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ABSTRACT

In this thesis, we present a novel approach to combine both reuse and predic-
tion of dynamic sequences of instructions called Reuse through Speculation on
Traces (RST). Our technique allows the dynamic identification of instruction traces
that are redundant or predictable, and the reuse (speculative or not) of these traces.
RST addresses the issue, present on Dynamic Trace Memoization (DTM), of traces
not being reused because some of their inputs are not ready for the reuse test. These
traces were measured to be 69% of all reusable traces in previous studies.

One of the main advantages of RST over just combining a value prediction tech-
nique with an unrelated reuse technique is that RST does not require extra tables to
store the values to be predicted. Applying reuse and value prediction in unrelated
mechanisms but at the same time may require a prohibitive amount of storage in
tables. In RST, the values are already stored in the Trace Memoization Table, and
there is no extra cost in reading them if compared with a non-speculative trace reuse
technique. The input context of each trace (the input values of all instructions in
the trace) already stores the values for the reuse test, which may also be used for
prediction.

Our main contributions include: (i) a speculative trace reuse framework that
can be adapted to different processor architectures; (ii) specification of the modifi-
cations in a superscalar, superpipelined processor in order to implement our mech-
anism; (7i7) study of implementation issues related to this architecture; (iv) study
of the performance limits of our technique; (v) a performance study of a realistic,
constrained implementation of RST; and (vi) simulation tools that can be used in
other studies which represent a superscalar, superpipelined processor in detail.

In a constrained architecture with realistic confidence, our RST technique is able
to achieve average speedups (harmonic means) of 1.29 over the baseline architecture
without reuse and 1.09 over a non-speculative trace reuse technique (DTM).

Keywords: Speculative Trace Reuse, Superscalar Architectures, Parallel Process-
ing, Value Reuse, Value Prediction.






RST: Reuso Especulativo de Traces

RESUMO

Na presente tese, apresentamos uma nova abordagem para combinar reuso e
previsao de seqiiéncias dinamicas de instrucoes, chamada Reuso por Especula-
cao em Traces (RST). Esta técnica permite a identificacdo dinamica de traces de
instrucoes redundantes ou previsiveis e o reuso (especulativo ou nao) desses traces.
RST procura resolver a questao de traces que nao sao reusados por seus valores de
entradas nao estarem prontos para o teste de reuso, observada na Memorizacao Di-
namica de Traces (DTM). Em estudos anteriores, esses traces foram contabilizados
como sendo cerca de 69% de todos os traces reusaveis.

Uma das maiores vantages de RST sobre a combinacao de um mecanismo de
previsao com uma técnica de reuso de valores em que os mecanismos nao sao rela-
cionados é que RST nao necessita de tabelas adicionais para o armazenamento dos
valores a serem previstos. A aplicacao de reuso e previsao de valores pela simples
combinacao de mecanismos pode necessitar de uma quantidade proibitiva de espaco
de armazenamento. No mecanismo RST, os valores ja estao presentes na Tabela de
Memorizacao de Traces, nao incorrendo em custos adicionais para lé-los se compa-
rado com uma técnica nao-especulativa de reuso de traces. O contexto de entrada
de cada trace (os valores de entrada de todas as instrugoes contidas no trace) ja
armazenam os valores para o teste de reuso, os quais podem ser também utilizados
para previsao de valores.

As principais contribuigbes de nosso trabalho incluem: (i) um framework de
reuso especulativo de traces que pode ser modificado para diferentes arquiteturas de
processadores; (ii) definigao das modificagoes necessarias em um processador supe-
rescalar e superpipeline para implementar nosso mecanismo; (iii) estudo de questoes
de implementagao relacionadas a essa arquitetura; (iv) estudo dos limites de desem-
penho da nossa técnica; (v) estudo de desempenho de uma implementacaode RST
limitada por fatores realisticos; e (vi) ferramentas de simulagdo que podem ser utili-
zadas em outros estudos, representando um processador superescalar e superpipeline
em detalhes.

Salientamos que, em uma arquitetura utilizando mecanismos realistas de estima-
tiva de confianca das previsoes, nossa técnica RST consegue atingir speedups médios
(médias harmonicas) de 1.29 sobre uma arquitetura sem reuso e 1.09 sobre uma
técnica nao-especulativa de reuso de traces (DTM).

Palavras-chave: Arquiteturas Superescalares, Processamento Paralelo, Reuso de
Valores, Previsao de Valores.






1 INTRODUCTION

“I too am a Seeker,” said Kim, using one of the lama’s pet words.
“Though” — he forgot his northern dress for the moment—
“though Allah alone knoweth what | seek.”

Rudyard Kipling, “Kim"

Control and true data dependencies are major impediments to obtaining bet-
ter performance in modern processor architectures. Simply increasing available re-
sources in order to improve performance may not be the best choice, because the
increased hardware complexity may significantly impact cycle time. Hence, other
ways of increasing performance, like the exploitation of instruction-level parallelism,
are necessary in order to enhance the computing power of general-purpose proces-
SOTS.

Data dependencies also limit the exploitation of instruction-level parallelism, de-
lineating the upper bound performance that can be obtained by using better branch
prediction, larger caches, deeper pipelines, and more functional units. Therefore,
new techniques that can successfully overcome these limits, and at the same time
are not overly complex to be implemented, are necessary to further improve proces-
sor performance.

Two families of such techniques, although very distinct in nature and implemen-
tation, have been the subject of many studies in the last years: value reuse and
value prediction.

Value reuse is a non-speculative way of exploiting the redundancy found in the
execution of most programs. After the execution of a given set of computations,
stored inputs and results may be used to avoid execution of redundant computations.
If the inputs of a previously seen instance of the computations match the current
architecture state, it may be reused and its outputs are directly written to the output
registers, thus bypassing pipeline stages and saving important resources for other
instructions.

