution in tolerable computing 
time (BRAYTON, 1987; MINTZ, 2005). 

The factorization does not influence the number of switches in series, if only 
algebraic operations are applied. Boolean factorization can change the number of 
switches in series. Both kinds of factorization (Boolean and Algebraic) affect the 
number of parallel branches in a network. As a result, factorization can reduce the 
number of switches in series in the dual of a series-parallel network. Consider the 
example given by the following on-set and off-set equations: 

 

on-set = c*f + c*b*e + f*b*e + b*a*d + c*e*a*d + f*b*a*d + f*e*a*d (2.13) 

off-set = !c*!f + !c*!b*!e + !c*!b*!a + !c*!b*!d + !c*!e*!a + !c*!e*!d +     

!f*!b*!e + !f*!b*!a + !f*!b*!d + !f*!e*!a + !f*!e*!d 
(2.14) 

 

Equation (2.13) has four literals in the smallest cube. Equation (2.14) has three 
literals in the smallest cube. This way, the switch network for equations (2.13) and 
(2.14) is either a 3-4 (PU-PD) implementation or a 4-3 (PU-PD) implementation, 
depending on polarity assignment. Without factorization, the topologically 
complementary solution from equation (2.13) would be 4-7 (PU-PD) implementations, 
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while the topologically complementary solution from equation (2.14) would be a 3-11 
(PU-PD) implementations. The equation (2.14) can be factorized into equation (2.15). 
Equation (2.15) can be used to implement a topologically complementary switch 
network that respects the minimum number of elements in series. 

 

off-set = (!c+!f) * (!b*!e + (!a+!d) * (!b+!e)) + (!c*!f) (2.15) 

 

Notice that in the example above, the use of factorization allowed to achieve a 
solution that respects the minimum number of switches in series. However, there are 
examples in which factorization can reduce the overall number of switches, but it will 
not be sufficient to guarantee the minimum stack elements implementation given by the 
lower bound introduced by Schneider (2007). 

 

2.5.1 Factorization Through Functional Composition 

 

To obtain minimized literal cost expressions we propose a factorization method 
through functional composition. The main idea of this approach is to use each literal of 
the original equation to compose new terms and to combine these terms to each other in 
order to achieve a logically equivalent factorized expression. By combining small terms 
(with small number of literals) to generate new ones with more literals, it is possible to 
achieve minimized literal cost equivalent expressions in an iterative procedure. 

The method consists in the following steps: 

 

1. The input Boolean function to be factorized is added to a BDD. 

2. For the cofactors of the function: 

• Verify if each literal that composes the sub function contains the 
cofactor, is contained in the cofactor, or not contains neither is 
contained in the cofactor. If the literal contains the cofactor, 
then it is said to be Larger Order (LO) than the cofactor. If the 
literal is contained in the cofactor it is said to be Smaller Order 
(SO) than the cofactor. If the literal not contains neither is 
contained, it is said to be Not Smaller or Larger Order (NO). 

• All literals are stored in a bucket of 1-element. Only literals that 
appear in the function are stored, disregarding literals in other 
polarities. This is done to optimize the algorithm, minimizing 
the number of combinations in the later steps. 



 

 

 

 

46 

• If a literal is equivalent to the input function, then this literal is 
the factorized form. It is not need to compose any term to obtain 
the minimized literal cost equivalent expression. 

• All elements in the bucket are combined to generate new terms. 
These compositions are performed according to the following 
rules: LO AND LO, LO AND NO, NO AND NO, SO OR SO, 
SO OR NO, NO OR NO. 

• The resulting composed elements with ‘n’ literals are stored in 
buckets of n-elements if they represent different sub functions 
of those combined and stored before. This is a Boolean 
equivalence verification, which permits to eliminate several 
terms that do not need to be combined with any other. 

• Compositions are performed to generate all possible sub 
functions of ‘n’ literals. This way, compositions of elements 
with ‘n’ literals are generated until any new composition could 
be obtained, where ‘n’ goes from 2 to the maximum number of 
literals in a same term. 

3. All terms stored in the buckets of the cofactors are unified in a same 
bucket of n-elements, discarding the NO elements. The idea is to use 
only the sub functions which are contained (SO) or which contains 
(LO) the original input function to perform the following combinations.  

4. The literal that is the root variable in the BDD is stored in the same 
bucket. If this variable appears in positive and negative polarity in the 
input function, then both literals are stored. 

5. Compositions are performed for all elements in the buckets, as 
described before. But in this step SO AND LO and SO OR LO 
combinations are also performed, since a final factorized form may be a 
composition of this sort. They main difference in this step is that the 
compositions are performed until to achieve an equivalent term to the 
input function. When this situation occurs, the minimized literal cost 
equivalent expression was found. 

 

The drawback of this method is that for a large number of literals the algorithm 
becomes slow. This is an exhaustive solution for finding the factorized form. It is 
feasible for functions with 5 inputs (no more than 10 literals). For functions with a large 
number of literals the execution time increases due to the possible number of 
combinations. Also, the larger is the number of generated terms, the larger is the 
memory need.  

Figure 2.20 exemplifies the proposed algorithm. The BDD for the input 
function is illustrated in figure 2.20a. The Karnaugh Map of this function is presented in 
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2.20b. The cofactors and their respectively Karnaugh Maps are show in 2.20c and 
2.20d. Figures 2.20e and 2.20f present the buckets obtained from the cofactors. Finally, 
in Figures 2.20g and 2.20h, the unified bucket and the factorized expression are 
depicted. 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 2.20: Factorization through composition 

 



 

 

 

 

48 

2.5.2 BDD Network Optimization through Unateness (OpBDD) 

 

It is possible to use the unateness property of some nodes in the BDD to 
introduce short-circuits (wires) that do not affect the functionality of the derived 
network (ROSA, 2006). This approach was first used by Isaeva (1999) and Poli (2003) 
to reduce the transistor count. 

 

2.5.2.1 Short-circuits and Unateness 

 

The first concept to be understood is presented in Table 2.8, which illustrates 
the truth table from the function presented in Figure 2.21 separated according to the two 
disjoint planes. This table states the straightforward fact that when using disjoint pull-up 
and pull-down planes, one plane is responsible for generating the logic ‘1’, while the 
other is responsible for generating the logic ‘0’. The logic plane that is not producing a 
logic value at the output produces a high impedance value Z. This concept will be used 
to prove theorem 1. 

 

 

Figure 2.21: Network derived from a BDD. 

 

 Theorem 1: Given a node ‘N’ in a pull-up network to be derived from a BDD, 
the active-1 arc of the node is a candidate to become a short-circuit, if the function 
represented by node ‘N’ is a negative unate function with respect to the control variable 
‘a’. 

Proof: A node of BDD represents a Shannon decomposition such as the 
function represented by the node is given by the equation f = !a*f0 + a*f1, where f1 = 
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f(a=1) and f0 = f(a=0). This equation states that f may be constructed from f0 and f1 
through a pair of switches that chooses between f0 and f1, as illustrated in Figure 2.15a. 
The truth table of this portion of the circuit states the value of f as a function of ‘a’, f0 
and f1 is obtained as depicted in Table 2.9. Consider now the faulty circuit in Figure 
2.22b, where the active-1 edge became a short-circuit. In order to the fault to be 
observable at f, the following conditions are necessary. 

a) Variable ‘a’ cannot be equal to ‘1’, as in this case, the arc would have the 
functionality of a short-circuit and the fault would not be detected. 

b) The value of the co-factors f0 and f1 must be different, in order to produce 
an observable fault at f. 

c) The cofactor f1 must be equal to logic one. If f1=0, it would contribute to f 
with a high impedance value Z, therefore the fault would not be detected, since a short 
connected to a high impedance value does not affect functionality. Notice that this 
requirement is a consequence of the creation of a disjoint pull-up plane. 

As a consequence, the only combination of logic values that can detect the fault 
is a=0, f0=0, f1=1. However, if the function f is negative unate in variable ‘a’, by 
definition (of negative unateness) f0=0 ⇒ f1=0. As a consequence, if f is negative 
unate, the necessary conditions to detect the fault will never occur. This way the faulty 
circuit has the same functionality of the original one and the 1-active arc can become a 
short-circuit. 

Corollary: As the considerations for proving theorem 1 are local to the node, 
the introduction of a short-circuit in the final network must be validated case-by-case 
before acceptation. Short-circuits may lead to the introduction of sneak-paths, in some 
cases. 

 

Table 2.8: Truth table for function f, individualized by pull-up and pull-down planes. 

a b c f PU(f) PD(f) 
0 0 0 1 1 Z 
0 0 1 0 Z 0 
0 1 0 1 1 Z 
0 1 1 0 Z 0 
1 0 0 1 1 Z 
1 0 1 0 Z 0 
1 1 0 0 Z 0 
1 1 1 0 Z 0 
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Table 2.9: Truth table for function f and pull-up PU(f) as a function of a, f0 and f1. 

a f0 f1 f PU(f) Fault 
0 0 0 0 Z undetected 
0 0 1 0 Z detected 
0 1 0 1 1 undetected 
0 1 1 1 1 undetected 
1 0 0 0 Z undetected 
1 0 1 1 1 undetected 
1 1 0 0 Z undetected 
1 1 1 1 Z undetected 

 

 

Similarly, this procedure of replacing transistors by short-circuits may be 
applied to the pull-down network. Table 2.10 illustrates the optimizations that may be 
done for each network plane, according to the unate characteristics. 

 

Table 2.10: Transistor edge candidate to become a short-circuit. 

 PMOS Network (pull-up) NMOS Network (pull-down) 
Positive Unate Edge 0 is candidate Edge 1 is candidate 
Negative Unate Edge 1 is candidate Edge 0 is candidate 

  

 

Figure 2.22: Switches controlled by variable a are used 
to choose between cofactors f0 and f1. 

 

2.5.2.2 Dominance and Open-Circuits 

 

The introduction of short-circuits, as described previously, can introduce a 
dominance relationship between paths. A path P1 in a network dominates a path P2 if 
P1-on ⇒ P2-on. This is the case of the pull-down network presented in Figure 2.21c. 
There are three paths connecting the terminals: P1 = a*b, P2 = !a*c and P3 = a*!b*c. 
The path P2 could be simplified to P2 = c, by forcing the active-0 arc of variable ‘a’ to 
become a short-circuit. After this reduction, P2 dominates P3, because P2-on ⇒ P3-on. 
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As a consequence, P3 is not needed for achieving the right functionality for the circuit, 
and P3 is removed by making the active-0 arc of variable ‘b’ an open circuit.  

 

2.5.3 Lower Bound BDD Network (LBBDD) 

 

Sometimes not only optimizations through unateness are sufficient to guarantee 
that the generated network will respect the minimum number of transistors in series. 
Essentially, that occurs because some transistors, which are candidates for optimization, 
cannot be replaced by a short-circuit or by an open-circuit during the optimization 
process since this might lead to an introduction of invalid paths into the circuit. Figure 
2.23 illustrates this concept, where a BDD and its derived disjoint plane are shown. The 
circled transistors in the switch network, Figure 2.23b, are candidates for being replaced 
by short-circuits. The T2 transistor can be replaced by a short-circuit as this 
optimization does not affect the original behavior of the logic function. However, the T3 
transistor cannot be optimized because it might activate the invalid path through T4 and 
T6 arcs, changing the logic function behavior. To assure the correct functionality of the 
network, node duplication can be applied to the original BDD or network structure. 

Node duplication can be performed through different ways. Basically, we can 
analyze the process in two separated approaches: the structural choice and the 
duplication strategy. 

 

 

(a) (b) 

Figure 2.23: BDD and derived switch network. 
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2.5.3.1 The Structural Choice 

 

First of all, it is necessary to choose the appropriate structure to duplicate nodes 
of a given logic function. Generally, BDDs packages are implemented with ROBDDs 
structures. This is due to ROBDDs being a special class of BDDs that have a reduced 
and ordered structure to represent logic functions. Therefore, it will be required a 
different structure to keep the modified BDDs, if a ROBBD package is used to store and 
implement transistor networks. Another alternative to apply node duplication is to do it 
directly into the transistor network. In this method, the BDD structure that stores the 
logic function is not modified and the duplications are performed in the network nodes. 
As a consequence, all new transistors created during the duplications can be stored in 
the existing transistor list and no new structure is necessary to keep the modifications. 
This alternative is extremely efficient in terms of memory requirement and execution 
time as the algorithms for performing it are considerably simple. 

 

2.5.3.2 Duplication Strategy 

 

Another issue about node duplication is related to the choice of the BDD node 
which the duplication will be applied. The Figure 2.24 illustrates two different 
duplications performed on a switch network derived from the same BDD presented 
previously on Figure 2.23. In order to allow transistor T3 to become a short-circuit, two 
specific duplications may be applied to the network. The first option is to duplicate node 
‘C’ of the BDD, consequently, to duplicate T7 and T8 transistor in the network. Figure 
2.24b illustrates this idea. The second option is to perform the duplication on the node 
‘B’, which has the candidate transistor connected. This is shown in the Figure 2.24c, 
where T1 transistor is duplicated. The main reason for evaluating these strategies is to 
determine the number of switches that will compose the network. In this example, the 
two switch networks respect the minimum transistor stack. However, the second one is 
better as it has one transistor less than the first implementation. If considering circuits 
composed by a significant number of gates, the increase of unnecessary switches might 
become a problem in terms of area consumption. 
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Figure 2.24: Duplication strategies for a switch network. 

 

2.5.3.3 Implemented Methodology to Achieve Minimum Transistor Stacks 

 

By using the observations described previously, an optimization method for 
generating networks with minimum transistor stacks from BDDs was implemented 
(ROSA, 2007). In this proposed approach, the duplications are performed directly in the 
transistor network to avoid the need of any additional structure to store data and also to 
avoid unnecessary use of memory. In addition, the two duplication strategies were 
implemented to guarantee a network with a minimum number of transistors. The 
implemented method is basically divided into two steps to achieve the lower bound of 
transistors in series. These steps are presented as it follows. 

Step 1: In this first step a network with disjoint pull-up and pull-down planes is 
generated. In sequence, all the unate nodes in the BDD are identified and the potential 
transistor candidates are separated into a reference list to be optimized subsequently. All 
candidates that are separately connected to a given node are turned into short-circuits. If 
there is a node which has both a candidate and a non-candidate transistor connected, a 
duplication process is applied and the candidate is replaced by a short-circuit. 
Furthermore, the second strategy of node duplication is performed. Thus, two networks 
are generated and the best one is chosen (the one which has the lower number of 
transistors). This procedure is executed as many times as necessary in order to guarantee 
that all candidate transistors are replaced by short-circuits. After performing all 
duplications and replacements, a comparison between the lower bound and the number 
of transistor in series of the network is performed.  If the network respects the minimum 
number of transistor in series the process is finalized, if it does not, the second step is 
executed. 



 

 

 

 

54 

Step 2: Generally, the execution of step 1 is sufficient to guarantee that the 
network length respect the minimum number of transistor chain. However, sometimes it 
is necessary to remove some transistors that cannot be identified as candidates through 
unateness. This situation is illustrated in the Figure 2.25, which the BDD and a derived 
switch network are shown. After executing all possible optimizations, the transistor 
network, Figure 2.25b, presents three transistors in series. The minimum number of 
switches in series for this function is two, what means at least one transistor in this 
network must be removed. To solve this problem the method analyzes all the paths in 
the network. The transistors that belong to those paths that exceed the lower bound are 
selected as candidates to be removed. One by one, they are replaced by short-circuits 
and a functional simulation is performed to verify the network reliability. If the 
simulation result is as expected and there is no more paths exceeding the lower bound, 
the process is finalized. If the result is not as expected, the previous network is restored, 
another transistor is removed and the network is simulated again. This process is 
repeated until the method acquires a network that respects the minimum transistor 
stacks and that corresponds to the original logic function. In this example the T6 
transistor will be removed and, as a consequence, T11 and T15 will be just as well.  

 

 

Figure 2.25: BDD and optimized switch network. 
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2.6 Network Ordering 

 

Switch ordering is another approach used to reach network optimizations. The 
idea is to organize the internal switch arrangement in order to get a better network 
implementation in terms of a given cost. This concept basically may be classified as 
structural ordering or graph-oriented ordering.  

In structural ordering the network is generated in a first step, and, in a second 
step, the switches are placed according to some rules to minimize a specified cost. Only 
elements connected in series in the network can be ordered to produce a new network. 
This is a heavy restriction as it depends on the initial topology of the network. For 
example, it is possible to favor some input signals putting the switches that control these 
signals close to the output. Thus, the network will present better performance for a 
certain input signals, since the distance to the output of the switches controlled by these 
signals will be minimized. The method proposed by Carlson (1992) is an example of 
structural ordering technique. 

In graph-oriented ordering, the data structure is ordered before generating the 
switch network. The idea is the same that structural ordering, but in this case the switch 
network will be generated in a given ordering previously defined in the data structure; 
this way, all orderings are possible and there is no restriction imposed by the original 
graph. The method proposed by Cardoso (2008) is an example of graph-oriented 
ordering technique performed in BDD. 