Value prediction, on the other hand, uses previously seen values to estimate the
next values, postponing the comparison to a point after the value is produced. But
sometimes the value may not be the same as predicted, and in these cases the archi-
tecture state must be rolled back to its state before the misprediction. In this way,
value prediction may allow computations to start earlier, but it may also cause dis-
ruptions to the execution flow and waste of resources when mispredictions happen.
On the other hand, value reuse does not allow computation sets to be reused when



there are unknown inputs by the reuse test, but it does not suffer from mispecu-
lations. Value prediction also occupies more resources because of mispeculations,
while reused instructions may free many resources as they are not executed at all.

A balance between the two families of techniques, where resources are not greed-
ily consumed by speculative instructions but that results can be provided to instruc-
tions as soon as possible, would be ideal.

Techniques of trace reuse (COSTA, 2001) have been proposed to take advantage
of dynamic sequences of instructions with shared inputs and outputs. Even though
these techniques can improve performance by reusing traces that encapsulate data
and control dependencies, many of the reusable traces are not reused because some of
their inputs are not known during the reuse test, and thus they cannot be compared
to the stored values.

In many cases, these traces could be reused if the inputs were known, allowing
further performance increases. For these cases, value prediction could be used to
postpone the test of inputs to a later time, when the values are known.

Some approaches for combined value reuse and prediction as proposed in (LTAO;
SHIEH, 2002) have the shortcoming of mixing two unrelated techniques, resulting
in a large increase on hardware complexity. Other proposals, such as (HUANG;
LILJA, 1999; WU; CHEN; FANG, 2001), do not have the generality to be used in
different processor architectures and do not provide legacy compatibility, requiring
modification on compilers and recompilation of applications which usually are not
desirable or feasible in production environments.

In this work, we introduce Reuse through Speculation on Traces (RST),
a novel approach for dynamic and speculative reuse of traces. RST addresses the
major challenge of achieving significant performance improvements from simple trace
reuse with just a small additional amount of hardware.

The advantage of our integrated approach over combining other value prediction
and value reuse mechanisms is clear: there is no need for additional tables to store
values to be predicted, because they are already stored in a memoization table. RST
can speculatively reuse traces that are already fetched from the memoization table,
regardless of having all their inputs ready or not. Therefore, RST does not increase
pressure on the memoization tables if the same trace construction policies of trace
reuse are employed.

For the recovery of mispredictions, the same mechanism used for branch mispre-
dictions (squashing all instructions after the misprediction) can be used, dispensing
another execution engine to deal with mispredictions such as required by other tech-
niques (NAKRA; GUPTA; SOFFA, 1999; WU; CHEN; FANG, 2001; KOUSHIRO;
SATO; ARITA, 2003).

RST is not so intensive on resource usage as traditional value prediction, because
speculatively reused traces are not executed, but only reused. Hence, although
instructions following a speculatively reused trace execute in a speculative way, the
resource occupation is smaller than if the instructions inside the trace were also to be
speculatively executed. Trace reuse (speculative or not) allows to bypass dispatch,
issue, and execute stages, freeing important resources and providing inputs for other
instructions sooner than in an architecture without reuse.

Our approach does not require modifications in the instruction set, in the com-
piler or in the operating system, allowing for integral support of legacy applications.
Compiler and profiler support can be used for further improvements in performance,



but they are not necessary to obtain speedups as our results will show.

RST can be combined with other mechanisms designed to facilitate exploitation
of instruction level parallelism, such as branch prediction, trace caches and others.
The advantages of RST over non-speculative reuse techniques are also clear: many
reusable computations that would not be considered because of not ready inputs are
now eligible for speculative reuse.

Besides all of these advantages over non-speculative trace reuse techniques and
value prediction mechanisms, RST also features most of the advantages of trace
reuse, as collapsing data and control dependencies. RST reduces the pressure on
the dispatch, issue, and execute stages, bypassing them when a trace is reused
(speculatively or not). As in DTM, RST’s pipeline is implemented in parallel with
the instruction pipeline. Thus, RST should not decrease the clock rate by the
addition of extra logic to the critical path in the instruction pipeline.

In this thesis, we developed a novel speculative trace reuse framework that can be
modified to fit different architectures and requires minimal extra hardware compared
to regular trace reuse. RST is not restricted to superscalar architectures and its
concepts can potentially be implemented in other kinds of processor architectures
such as VLIW processors.

To test this framework, we deployed a detailed superscalar simulator representing
an implementation of RST on a superpipelined processor, and we simulated several
configurations — both for a limits study and a realistic processor. Using this simula-
tor, we were able to present new insights and to study the effects of both trace reuse
and speculative reuse in face of new constraints not approached by previous work.

Many different parameters are varied in this work, like cache sizes, pipeline
lengths, memoization table sizes, confidence strategies, reuse domains, number of
inputs and outputs for traces, and number of predicted inputs.

In our experiments, RST reached average speedups (harmonic means) of 1.29 over
a baseline architecture without reuse or prediction, and 1.09 over an architecture
with non-speculative trace reuse when realistic configurations and confidence mecha-
nisms are simulated. RST was also able to outperform alternatives such as doubling
the first-level caches and only reusing instructions employing the same on-chip area
that was necessary to implement the reuse tables of RST’s configuration.

Our main contributions can be resumed as follows: (i) a speculative trace reuse
framework that can be adapted to different processor architectures; (ii) definition of
the modifications in a superscalar, superpipelined processor in order to implement
our mechanism; (i) study of implementation issues related to this architecture;
(iv) study of the performance limits of our technique; (v) a performance study of
a realistic, constrained implementation of RST; and (vi) simulation tools that can
be used in other studies which represent a superscalar, superpipelined processor in
detail.