The BDD size may present from a linear to an exponential relation according 
to the number of variables present in the graph, depending of the represented logic 
function and the variable ordering. It was demonstrated that finding the BDD ordering 
that present the minimal number of nodes is a NP-hard problem (BOLLIG, 1996; 
DRECHSLER, 1998). The amount of possible ordering is determined by the factorial of 
the variables present in the logic function. Thus, it is only possible to obtain good 
solutions using exhaustive approaches for a small number of variables considering 
acceptable execution time. In the practice, heuristic methods like sifting (RUDELL, 
1993) may deliver good results in reasonable time for larger BDDs.  The sifting method 
consists to sequentially swap a variable for all BDD levels and, in a greedy strategy, to 
fix it in the position that the BDD presents the smaller number of nodes. In general, 
BDD ordering methods are based in the swap of adjacent variables. 

Notice that finding the best BDD ordering means to find the BDD with 
minimum number of edges. If think that each edge of the BDD is translated in a 
transistor element, this strategy is extremely important in order to achieve more 
optimized networks. Figure 2.26 illustrates two BDDs representing the same logic 
function and the transistor networks obtained from them. Small BDDs are translated in 
small networks. 

For this work two approaches were implemented. The first one is an exhaustive 
solution, were all variable ordering are tested. This approach can be applied for BDD up 
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to eight variables. For BDD with more than eight variables, the sifting algorithm was 
implemented.  

 

Figure 2.26: Two BDDs and their derived transistor networks. 
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2.7 Conclusions 

 

This chapter presented some basic concepts and terminologies regarding logic 
synthesis and switch networks. A brief history about switch theory was shown, as well 
as networks generation and optimization. A method to factorize Boolean functions was 
presented in order to achieve minimum literal cost expressions, and a transistor network 
derived from BDD, capable of respecting the minimum number of transistors in series, 
was also proposed. 
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3 CMOS LOGIC STYLES 

There are several works in the literature about transistor networks and CMOS 
logic styles. This chapter discusses this topic, presenting alternative logic styles to the 
traditional CMOS standard. In the sequence, a classification is done for two terminal 
disjoint networks. Timing, power and layout are also discussed herein. 

 

3.1 Logic Styles 

 

Logic styles are basically classified as being dynamic or static topologies. 
Dynamic styles rely on temporary storage of signal values on the capacitance of high-
impedance circuit nodes (THORP, 2003). The implementation approach of dynamic 
circuits is simpler and faster but their design and operation are more prone to failure 
because of the increased sensitivity to noise. The most common dynamic logic styles are 
Domino and its variants Dual Domino, Multiple-Output Domino, NORA Domino and 
Zipper Domino (WESTE, 2005). On the other hand, static styles guarantee that, under 
fixed input vectors, each gate output is connected to either Vdd or Vss via a low 
resistance path. Also, the outputs of the gate assume at all times the value of the 
Boolean function implemented by the circuit, meaning the circuit does not need to be 
pre-charged or pre-discharged. Some of the most common static logic styles are Static 
CMOS, Pseudo-NMOS, DCVSL and PTL (RABAEY, 2005). 

The most used logic styles used in the industry are the complementary 
series/parallel CMOS (indicated here as CSP) and the pass-transistor logic (PTL), 
both static and single-rail topologies. Accordingly to Weste (2005), the usual static 
CMOS has the important characteristic of low static power consumption, if compared to 
dynamic logic. Significant power is only drawn when the MOS transistors devices are 
switching between on and off states. Traditionally, logic cells have been implemented 
using static CMOS due to its good performance, advantageous noise immunity, and 
easy and widely known design methodology (LAI, 2006). On the other hand, PTL logic 
style is a promising alternative, since it may employs NMOS transistors only that have 
small capacitance, which may reduce the power dissipation while offering similar 
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performance as static CMOS (BERTACCO, 1997). Also, PTL presents a potential 
reduction of transistors count. For instance, PTL logic style is known for better 
implementations as compared to static CMOS in case of arithmetic circuits, such as 
adders and multipliers where Exclusive-ORs (XORs) dominate (RUPESH, 2004). 
Figure 3.1 illustrates the static CMOS (CSP) and PTL logic styles. 

 

   

(a) (b) (c) 

Figure 3.1: Logic styles: (a) Static CMOS, (b) PTL using only NMOS transistors, 
(c) PTL using transmission gates. 

 

This thesis focuses on generating and evaluating static, single-rail and disjoint 
networks. The next sections will present some logic styles that follow these 
characteristics. 

 

3.1.1 Complementary Series-Parallel CMOS (CSP) Network 

 

The CSP is currently the most used and well established logic style applied by 
the industry. This style is essentially an extension of the CMOS inverter to multiple 
inputs. The major advantage of the CSP structure is the low sensitivity to noise, good 
performance and low power consumption with almost no static power consumption for 
technologies with transistor channel length down to 130nm (WESTE, 2005).  

CSP gate is a combination of two networks, one to build a pull-up plane and 
another to build a pull-down plane. Figure 3.1a shows a logic gate where all the inputs 
are distributed to both the pull-up and pull-down planes. As mentioned before, the goal 
of the pull-up plane is to provide a connection between the output and Vdd anytime the 
output of the logic gate is meant to be ‘1’, based on the input signals. In the same way, 
the task of the pull-down is to connect the output to Vss when the output of the logic 
gate is meant to be ‘0’. The pull-up and pull-down networks are constructed in a 



 

 

 

 

60 

mutually exclusive mode such that one and only one of the networks is conducting in 
steady state. In this way, once the transients have settled, a path always exists between 
Vdd and the output, realizing a high output (representing logic ‘1’), or, alternatively, 
between Vss and the output for a low output (representing logic ‘0’). This is equivalent 
to stating that the output node is always a low-impedance node in steady state. 

 

While constructing CSP pull-up and pull-down networks, the following 
observations should be considered: 

 

• The pull-down is constructed using NMOS devices, while PMOS 
transistors are used in the pull-up. The primary reason for this choice is 
that NMOS transistors produce “strong zeros” and PMOS devices 
produce “strong ones” (RABAEY, 2005).   

• A set of construction rules can be derived to construct logic functions. 
NMOS devices connected in series correspond to an AND function, as 
shown in Figure 3.2a. Similarly, NMOS transistors connected in 
parallel represent an OR function, as illustrated in Figure 3.2b.  

• Using similar arguments, construction rules for PMOS networks can be 
formulated. But in this case, the complementary property can be 
considered. This means that a parallel connection of transistors in the 
pull-up network corresponds to a series connection of the 
corresponding devices in the pull-down network, and vice versa. 
Therefore, to construct CSP logic, one of the networks is implemented 
using combinations of series and parallel devices. The other network is 
obtained using the duality principle by traversing the hierarchy, 
replacing series sub-nets with parallel sub-nets, and parallel sub-nets 
with series sub-nets. The complete CSP logic is constructed by 
combining the pull-up with the pull-down (WAGNER, 2006). 

 

 

(a) Series (b) Parallel 

Figure 3.2: NMOS logic rules: (a) series devices produce an AND operation, 
(b) parallel devices produce an OR one. 

 

Notice that the idea of constructing a CSP logic network is the same that was 
present in Section 2.4. During the 90´s, some BDD-based methods were proposed to 
generate this kind of network (REIS, 1995; GAVRILOV, 1999; LIU, 1999). In practice, 
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they are not useful since there is no need to have a complex and CPU costly algorithm 
to achieve a transistor network that can be directly derived from an equation description. 

 

3.1.2 Gates with Minimum Transistor Chains (NCSP) 

 

It is possible to derive transistor implementations for a given logic function, 
while guaranteeing minimum length transistor stack in the derived network 
(SCHNEIDER, 2006; ROSA, 2007). The methodology to determine the minimum 
possible length for the implementation of a logic function is the one presented in 
Section 2.1, where a minimum cube literal cost SOP is applied. After that, to obtain 
gates with minimum length pull-up and pull-down chains, the method generates a pull-
up plane from the on-set equation and a pull-down plane from the off-set equation, as 
presented in Section 2.4. If it is desired, the inversion of the input logic function f leads 
to a “deMorgan” implementation that exchanges the pull-up and pull-down planes. 
Figure 3.3 shows the NCSP implementations for the function represented by equations 
(3.1) and (3.2). 

 

on-set = a*b + b*c + a*c*d (3.1) 

off-set = !a*!b + !a*!c + !b*!d + !b*!c (3.2) 

 

 

(a) 3-2 cell for direct f (b) 2-3 cell for inverted f 

Figure 3.3: NCSP implementation for equations (3.1) and (3.2). 

 

3.1.3 Mux-Based Network 

 

A multiplexer is a combinational circuit that has 2
n binary inputs and ‘n’ 

control inputs. Its output corresponds to the binary input selected by the control inputs. 
According to Ercegovac (2000), a 2n inputs multiplexer may be used to implement any 
logic function with ‘n’ inputs. It is possible if the input variables of the function are 
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used as control inputs of the multiplexer, and the output values of the function are used 
as binary inputs, to be selected by control inputs. Figure 3.4 shows a multiplexer 
implementing an arbitrary function. 

 

 

Figure 3.4: Mux_8x1 implementing a logic function. 

 

However, it is possible to reduce the multiplexer input number if, beyond the 
constants ‘0’ and ‘1’, a variable or its complement is connected to the multiplexer data 
inputs. Thus, a 2n

 multiplexer can implement any function of n+1 variables. To find the 
signal that should be connected to the multiplexer inputs, it is necessary to perform a 
simplification over the SOP of the function, choosing the variable to be used as input. 
The following equations exemplify this procedure: 

 

out = !a*!b*e1 + !a*b*e2 + a*!b*e3 + a*b*e4 (3.3) 

out = !a*!b*e1 + !a*b*e2 + a*!b*1 + a*b*0 (3.4) 

out = !a*!b*c + !a*b*!c + a*!b (3.5) 

 

Figure 3.5 illustrates the multiplexer obtained for the simplification described 
above. 
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(a) (b) 

Figure 3.5: Mux_4x1: (a) generic symbol, (b) implementing 
function from Figure 3.4 

 

From the electrical point of view, a multiplexer may be implemented using tri-
state inverters. It is a quite simple procedure, since the generated structure is regular. To 
do this, it is necessary to connect the control variables of the multiplexer to the control 
variables of the tri-state inverters, and connect input signals of the inverters to the input 
signals of the multiplexer. Figure 3.6a illustrates this idea and Figure 3.6b shows a 
transistor network for the mux of figure 3.5. 

 

  

(a) (b) 

Figure 3.6: (a) Mux using tri-state inverters, (b) mux_4x1 transistor network. 

 

Notice that, there is the possibility to optimize the mux-based network. 
Usually, it is done when a transistor input is permanently connected to Vdd or Vss. This 
situation leads to short-circuit and open-circuit transistors insertion in the network. 
These transistors may be removed from the network without modifying its logical 
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behavior. Figure 3.7 exemplifies this idea, where the total number of transistors in the 
network is minimized. 

 

 

Figure 3.7: Optimized mux_4x1 transistor network. 

 

3.1.4 BDD-based Networks 

 

Using the switches association described in Section 2.4, and the tricks 
described in Sections 2.5.2 and 2.5.3, disjoint BDD networks can be implemented. To 
do that, the pull-up plane is built using PMOS transistors, while the pull-down plane is 
built using NMOS transistors. Figure 3.8 shows a BDD and the disjoint networks 
derived from it. 

Notice that this logic style is capable of delivering bridge networks, which are 
not possible in the previous networks. Also, like NCSP networks, it is possible to 
achieve networks that respect the minimum number of transistors in series. 
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Figure 3.8: (a) BDD representation, (b) pull-up network and (c) pull-down network 
derived from it. 

 

3.2 Classification of Two Terminal Disjoint Networks 

 

When analyzing pairs of networks it is possible to identify the following 
properties: 

• Series-parallel complementary – When the graphs of pull-up and 
pull-down networks are series-parallel and one is the dual of the other. 
Notice that from a graph theory point of view, dual and complementary 
graphs are distinct concepts. 

• Topologically complementary – When the graphs of pull-up and pull-
down networks are dual. With respect to the previous definition, the 
request of being series-parallel was removed. 

• Logically complementary – When there is one and only one of the 
networks conducting for every input vector condition.  

• Self-dual – When pull-up and pull-down have exactly the same 
topology, including the variables controlling the switches. 

• Short circuit – When there is one input vector where both pull-up and 
pull-down networks conduct, such that Vdd and Vss are short circuited.  
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• Tri-state – When there is one input vector where neither pull-up nor 
pull-down network conducts. Consequently the output is let on high 
impedance state. 

 

 

Figure 3.9: Classification of two terminal disjoint networks. 

 

Figure 3.9 illustrates the classification described above. Notice that there is 
only one network of type 1. This network is the inverter, which is self-dual, series-
parallel, topologically and logically complementary. The group 2 is composed of all 
series-parallel complementary networks. For example, NAND2, NOR2 belong to group 
2. These networks are also topologically and logically complementary. Groups 3, 4, 5, 
6, 7 and 8 do not present series-parallel complementarity. Group 3 is composed of 
networks which are topologically complementary, logically complementary but not self-
dual nor series-parallel. Group 4 is composed of networks which are logically 
complementary but not topologically complementary nor self-dual nor series-parallel. A 
mux-based XOR2 network is an example of network from group 4. Group 5 is 
composed of networks which are topologically complementary, logically 
complementary and auto-dual, but series-parallel. Group 6 is composed of networks 
which are logically complementary and self-dual but not topologically complementary 
nor series-parallel complementary, even each of the planes is individually series-
parallel. An alternative XOR3 implementation is a network from group 6. Group 7 is 
composed of cells that are auto-dual and are not complementary (series-parallel, 
topologically or logically). The Müller cell, widely used in asynchronous circuits, can 
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be considered as a group 7 network if the memory stage at the output is disregarded. 
Finally, group 8 is composed of cells that are neither auto-dual nor complementary 
(series-parallel, topologically or logically). A tri-state network is an example of group 8. 
Figure 3.10 shows an example of network that composes each group of the 
classification presented before. 

 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 3.10: Networks from: (a) group 1, (b) group 2, (c) group 3, (d) group 4, 
(e) group 5, (f) group 6, (g) group 7, (h) group 8. 

 

3.3 MOS Transistor as a Non-ideal Switch 

 

As mentioned before, MOS (Metal Oxide Semiconductor) transistor is a logical 
switch capable of switch-on and to switch-off an electrical path according to the control 
signal applied to its ‘gate’ terminal. Transistors are built over a semiconductor substrate, 
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generally a Si-substrate. Two regions of the substrate contain a high concentration of 
ions, and are called ‘source’ and ‘drain’ terminals. These regions are separated by a 
channel under a strip of polysilicon, known as ‘gate’. Between the gate terminal and the 
substrate portion (‘bulk’) is inserted an insulator to avoid the direct contact of both. The 
gate terminal controls the ions induction in the bulk region, representing the portion 
between source and drain, allowing a current flowing through these regions. Figure 3.11 
illustrates a MOS transistor structure. 

 

 

Figure 3.11: MOS transistor structure. 

 

Two physical dimensions are of special interest in the MOS transistors. These 
dimensions are called transistor width (W) and transistor length (L), indicated in 
Figure 3.11. They are presented under the gate terminal, in the channel of the transistor. 
The main electrical characteristics of a MOS transistor are determined according to their 
dimensions (W and L) and the oxide thickness over the transistor channel.  

Unfortunately, MOS transistor is not an ideal switch. These elements do not 
conduct when ideal logic ‘1’ or logic ‘0’ are applied to their gates. A behavior closer to 
the real functionality condition is that the gate voltage of a MOS transistor must present 
a given bias differential to the source terminal. This minimal voltage that allows the 
transistor conduction is known as threshold voltage (Vth). The threshold voltage of 
PMOS and NMOS transistors may change according to the technology process and bulk 
potential. The important fact is that the transistors start or stop their conduction states 
when this voltage differential occurs in their terminals. Thus, the Vth affects the delay 
properties of the logic cell. 

Another essential element that influences the logic cell performance is the 
channel resistance (Ron) when the transistor is conducting. The resistance definition of 
an electrical path may be expressed considering a current crossing a tri-dimensional 
conductor block, as shown in Figure 3.12. The larger is the block length, the larger is 
the resistance. On the other side, the larger is the block width, the smaller is the 
resistance. In a simple analysis, it could be modeled as: 
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Ron = (ρ * L) / (W * T) (3.6) 

 

where ρ is the intrinsic resistance of the material that composes the block. 

 

 

Figure 3.12: MOS transistor channel dimensions. 

 

The MOS transistor channel can be analyzed as a tri-dimensional block (as 
illustrated in Figure 3.12). The designer can modify the transistor width and length to 
achieve the desired conduction behavior. However, it is necessary to respect the sizing 
constraints (minimum dimension for W and L) defined in the technology.      