This work is organized as follows. In Chapter 2, we introduce value reuse and
value prediction, presenting the most significant related work. After that, RST
is proposed in Chapter 3. In Chapter 4, we depict an architecture implementing
RST over a superscalar architecture. Chapter 5 presents the simulation tools and
workloads used for this work.

In the next two chapters, we discuss simulation results. Chapter 6 presents a
limits study, where we start with an architecture with lots of resources and perfect
confidence estimation, and then we constrain certain parameters to discover per-



formance limits of RST. Then, in Chapter 7 we show our results for constrained
configurations with real or no confidence mechanisms.

Finally, we draw conclusions and discuss future work in Chapter 8, and present
a summary of this thesis written in Portuguese in Chapter 9 as required by the
Graduate Program.



2 PREVIOUS WORK

“Be careful whose advice you buy, but be patient with those who supply it. Advice is
a form of nostalgia. Dispensing it is a way of fishing the past from the disposal,
wiping it off, painting over the ugly parts and recycling it for more than it's worth.”

Mary Schmich, “Everybody’s Free to Wear Sunscreen"

In this Chapter, we present definitions and previous work that are required to
understand this thesis. We start presenting superscalar and VLIW architectures in
Section 2.1. Then, we introduce the fundamentals on how value reuse and value
prediction work in Section 2.2.

In Section 2.3, we present value prediction, and after that, we introduce value
reuse in Section 2.4. Finally, we present techniques that employ both value reuse
and value prediction in Section 2.5.

2.1 Superscalar and VLIW architectures

Superscalar Architectures are characterized by the possibility of simultaneous
execution of multiple scalar instructions (JOHNSON, 1991; HWANG, 1993; SMITH;
SOHI, 1995; FLYNN, 1995; DE ROSE; NAVAUX, 2003). These architectures have
multiple functional units, fed by an instruction pipeline. Superscalar architectures
have been developed since the beginning of the 90’s and, even if they are considered
by some researches as an extension of RISC architectures, their implementations
usually present a tendency towards increasing complexity.

Figure 2.1 shows the conceptual design of a superscalar pipeline (SMITH; SOHI,
1995). Instructions from a static program are fetched into the pipeline by the fetch
stage, where branch prediction is used in order to reduce the impact of control de-
pendencies on performance. Then, instructions are decoded and dispatched. In this
process, dependencies among instructions are detected. After that, the instructions
wait for their inputs to be ready, and they may be executed in a different order
than that they were fetched, as long as true dependencies are respected. The issue
stage is responsible for sending instructions with ready inputs to the functional units
for execution. Finally, the last stage is responsible for reordering and committing
non-speculative instructions, in order to keep the semantics of a sequential program.

Figure 2.2 presents the typical organization of a superscalar pipeline (SMITH;
SOHI, 1995). Fast memories are necessary to keep the pipeline feed, as the clock
rate in the microprocessor core is many times faster than the current memory tech-
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Today, most general purpose processors have superscalar architectures, like
R10000, Pentium 4, Alpha 21264, Athlon, and UltraSparc-IIT (MIPS Technologies
Inc., 1995; INTEL, 2001; KESSLER, 1999; ADVANCED MICRO DEVICES, 2000;
HOREL; LAUTERBACH, 1999). In contrast with signal processing applications,
which are efficiently executed by systolic architectures, and some scientific applica-
tions that present good performance in vector processors (JOHNSON, 1991), general
purpose applications are hard to characterize, and thus improving their performance
is a hard task.

VLIW Architectures (Very Large Instruction Word) (FERNANDES; SAN-
TOS, 1992; DE ROSE; NAVAUX, 2003) are similar to superscalar architectures,
with multiple functional units fed by a pipeline. The main difference between VLIW
and superscalar architecture is that the former needs help from compiler to deter-
mine dependencies among instructions. All parallelism must be explicitly defined in
compilation time, while parallelism is dynamically found in superscalar architectures
and implemented in hardware. VLIW architectures are not popular in commercial



designs, suffering from the fact they can only exploit static parallelism and are very
compiler-dependent. Each time a new processor with a new set of resources is cre-
ated, the VLIW programs usually must be recompiled in order to exploit the new
set of resources. The Crusoe processor from Transmeta (KLAIBER, 2000) is an
example of a commercially available VLIW processor.

The new architecture IA-64 from Intel is also an example of VLIW architec-
ture (HENNESSY; PATTERSON, 2003). It is commercially known as the EPIC ar-
chitecture (Explicitly Parallel Instruction Computers) (SHARANGPANI; ARORA,
2000). But there are some differences to VLIW processors: EPIC computers can do
part of some tasks in the hardware, while VLIW processors are completely dependent
on the compilers. Part of the scheduling is done in hardware, but most of it is done
by the compiler. VLIW processors have a strict in-order execution, while EPIC pro-
cessors have their dependencies marked by the compiler, but the hardware is capable
of running the instructions out-of-order, respecting the dependencies (HENNESSY
PATTERSON, 2003).

An important tendency for all processor architectures is the use of superpipelines
in order to improve clock rates and keep up with the current CMOS technologies.
In a superpipelined architecture, pipeline stages are broken into smaller stages (DE
ROSE; NAVAUX, 2003). For example, a Pentium-4 processor has 20 stages, while
a Pentium-IIT from the previous generation has only 10 stages (INTEL, 2001).