On the other hand, the gate terminal of the MOS transistor represents a 
capacitor. It can be viewed as a parallel plate capacitor with the gate on top and channel 
on bottom, with a thin oxide dielectric between. This situation collaborates for a non-
ideal transistor behavior, since that gate capacitance influences the transistor operation. 
Most transistors used in logic design are of minimum manufacturable length because 
this results in highest speed and lowest power consumption. In addition to the gate, the 
source and the drain also represent capacitances. These capacitors are formed between 
the drain or source diffusion and the substrate, and are charged or discharged according 
to the bias condition over the transistor. These capacitances are not fundamental to the 
operation of the devices, but do impact circuit performance and hence are called 
parasitic capacitors. Notice that the drain and source capacitances are also dependent 
of the transistor width. The larger is the W, more capacitance will be present in the 
device. 

All these elements (W, L, Ron, Vth, and capacitances) impact in the logic 
networks characteristics. Timing, power and area present different behaviors according 
to the variation of these elements in a given transistor arrangement. In a general way, by 
performing an adequate transistor sizing it is possible to achieve better networks 
implementation.  

 

 



 

 

 

 

70 

3.4 Transistor Sizing  

 

The designer of a VLSI circuit must consider not only functional correctness 
but timing behavior. Usually, there is some specification of how quickly the circuit must 
produce its output. Once a schematic, transistor-level description of the circuit is 
produced, it must be forced to meet the delay constraint. This is done by assigning sizes 
to the transistors. 

Increasing the size of transistors in a VLSI circuit tends to decrease the delay 
through the circuit, but at the cost of increasing its area. While transistor area is usually 
only a small component of the total chip area, that is only because transistor sizes are 
usually reasonable. Minimizing delay can result in huge transistors. Beyond a certain 
point, however, larger transistors actually increase delay. 

To perform the transistor sizing in this work, the Logical Effort method was 
implemented (SUTHERLAND, 1999). The next section discusses this method. 

 

3.4.1 Logical Effort and Transistor Networks 

 

The logical effort is a gain based method that allows to compare how costly it 
is for a given logic gate to compute the Boolean function it implements, comparatively 
to a reference inverter. This way, the gain across paths in a circuit are distributed 
evenly, and gates which do not have an high effort to compute logic (logical effort) will 
contribute with electrical effort, driving more significant output capacitances relative to 
their input. A straightforward method to compute the logical effort is described in 
(SUTHERLAND, 1999). It considers that the transistors in a complex gate have to be 
sized to have the same drive strength of a reference inverter. As an example, consider 
the circuits described in Figure 3.13a and Figure 3.13b, which implement the same logic 
function. The transistor sizes are shown on both figures, relative to a reference inverter 
where the NMOS transistor has size ‘1’ and the PMOS transistor has size ‘λ’. The 
logical effort for every input is the fanin (input capacitance) divided by the input 
capacitance of the reference inverter (1+λ). In the case of input ‘A’ the logical effort 
values are (5+6λ)/(1+λ) for Figure 3.13a and (5+4λ)/(1+λ) for Figure 3.13b. The circuit 
in Figure 3.13b has a reduced logic effort, as its pull up plane has less series transistors, 
which allow driving the same current with smaller transistors. Table 3.1 presents the 
logical effort values for both circuits. The sizing of the networks and the logical effort 
computations were done in accordance with the methods presented in (SUTHERLAND, 
1999). The transistors sizing consider the transistor chains for every path between the 
output and the power source. The network in Figure 3.13b tends to have a smaller 
intrinsic delay when compared to the network of Figure 3.13a, as the transistors will 
have smaller sizes to deliver the same output current. This reduces parasitic 
capacitances and the intrinsic delay.  
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(a) (b) 

Figure 3.13: Two circuits for the same logic function. 

 

Table 3.1: Logical effort values for circuits in Figure 3.13.  

Circuit A B C D Total 
Figure 
3.13a 

(5+6λ)/(1+λ) (2+2λ)/(1+λ) (5+6λ)/(1+λ) (3+3λ)/(1+λ) 
(15+17λ)/ 

(1+λ) 
Figure 
3.13b 

(5+4λ)/(1+λ) (2+2λ)/(1+λ) (5+4λ)/(1+λ) (3+2λ)/(1+λ) 
(15+12λ)/ 

(1+λ) 
 

3.5 Conclusions 

 

This chapter discussed some alternative logic styles to the CMOS standard. A 
classification for two terminal disjoint networks was compiled in order to demonstrate 
the richness of the switch theory. Also, a discussion regarding the MOS transistor as a 
non-ideal switch element was done. Finally, the transistor sizing was explored and the 
logical effort method was presented.   
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4 ESTIMATION OF COSTS 

To compare the different network implementations, some estimation methods 
can be applied. This chapter presents some methods used in this work to evaluate the 
networks. For delay evaluation, the Elmore delay model is used. For dynamic power 
dissipation, a method that considers the intrinsic capacitance of the transistor network is 
utilized. To evaluate the leakage behavior, this work makes use of three different 
leakage estimation models, which considers both gate and subthreshold leakage current. 
Finally, to evaluate area, a naïve and simple method is present. 

 

4.1  Profile and Parameters Extraction 

 

In order to evaluate a transistor network, it is needed to discover some 
information regarding the topology. This information is used by the estimation methods 
during the analyses or calculation process. Examples of this kind of information are: 

 

• Number of nodes in a network; 
• Number of transistors; 
• Number of transistors connected per node; 
• Number of branches; 
• Number of paths between the output and the source nodes; 
• Shortest path in a network; 
• Larger path in a network; 
• Size of transistor; 
• Equivalent transistor size in a given path; 
• Fanin; 
• Distance between two nodes in a network; 
• Etc. 
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Several algorithms were implemented to obtain all this information. Other 
necessary data to estimate the behavior of the networks are dependent of the technology 
process in which the transistor networks will be investigated. This information are used 
here as external parameters, obtained through Spice simulations. They are extracted 
once for a given technology process and saved in a parameter input file. So, this file is 
used by the estimation methods when necessary. Examples of this sort of data are: 

 

• Channel resistance of PMOS and NMOS transistors; 
• Drain and source capacitances (as function of the transistor width); 
• Threshold voltage; 
• Vdd voltage; 
• Etc. 

 

As it is not the focus of this work, the parameters extraction will not be 
discussed here. But it is important to know that they exist. More information about the 
parameters extraction may be found in the references of each estimation method. 

 

4.2 Timing Estimation 

 

The performance of CMOS circuits can be characterized by the time needed to 
charge and/or discharge the intrinsic capacitors of these circuits. In fact, the existence of 
parasite elements (capacitances and resistances) impacts directly in the electrical signal 
propagation on the circuits. Some definitions about time can be considered when 
analyzing a given logic circuit: 

 

• Rise time (tr): It corresponds to the time needed to change the signal 
from ‘0’ logic to ‘1’ logic. This time is usually measured when the 
signal changes from 10% to 90% of its voltage variation in the output. 

• Fall time (tf): It corresponds to the time needed to change the signal 
from ‘1’ logic to ‘0’ logic. This time is usually measured when the 
signal changes from 90% to 10% of its voltage variation in the output. 

• Delay time (td): It corresponds to the maximum time from the input 
signal crossing 50% to the output signal crossing 50%. As this delay 
generally is not the same for ‘0’ to ‘1’ and for ‘1’ to ‘0’ transitions, it is 
common to separate it in tdhl (delay time high-to-low) and tdlh (delay 
time low-to-high). 
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According to Weste (2005), quick delay estimation is essential to designing 
critical paths of digital circuits. Although timing analyzers or circuit simulators can 
compute very detailed switching waveforms and accurately predict delay, good 
designers cannot be dependent on simulation alone. Also, simple models are important 
because they allow rapidly estimating delay, understanding its origin, and figuring out 
how it can be reduced. 

One of the most used methods to estimate delay, the Elmore delay model 
(ELMORE, 1948), is based on the computation of the delay in an equivalent RC circuit. 
In this model, each transistor is modeled as a resistance between their source and drain 
terminals, and all parasite capacitances are modeled as grounded capacitances. Viewing 
‘on’ transistors as resistors, it is possible to see that a chain of transistors can be 
represented as an RC ladder as shown in Figure 4.1. 

 

 

Figure 4.1: RC ladder for Elmore delay. 

 

The Elmore delay model estimates the delay of an RC ladder as the sum over 
each node in the ladder of the resistance Rn-i between that node and a supply multiplied 
by the capacitance on the node. The equation (4.1) models the Elmore delay. 

 

iCR in∑ −= *τ  (4.1) 

 

It is known that the Elmore delay model represents a simple approximation of 
the actual delay, but, according to Rabaey (2005), it is acceptable for fast estimation. It 
offers the designer a powerful mechanism for providing a quick estimate of the delay of 
transistor networks. 

The Elmore delay model, described in details and validated in (SCHNEIDER, 
2004), was implemented in this work to compare the delay of different transistor 
networks implementation of same functions. The capacitances and resistances (for 
NMOS and PMOS transistors) are parameters used for the calculation. As mentioned 
before, these parameters are extracted through Spice simulation for a given technology 
process. The delay model considers the transistor width dependence during the 
calculation procedure. In this implementation, τ is calculated only for a single input 
signal variation. In other words, only one input variable is changed in each analysis. 
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4.3 Dynamic Power Estimation 

 

Power dissipation is no longer a secondary issue in CMOS digital design (LIU, 
1994). The increasing complexity and high-performance requirements of modern 
integrated circuits have led to high power consumption. Transistor level simulators with 
continuous-time modeling of the devices, like Spice, can be very expensive in terms of 
storage and computation time. Hence, a great effort has been devoted in the 
development of accurate analytical expressions power models (NAJM, 1994; 
BOGLIOLO, 1997; ALIOTO, 2007). 

The dynamic switching power dissipation was the dominant factor compared to 
the other components of power dissipation in digital CMOS circuits for technologies 
down to 0.18 micrometers, where it is about 90% of total circuit dissipation (PARK, 
2006). Short–circuit power is the second source of total power dissipation. During a 
transient on input signal, there will be a period in which both NMOS and PMOS 
transistor will conduct simultaneously, causing a current flow through the direct path 
existing between power supply and ground terminals. This effect usually happens for 
very small intervals. However, according to Veendrick (1984), this component 
represents less than 20% of the dynamic switching power consumption if the NMOS 
and PMOS transistors are sized in order to balance the rise/fall signal slopes at input and 
output nodes. Considering that, in this work only the dynamic switching power 
dissipation will be considered to investigate the dynamic power behavior of the 
networks. 

Traditional gate-level power estimations are based on the simplified 
assumption that the supply current required by a CMOS circuit is essentially spent in 
charging load capacitances at outputs of the switching gates (TSUI, 1993). These output 
capacitances are mainly composed by the input capacitances of next interconnected 
gates. However, intrinsic capacitances also contribute for the power dissipation and 
cannot be neglected in the cell power estimation analysis, being a significant element in 
the cell power estimation analysis. In this context, a simplified analytical model to 
estimate intrinsic power consumption based on the charge required by intrinsic 
capacitances associated to a CMOS cell is presented by Chiappetta (2008). 

The MOS capacitances can be divided in gate (CG), depletion (CDB and CDS) 
and overlap (CGD and CGS) capacitances, as shown in Figure 4.2a. However, a 
simplified model that considers only the intrinsic capacitance, illustrated in Figure 4.2b, 
is used. The drain and source capacitances are defined as follow: 

 

GDDBD CCC +=
 (4.2) 

GSSBS CCC +=
 (4.3) 
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(a) (b) 

Figure 4.2: Capacitance model: (a) MOSFET and (b) simplified approach. 

 

Disregarding the process variability, the drain and source area can be 
considered the same and, consequently, CDB = CSB = CDEP.  

In the proposed analysis, MOS transistor is evaluated in cutoff and saturation 
regions. According to Weste (2005), linear region is ignored since it is a transitory state 
and it does not compromise the model accuracy. According to Uyemura (1999), CGD is 
considered always zero and CGS is 2/3*CG in saturation mode. 

Based on previous statement, the intrinsic capacitance can be modeled as 
shown in Table 4.1. 

 

Table 4.1: Intrinsic capacitances modeling. 

Capacitance Cutoff State Saturation State 
CD CDEP(w) CDEP (w) 

CS CDEP (w) CDEP (w) + 2/3*CG(w) 

 

All capacitances are a linear function of the transistor width and are modeled as 
follow: 

BwAwC += *)(  (4.4) 

where, A and B are constant values extracted from electrical simulations using 
different transistor width. 

The power dissipated by the intrinsic capacitances of a CMOS gate is the one 
used to charge them. The discharge current is supplied by the charge stored in the 
capacitances and should not be accounted in total power consumption.  Considering the 
previous statement, the power dissipated by the intrinsic capacitances is the one when 
the output changes from ‘0’ to ‘1’. The total intrinsic power consumption of a CMOS 
gate for a specific transition in the input vector is given by equation (4.5).  

( ) 2* ddi VCP ∑=  (4.5) 
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This method presented by Chiappetta (2008) was implemented to evaluate the 
intrinsic power consumption of logic gates. The steps of the algorithm consist in the 
follow: 

 

• In a given input vector x, which leads the output to a logic ‘0’ value, 
identify all transistor bias conditions. 

• In a given input vector y, that changes the output state from ‘0 to ‘1’, 
identify all transistor bias conditions. 

• For each network node, calculate the node capacitance considering all 
transistors capacitances connected to this node. 

• A sum of capacitance is done for all nodes that changed their logic 
states from ‘0’ to ‘1’ (charged nodes). 

• The intrinsic power consumption is computed by multiplying this 
obtained capacitance (through the sum) by Vdd

2. 

 

To validate the implemented method, a complex gate (Figure 4.3), sized with 
Logical Effort, was simulated in Hspice using the CMOS PTM 130 nanometers 
technology process at 80ºC. The simulated results are compared to the estimated ones in 
Figure 4.4. 

 

Figure 4.3: Complex gate. 

 



 

 

 

 

78 

2E-15

3E-15

4E-15

5E-15

6E-15

7E-15

8E-15

9E-15

1E-14

1,1E-14

1
0

1
1

 -
 0

0
1

1

1
0

1
1

 -
 1

0
0

1

1
0

1
1

 -
 1

0
1

0

1
1

0
0

 -
 0

1
0

0

1
1

0
0

 -
 1

0
0

0

1
1

0
1

 -
 0

1
0

1

1
1

0
1

 -
 1

0
0

1

1
1

1
0

 -
 0

1
1

0

1
1

1
0

 -
 1

0
1

0

1
1

1
1

 -
 0

1
1

1

Vectors

D
y

n
a

m
ic

 P
o

w
e

r 
(W

a
tt

s
)

Hspice

Estimated

 

Figure 4.4: Hspice vs. estimated power consumption. 

 

The obtained results present a difference from the Hspice simulations. 
However, for the purpose of this work, the model can be used to compare different cells 
implementing same logic functions, since it is capable of delivering an approximated 
behavior of the real values. 

 

4.4 Static Power Estimation 

 

Static power consumption is nowadays a crucial design parameter in digital 
circuits due to emergent mobile products. Leakage currents, the main responsible for 
static power dissipation during idle mode, are increasing dramatically in sub-100 
nanometers processes (ROADMAP, 2004). Subthreshold leakage rises due to threshold 
voltage scaling while gate leakage current increases due to scaling of oxide thickness 
(ROY, 2003). 

To face this new challenge, a great effort has been done in developing models 
and estimators for design support. The ‘stack effect’ observed with off-transistor (i.e., 
devices that are turned off) in series arrangement is quite important for subthreshold 
current prediction (GU, 1996; CHENG, 1998). Differently from subthreshold leakage, 
gate oxide tunneling currents are observed in both on- and off-devices, according to the 
transistor biasing (RAO, 2003).  

This section presents three different leakage estimation methods. The first one 
is dedicated to evaluate the subthreshold leakage only. The second is dedicated to 
evaluate the gate leakage. Finally, the third is an iterative and accurate method to 
estimate gate and subthreshold leakage in digital circuits.  
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4.4.1 A Simple Subthreshold Leakage Estimation 

 

The idea of this method is based on the device electrical conductance 
association, that is, the conduction of parallel devices are summed while in series 
arrangements the equivalent conductance is inversely proportional to the number of 
devices. Being Gt[n] the conductance of the n-index transistor in the arrangement of 
Figure 4.5a, the equivalent conductance Geq is illustrated in Figure 4.5b. 

 

 
(a) 

 

 
(b) 

Figure 4.5: (b) Equivalent conductance for the transistor network described in (a). 

 

As discussed in (GU, 1996), in the case of series transistor the leakage 
reduction from a single off-device to two stacked off-transistors depends also on the 
fabrication process parameters. As a result, a constant K must be included in the last 
step of the calculation procedure in order to calibrate the final result. This K value is 
obtained by relating the leakage current of two-stack and single off-device 
configurations. In this sense, two constants Kn and Kp may be derived according to 
NMOS and PMOS arrangements, respectively. 

Figure 4.7 illustrates the results obtained for this method over the transistor 
arrangement presented in Figure 4.6. The Hspice simulations were carried out by using 
the CMOS PTM 180 nanometers parameters at 80ºC. 
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Figure 4.6: A 4-input transistor network. 

 

 

Figure 4.7: Subthreshold leakage currents in the CMOS structure from Figure 4.6, for 
each input vector. 

 

As it can be seen, the correlation with Hspice presents non-accurate results. 
However, using this method it is possible to identify the input vector that produces less 
leakage consumption. If the main goal of the designer is only to find the appropriate 
vector to put the circuit in standby mode, so this approach may be useful.  

Also, it is important to notice that this method is suitable for technology 
processes over 130 nanometers. When analyzing more recent technologies, as 90 or 65 
nanometers, the gate leakage component is added to the total leakage consumption, 
making unfeasible the use of this method. 
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4.4.2 Gate Leakage Estimation 

 

The gate leakage occurs when transistors are turned ON and OFF. Gate leakage 
current is independently in both, turned ON or OFF, transistor states. When transistor is 
turned OFF the current flows by the overlap source and drain regions. In the case where 
the transistor is turned ON, the current uses the overlap source/drain regions and the 
transistor channel. For these reasons, gate leakage is usually higher in such condition. 

Considering previous statement, an easy method to investigate gate leakage 
current is evaluating the transistor bias conditions. Figure 4.8 presents all eight possible 
bias conditions for a NMOS transistor. Figure 4.8f and 4.8g can be ignored because they 
represent transient states and do not occur in steady state. In Figure 4.8a and 4.8h gate 
leakage is not present because all terminals have the same potential. In the other 
conditions gate leakage has to be computed. 

Assuming that, the idea to compute gate leakage is very simple. For a given 
technology process the gate leakage for these transistor bias conditions are measured. 
So, when analyzing a transistor network, it is only necessary to discover the bias 
condition for each element in the network. The total gate leakage is the sum of the gate 
leakage of all transistors.  

 

 

Figure 4.8: Possible bias condition for NMOS transistors in digital circuits. 

 

4.4.3 Accurate Analytical Method for Static Current Estimation 

 

The interaction among leakage mechanisms cannot be ignored in the analysis 
of static consumption. Some works in the literature evaluate separately the subthreshold 
and the gate components, leading to non-accurate results (CHENG, 1998; ROSSELLÓ, 
2005; YANG, 2005). An iterative gate and subthreshold estimation method was 
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proposed by Butzen (2008) in order to delivery better results. The main advantage of 
this method is its capability of calculating leakage for logic cells with more than two 
logic levels. This approach was implemented here with some modifications to make 
possible its application in Wheatstone-bridge networks.  

In the terminology used in this solution, on-plane and off-plane indicate the 
conducting and not conducting planes, respectively. From the off-plane it is extracted 
the off-network which represents the actual electrical circuit responsible for isolating the 
supply (Vdd/Gnd) to the output terminal. 

Subthreshold and gate leakage currents are modeled by equation (4.6) and 
(4.7), respectively, where W is the transistor width and VT is the thermal voltage. Vgs, 

Vds and Vbs are respectively the gate-, drain- and bulk-to-source voltages. The terms 
IS0, η, γ, n, Ig0 and K are constant values extracted from electrical simulation in a pre-
characterization procedure of the target technology. 
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The steps of the implemented algorithm are: 

a) Identification of the off-plane, according to the input logic combination 
or the output logic level. 

b) Extraction of the off-network from the off-plane considering the on/off 
devices status. On-devices are short-circuited and replaced by current 
sources representing the gate leakage current contribution of the 
transistor. Notice that, when on-devices short-circuit internal nodes 
eventually parallel off-devices and transistor clusters (sub-networks) 
are removed. In this case, for each removed device a respective current 
source must be added at this node to maintain the effect of its gate 
leakage in the total leakage calculation. Moreover, a voltage drop ∆V 
throw on-devices connected to the output node is observed and they 
cannot be considered as ideal short-circuits. It means that the other 
device terminal assume Vdd-∆V in the case of NMOS pull-down off-
plane and Gnd+∆V for the PMOS pull-up off-plane. 

c) Identification of the DC polarity (biasing) of each off-device present in 
the off-network. It is a straightforward task when treating purely series-
parallel transistor arrangements. In the case of non-series-parallel 
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configurations, a procedure has to be performed taking into account the 
distance of transistor drain and source terminals to supply and output 
terminals. The distance here is understood as the number of off-devices 
in the shortest path to reach the network terminals (Vdd/Gnd supply and 
output). When the arrangement is symmetric, it is decided randomly 
with negligible loss in accuracy. 

d) Ordering of the internal nodes in the off-network with unknown 
voltages. This ordering is done according to the internal nodes distance 
to the output node. Again, for nodes with the same distance to the 
output terminal, the distance to the supply terminal is considered, 
giving priority to the node far from that. In the case of symmetric 
arrangements this choice is random. 

e) Calculation of the drain-to-source voltage (Vds) of each transistor by 
applying the Kirchhoff’s Current Law (KCL) at each internal node. All 
subthreshold and gate leakage currents related to each node are taken 
into account. Differently from numerical solvers, like electrical 
simulators, the purpose here is to calculate in the predefined order of 
step (d). All unknown node voltages are temporarily considered as 
ground or power voltages, for pull-down NMOS and pull-up PMOS 
off-planes, respectively. 

f) Definition of the voltage at each node based on the transistor Vds 
voltages, previously calculated in step (e). Starting from supply 
Vdd/Gnd terminal, compute the voltage of each unknown node 
summing the Vds value of each transistor in the path node-supply, 
respecting the inverse node order established in step (d). In the case that 
the node has more than one possible voltage value, i.e. there is more 
than one path to reach the supply terminal; the node potential is 
determined by the highest value obtained.  

g) Estimation of the total leakage current considering the internal node 
voltages previously determined in step (f). It corresponds to the sum of 
all leakage currents flowing from the Vdd terminal or to the Gnd one. 
For instance, consider the second option, i.e. the currents flowing to 
Gnd. The total leakage is given by the sum of the subthreshold current 
of all transistors connected directly to Gnd terminal, the gate leakage of 
on- and off-devices in the off-plane, and the gate leakage of on-devices 
in the on-plane. 

 

To validate the implemented method, 42 logic gates extracted from Genlib 44-
6, with up to six inputs, were evaluated. Results obtained with the proposed method 
were compared against Hspice and against the method presented in (YANG, 2005), 
where subthreshold and gate oxide currents are evaluated separately and then summed. 
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This comparison is depicted in Figure 4.9. The electrical simulations were carried out 
by using the CMOS PTM 45nm parameters (ZHAO, 2006), at 80ºC. 

 

 

Figure 4.9: Total leakage estimation comparison for different CMOS gates. 

 

4.5 Area Estimation 

 

When regarding area, it is important to utilize logic cells with small layout 
design to guarantee better implementations of digital circuits. In order to achieve such a 
goal, it is desirable that the transistors composing the logic planes of a given logic cell 
can be aligned. Such a situation would eliminate the need for unnecessary internal 
connections between the transistor gates, possibly minimizing cell dimensions. 

In this context, a solution is presented to achieve networks with maximal 
matching between transistor gates at a symbolic layout (topological level).  
Furthermore, a naïve calculation procedure estimates the layout width using design rules 
extracted from the technology process. This approach cannot delivery the exact layout 
area as the internal routing is not evaluated. However, it is capable of delivering good 
information when comparing different layout implementation.   

 

4.5.1 Searching Eulerian Paths 

 

In graph theory, Eulerian paths are paths that visit each edge in a graph exactly 
once. They were first discussed by Leonhard Euler while solving the famous problem of 
the Seven Bridges of Königsberg in 1736 (EVEN, 1979). Graphs containing such paths 
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are called traversable. A graph is traversable when it contains zero or two vertices of 
odd degree (DROZDEL, 2002). Fleury’s algorithm (UEHARA, 1981) is widely used 
for searching Eulerian paths in traversable graphs. In short, the algorithm involves 
starting from one of the two odd vertices and traversing the graph, crossing all edges 
only once and finally arriving at the other odd vertex. If there are no odd vertices, any 
vertex can be used as a starting point. In modern microelectronics, this concept is very 
important, since a network of transistors can be represented as a multigraph where 
Eulerian paths may be used to define the positioning of transistors in a layout 
implementation. 

 

 

(a) 
 

 

(b) 
 

Figure 4.10: (a) PMOS transistor network and (b) NMOS transistor network showing 
possible Eulerian paths. 

 

When a graph contains more than two vertices of odd degree, dummy edges 
may be inserted between them, making their degrees even. If enough dummy edges are 
inserted, any connected graph can be made traversable. Figure 4.10b illustrates the 
insertion of a dummy transistor (XQ) in a NMOS transistor network containing four 
nodes of odd degree. Note that the dummy transistor can be inserted between any pair of 
odd nodes.  

Given a transistor network containing ‘n’ nodes of odd degree (n > 0), the 
number of dummy transistors required to make it traversable (d) can be obtained from 
the equation d = (n – 2)/2. For the example illustrated in Figure 4.10b, only one dummy 
edge is necessary. 

A given logic plane in a disjoint transistor network may contain several 
Eulerian paths. In order to find all possible paths, the following steps are applied: 

1. Each logic plane in the transistor network is converted into a 
multigraph representation. 

2. The number of dummy edges to be inserted in the graph is determined 
using the equation described above. 
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3. Dummy edges are inserted between all possible pairs of odd vertices. 

4. The multigraph is then traversed, starting at each of the odd vertices (or 
all the vertices, if there are none). The number of dummy edges used in 
a path is limited to the amount obtained in step 2. 

5. All Eulerian paths found are stored in a tree-like structure to be 
analyzed by the gate matching algorithm. The tree nodes represent the 
gates of transistors in the network, and paths between the root and the 
leaves represent Eulerian paths. Figure 4.11 shows partial path trees for 
each of the logic planes illustrated in Figure 4.10. 

 

4.5.2 Gate Matching 

 

The gate matching process consists on finding a pair of Eulerian paths – one 
for the NMOS plane and one for the PMOS plane of the same transistor network – 
containing the same sequence of transistor controlling signals. It is important because 
aligning gates reduces the complexity of internal connections between the NMOS and 
PMOS planes. In this context, a good match could benefit the routing procedure, which 
is one of the most critical steps when generating a cell layout implementation. In 
addition, the layout area requirements could be minimized, since there is no need for 
extra rows to connect the crossing polysilicon gates. This leads to a smaller layout 
implementation, and avoids the use of an extra layer of metal in order to connect 
unaligned gates. Figure 4.12 illustrates two possible symbolic layout solutions (aligned 
and unaligned) for the cell shown in Figure 4.10. 

To achieve gate matching, the following algorithm is proposed: 

• Two trees obtained as described in Section 4.5.1 are simultaneously 
traversed in a recursive manner, starting at their roots. 

• Each node in a tree is compared to its counterpart in the other tree. If a 
given node does not exist in one of the trees, it is removed, along with 
its child nodes. 

• At the end of the algorithm, only corresponding nodes remain. These 
nodes represent matching gates in a pair of Eulerian paths. 

Figure 4.11c illustrates the partial tree for the cell described in Figure 4.10 after 
the gate matching algorithm has concluded. Note that only one tree is shown, since the 
two resulting trees are identical. 
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(a) 
 

 

(b) 
 

 

(c) 
 

Figure 4.11: Partial tree for the cell in Figure 4.10, before (a, b) and after (c) the gate 
matching algorithm. 
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(a) 
 

 

(b) 
 

Figure 4.12: Two possible symbolic layouts for the cell in Figure 4.10, showing 
matched (a) and mismatched gates (b). 

 

4.5.3 Width and Area Estimation 

 

Once a gate matching is defined it is possible to evaluate the area width. The 
first step consists in to extract five relevant distances from the technology process 
documentation. These distances are the following: 

1. Distance from polysilicon to the left diffusion area, considering contact; 

2. Distance from polysilicon to the right diffusion area, considering 
contact; 

3. Distance from channel to channel, considering contact; 

4. Distance from channel to channel, disregarding contact; 
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5. Distance from channel to channel, considering a break. 

 

Figure 4.13 illustrates the distances described above. All these distances will 
feed the calculation procedure, as it will be seen in the sequence. 

 

 

Figure 4.13: Relevant distances extracted from technology process documentation. 

 

In a second step, by analyzing the Spice netlist cell description, the number of 
occurrence of contacts, breaks and transistor gates are annotated for each logic plane 
(PMOS and NMOS). 

Finally, using these information and the distances previously obtained from the 
technology process documentation, it is possible to calculate the cell width by 
multiplying the distance values and the occurrence information. 

Notice that the cell height is not investigated. So, in order to calculate the cell 
area, it is also necessary to set a cell height value. In the practice, thinking about logic 
libraries, all cells present the same height. For the purposes of comparing two different 
area implementations it is possible to set a same arbitrary height value for both. The 
estimated values may present a huge difference from the real area values. However, the 
comparison between the cell implementations is still valid and may be used as criteria to 
choose the smallest one. 

 

4.5.4 Validating Area Estimation 

 

To validate the area estimation technique a subset of cells extracted from 
Genlib 44-6 up to 4 inputs was used. All logic functions were implemented in CSP logic 
style. The UMC 130 nanometers technology process was utilized.  To generate layout 
for these cells, the Nangate Cell Generator (NANGATE, 2008) was used. This 
commercial tool accepts transistor netlist description as input and delivers the final 
layout of the cells.  

The used distances to estimate the cell width are described in Table 4.2. The 
cells height was fixed in 5.33 micrometers to compute the area. Figure 4.14 presents the 
results obtained for the real layout and the estimated one. 
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Table 4.2: Distances used to validate the area estimation. 

Distance Value 
1 0.51 µm 
2 0.51 µm 
3 0.51 µm 
4 0.36 µm 
5 1.02 µm 
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Figure 4.14: Results for the validation of the area estimation. 

 

As mentioned before, the values are quite different. However, the area values 
obtained through the estimation present a good correlation with the real generated 
layout. This strong correlation permits to use this area estimation technique to compare 
different logic cells implementation, since it gives a good idea about the silicon needs of 
these cells. 

 

4.6 Conclusions 

 

This chapter presented some estimation methods to investigate area, dynamic 
consumption, delay, and leakage behavior of different logic cells implementation. All 
methods demonstrated a good an acceptable result approximation of the real values. The 
iterative gate and subthreshold leakage estimation method is an exception. This method 
presents a very accurate correlation with Hspice results as demonstrated in the 
validation experiment. 
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5 EXPERIMENTAL RESULTS 

This chapter presents the experimental results for different sets of logic 
functions. All logic functions were implemented in the following logic styles: 

 

• CSP 
• NCSP 
• BDD 
• OpBDD  
• LBBDD  
 

After automatically generated, all transistor networks were sized using the 
logical effort method. The minimal transistor width for NMOS and PMOS transistors 
was 0.3 and 0.6 micrometers respectively. 

The idea of using diverse sets of logic functions is to make possible to analyze 
the electrical and physical behavior of these cells when implemented in different logic 
styles. To compare the cells implementation, the estimation methods described in 
chapter 4 were used. For investigating the leakage behavior, the iterative gate and 
subthreshold leakage estimation method, presented in Section 4.4.3, was applied. For 
delay, the Elmore delay model was used. For area analysis all cells were set with a 
height of 5.33 micrometers (dimension used for cells with 13 rows in library 
containers). Finally, to evaluate the power consumption, the intrinsic power 
consumption method, presented in Section 4.3, was utilized.  

Area, delay and dynamic consumption were evaluated over transistor networks 
using 130 nanometer technology. For leakage evaluation, 45 nanometers technology 
was used. It is due to the fact that 130 nanometer processes do not consider gate leakage 
current. Therefore, the parameters used for estimating area, delay and dynamic 
consumption were extracted using a CMOS 130 nanometers technology process. For 
leakage analysis, the parameters were extracted from PTM 45 nanometers technology 
process. 

The following sections will discuss the results obtained for each set of logic 
functions. 
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5.1 Results for Genlib 44-6 up to 4-input 

 

The first set of logic functions was extracted from the Genlib 44-6 cell library. 
All logic functions up to 4-input were implemented in the different logic styles 
previously described. These logic functions are negative unate, that means all input 
variables in the transistor networks are in just one polarity. All equations are originally 
factorized, and they do not present repeated literals in their description. The 44-6 
information means that all functions, when implemented in CSP logic, present up to 4 
transistors in series, 4 parallel branches, and no more than 6 logic levels. A particularity 
of this set is the lack of XOR functions. 

As mentioned before, the number of transistor in series directly affects the 
delay characteristics of logic cells. In this sense, it is expected that NCSP and LBBDD 
logics present better results in terms of delay. However, when generating transistor 
networks from unate functions, the OpBDD logic style may deliver the same networks 
than LBBDD, since the optimization process is basically similar. In fact, LBBDD 
networks are optimizations over the OpBDD ones. As the OpBDD achieves the minimal 
network implementations, the LBBDD generation process cannot get more optimized 
transistor arrangements.  