A typical superscalar processor fetches and decodes several instructions per cy-
cle (SMITH; SOHI, 1995), while scalar architectures fetch and execute only one
instruction per cycle (HWANG, 1993). Branch prediction is used to guess the ad-
dress of the next instruction when a branch is found, allowing to fetch and execute
instructions speculatively before the branch outcome is known.

Compared to other architectures, the superscalar architectures implement the
largest number of techniques to exploit ILP in hardware. Superscalar architectures
provide hardware to perform almost all tasks, including dynamic dependence de-
termination, as well as resource allocation. On the other side, VLIW architectures
present static instruction scheduling determined by the compiler, which becomes
responsible to allocate resources for each instruction. Although VLIW processors
rely more on an efficient and complex compiler, their hardware is simpler than the
superscalar implementations.

In the superscalar architectures, the instructions fetched and decoded are an-
alyzed and searched for data dependencies. Even if the superscalar architectures
are able to fetch and execute multiple instructions per cycle, they are bound to the
sequential model of scalar architectures to keep the compatibility. Thus, the anal-
ysis of dependencies is used to determine a partial ordering of instructions which
preserves the sequential semantics and allows the exploitation of parallelism among
instructions (SOHI; BREACH; VIJAYKUMAR, 1995), called Instruction-Level
Parallelism (ILP).

Anyway, these architectures pay a penalty to enforce the sequential behavior.
Their performance is affected mainly by three different kinds of hazards which pre-
vent the ILP to be fully exploited: data dependencies, control dependencies,
and resource conflicts (JOHNSON;, 1991).



2.1.1 Data dependencies

Register renaming techniques are used to treat output dependencies and anti-
dependencies in superscalar architectures, and only the true dependencies are main-
tained in order to keep the semantics. True dependencies, also known as read-
after-write hazards (RAW), occur when an instruction needs values produced by
previous instructions (STALINGS, 1996).

These dependencies may limit the number of instructions which can be exe-
cuted in parallel, reducing the exploitation of available resources and, consequently,
the overall performance achieved. Memory accesses also have data dependen-
cies (WALL, 1993; POSTIFF et al., 1999), but their complexity and effects are
even more difficult to cope than the ones caused by register dependencies because
of the address calculation and the latencies to access memory. Memory renaming
techniques are not practical, as the address ranges are very large.

Instructions without data dependencies may be executed in parallel and in a
different order than the one they are fetched. Most superscalar processors use Dy-
namic Instruction Schedule (SMITH; SOHI, 1995) to allow out-of-order (0-0-0)
execution of instructions.

2.1.2 Control dependencies

Branch instructions increase the operational complexity of instruction pipelines.
Instructions following a branch instruction hold a Control Dependence, also
known as procedural dependency (STALINGS, 1996) or control hazards (PATTER-
SON; HENNESSY, 1997).

Figure 2.3 shows an example of control dependency (WALL, 1993).The opera-
tions between the branch and its target if the condition r1=0 holds will be executed
only if r1 is not zero. Therefore, these instructions must not change the state of the
architecture until the branch output is known, and consequently, the right stream
of instructions can appear as executed in the architecture state.

Figure 2.3: Example of control dependency

For many dynamic schedulers, all speculatively executed instructions after a mis-
predicted branch must be discarded (LAM; WILSON, 1992). But this approach is
excessively restrictive. For example, in the code shown in Figure 2.4, the operation
r2 « ri1+3is executed regardless of the if output. Even if the branch is mispre-
dicted, instructions executed for this operation could be committed if they do not
have data dependencies. Instructions in this situation are called Control Inde-
pendent on if. The operation r1 < 1 is Control Dependent on if, as it will
not be committed if the branch is taken (r1=0).

Data dependencies may occur inside control independent blocks. For example,
if the operation r1 « 1 is executed in Figure 2.4, then there will be a true data
dependency on the operation r2 « ri1+3. But if the previous command is not



if r1=0 goto L
rli «— 1
L:r2 « ri+3

Figure 2.4: Control dependency and independency

executed, there will be a false data dependency, which will be resolved only when the
branch is resolved (ROTENBERG; SMITH, 1999). Control independent instructions
executed with wrong inputs must be re-issued an re-executed, but then they would
be ready to be issued inside the reservation stations or the scoreboard, and it would
not be necessary to fetch, decode and dispatch them again if the architecture was
smart enough to take advantage of control independencies.

The effect of control dependencies in superscalar processors is worse than in scalar
processors, because more instructions are fetched per cycle (STALINGS, 1996). The
speculative execution of instruction blocks is used to decrease this impact (WALL,
1993). Some new issues arise from this, as the need for mechanisms that prevent
mispeculative instructions to change the state of the architecture, and there are also
instructions that cannot be executed in speculative mode, like stores.

The most used technique to speculate through control dependencies is branch
prediction (LEE; SMITH, 1984; JOHNSON, 1991; PATTERSON; HENNESSY,
1997; HWANG, 1993; MCFARLING, 1993; YEH; PATT, 1993; KESSLER, 1999).
Even a small misprediction rate causes a huge impact on performance. As the
pipeline must be flushed, all the instructions fetched after the branch squashed,
and the fetch is redirected. Other techniques are possible, like multi-path ex-
ecution (SANTOS, 1997; KLAUSER; GRUNWALD, 1999; HEIL; SMITH, 1996;
KLAUSER; PAITHANKAR; GRUNWALD, 1998) and trace caches (PATEL;
FRIENDLY; PATT, 1997; ROTENBERG et al., 1997; ROTENBERG; BENNETT;
SMITH, 1999).

2.1.3 Resource conflicts

Resource Conflicts occur when two or more instructions compete to use the
same resource at the same time (STALINGS, 1996), and are also known as structural
hazards (PATTERSON; HENNESSY, 1997). For example, two instructions may
compete for the same floating-point functional unit in a given cycle. In this case,
one instruction must wait for a free resource, while the other executes.