Another important point concerns CSP and NCSP. For unate functions without 
repeated literals, NCSP logic cannot obtain benefits in terms of transistor count and 
number of transistor in series. A CSP network is the best implementation for an unate 
logic function when it does not present repeated literals and it is the minimum literal 
cost factorized form. Thus, NCSP logic will deliver the same network. 

This way, for the Genlib 44-6 logic functions, CSP, NCSP, OpBDD and 
LBBDD will generate the same transistor networks. The only difference in these 
networks could be the transistor order in the internal arrangements. However, using a 
BDD ordering or a structural ordering procedure, it is possible to reach exactly equal 
networks. 

Table 5.1 shows the obtained average delay results for each logic cell. The 
values are in seconds. As it can be seen, CSP, NCSP, OpBDD and LBBDD present 
same delay values. BDD networks present worst results because they have more 
transistors than the other networks. 

Notice that the Cell0 presents the same delay for all logic styles. This cell is an 
inverter.  
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Table 5.1: Average delay results (in seconds) for Genlib 44-6 up to 4-input. 

 CSP / NCSP / OpBDD / LBBDD BDD 
Cell0 3,53E-12 3,53E-12 
Cell1 1,79E-11 4,53E-11 
Cell2 2,82E-11 4,56E-11 
Cell3 3,76E-11 1,77E-10 
Cell4 6,08E-11 1,93E-10 
Cell5 4,10E-11 2,20E-10 
Cell6 1,15E-10 2,04E-10 
Cell7 6,65E-11 7,04E-10 
Cell8 7,08E-11 5,10E-10 
Cell9 7,57E-11 4,33E-10 

Cell10 9,55E-11 5,47E-10 
Cell11 1,64E-10 5,71E-10 
Cell12 1,31E-10 6,41E-10 
Cell13 5,89E-11 5,69E-10 
Cell14 7,54E-11 5,23E-10 
Cell15 1,80E-10 7,15E-10 
Cell16 3,34E-10 6,24E-10 

 

Table 5.2 shows the average intrinsic power consumption obtained for this set 
of cells. The values are in Watts. As expected, the results are similar to those obtained 
in the delay analysis. CSP, NCSP, OpBDD and LBBDD present the same power 
consumption behavior.  

In Table 5.3, the estimated leakage currents are shown. The results are in 
Amperes and represent the average value. Notice that these results are for 45 
nanometers technology process, differently than the dynamic power consumption that 
was obtained considering the 130 nanometers technology. 

Once more, the leakage values obtained for CSP, NCSP, OpBDD and LBBDD 
are equivalent. Transistor stacks in BDD networks tend to be larger. From a static 
consumption point of view it is good, because the greater is the transistor stack, the 
smaller is the leakage current flowing in the network. 
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Table 5.2: Average power consumption (in Watts) for Genlib 44-6 up to 4-input. 

 CSP / NCSP / OpBDD / LBBDD BDD 
Cell0 3,88E-16 3,88E-16 
Cell1 1,41E-15 2,18E-15 
Cell2 1,29E-15 2,04E-15 
Cell3 2,06E-15 6,44E-15 
Cell4 3,03E-15 5,07E-15 
Cell5 2,83E-15 6,44E-15 
Cell6 2,69E-15 4,85E-15 
Cell7 4,99E-15 1,40E-14 
Cell8 4,48E-15 1,31E-14 
Cell9 3,42E-15 9,53E-15 

Cell10 4,84E-15 1,18E-14 
Cell11 5,33E-15 9,23E-15 
Cell12 4,86E-15 1,37E-14 
Cell13 4,77E-15 1,31E-14 
Cell14 3,54E-15 9,91E-15 
Cell15 4,79E-15 1,18E-14 
Cell16 4,62E-15 8,92E-15 

 

Table 5.3: Average leakage current (in Amperes) for Genlib 44-6 up to 4-input. 

 CSP / NCSP / OpBDD / LBBDD BDD 
Cell0 8,07E-08 8,07E-08 
Cell1 1,02E-07 7,54E-08 
Cell2 9,62E-08 8,51E-08 
Cell3 1,29E-07 1,41E-07 
Cell4 9,69E-08 9,28E-08 
Cell5 1,26E-07 1,48E-07 
Cell6 8,57E-08 1,00E-07 
Cell7 1,50E-07 1,96E-07 
Cell8 1,29E-07 2,13E-07 
Cell9 1,77E-07 2,78E-07 

Cell10 1,24E-07 1,59E-07 
Cell11 8,56E-08 8,52E-08 
Cell12 1,43E-07 2,18E-07 
Cell13 1,31E-07 2,30E-07 
Cell14 1,77E-07 2,78E-07 
Cell15 1,14E-07 1,77E-07 
Cell16 6,92E-08 1,05E-07 

 

Finally, Table 5.4 presents the results about area for the set of logic functions 
extracted from Genlib 44-6. The values are in square micrometers. 

As previously expected, CSP, NCSP, OpBDD, and LBBDD presented equal 
area results. BDD networks present a high area penalty. In this logic, all transistor 
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associated to the BDD edges are available in the network. This fact collaborates to 
increase the network areas if comparing to OpBDD and LBBDD logics. 

 

Table 5.4: Area results (in square micrometers) obtained for Genlib 44-6 up to 4-input. 

 CSP / NCSP / OpBDD / LBBDD BDD 
Cell0 6,23 6,23 
Cell1 8,15 13,59 
Cell2 8,15 13,59 
Cell3 11,67 26,86 
Cell4 11,67 26,06 
Cell5 11,67 26,86 
Cell6 11,67 26,06 
Cell7 14,39 38,53 
Cell8 14,39 38,53 
Cell9 13,59 35,01 

Cell10 13,59 34,21 
Cell11 13,59 37,73 
Cell12 14,39 38,53 
Cell13 14,39 38,53 
Cell14 13,59 35,01 
Cell15 13,59 34,21 
Cell16 13,59 37,73 

 

5.2 Results for Additional Logic Cells of a Library Container 

 

As mentioned in the previous section, the Genlib 44-6 library does not contains 
XOR-like cells. These kinds of cells are binate, since they present the variables in 
negative and positive polarities. Commercial libraries generally have these cells 
implemented in different logic style than CSP. It occurs because XOR4 cells, for 
instance, when implemented in CSP delivery more than 4 transistors in series. So, 
XOR4 in CSP logic style is unfeasible. NCSP and LBBDD make possible the 
implementation of XOR4. 

Another interesting cell to be implemented is the Cout function of a full adder. 
This function is unate, and it presents repeated literals in its description. Also, Genlib 
44-6 library does not contain this logic function. 

The next sub sections investigate these logic functions implementation. For 
example, a designer may add the best achieved networks of these functions to expand 
the library cell.  
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5.2.1 XOR Logic Functions 

 

To evaluate XOR-like logic functions, three XOR were considered: XOR2, 
XOR3 and XOR4. These functions were factorized in order to deliver the most 
optimized transistor network. Table 5.5 shows the total transistor count for these cells in 
each logic style, disregarding the inverters needed to feed the complementary inputs. 

 

Table 5.5: Transistor count for XOR logic functions. 

 CSP / NCSP BDD / OpBDD / LBBDD 
XOR2 8 8 
XOR3 20 16 
XOR4 44 24 

 

Table 5.6 shows the number of transistor ion series in both planes of each 
implementation. 

 

Table 5.6: Transistor in series for XOR logic functions. 

CSP NCSP / BDD / OpBDD / LBBDD  
PU PD PU PD 

XOR2 2 2 2 2 
XOR3 3 4 3 3 
XOR4 4 8 4 4 

 

The CSP and NCSP networks implementation present exactly the same 
transistor count. However, the CSP has a large number of transistors in series in one of 
logic planes. This occurs because one plane is the dual of the other. In the NCSP logic, 
PU and PD planes are generated from the on- and off-set equations respectively. Thus, 
both planes present the same size in the transistor stacks. 

BDD, OpBDD and LBBDD networks are equal. The generation algorithm for 
these networks cannot achieve small networks. All transistors in the network derived 
from BDD are necessary and cannot be removed. This occurs because the XOR logic 
function is binate in all variables. Appendix B presents the schematic representations for 
these switch networks. 

Table 5.7 shows the average delay obtained for the networks. All values are 
shown in seconds. XOR2, as expected, presents equal values for all implementations. 
XOR3 is better when using NCSP or BDDs implementations. For XOR4 logic function, 
the best choice is the BDDs implementation, which present smaller transistor stack and 
transistor count. As predictable, CSP is the worst implementation due to the larger 
transistor stack presented in one of the logic planes. 
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Table 5.7: Average delay (in seconds) for XOR logic functions. 

 CSP NCSP BDD / OpBDD / LBBDD 
XOR2 7,34E-11 7,34E-11 7,34E-11 
XOR3 5,38E-10 3,45E-10 3,43E-10 
XOR4 3,14E-09 1,14E-09 1,07E-09 

 

Table 5.8 shows the dynamic power consumption. Like the results obtained for 
delay, it is possible to see similar behavior in this analysis. CSP has same transistor 
count than NCSP. However, the number of transistors per node in CSP is larger than 
NCSP. It means more capacitance per node, leading to more dynamic consumption. 

 

Table 5.8: Dynamic consumption (in Watts) for XOR logic functions. 

 CSP NCSP BDD / OpBDD / LBBDD 
XOR2 2,69E-15 2,69E-15 2,69E-15 
XOR3 1,23E-14 7,00E-15 6,68E-15 
XOR4 4,55E-14 1,60E-14 1,26E-14 

 

In Table 5.9, the achieved leakage current results are shown. The results are in 
Amperes. In terms of minimum leakage, CSP presents the smallest value. It is due to the 
fact that CSP has the largest transistor stack (greater is the stack, smaller is the leakage).  

 

Table 5.9: Leakage current (in Amperes) for XOR logic functions. 

 CSP NCSP BDD / OpBDD / LBBDD 
XOR2 2,26E-07 2,26E-07 2,26E-07 
XOR3 5,04E-07 4,52E-07 5,22E-07 
XOR4 1,15E-06 8,06E-07 9,53E-07 

 

Table 5.10: Area results (in square micrometers) for XOR logic functions. 

 CSP NCSP BDD / OpBDD / LBBDD 
XOR2 18,22 18,22 18,22 
XOR3 43,49 43,49 42,21 
XOR4 82,66 82,66 58,36 

 

Table 5.10 illustrates the results in terms of area. The values are depicted in 
square micrometers. The estimated area results demonstrate that the transistor count 
may be used do give a good idea about the cell area. In this case, the fixed height is 
sufficiently enough to guarantee that internal network may be routed without 
performing transistor folding or enlarging the cell width. 
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5.2.2 Cout Function of a Full Adder 

 

This logic function is very interesting to be analyzed. This cell is widely used 
in arithmetical circuit implementations. The Cout function can be expressed as cout = 

a*b + a*c + b*c. As this cell appears several times in regular adders and multipliers, it 
is important to use the most optimized version as it possible. Appendix C shows the 
transistor schematics for this logic function implemented in the target logic styles. 

Table 5.11 presents the delay results. Table 5.12 presents the power 
consumption results. In Table 5.13 the leakage current is shown. At last, the obtained 
areas are described in Table 5.14. 

 

Table 5.11: Delay results (in seconds) for Cout function of a full adder. 

 CSP NCSP BDD OpBDD LBBDD 
CoutFA 1,00E-10 8,26E-11 2,83E-10 1,42E-10 8,26E-11 
 

Table 5.12: Dynamic consumption (in Watts) for Cout function of a full adder. 

 CSP NCSP BDD OpBDD LBBDD 
CoutFA 4,40E-15 3,77E-15 6,25E-15 5,80E-15 3,77E-15 

 

Table 5.13: Leakage current (in Amperes) for Cout function of a full adder. 

 CSP NCSP BDD OpBDD LBBDD 
CoutFA 2,10E-07 1,83E-07 2,42E-07 2,58E-07 1,83E-07 
 

Table 5.14: Area results (in square micrometers) for Cout function of a full adder. 

 CSP NCSP BDD OpBDD LBBDD 
CoutFA 28,78 28,78 33,73 33,09 28,78 
 

The best implementations for the Cout function of a full adder are LBBDD and 
NCSP. They are faster, present better results in terms of consumption, and are smaller 
than the other implementations. It is due to the fact that they present small transistor 
count and transistor stacks.  

 

5.3 Results for NPN-class Logic Functions up to 5-input 

 

In order to analyze the impact of different network implementations, 500 
arbitrary logic functions extracted from the NPN-class up to 5-input were selected. The 
total number of logic functions from NPN-class up to 5-input is 616625. This amount 
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makes unfeasible the network generation for all this set. Figure 5.1 presents the delay 
results. Figure 5.2 shows the dynamic consumption for the cells.  

As it is possible to see, the results demonstrate that in general NCSP and 
LBBDD are the best choice to implement logic cells.  

 

 

Figure 5.1: Delay results for 500 cells from NPN-class up to 5-input. 

 

 

Figure 5.2: Dynamic consumption results for 500 cells from NPN-class up to 5-input. 

 

Figure 5.3 presents the increase and decrease of transistor count for LBBDD, 
OpBDD and NCSP when comparing to CSP. NCSP is the logic style that implements a 
large number of cells without modifying the transistor count. LBBDD is capable of 
achieving the largest reduction of transistors between all logic styles. 
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Figure 5.3: Increase and decrease in transistor count when comparing to CSP. 

 

A subset of CSP networks that not respect the minimum number of transistors 
in series was selected from the total of 500 cells. For this obtained set of 423 cells, 
Figure 5.4 shows the worst achieved delay. Due to the large transistor stacks, CSP 
presents the worst results. LBBDD and NCSP can deliver more efficient networks. 
Figure 5.5 illustrates the average fanin for this subset of cells. 

 

 

Figure 5.4: Worst delay for 423 cells that do not respect the minimum number of 
transistors in series when implemented in CSP. 
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Figure 5.5: Average fanin for 423 cells that do not respect the minimum number of 
transistors in series when implemented in CSP. 

 

From the total 500 cells implemented in LBBDD logic style, it was selected 
those that presented a bridge arrangement in at least one logic plane. For those cells, if 
the logic plane with a bridge arrangement presents a small transistor count than the 
complementary plane, it was generated a new plane using the duality property in order 
to minimize the total transistor count. Figure 5.6 presents the results obtained in this 
experiment for the 184 networks found. The blue line shows the reduction in transistor 
count, while the red line shows the increase in the transistor length. This increase can 
occur due to the fact that a plane is the dual of the other. When a given plane presents 
more than 4 parallel branches, the dual one derived from it will present transistor chains 
with more than 4 elements. 

 

 

Figure 5.6: Experiment showing the reduction in transistor count and the increase in the 
transistor length when mixing LBBDD and Dual network generations. 
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5.4 Results for Logic Functions Unfeasible in CSP 

 

Some logic functions extracted from (SCHNEIDER, 2007) were also used as 
benchmark functions in this thesis. These cells cannot be implemented in CSP logic 
since they present a huge number of transistor in series at least in one logic plane. Table 
5.15 illustrates the transistor stacks for CSP, NCSP and LBBDD implementations. 

NCSP and LBBDD logic styles respect the minimal number of transistor in 
series. This way, they permit to implement these logic functions as complex gates. On 
the other hand, CSP cannot be implemented in one single gate. These functions need to 
be decomposed in small ones in order to generate CSP transistor networks. 

Table 5.16 shows the delay results for NCSP and LBBDD logic. Table 5.17 
illustrates the power consumption. In Table 5.18, the leakage current is depicted.  

Both logic styles presented similar results for the set of logic functions. In 
some cases LBBDD demonstrates a small advantage over NCSP. In others, NCSP 
shows a tiny gain. This experiment proves that it is important to analyze carefully at 
transistor level before choosing which complex transistor network will be used to 
compose the logic circuit. 

 

Table 5.15: Number of transistor in series for functions from (SCHNEIDER, 2007). 

NCSP LBBDD  
PU PD PU PD 

F1 14 4 3 4 
F2 15 4 3 4 
F3 14 4 4 4 
F4 15 4 4 4 
F5 14 4 4 4 
F6 16 3 3 4 
F7 17 3 3 4 

 

Table 5.16: Delay results (in seconds) for functions from (SCHNEIDER, 2007). 

 NCSP LBBDD 
F1 1,12E-09 1,12E-09 
F2 1,31E-09 1,34E-09 
F3 1,09E-09 1,02E-09 
F4 1,25E-09 9,89E-10 
F5 8,15E-10 9,72E-10 
F6 1,15E-09 1,15E-09 
F7 9,53E-10 9,42E-10 
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Table 5.17: Power results (in Watts) for functions from (SCHNEIDER, 2007). 

 NCSP LBBDD 
F1 2,32E-14 2,33E-14 
F2 2,85E-14 2,86E-14 
F3 3,36E-14 2,66E-14 
F4 3,80E-14 2,69E-14 
F5 2,10E-14 2,68E-14 
F6 2,92E-14 2,92E-14 
F7 2,67E-14 2,35E-14 

 

Table 5.18: Leakage current (in Amperes) for functions from (SCHNEIDER, 2007). 