Resource conflicts may be eliminated by increasing the number of instances of
the resources which cause the contention (STALINGS, 1996). But processors have
limitations in the number of transistors and interconnections, therefore the increase
in the number of resources may result in a processor that cannot be implemented or
that cannot take full advantage of the achievable clock rates for a certain implemen-
tation technology. Resource balance may be used to obtain better cost/performance
rates, resulting in an architecture with practical implementation (SANTOS et al.,
1999).

Another way to reduce the impact caused by resource conflicts is to pipeline
resources (STALINGS, 1996). This technique is used mainly in functional units.
But performance may decrease if there are not independent tasks to be executed in
the different stages, or the task sizes are not regular.



2.2 Value locality and repetition

One of the first references to the redundant nature of most computations that
occur on microprocessors was reported by Richardson (RICHARDSON, 1992). He
noted a number of possible situations where the same computation would be re-
peated, as when the input is a node in a CMOS circuit (many nodes as 1 V or 5 V),
conversions from different units (from inches to millimeters), or parsing program
files (many occurrences of the same keywords).

Value Locality (LIPASTI; WILKERSON; SHEN, 1996; LIPASTT; SHEN, 1996)
can be defined as the probability of value recurrence in a given storage position
(memory addresses, caches, and registers). Gabbay and Mendelson (1996) have a
different point of view for the same subject, defining Value Predictability as the
potential in a program of successful predicting values generated during its execution.

Value predictability can be classified in two classes:

e Temporal Value Predictability is the probability that an instruction will
generate the same result as a function of its more recent output; and

e Spatial Value Predictability is the probability that an instruction will gen-
erate the same results as an extrapolation of previously seen values.

This phenomena is already known as Reference Locality (HENNESSY; PAT-
TERSON, 2003). For example, the use of caches to reduce the latency of memory
accesses is only possible because there are both temporal and spatial value reference
in their accesses.

Branch prediction mechanisms (LEE; SMITH, 1984; YEH; PATT, 1991, 1993;
MCFARLING, 1993; WALLACE; BAGHERZADEH, 1997) also take advantage of
reference locality to improve performance. These mechanisms store information
about the branch outcomes, taken or not-taken. According to this information,
the branch predictor guesses the result of branches and redirects fetch to the new,
predicted target. The target address can also be predicted by using a buffer like a
Branch Target Buffer (BTB). Again, predicting branches is only possible because
their execution presents a tendency of behaving similarly across the execution of
a program. Works as (LIPASTI; SHEN, 1996; GABBAY; MENDELSON, 1996;
SODANTI, 2000) show that value locality is a frequent phenomena in programs and
can be used in order to increase performance.

A program can present many cases of value locality during its execution, with
data instances repeating themselves or instructions being executed with the same
inputs, and thus producing the same outputs. Sodany (2000) defined then Dy-
namic Instruction Repetition as the re-execution of an instruction with the
same operands, producing the same result.

From this definition, we define Value Redundancy as the repetition of results,
generated by instructions, basic blocks, traces or whatever other set of instructions
when the same input values are submitted to execution. The value redundancy
observed in programs waste resources with the re-execution of operations when the
results have been calculated before.

One of the causes of value redundancy comes from the fact that these programs
are developed to cope with all the possible inputs, having code to treat exceptions

and wrong inputs. These codes are also developed to reuse previously developed
code and to allow future expansions (LIPASTI; WILKERSON; SHEN, 1996).



Even employing compilers that apply complex optimizations on code, value re-
dundancy still occurs, and can even be increased by them. Many values that are
unknown during compilation time can turn to be constants during execution. For
example, calls to virtual functions are implemented by compilers as code to load
a pointer to a function, and this pointer is a constant during run time (LIPASTT;
WILKERSON; SHEN, 1996). Other computations may become repetitive due to
the inputs. A loop doing operations on an array may execute repeated times with
the same inputs, and these should not necessarily be processed more than once.

There are many works in this area exploring value locality and redundancy in
processors, and many methods to take advantage of their characteristics in order to
improve resource use and performance. In most cases, the use of static mechanisms
is not an option because of the dependencies in the input values, which are resolved
only during runtime. For these cases, software-based techniques trying to provide
reuse or prediction would be heavily prejudiced by the overhead imposed by the
tests comparing values to be reused or the correctness of predictions. Therefore, for
most cases we consider that reuse and prediction techniques must be implemented
in hardware to achieve considerable improvements, but we also think that compiler
techniques and profiling can be used to improve the effectiveness of such mechanisms.

2.3 Value prediction

Value Prediction (VP) consists of predicting register contents based on pre-
viously seen values (LIPASTI; SHEN, 1996). These values may present temporal
and/or spatial locality, allowing to forecast their future values within a given rate
of success.

Value prediction is a speculative technique used to increase processor perfor-
mance. Different of value reuse techniques which do not execute but just reuse
redundant instructions, value prediction allows the execution of instructions whose
input values are not known yet. As a prediction may be wrong, recovery mecha-
nisms are necessary to rollback the architecture state to the way it was before the
misprediction, and then the instructions are re-executed with the correct inputs.

The most widely known and used value prediction technique is branch prediction.
Although being a very specialized form of value prediction (and older than the
formal definition of it), it is not more than predicting a bit (taken or not-taken)
and the target address for the branches. All modern, general-purpose processors
heavily employ branch prediction to keep pipelines full even in the occurrence of
branches. Another difference is that branch prediction is used to deal with control
dependencies, while the value prediction techniques that we discuss here are designed
to overcome data dependencies.

As with any VP technique, branch predictors suffer from the effects of mispredic-
tions, and must have a recovery mechanism to deal with mispeculations. Therefore,
we can say that all current superscalar processors have recovery mechanisms for
branch mispredictions, and these can be used with minor modifications to deal with
other kinds of mispredictions and not only those caused by branches.

The main advantages of value prediction are:

e Value prediction can overcome true data dependencies (LIPASTI; SHEN, 1996;
SAZEIDES; SMITH, 1997), as it allows instructions with inputs that have



not been calculated yet to execute in parallel with the instructions that are
producing the values;

e These techniques can also reduce the latency of memory instructions or that

have a high complexity (as floating-point division);

e Future processors are expected to have high latencies in their transmission

lines, and value prediction can be employed to hide them (PARCERISA;
GONZALEZ, 2000).

The main disadvantage of value prediction is the mispeculation penalty that
occurs whenever a value is incorrectly predicted. Instructions that executed with
incorrect inputs must be executed again with correct inputs.

Sazeides and Smith (1997) have studied value predictability and defined three
main types of value sequences:

e Constant, where the same value occurs again;

e Stride, where there is a fixed difference (stride) between two subsequent val-

ues; and

e Non-stride, where there is a complex correlation or no correlation between

two subsequent values.

Constant sequences are easier to explore, as there is no need of identifying the
strides or the correlation among values and the current path. But in some cases,
the stride sequences may allow better performance improvements, as for some loops.
The non-stride sequences are usually not exploited because of their complexity.

2.3.1

Common steps of value prediction techniques

Even having differences on implementation like the way tables are organized, the
access key and other details, value prediction mechanisms work based on the same
general steps:

1.

An instruction or set of instructions from the domain of instructions where
predictions are allowed is detected;

. The mechanism verifies if there are inputs that are not ready;

. If there are inputs that are not ready, then the value prediction tables are

searched;

. If there is a prediction which has a confidence above a determined threshold,

it is set as the current value for all the subsequent instructions that try to
access that value, and the instructions are executed in speculative mode until
the actual value is resolved;

. When the predicted value is resolved, the actual value is compared with the

predicted one. If they match, all the instructions that used the predicted value
are set as non-speculative and can be committed. If the values mismatch, then
at least all instructions on the dependence chain from the mispredicted value



must be executed again. Depending on the mechanism, even instructions that
do not depend on it are squashed and executed again (for the sake of a simpler
recovery mechanism);

6. Success or failure in predicting a value are used to update the mechanism, in
order to improve the rate of correct predictions.

In the following subsections, we present some mechanisms based on value pre-
diction and the main differences among them, and after that, schemes to correct
mispeculations.

2.3.2 Last value prediction

A possible implementation of value prediction is the Last Value Predic-
tor (GABBAY; MENDELSON, 1996, 1998) (Figure 2.5), which predicts a value
based on the last value seen for a given instruction, thus exploring constant value
sequences. The PC address is used to access the prediction table, where the predic-
tion for the load value is stored.
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Figure 2.5: Last value predictor

A specialized version of last value prediction is the Load Value Prediction (LI-
PASTI; WILKERSON; SHEN, 1996; LIPASTI; SHEN, 1996), where only load in-
structions are predicted because they present large latencies and high value locality.
Figure 2.6 depicts a possible implementation of load value prediction.

The Load Value Prediction Table (LVPT) holds previous values read by loads,
addressed by the instruction address. A confidence table is used in order to keep
information about correct predictions. Both tables receive the PC of a load instruc-
tion. The LVPT outputs a predicted value, while the confidence table says if this
prediction should be accepted or not.

Another version predicts values of registers (GABBAY; MENDELSON, 1996),
but addresses the history tables by the register index and not by the instruction
address. This technique associates a prediction to all instructions that write to the
same register and interfere with its prediction. The advantage of this mechanism is
the small table needed to hold values to be predicted, a function of the number of
registers.
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Figure 2.6: Load value prediction

Tullsen and Seng (1999) developed a diverse mechanism, without the need of
additional tables to store previous values. In this mechanism, an instruction uses an
old value in a register as the prediction for its next value. The hardware needed is
dramatically reduced, but this mechanism cannot hold a large number of previous
values neither capture more complex patterns of predictability. Therefore, only
constant sequences of values can be successfully explored.

Based on the correlation among instructions and the instructions executed ear-
lier, Value Prediction Based on Correlation (WANG; FRANKLIN, 1997a,b)
stores the last n observed values and the branch history is used to select one of them.
Sazeides and Smith (1997) proposed another value prediction mechanism based on
correlation, but using the previously n seen values as a context.

Parcerisa and Gonzalez (2000) proposed the use of value prediction to hide long
latencies to be found in long wires for the future microprocessor chips, which are
likely to have problems with capacitance because of the characteristics of the CMOS
technology.

Many variations have been also proposed, like two-level value prediction (WANG;
FRANKLIN, 1997a,b), hybrid value prediction (WANG; FRANKLIN, 1997a,b;
SATHE; WANG; FRANKLIN, 1998), and others. Many of them are based on sim-
ilar approaches for branch prediction, like changing the way tables are addressed,
adding path information by using branch registers, and so on. In the next subsec-
tions, we discuss two of the most original works that do not rely on just a small
change to improve value prediction accuracy and performance: stride prediction and
trace level prediction.

2.3.3 Stride prediction

In the Last Value Predictor, only the last value seen can be used as a prediction
for the next value, but the mechanism may be extended to allow multiple instances
of the same instruction, or a stride prediction by having an extra field for the stride
to be added to the value (Stride Predictor, Figure 2.7). This extension allows the
prediction of values in loops, for example.