 NCSP LBBDD 
F1 4,62E-07 4,41E-07 
F2 4,99E-07 4,97E-07 
F3 5,13E-07 5,29E-07 
F4 5,16E-07 5,64E-07 
F5 4,98E-07 5,34E-07 
F6 5,52E-07 5,51E-07 
F7 4,70E-07 5,18E-07 

 

5.5 Branch-based vs. Factorized Functions 

 

Another experiment was performed to investigate the impact over networks 
implemented using factorized and non-factorized forms. The set of logic functions 
extracted from Genlib 44-6 up to 4 inputs was used to implement CSP logic style. The 
networks were firstly implemented from the factorized form. A conversion from the 
factorized form to SOP representation was done. These SOP expressions were used to 
generate the second group of transistor networks. 

Table 5.19 shows the delay results. Table 5.20 illustrates the power 
consumption. In table 5.21, the leakage is depicted. Finally, in Figure 5.22, the obtained 
areas are shown. 

When the factorized form differs from the SOP form, the results point to a 
considerable gain for networks implemented from the optimized expression. This gain 
occurs in all cost axis: delay, power, and area. 
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Table 5.19: Average delay results (in seconds) for factorized and non-factorized forms. 

 Factorized CSP Non-factorized CSP 
Cell0 3,53E-12 3,53E-12 
Cell1 9,55E-11 1,68E-10 
Cell2 1,64E-10 1,64E-10 
Cell3 9,16E-11 1,33E-10 
Cell4 5,89E-11 5,89E-11 
Cell5 7,54E-11 7,54E-11 
Cell6 1,80E-10 1,80E-10 
Cell7 3,34E-10 3,34E-10 
Cell8 1,79E-11 1,79E-11 
Cell9 2,82E-11 2,82E-11 

Cell10 3,76E-11 7,46E-11 
Cell11 6,08E-11 6,08E-11 
Cell12 4,10E-11 4,10E-11 
Cell13 1,15E-10 1,15E-10 
Cell14 6,65E-11 1,20E-10 
Cell15 7,08E-11 2,06E-10 
Cell16 7,57E-11 4,52E-10 

 

Table 5.20: Power consumption (in Watts) for factorized and non-factorized forms. 

 Factorized CSP Non-factorized CSP 
Cell0 3,88E-16 3,88E-16 
Cell1 4,84E-15 7,65E-15 
Cell2 5,33E-15 5,33E-15 
Cell3 2,88E-15 4,16E-15 
Cell4 2,86E-15 2,86E-15 
Cell5 3,54E-15 3,54E-15 
Cell6 4,79E-15 4,79E-15 
Cell7 4,62E-15 4,62E-15 
Cell8 1,41E-15 1,41E-15 
Cell9 1,29E-15 1,29E-15 

Cell10 2,06E-15 3,90E-15 
Cell11 3,03E-15 3,03E-15 
Cell12 1,97E-15 1,97E-15 
Cell13 2,69E-15 2,69E-15 
Cell14 3,02E-15 6,00E-15 
Cell15 2,91E-15 7,60E-15 
Cell16 3,42E-15 1,17E-14 
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Table 5.21: Leakage current (in Amperes) for factorized and non-factorized forms. 

 Factorized CSP Non-factorized CSP 
Cell0 8,07E-08 8,07E-08 
Cell1 1,24E-07 1,45E-07 
Cell2 8,56E-08 8,56E-08 
Cell3 1,70E-07 1,85E-07 
Cell4 1,58E-07 1,58E-07 
Cell5 1,77E-07 1,77E-07 
Cell6 1,14E-07 1,14E-07 
Cell7 6,92E-08 6,92E-08 
Cell8 1,02E-07 1,02E-07 
Cell9 9,62E-08 9,62E-08 

Cell10 1,43E-07 1,64E-07 
Cell11 9,69E-08 9,69E-08 
Cell12 1,40E-07 1,40E-07 
Cell13 8,57E-08 8,57E-08 
Cell14 1,78E-07 1,56E-07 
Cell15 1,56E-07 2,06E-07 
Cell16 1,77E-07 2,23E-07 

 

Table 5.22: Area (in micrometers) for factorized and non-factorized forms. 

 Factorized CSP Non-factorized CSP 
Cell0 6,23 6,23 
Cell1 8,15 8,15 
Cell2 8,15 8,15 
Cell3 11,67 13,59 
Cell4 11,67 11,67 
Cell5 11,67 11,67 
Cell6 11,67 11,67 
Cell7 14,39 17,10 
Cell8 14,39 19,02 
Cell9 13,59 24,46 

Cell10 13,59 19,82 
Cell11 13,59 13,59 
Cell12 14,39 14,39 
Cell13 14,39 17,10 
Cell14 13,59 13,59 
Cell15 13,59 13,59 
Cell16 13,59 13,59 
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5.6 Fanin and Other Characteristics of P-class Logic Functions up to 
4 Inputs 

 

A comparative experiment to show how the topology of transistor networks 
influences the logical effort (fanin) of logic gates was also performed.  

The set of evaluated functions include all the 3982 P-classes representing the 
set of non-constant 4-input logic functions. This set of functions was chosen because it 
contains simple functions that are more likely to be used in real designs as cells. For all 
the 3982 target functions, the network types described above were generated. Results 
are reported in Table 5.23. The data for each generation method are described in one 
column. For each method, the sum of the total number of transistors, length of longest 
transistor chain for pull-up (∑PU), length of the longest transistor chain for pull-down 
(∑PD), logical effort (average per cell input), number of functions that do not respect 
the lower bounds and the number of unfeasible functions is shown. The LBBDD is a 
clear winner for total number of transistors. This happens because even if some nodes 
are duplicated when generating the network, it is possible to remove several transistors, 
which compensates the duplication with advantages. LBBDD and NCSP respect the 
minimum number of transistor in series to implement the logic functions, so these 
methods have equal ∑PU lengths and ∑PD lengths, as shown in Table 5.23. However 
the total number of transistors is smaller for the LBBDD, which explains the advantage 
this method also has in terms of logical effort. Notice that the CSP respect the LB for 
the PU, as expected.  

CSP, BDD and OpBDD methods produce functions not respecting the lower 
bounds. The BDD method is the one that produces the highest number of functions not 
respecting the minimum transistor stacks. However, all the functions it produces have at 
most 4 transistor in series (worst case path length for a BDD), and therefore they are 
considered feasible with a single cell. The only method to produce networks with more 
than 4 transistors in series is CSP. This is a result of using dual networks, which will 
result in excessive number of transistors in series when making a dual of a network that 
has many transistors in parallel. It is also observed that for networks with the same 
chain lengths, the one with a smaller transistor count is the winner. 

Notice that these results show only the total values obtained in each logic style. 
Although they could point to the fact that the NCSP and LBBDD are strong candidates 
to generate optimized transistor networks, specific logic functions may present similar 
results when implemented in other logic styles. 
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Table 5.23: Comparison of different methods for P-class logic functions up to 4 
variables. 

 CSP NCSP BDD OpBDD LBBDD 
∑ # transistors 75530 75889 76774 73438 72307 
∑PU length 11954 11954 15538 14227 11954 
∑PD length 17009 14242 15538 15321 14242 

Aver. logical effort 4.54 3.83 4.35 4.07 3.68 
#f not respecting LB 2312 0 3148 2373 0 

# of unfeasible f 1546 0 0 0 0 
 

5.7 Final Considerations 

 

This chapter presented some experimental results with different sets of logic 
functions. These sets were implemented in different logic styles and were compared to 
demonstrate that depending on the target logic function there is a possibility of 
achieving a better implementation in terms of delay, power or area. 

The set of logic functions used to perform the experiments of this chapter are 
described in Appendix D of this thesis. 
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6 CONCLUSIONS AND FUTURE WORKS 

This work presented an automated flow for generating and evaluating transistor 
cell networks. The main goal of the work proposed herein was to develop an approach 
able to generate logic cell networks on-the-fly, considering different logic styles, and 
evaluate these networks using estimative techniques. 

In a first moment, a review about switch theory was done. A switch network 
classification was compiled in order to clarify the switch network properties and to 
present the richness of the switch theory. Also, we proposed a factorization method to 
optimized Boolean expressions. These optimized expressions are suitable to be used as 
input to implement efficient transistor networks, as it was presented in the experimental 
results. 

Several generation methods for transistor networks were presented, from the 
traditional CSP logic style to the new NCSP proposed by Schneider (2007), which is a 
network solution that achieves the minimum length for transistor chains needed to 
implement a given logic function. A review on graph-based networks implementation 
was done, discussing the most relevant researches on this field. In the sequence, a new 
static and disjoint logic style was proposed. This logic, called LBBDD, is a BDD-based 
solution and demonstrated to be very promising. Like NCSP, this logic style delivers 
networks with minimum number of transistors in series in pull-up and pull-down planes. 
The advantage over the NCSP is that factorization is not necessary to achieve optimized 
networks, since the optimizations are performed in the BDD structure. Also, it is 
capable of delivering Wheatstone-bridge networks. This kind of network tends to be 
more efficient than traditional series-parallel arrangements as it minimizes the total 
transistor count. Clearly, the method proposed herein is more general as it can generate 
all the (logically complementary) categories in the switch network classification we 
proposed. 

To evaluate the generated transistor networks, some estimation techniques 
were employed. To investigate the delay of different implementations of same logic 
functions, the Elmore delay model was implemented. Although this delay model is not 
an accurate solution, it is an excellent approach to perform a first-order timing 
estimation that delivers good information about the delay behavior of logic cells. To 
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investigate the dynamic power consumption, a method proposed by Chiappetta (2008) 
was implemented. This method is based on the intrinsic capacitance computation. Thus, 
the short-circuit power dissipation was not considered in this work. To estimate the 
leakage current of the generated networks, three models were implemented. The first 
one is a simple solution to compute subthreshold leakage only. The second one is a 
straightforward approach to compute gate leakage only. Finally, the third model is an 
accurate method to estimate subthreshold and gate leakage together. In the experimental 
results, the third one was used. However, the other two can be applied when the 
designer needs to evaluate only a unique leakage component, disregarding the others. 
Finally, to evaluate area we proposed a naïve approach which considers some 
technology process distances, extracted from the technology process datasheet, to 
compute and estimate the cell width. The cell height has not been investigated in the 
current version. So, the height is fixed in a given value in order to achieve the area 
results. Notice that this approach is useful when thinking in standard-cells design flow, 
since all cells present the same height. Considering a height value that is sufficient to 
perform the internal routing of all cells, we can compare the implementations with a 
good exactness as demonstrated in the validation experiment. 

The results show that LBBDD and NCSP in general are good alternatives to 
implement logic functions. However, they are not the best choice for every logic 
function. For instance, there is no need to use this kind of network generation when the 
target logic function is unate and do not present repeated literals. In this case, CSP 
networks are able to attend the minimum implementation in terms of transistor in series 
and total count. On the other hand, XOR3 and XOR4 become feasible in LBBDD and 
NCSP. The results demonstrated that, for the used set of logic functions, LBBDD also 
presents a significant reduction in terms of area if compared to the other logic styles. 
This happens because several transistors are removed from the network during the 
generation process. Mux-Based networks achieved the worst area results, showing that a 
non-factorized form can negatively impact on the generated cell network. 

Two CAD tools, presented in Appendix E, were implemented during this work. 
They contain several methods and ideas discussed herein. These tools can be used to 
help designers to generate and investigate logic cells behavior. As future work it is 
intended to implement a technology mapping tool capable of using the networks and 
information generated by the methods presented in this thesis. 
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APPENDIX A  AN ACADEMIC LIBRARY DESCRIPTION   

This library description corresponds to a subset of the lib2.genlib that is an 
academic library distribute with the SIS technology mapping tool (SENTOVICH, 
1992). 

 

 

GATE inv1  928.00 O=!a; 

PIN a INV 0.0514 999.0 0.4200 4.7100 0.4200 3.6000 

GATE nand2  1392.00 O=!(a*b); 

PIN a INV 0.0777 999.0 0.6400 4.0900 0.4000 2.5700 

PIN b INV 0.0716 999.0 0.4600 4.1000 0.3700 2.5700 

GATE nand4  2320.00 O=!(a*b*c*d); 

PIN a INV 0.1030 999.0 1.2700 3.6200 0.6700 2.3900 

PIN b INV 0.0980 999.0 1.0900 3.6100 0.6100 2.3900 

PIN c INV 0.0980 999.0 0.8200 3.6200 0.5500 2.4000 

PIN d INV 0.1050 999.0 0.5800 3.6200 0.3800 2.3900 

GATE nor2  1392.00 O=!(a+b); 

PIN a INV 0.0736 999.0 0.3300 3.6400 0.4500 3.6400 

PIN b INV 0.0968 999.0 0.5000 3.6400 0.7000 3.6600 

GATE nor4  2320.00 O=!(a+b+c+d); 

PIN a INV 0.0887 999.0 0.4100 5.9100 1.1600 3.2000 

PIN b INV 0.0867 999.0 0.8500 5.9100 1.5300 3.1800 

PIN c INV 0.0867 999.0 1.1100 5.9200 1.7500 3.1900 

PIN d INV 0.0887 999.0 1.2700 5.9100 1.9400 3.2000 

GATE aoi21  1856.00 O=!((a*b)+c); 

PIN a INV 0.1029 999.0 0.7500 3.5200 0.6700 2.5300 

PIN b INV 0.0908 999.0 0.6700 3.6400 0.6200 2.5200 

PIN c INV 0.1110 999.0 0.5800 3.6400 0.2100 1.2800 

GATE aoi22  2320.00 O=!((a*b)+(c*d)); 

PIN a INV 0.1019 999.0 0.9200 3.4600 0.9400 2.7900 

PIN b INV 0.0908 999.0 0.8400 3.6400 0.8500 2.7900 

PIN c INV 0.0958 999.0 0.6100 3.6400 0.4900 2.9300 

PIN d INV 0.0988 999.0 0.7000 3.6400 0.5400 2.9300 

 

Figure A: A subset of the lib2.genlib academic library. 
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A cell is specified in the following format: 

GATE <cell_name>  <cell_area>  <cell_logic_function> 

PIN <pin_name>  <phase>  <input_load>  <max_load>  
<rise_block_delay>  <rise_fanout_delay>  
<fall_block_delay>  <fall_fanout_delay> 

 

<cell_name> is the name of the cell in the cell library. 

<cell_area> defines the relative area cost of the cell. It is a floating point 
number, and may be in any unit system convenient for the user. 

<cell_logic_function> is an equation written in conventional algebraic notation 
using the operators “+” for OR, “*” or nothing (space) for AND, “!” or “’” (post-fixed) 
for NOT, and parentheses for grouping. The names of the literals in the equation define 
the input pin names for the cell; the name on the left hand side of the equation defines 
the output of the cell. The equation terminates with a semicolon. 

<pin_name> must be the name of a pin in the <cell_logic_function>, or it * to 
specify identical timing information for all pins. 

<phase> is INV, NONINV, or UNKNOWN corresponding to whether the 
logic function in negative unite, positive unate, or binate in this variable respectively. 
This is required for the separate rise-fall delay model. 

<input_load> gives the input load of this pin. It is a floating point value, in 
arbitrary units convenient for the user. 

<max_load> specifies a loading constraint for the cell. It is a floating point 
value specifying the maximum load allowed on the output. 

<rise_block_delay> and <rise_fanout_delay> are the rise-time parameters for 
the timing model. They are floating point values, typically in the units nanoseconds, and 
nanoseconds/unit_load respectively. 

<fall_block_delay> and <fall_fanout_delay> are the fall-time parameters for 
the timing model. They are floating point values, typically in the units nanoseconds, and 
nanoseconds/unit_load respectively. 

 

The delay information for the most critical pin is used to determine the delay 
for the logic gate. 
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APPENDIX B  XOR TRANSISTOR SCHEMATICS 

 

Figure B1: XOR2 in CSP, NCSP, BDD, OpBDD 
and LBBDD logic styles. 
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Figure B2: XOR3 in CSP logic style. 

 

 

 

 

Figure B4: XOR3 in NCSP logic style. 
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Figure B5: XOR3 in BDD, OpBDD and LBBDD logic styles. 
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Figure B6: XOR4 in CSP logic style. 
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Figure B8: XOR4 in NCSP logic style. 

 

 

Figure B9: XOR4 in BDD, OpBDD and LBBDD logic styles. 
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APPENDIX C  COUT_FA TRANSISTOR SCHEMATICS 

 

Figure C1: COUT FA in CSP logic style. 
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Figure C3: COUT FA in BDD logic style. 