Even if a value has not been seen before, it can be successfully predicted based
on the previous values for the same instruction or register if they follow a simple
pattern that the stride predictor can identify, like:
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Figure 2.7: Stride predictor

1, 2, 3, 4, 5,

Or

1, 3, 5, 7, 9,

In these two cases, there is a fixed difference between two instances of the same
value.

2.3.4 Trace-level prediction

An interesting mechanism was developed by Sathe, Wang and Franklin (1998),
based on the prediction of multiple values for traces of instructions in a single cycle.
Only the last updated values in a trace (live outputs) are predicted, reducing the
necessary bandwidth in the predictor.

Figure 2.8 shows a value predictor based on traces. The trace address is used
to index the value table. Each entry in this table may hold multiple values, and a
bitmap field is used to store the mapping from values to instructions in the trace.

This technique allows multiple values to be predicted in parallel using only one
access to the prediction table, thus increasing the possible performance improve-
ments that would be otherwise limited by the bandwidth necessary to access the
tables.

2.3.5 Speculation control and confidence

One of the main concerns when designing speculative techniques to improve
performance in computer architectures is the cost involved in mispeculations. A
mispredicted value has an associated penalty. All instructions that executed and
depend on the mispeculated value must be executed again, now with the correct
value. The penalty is composed not only by the execution time of those instructions,
but also by the cost of redirecting fetch and waiting for instructions to reach the
execution stage again. Besides, mispeculated instructions may occupy important
resources that could be used to run non-speculative instructions. Therefore, it may
be necessary to impose limits on how much an architecture may speculate in order
to balance the costs and benefits of value prediction.

A possibility is to employ confidence techniques to obtain the best from spec-
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Figure 2.8: Value predictor based on traces

ulation. Confidence techniques usually employ simple finite automate to measure
how predictable a certain value is, and then speculation is allowed only if the au-
tomate is at certain states where the prediction is supposed to be correct above a
given confidence.

Figure 2.9 shows a simple automate for branch prediction with four states. Each
state stores information about the last two predictions already resolved, which can
be T (taken) or N (not-taken). Each new prediction can trigger a state change (the
arrows) between two stages. The branch predictor may only predict a branch as
taken if the last two branches were taken, for example. Then, the only state where a
taken prediction would occur is in the TT state. This can be easily implemented by
saturating counters which are increased or decreased based on the branch outputs.
The same concept can be used for any value prediction.

Figure 2.9: A simple automate for branch prediction

Grunwald et al (1998) compared the performance of different estimation meth-



ods, which can be used combined with many speculative techniques such as value
prediction to determine which speculations are worth pursuing.

Calder, Reinman and Tullsen (1999) studied the use of different schemes to select
predictions, using two levels of history and prediction tables, in the same way they
are used in branch predictors. Confidence mechanisms assign a degree of certainty
that a given prediction will be correct or not based on previous history and the
current context, and prediction is only allowed when a certain threshold is reached.

Figure 2.10 shows a general structure for value prediction using confidence. A
key is generated usually from the PC address, which may be hashed with other
information as the current path, and it is used to access both the prediction tables
and the confidence table. The confidence mechanism will select whether a prediction
will be allowed or not.
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Figure 2.10: Value prediction with confidence

Tune et al (2001) have a different approach on how to control speculation. They
find and predict chains of dependent instructions that are in the critical path to
optimize performance, based on the previous behavior observed during execution.

2.3.6 Recovery mechanisms for mispeculations

Reinman and Calder (1998) developed a study focusing prediction mechanisms
to improve performance. Besides the prediction mechanisms, they also studied two
different ways of coping with mispeculations. Both mechanisms use a Re-Order
Buffer (ROB) and reservation stations to keep the non-speculative state.

The first mechanism, Squash Recovery, is the basic scheme to deal with mis-
speculations, discarding all instructions following a mispredicted instruction. After
that, the instructions are re-fetched and executed with the non-speculative values.
It relies on the existence of a reorder buffer to determine which instructions were
fetched after a misprediction, and they are all flushed. Instructions in a reorder
buffer will be committed in order and only after they are on non-speculative state.

Figure 2.11 shows an example of a ROB. It is implemented as a circular queue,
where instructions are retired from the head when all the previous instructions were
retired, and the instruction itself was not squashed because of a misprediction or
an exception. In Figure 2.11(a), there are six instructions in the ROB. Instruction
i3 was found to have its result mispredicted by the value prediction mechanism,
therefore instructions after it may have executed with wrong values (Figure 2.11(b)).



Then, these instructions are squashed, fetch is redirected, and execution continues
from that non-speculative state.
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Figure 2.11: A reorder buffer

A more conservative mechanism is implemented by the Re-execution Archi-
tecture. When a mispeculation is detected, only the instructions which are de-
pendent on the mispeculated instruction are re-executed. This mechanism is more
complex and requires specialized hardware to detect dependencies.

Nakra, Gupta and Soffa (1999) developed a VLIW architecture with value pre-
diction, using a compensation engine to execute code dynamically generated after a
misprediction. The compensation code is executed in parallel with the regular code
in the VLIW processor, thus reducing the penalty from mispeculations.

Another way of dealing with mispredictions is to exploit thread level parallelism
to execute instructions with non-speculative values while executing with predicted
values in another thread. An example of this approach was proposed by Koushiro,
Sato, and Arita (2003), where a contrail processor divides the execution in two
streams. One of the streams uses trace level value prediction to skip instructions,
while a verification stream uses slower functional units to validate the predictions.

Wu, Chen, and Fang (2001) also use thread level parallelism to execute both
speculative and non-speculative versions of the same stream to avoid mispeculation
penalties.

The problem with the two approaches above is that more resources are necessary
to implement the two cores than a single one, and there is also an increase in
complexity.