 

 

 

Figure C4: COUT FA in OpBDD logic style. 
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Figure C5: COUT FA in NCSP and LBBDD logic styles. 
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APPENDIX D  LOGIC FUNCTIONS USED FOR THE 
EXPERIMENTAL RESULTS 

Genlib 44-6 up to 4 inputs: 

!a 
!(a*b) 
!(a+b) 

!(a*(b+c)) 
!(a*b*c) 
!(a+b*c) 
!(a+b+c) 

!(a*(b+c*d)) 
!(a*(b+c+d)) 

!((a+b)*(c+d)) 
!(a*b*(c+d)) 
!(a*b*c*d) 

!(a+b*(c+d)) 
!(a+b*c*d) 
!(a*b+c*d) 
!(a+b+c*d) 
!(a+b+c+d) 

 

Additional logic functions: 

(!a*b)+(a*!b) 
(!a*(!b*c+b*!c))+(a*(b*c+!b*!c)) 

(((!c+!b)*!d*(c+b)+(c+!b)*d*(b+!c))*a+((!c+!b)*d*(c+b)+(c+!b)*!d*(b+!c))*!a)!(a+b*(c+d)) 
(a*b)+(a*c)+(b*c) 

 

500 NPN-classes logic functions up to 5 inputs: 

000006B3 000019EE 0001019F 00010AE2 00011BEF 
000006B4 000019EF 000101A6 00010AE3 00011BF0 
000006B5 000019F1 000101A9 00010AE4 00011BF1 
000007BF 000019F3 000101AA 00010AE5 00011BF2 
000007E0 000019F6 000101AB 00010AE6 00011BF3 
000007E1 000019F7 000101AC 00010AE7 00011BF4 
000007E2 000019F8 000101AD 00010AE8 00011BF5 
000007E3 000019F9 000101AE 00010AE9 00011BF6 
000007E6 000019FA 000101AF 00010AEA 00011BF7 
000007E7 000019FB 000101BC 00010AEB 00011BF8 



 

 

 

 

128 

000007E9 000019FE 000101BD 00010AEC 00011BF9 
000007EB 000019FF 000101BE 00010AED 00011BFA 
000007EF 00001BD6 000101BF 00010AEE 00011BFB 
000007F0 00001BD7 000101E8 00010AEF 00011BFC 
000007F1 00001BD8 000101E9 00010AF0 00011BFD 
000007F2 00001BD9 000109E1 00010AF1 00011BFE 
000007F3 00001BDB 000109E2 00010AF2 00011BFF 
000007F6 00001BDE 000109E3 00010AF3 00011EE0 
000007F7 00001BDF 000109E6 00010AF4 00011EE1 
000007F8 00001BE4 000109E7 00010AF5 00011EE2 
000007F9 00001BE5 000109E8 00010AF6 00011EE3 
000007FA 00001BE7 000109E9 00010AF7 00011EE6 
000007FB 00001BEC 000109EA 00010AF8 00011EE7 
000007FE 00001BED 000109EB 00010AF9 00011EE8 
000007FF 00001BEE 000109EE 00010AFA 00011EE9 
00000FF0 00001BEF 000109EF 00010AFB 00011EEA 
00000FF1 00001BFC 000109F0 00010AFC 00011EEB 
00000FF3 00001BFD 000109F1 00010AFD 00011EEE 
00000FF6 00001BFF 000109F2 00010AFE 00011EEF 
00000FF7 00001EE1 000109F3 00010AFF 00011EF0 
00000FFF 00001EE3 000109F6 00010BB0 00011EF1 
00001668 00001EE6 000109F7 00010BB1 00011EF2 
00001669 00001EE7 000109F8 00010BB2 00011EF3 
0000166A 00001EE9 000109F9 00010BB3 00011EF6 
0000166B 00001EEB 000109FA 00010BB4 00011EF7 
0000166E 00001EEE 000109FB 00010BB5 00011EF8 
0000166F 00001EEF 000109FE 00010BB6 00011EF9 
0000167E 00001EF1 000109FF 00010BB7 00011EFA 
0000167F 00001EF3 00010AA0 00010BB8 00011EFB 
00001681 00001EF6 00010AA1 00010BB9 00011EFE 
00001683 00001EF7 00010AA2 00010BBA 00011EFF 
00001686 00001EF9 00010AA3 00010BBB 00011FF0 
00001687 00001EFA 00010AA4 00010BBC 00011FF1 
00001689 00001EFB 00010AA5 00010BBD 00011FF2 
0000168B 00001EFE 00010AA6 00010BBE 00011FF3 
0000168E 00001EFF 00010AA7 00010BBF 00011FF6 
0000168F 00001FF1 00010AA8 00010BD0 00011FF7 
00001696 00001FF2 00010AA9 00010BD1 00011FF8 
00001697 00001FF3 00010AAA 00010BD2 00011FF9 
00001698 00001FF6 00010AAB 00010BD3 00011FFA 
00001699 00001FF7 00010AAC 00010BD6 00011FFB 
0000169A 00001FF8 00010AAD 00010BD7 00011FFE 
0000169B 00001FF9 00010AAE 00010BD8 00011FFF 
0000169E 00001FFA 00010AAF 00010BD9 00012880 
0000169F 00001FFB 00010AB0 00011AFD 00012881 
000016A9 00001FFE 00010AB1 00011AFE 00012882 
000016AB 00001FFF 00010AB2 00011AFF 00012883 
000016AC 00003CC3 00010AB3 00011BB0 00012884 
000016AD 00003CC7 00010AB4 00011BB1 00012885 
000016AE 00003CCF 00010AB5 00011BB2 00012886 
000016AF 00003CD7 00010AB6 00011BB3 00012887 
000016BC 00003CDB 00010AB7 00011BB4 00012888 
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000016BD 00003CDF 00010AB8 00011BB5 00012889 
000016BE 00003CFF 00010AB9 00011BB6 0001288A 
00001796 00003DD6 00010ABA 00011BB7 0001288B 
00001797 00003DD7 00010ABB 00011BB8 0001288C 
00001798 00003DDA 00010ABC 00011BB9 0001288D 
00001799 00003DDB 00010ABD 00011BBA 0001288E 
0000179A 00003DDE 00010ABE 00011BBB 0001288F 
0000179B 00003DDF 00010ABF 00011BBC 00012894 
0000179E 00003DED 00010AC0 00011BBD 00012895 
0000179F 00003DEF 00010AC1 00011BBE 00012896 
000017A9 00003DFD 00010AC2 00011BBF 00012897 
000017AB 00003DFE 00010AC3 00011BD0 00012898 
000017AC 00003DFF 00010AC6 00011BD1 00012899 
000017AD 00003FFC 00010AC7 00011BD2 0001289A 
000017AE 00003FFD 00010AC8 00011BD3 000128AA 
000017AF 00003FFF 00010AC9 00011BD6 000128AB 
000017BC 00006996 00010ACA 00011BD7 000128AC 
000017BD 0001017E 00010ACB 00011BD8 000128AD 
000017BE 0001017F 00010ACE 00011BD9 000128AE 
000017BF 00010180 00010ACF 00011BDA 000128AF 
000017E8 00010181 00010AD0 00011BDB 000128BC 
000017E9 00010182 00010AD1 00011BDE 000128BD 
000017EA 00010183 00010AD2 00011BDF 000128BE 
000017EB 00010186 00010AD3 00011BE0 000128BF 
000017EE 00010187 00010AD4 00011BE1 000128C0 
000017EF 00010188 00010AD5 00011BE2 000128C1 
000017FE 00010189 00010AD6 00011BE3 000128C2 
000017FF 0001018A 00010AD7 00011BE4 000128C3 
000018E7 0001018B 00010AD8 00011BE5 000128C4 
000018EF 0001018E 00010AD9 00011BE6 000128C5 
000018FF 0001018F 00010ADA 00011BE7 000128C6 
000019E1 00010196 00010ADB 00011BE8 000128C7 
000019E3 00010197 00010ADC 00011BE9 000128CA 
000019E6 00010198 00010ADD 00011BEA 000128CB 
000019E7 00010199 00010ADE 00011BEB 012CDF18 
000019E9 0001019A 00010ADF 00011BEC 012CDF19 
000019EA 0001019B 00010AE0 00011BED 012CDF1A 
000019EB 0001019E 00010AE1 00011BEE 012CDF2A 

 

7 Logic functions unfeasible in CSP: 

000101170117173F 
000101170117177F 
011313370337377F 
011313371337377F 
011313371337777F 
0117177F177F7FFF 
0117177F577F7FFF 
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Branch-based vs. factorized logic functions: 

!a !a 
!(a*b) !(a*b) 
!(a+b) !(a+b) 

!(a*(b+c)) !((a*b)+(a*c)) 
!(a*b*c) !(a*b*c) 
!(a+b*c) !(a+b*c) 
!(a+b+c) !(a+b+c) 

!(a*(b+c*d)) !((a*c*d)+(a*b)) 
!(a*(b+c+d)) !((a*d)+(a*c)+(a*b)) 

!((a+b)*(c+d)) !((b*d)+(b*c)+(a*d)+(a*c)) 
!(a*b*(c+d)) !((a*b*d)+(a*b*c)) 
!(a*b*c*d) !(a*b*c*d) 

!(a+b*(c+d)) !((b*d)+(b*c)+(a)) 
!(a+b*c*d) !(a+b*c*d) 
!(a*b+c*d) !(a*b+c*d) 
!(a+b+c*d) !(a+b+c*d) 
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APPENDIX E  DEVELOPED TOOLS  

During the development of this work it became evident the need for a logic 
synthesis tool that could be used to optimize logic descriptions, to generate and evaluate 
transistor networks, and to estimate some electrical and physical behaviors at logic cells 
level. In fact, there are not many available tools in the academy that could be used to 
perform some of these tasks. An example is the SIS tool from Berkley (SENTOVICH, 
1992), which is a technology mapping tool, that presents scripts to perform 
factorization, for instance. More recently, its new brother, called ABC, has incorporated 
some old features and presents new algorithms and techniques for technology mapping 
purpose (MISCHENKO, 2005).  Other examples of CAD tools are: CDF, which 
provides the generation of transistor cells layout from an input equation description, 
performing some intermediate logic synthesis steps (NANGATE, 2008); Blue Macaw 
Didactic Placement Tool, which is an environment to experiment and to learn the 
existing VLSI Cell Placement Algorithms and their variations (HENTSCHKE, 2008); 
Cellgen that is a tool for generating cell layout from a predefined input spice netlist 
(ZIESEMER JUNIOR, 2007). However, these available tools do not provide a wide 
cover for logic synthesis problems, or, at least, they do not permit the use of a single and 
specific operation. On the other hand, several small tools and scripts are available in 
Nangate-UFRGS Research Lab. The majority of these codes and modules were 
developed for internal purposes, to support and to assist the development of researches. 
A repository and a version control system allow students and researchers to share codes 
and to optimize the process of generating new solutions and results. 

In this context, an academic environment composed of 3 parts was idealized by 
our group. The first one is a logic synthesis tool, which only performs logic 
manipulations over Boolean functions. This tool is called KARMA 3. The second one is 
an electrical synthesis tool, developed to provide transistor networks generation, 
manipulation and evaluation at cell level. This tool is named ELECTRO. The last one is 
a physical synthesis tool, proposed to implement, optimize and evaluate the layout of 
logic cells. This tool, named LAGARTO, is under development and will complete the 
logic cell automated design flow. The produced code herein is presented in part of the 
KARMA 3, and it is the main engine for the ELECTRO tool. Both tools were developed 
in Java language and they will be presented in the following sub sections. 



 

 

 

 

132 

A Tool for Logic Synthesis of Boolean Functions 

 

KARMA 3 tool is a new and expanded version from the original KARMA tool 
(KARMA, 2008). The main objective of KARMA was to help users to have a better 
understanding of Karnaugh maps, truth-tables, Boolean functions and many concepts of 
logic synthesis. Through a friendly graphical user interface the user can interact with the 
software in many ways like assigning a Boolean function and running Quine-
McCluskey algorithm to get the prime implicants and see how they are positioned in the 
Karnaugh map.  

 

 

Figure E1: KARMA 3 main window. 

 

The original version was rebuilt to enlarge the number of features and data 
manipulations in the logic synthesis field. The current version contains a converter for 
different logic descriptions, a logic equivalence verifier, an SOP and POS generator and 
analyzer, a factorization unit, and a probability evaluator of signal propagation. In other 
words, KARMA 3 is a tool that offers the possibility of manipulating Boolean functions 
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to meet the designer needs in terms of logic description. Figure E1 presents the main 
window of KARMA 3. 

The first module is the “Logic2Logic”. The purpose of this module is to 
translate a given logic description to another. It is possible to convert BLIF description, 
truth-table representation, equation description, numerical description or list of 
minterms representation in between them. Figure E2 shows the window of this module. 

 

 

Figure E2: Logic2Logic window. 

 

The “Karnaugh Map” module permits to synthesize using Karnaugh maps. It is 
possible to set the function through truth-table or directly in the map, and then run the 
Quine-McCluskey algorithm. From this point, the list of prime implicants, the Quine-
McCluskey step-by-step procedure, the covering table, and the equivalent factorized 
function can be visualized. Figure E3 illustrates the window of this module. 
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Figure E3: Karnaugh Map window. 

 

In the “Karma Teaching Mode” some games are presented to be used as a 
didactic instrument. In this module the user learn and perform some exercises about 
Karnaugh maps, viewing and finding adjacent minterms and cubes, selecting cubes, and 
covering table. Figure E4 illustrates this module. 

The “SOP_POS” module delivers an easy way to obtain the sum-of-products 
and the product-of-sums from a given logic input description. Figure E5 shows the 
window of this module. 

In the “Logic Equivalence” module, illustrated in Figure E6, it is possible to 
evaluate if two different logic descriptions are equivalent or not. This equivalence is 
done through BDD evaluation, and it returns the truth-table for the input functions 
described by the user. 

The “Mux-Based” module evaluates all possible configurations of using 
variables as pass variables or control variables, and informs the best solution to 
implement a transistor cell with a reduced number of elements in a mux-based logic 
gate, as presented in section 3.2.1.3. Figure E7 shows this feature. 

The last module, called “Probabilities”, permits the user to determine the 
probability of occurring a one logic value in the output of a given logic function 
according to the occurrence probabilities in the inputs. This module is depicted in 
Figure E8.  
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Figure E4: Karma teaching mode window. 

 

 

Figure E5: SOP_POS window. 
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Figure E6: Logic equivalence window. 

 

 

Figure E7: Mux-based window. 
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Figure E8: Probabilities window. 

 

All modules of KARMA 3 were developed together with other students and 
researchers in the Nangate-UFRGS Research Lab. 

 

A Tool for Automatic Transistor Cells Generation  

 

ELECTRO tool presents some features that permit the user to generate 
transistor networks and to evaluate some electrical and physical characteristics through 
estimations. It is a fast and easy way to investigate the behavior of possible transistor 
networks implementations for a given input logic function. As input, this tool accepts a 
Boolean expression description. Also, it is possible to use a Spice netlist input, allowing 
the user to manipulate and to evaluate a pre-implemented transistor network.  

This tool contains several algorithms and methods implemented during the 
development of this work. The following list describes some of them, since the tool is 
constantly being improved: 

 

• BDD ordering methods 
o Sifiting algorithm 
o Exhaustive solution 

• Transistor network generation 
o CSP logic 
o NCSP logic 
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o BDD logic (CMOS derived from BDD) 
o OpBDD logic (Optimized BDD logic) 
o LBBDD (Lower Bound BDD logic) 
o Mux-based logic 
o Branch-based logic 
o Dual-graph logic 

• Transistor network simulator 
• Network profile algorithms 

o Number of nodes 
o Number of transistors 
o Number of transistors connected per node 
o Number of unate/binate nodes 
o Number of inverters 
o Number of paths in the transistor networks 
o Number of paths in the BDD 
o Number of transistor in series in the network 
o Smallest and largest paths in the transistor network 

• Leakage estimation methods 
o Gate leakage 
o Subthreshold leakage 
o Iterative gate/subthreshold leakage 

• Transistor sizing  
o Logical Effort method 
o Fixed size (minimal or relative to some sizing rule) 

• Transistor folding  
• Network transistor sharing 
• Structural transistor ordering 
• Variables occurrence in transistor networks 
• Detection of series-parallel or bridge transistor arrangements 

 

The main window from ELECTRO, shown in Figure E9, follows a similar 
graphical user interface presented in KARMA 3. All options are grouped in a list 
according to their functionalities. 
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Figure E9: ELECTRO main window. 

 

The “Networks” module is a small tool that permits to generate different switch 
networks. It is a powerful didactic instrument for teaching switch theory. In this module 
it is possible to generate switch networks composed by NMOS transistor, PMOS 
transistors, mixed NMOS/PMOS transistors and/or transmition gates. The user can 
generate disjoint pull-up and/or pull-down planes in separated steps, or non-disjoint 
planes, using or not, mixed NMOS/PMOS transistors. The dual-graph transistor 
generation concept is presented in this module in order to demonstrate how it is possible 
to obtain a topologically complementary network from a dual graph. 

The “Logic Gate” module contains the CMOS logic gates generation. The user 
can choose one logic style from the large available list. All logic styles presented in this 
thesis are present in this module. Also, some other logic styles, like PTL, are available. 
In the future, we will expand it by adding dynamic logic styles. 

In the “Sizing” module the user can perform transistor sizing in the network. 
The Logical Effort method is available (SUTHERLAND, 1999). Also, a fixed transistor 
sizing option is offered, which allows the use of minimal or a relative transistor sizing 
according to the input rules. 
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“Profile” is the module that delivers all information about the transistor 
networks that do not need to be simulated or estimated. For a given transistor networks 
the user can extract information about transistors, nodes, chains and internal transistor 
arrangements. It is also possible to investigate some BDD structure characteristics, like 
the BDD sizing and the node unateness property. 

 

 

Figure E10: BDD viewer. 

 

The “Estimation” module includes all developed estimation methods described 
in chapter 4. For a given logic gate, the user can evaluate the static power characteristics 
(the gate leakage behavior, the subthreshold leakage, and the interaction of these two 
leakage components), the dynamic power characteristic, the delay performance and 
some physical information. In other words, this module contains information that cannot 
be extracted by a simple analysis of the network. It includes state-of-the-art methods to 
evaluate area, delay and power characteristics from a certain logic gate.  

Finally, the “Viewer” module includes two graphical viewer tools. The first one 
is dedicated to BDDs. The user can visualize and manipulate the generated BDD that 
represents the logic function. The second is dedicated to the Spice netlist description. A 
schematic transistor view is generated to make easy the visualization of transistor 
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arrangements. Figure E10 and Figure E11 illustrate a BDD representation and an 
electrical schematic from a given logic function, both generated by the tool. 

 

 

Figure E11: Schematic viewer. 

 



 

 

 

 

142 

APPENDIX F  LIST OF PUBLICATIONS 

CARDOSO, T. M. G.; DA ROSA JUNIOR, Leomar Soares; MARQUES, F. S.; 
RIBAS, R. P.; REIS, André Inácio. Speed-up of ASICs Derived from FPGAs by 
Transistor Network Synthesis Including Reordering. In: 9th IEEE International 
Symposium on Quality Electronic Design (ISQED), 2008, San Jose. 9th IEEE 
International Symposium on Quality Electronic Design Proceedings. Los Alamitos : 
IEEE Computer Society, 2008. p. 47-52. 

BUTZEN, P. F.; DA ROSA JUNIOR, Leomar Soares; CHIAPPETTA FILHO, E. J. D.; 
MOURA, D.; REIS, André Inácio; RIBAS, R. P. Simple and accurate method for fast 
static current estimation in CMOS complex gates with interaction of leakage 
mechanisms. In: 18th ACM Great Lakes Symposium on VLSI (GLSVLSI), 2008, 
Orlando. Proceedings of the 18th ACM Great Lakes Symposium on VLSI. New York : 
ACM, 2008. p. 407-410. 

BUTZEN, P. F.; DA ROSA JUNIOR, Leomar Soares; CHIAPPETTA FILHO, E. J. D.; 
MOURA, D.; REIS, André Inácio; RIBAS, R. P. Subthreshold and Gate Leakage 
Estimation in Complex Gates. In: 17th ACM/IEEE International Workshop on Logic 
and Synthesis (IWLS), 2008, Lake Tahoe. Workshop Notes of the 17th ACM/IEEE 
International Workshop on Logic and Synthesis, 2008. 

DA ROSA JUNIOR, Leomar Soares; MARQUES, F. S.; SCHNEIDER, F.; RIBAS, R. 
P.; REIS, André Inácio. A Comparative Study of CMOS Gates with Minimum 
Transistor Stacks. In: 20th ACM Symposium on Integrated Circuits and Systems 
Design (SBCCI), 2007, Rio de Janeiro. 20th ACM Symposium on Integrated Circuits 
and Systems Design Proceedings. New York : ACM, 2007. p. 93-98. 

BUTZEN, P. F.; MANCUSO, R.; SCHNEIDER, F.; DA ROSA JUNIOR, Leomar 
Soares; REIS, André Inácio; RIBAS, R. P. Leakage Behavior in CMOS and PTL Logic 
Styles for Logic Synthesis Orientation. In: 16th ACM/IEEE International Workshop on 
Logic and Synthesis (IWLS), 2007, San Diego. Workshop Notes of the 16th 
ACM/IEEE International Workshop on Logic and Synthesis, 2007. p. 53-58. 

GOMES, M. V.; SILVA, C. A.; BAVARESCO, S.; SARTORI, G. H.; DA ROSA 
JUNIOR, Leomar Soares; REIS, André Inácio; RIBAS, R. P. Test Circuit for Functional 
Verification of Automatically Generated Cell Library. In: 8th IEEE Latin American 
Test Workshop (LATW), 2007, Cuzco. Workshop Notes of the 8th IEEE Latin 
American Test Workshop, 2007. 

DA ROSA JUNIOR, Leomar Soares; SCHNEIDER, F.; RIBAS, R. P.; REIS, André 
Inácio. Analysis of Transistor Networks Generation. In: XIII Workshop Iberchip (IWS), 



 

 

 

 

143 

2007, Lima. Workshop Notes of the XIII Workshop Iberchip. Lima : Editorial Hozlo 
S.R.L, 2007. p. 383-386. 

MARQUES, F. S.; DA ROSA JUNIOR, Leomar Soares; RIBAS, R. P.; 
SAPATNEKAR, S.; REIS, André Inácio. DAG based library-free technology mapping. 
In: 17th ACM Great Lakes Symposium on VLSI (GLSVLSI), 2007, Lago Maggiore. 
17th ACM Great Lakes Symposium on VLSI Proceedings. New York : ACM, 2007. p. 
293-298. 

GOMES, M. V.; SILVA, C. A.; BAVARESCO, S.; ALEGRETTI, C.; SARTORI, G. 
H.; DA ROSA JUNIOR, Leomar Soares; REIS, André Inácio; RIBAS, R. P. Test 
Circuit for Functional Verification of Automatically Generated Cell Library. In: 12th 
IEEE European Test Symposium (ETS), 2007, Freiburg. 12th IEEE European Test 
Symposium Informal Digest of Papers, 2007. p. 101-104. 

DA ROSA JUNIOR, Leomar Soares; MARQUES, F. S.; CARDOSO, T. M. G.; 
RIBAS, R. P.; SAPATNEKAR, S.; REIS, André Inácio. Fast Disjoint Transistor 
Networks from BDDs. In: 19th ACM Symposium on Integrated Circuits and Systems 
Design (SBCCI), 2006, Ouro Preto. 19th ACM Symposium on Integrated Circuits and 
Systems Design Proceedings. New York : ACM, 2006. p. 137-142. 

DA ROSA JUNIOR, Leomar Soares; MARQUES, F. S.; CARDOSO, T. M. G.; 
RIBAS, R. P.; REIS, André Inácio. BDDs and transistor networks with minimum pull-
up/pull-down chains. In: 15th ACM/IEEE International Workshop on Logic and 
Synthesis (IWLS), 2006, Vail. Workshop Notes of the 15th ACM/IEEE International 
Workshop on Logic and Synthesis, 2006. p. 142-149. 



 

 

 

 

144 

APPENDIX G  GERAÇÃO AUTOMÁTICA E AVALIAÇÃO 
DE REDES DE TRANSISTORES EM DIFERENTES 
ESTILOS LÓGICOS 

Os circuitos digitais estão cada vez mais presentes no dia-a-dia da vida 
moderna causando um amplo impacto na sociedade. Esse impacto se deve ao fato de 
que circuitos digitais se aplicam diretamente ou auxiliam diferentes áreas do 
conhecimento. Exemplos disso são os computadores pessoais, a telefonia móvel celular, 
os dispositivos GPS (Global Positioning System), os sistemas automotivos 
computadorizados, a computação em equipamentos e dispositivos da medicina e etc. 
Esta explosão na presença de circuitos digitais em vários campos do conhecimento pode 
ser atribuída, em grande parte, ao avanço das tecnologias de concepção de circuitos 
integrados. Este avanço permite a integração de um número cada vez maior de 
componentes, possibilitando a concepção de circuitos cada vez maiores e mais 
complexos. A alta integração e as novas tecnologias de fabricação disponíveis impõem 
novos limites e desafios para a síntese. As principais dificuldades são a adaptação aos 
novos parâmetros de tecnologia e o desenvolvimento de projetos em um tempo curto o 
suficiente para não comprometer a sua comercialização (time-to-market). Portanto, a 
automatização desse processo através do uso intenso de ferramentas de CAD (Computer 

Aided Design) é um fator cada vez mais indispensável para alcançar essas metas. Ao 
utilizar uma ferramenta de síntese automática, o efeito esperado é a obtenção de 
resultados de igual ou melhor qualidade que os realizados manualmente, mas em um 
tempo muito mais curto. Em geral, projetos feitos manualmente são muito mais 
custosos, mas mais eficientes em termos de área, potência consumida e desempenho. 
Portanto, prover ferramentas automatizadas para a concepção de circuitos eficientes é 
um desafio e uma oportunidade que se estabelece para atender a crescente demanda do 
mercado moderno. 

Basicamente existem duas formas de se obter um circuito integrado 
(DEMICHELLI, 1994). Estas formas são chamadas de fluxos de síntese e estão 
divididas em custom e semicustom. Os fluxos de projeto chamados custom são aqueles 
onde todos os passos para obtenção do circuito integrado são executados manualmente 
pelos projetistas. Este estilo de projeto possibilita uma alta flexibilidade para a obtenção 
do circuito, uma vez que todas as etapas para geração do circuito final podem ser 
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exploradas e otimizadas visando à implementação de um circuito de alta qualidade. 
Contudo, os fluxos de projetos custom apresentam um alto custo monetário. Isso se 
deve, em parte, a necessidade de um número considerável de recursos humanos para 
atender todas as etapas de desenvolvimento. Projetos custom eram muito comuns nos 
primeiros anos da microeletrônica, quando os projetos não eram muito grandes e não 
existiam ferramentas de síntese automática disponíveis. Os fluxos de projeto chamados 
semicustom podem ser divididos em dois estilos distintos: baseados em matrizes e 
baseados em células. O estilo baseado em matrizes utiliza matrizes de elementos 
configuráveis para descrever a lógica a ser implementada. Um exemplo desse estilo são 
os FPGAs (Field Programmable Gate Array), os quais possuem um conjunto de 
elementos lógicos interconectados programáveis. O estilo baseado em células é 
desenvolvido através da utilização de macro células, células padrão ou células geradas 
automaticamente. As macro células são, em geral, blocos construídos pela união de 
unidades lógicas menores com alto grau de repetição, como blocos de memória e 
circuitos aritméticos. Células padrão são pequenas porções de circuito projetadas 
manualmente ou por ferramentas industriais e acadêmicas (NANGATE, 2008). Essas 
ferramentas podem servir como geradores ou servidores de células. Quando projetadas 
manualmente, estas células costumam ser muito eficientes pelos mesmos motivos que 
os circuitos custom. Além disso, são bem caracterizadas, ou seja, suas informações 
elétricas e de área são conhecidas com boa precisão. As células geradas 
automaticamente são blocos similares às células padrão, mas com a essencial diferença 
de terem sido geradas automaticamente por um gerador de células. Segundo Vujkovic 
(2002), a geração automática de células pode levar a implementação de circuitos com 
desempenho desejável, se comparado com projetos custom. Como células geradas são 
criadas de forma automática, o conjunto de células disponíveis para a realização do 
mapeamento do circuito não precisa ser tão restrito como os conjuntos pré-projetados de 
células padrão. Essa característica, portanto, possibilita ao desenvolvedor um maior 
grau de liberdade para explorar a realização da etapa de mapeamento tecnológico e a 
obtenção final do circuito. Contudo, como desvantagem, pode-se citar a complexidade 
que será agregada na etapa de mapeamento devido ao grande número de células que 
podem ser disponibilizadas pelo gerador. 

O fluxo de geração de circuitos baseados em células, independentemente das 
células que compõem a biblioteca de células terem sido geradas manualmente ou 
automaticamente, apresenta como ponto inicial uma descrição comportamental, e como 
saída o leiaute do circuito final. Segundo Weste (2005), essa transformação se dá em 
três diferentes domínios. O primeiro deles é o domínio da síntese arquitetural, onde a 
descrição está no seu mais alto nível e representa uma visão da organização do sistema. 
As etapas seguintes ocorrem no domínio da síntese lógica, onde as descrições são 
tratadas com modelos lógicos dos componentes e blocos funcionais. O último domínio é 
o da síntese física, em que as descrições já estão sob um ponto de vista geométrico 
próximo do leiaute final do circuito.  

A síntese lógica é dividida em transformações independentes e dependentes de 
tecnologia. As transformações independentes de tecnologia são otimizações nas redes 
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booleanas que descrevem cada bloco do circuito. Em seguida, a etapa de mapeamento 
tecnológico transforma toda a rede em uma descrição dependente da tecnologia, 
traduzindo todo o circuito para um conjunto interconectado de células lógicas 
implementadas em uma dada tecnologia alvo. A partir disso, as transformações são ditas 
dependentes de tecnologia e são as últimas no domínio da síntese lógica. São exemplos 
de otimizações dessa fase o redimensionamento de portas e a duplicação de partes da 
lógica. Por fim, a síntese física usa essa descrição dependente de tecnologia como 
entrada para etapas como posicionamento das células e roteamento de sinais. O produto 
final é um leiaute do circuito que segue a especificação comportamental inicial, pronto 
para ser fabricado. 

O conjunto das células lógicas disponíveis para a etapa de mapeamento 
tecnológico é chamado de biblioteca de células. Ela representa todas as possibilidades 
de elementos funcionais daquela tecnologia que podem ser usados para implementar o 
comportamento especificado pela rede booleana. Para isso, o conjunto de células que 
define uma biblioteca deve ser capaz de implementar qualquer função necessária. Um 
exemplo de biblioteca é o conjunto unitário contendo apenas a célula NAND, pois 
qualquer função lógica combinacional pode ser implementada com instâncias dessa 
porta. 

Em um fluxo que utiliza células geradas automaticamente, não se possui um 
conjunto especificado de células pré-projetadas. Neste caso o gerador de células atua 
como um servidor de células fornecendo células requisitadas pelo mapeamento 
tecnológico. Para limitar as células que podem ser utilizadas pelo mapeador são 
definidas, em geral, restrições topológicas que definem células aceitáveis em uma 
determinada tecnologia através da limitação de características que impeçam a célula de 
ter um desempenho aceitável. Tipicamente, o número máximo de transistores em série é 
limitado ou restrito a um valor aceitável (BHATTACHARYA, 2002). As restrições 
aplicadas especificam um conjunto de células, e o gerador de células disponível deve ser 
capaz de gerar qualquer uma dessas. O conjunto de células a serem usadas e que o 
gerador é capaz de gerar é chamado de biblioteca virtual. Como desvantagem de 
bibliotecas virtuais pode-se citar o fato delas serem fracamente caracterizadas, pois elas 
não apresentam informações detalhadas sobre o comportamento elétrico de cada uma de 
suas células como nas pré-caracterizadas. No entanto, um gerador automático pode ser 
parametrizável, sendo capaz de produzir várias versões da mesma célula com, por 
exemplo, diferentes tamanhos de transistor.  Esta característica pode ter influência no 
projeto de um circuito com restrições de timming (VUJKOVIC, 2002). Outra vantagem 
é a rapidez de adaptação a uma nova tecnologia. O tempo de reconfiguração de um 
gerador de células para as novas regras de fabricação é consideravelmente menor que a 
reconstrução de uma biblioteca pré-caracterizada na nova tecnologia. Essa característica 
é uma das principais motivações dos projetos orientados a geradores automáticos de 
células. 

Um atributo interessante para a utilização de um gerador automático de células 
é o fato de que diversos estilos lógicos podem ser implementados automaticamente. Em 
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geral, bibliotecas de células pré-caracterizadas são compostas por células 
implementadas em um único estilo lógico, como, por exemplo, CMOS (Complementary 

Metal Oxide Semiconductor). Utilizando-se um gerador automático capaz de prover 
células lógicas em diversos estilos lógicos, dá-se a liberdade para que projetistas de 
circuitos integrados explorem, ainda mais, o espaço de projeto. Esta característica pode 
impactar diretamente na qualidade do circuito final, uma vez que a utilização de 
diferentes estilos lógicos pode levar a circuitos mais eficientes em termos de área, 
potência e atraso (BHATTACHARYA, 2002). Como exemplo, pode-se citar os estilos 
lógicos PTL (Pass Transistor Logic) e CMOS não-complementar série/paralelo como 
alternativas a serem utilizadas para a composição do circuito. 

Neste contexto, este trabalho apresenta um gerador automático de redes de 
transistores capaz de fornecer diferentes tipos de redes em diversos estilos lógicos. Para 
comparar as redes geradas, algumas técnicas de estimativa são empregadas. 
Comparações são realizadas sobre conjuntos distintos de funções Booleanas, 
demonstrando as vantagens da utilização de lógicas alternativas em relação ao difundido 
padrão CMOS.  

 