2.4 Value reuse

The concept of Value Reuse — reusing a value that has already been calculated
before — came from the observation that many instructions are executed with the
same inputs, generating the same results (LIPASTI; WILKERSON; SHEN, 1996;
SAZEIDES; SMITH, 1997; SODANTI; SOHI, 1998; SODANTI, 2000). Sometimes, the
inputs are always the same, and then they could be transformed by the compiler,
avoiding the unnecessary executions. But some issues prevent this optimization (SO-
DANTI, 2000):

e The dynamic path is not statically known. The repetition may depend on the
input. Therefore, the repetition is not obvious in compiler time;



The compiler may not optimize the code to keep the correction;

The analysis needed to detect static repetition is complex and hard to perform;

The space requisites may be prohibitive;

Some repetitions are derived from instruction set limitations and cannot be
eliminated.

It is not impossible to implement static reuse, but it would need compilers
with constant propagation, function in-lining, loop unrolling, common subexpression
elimination, and other techniques. All these techniques would be used globally, and
a larger number of registers would be necessary. Memory address analysis would
also be needed to allocate registers (SODANI; SOHI, 1998).

According to Sodani (2000), value reuse can improve performance in four ways:

e Instructions reused are not executed, which may save cycles for instructions
with high latencies;

e The results are ready earlier, allowing dependent instructions to start execu-
tion earlier;

e Useful work in wrong paths may be preserved;

e Value reuse collapses data dependencies, and dependent instructions may be
executed in parallel.

Additionally, some mechanisms may improve branch prediction by correcting
mispredictions when instructions are reused (COSTA, 2001) and also use the re-
dundancy of instructions in diverse locations that execute the same computa-
tions (MOLINA; GONZALEZ; TUBELLA, 1999).

Sodani and Sohi (1998) classified reuse opportunities in two groups: Squash
Reuse and General Reuse. The former refers to reuse values produced by squashed
instructions in mispredictions, while general reuse includes all the other possibilities.

The unit size to be reused may be an instruction (SODANI; SOHI, 1998),
expressions and invariants (MOLINA; GONZALEZ; TUBELLA, 1999), basic
blocks (HUANG; LILJA, 2000a), traces (GONZALEZ; TUBELLA; MOLINA,
1999; COSTA, 2001), as well as instruction blocks and sub-blocks of arbitrary
size (HUANG; LILJA, 2000b). Costa (2001) also classified the reuse mechanisms
based on the identification of redundancy in static or dynamic detection.

The main disadvantage of value reuse is that it requires all the inputs of a given
reuse unit to be ready to compare with stored values, in the process called reuse
test. Only when all inputs match a previous instance of the same reuse unit is that
the reuse may actually happen. Thus, some units that would have a match are not
reused because some of their inputs are not ready to be tested. In these cases, the
reuse test could be postponed until the values are ready, but it would dramatically
increase complexity and provide only small performance gains.

Studies show that, in some cases, 50% of the instructions executed in a program
are redundant (SODANTI; SOHI, 1998), therefore there is a large potential to increase
performance using value reuse.



2.4.1 Common steps of value reuse techniques

As for value prediction, value reuse mechanisms also have the same general steps:

1. An instance of a set of computations is stored with its inputs and results;
2. In the next execution, a reuse opportunity is identified;

3. The reuse opportunity is tested by verifying if the inputs match any of the
previously seen instances that are stored in the reuse tables;

4. If there is a match, the result values stored in the previous instance are reused,
and all the instructions in the reused set of computations are skipped.

In the next subsections, we will discuss mechanisms based on value reuse.

2.4.2 Value reuse mechanisms

The first studies on dynamic reuse were started to reduce compiler costs. The
Value Cache (HARBISON, 1982) eliminates some redundant expressions that dy-
namically occur and cannot be avoided with static support only. Simple expressions
without branches, function calls or stores are analyzed. When an expression is ex-
ecuted, its input context and the result are stored in the value cache. If the same
expression occurs again with the same inputs, it is reused. If it occurs with another
set of inputs, it is invalidated (COSTA, 2001). Only one instance of each expression
may be stored.

Memoization (ABELSON; SUSSMAN;, 1985; MICHIE, 1968; RICHARDSON,
1992) allows the exploitation of redundant executions of functions when all inputs
are repeated and there are no side effects, like global variables, memory positions
and registers affected by other parts of the same program or externally.

When a function is executed, the input context is stored, as well as the output
context. The next redundant executions of this function are changed to the stored
output. An example of memoization is Richardson’s Result Cache (RICHARD-
SON, 1992), aimed at long-latency floating-point instructions. His result cache is
a direct-mapping table accessed at the same time that a long-latency instruction
reaches the FP unity for execution. If there is an entry in the result cache with
the same inputs, the operation can be halted and the stored value is reused. If an
instruction misses, its inputs and results can be stored in the table after execution,
so future, redundant executions of that instruction can benefit from it.

Sodani (2000) observed that the percentile of functions with the necessary char-
acteristics for memoization in the integer benchmarks from SPEC95 is near to zero,
but instructions grouped in other block sizes may present these characteristics. For
the floating-point benchmarks, a significant number of function calls may be reused.

Citron, Feitelson and Rudolph (1998) developed a memoization technique to
avoid executing long latency instructions in multimedia processing. Rebello (1997)
proposed the use of a result cache to memoize the execution of functions, using both
software and hardware support.

2.4.3 Instruction reuse

Instruction Reuse (SODANI; SOHI, 1998; SODANTI, 2000) presents a Reuse
Buffer (RB) to store redundant instructions. The Reuse Test selects instructions



that can be reused, comparing the current input values with the previously seen

values.

Instruction reuse may employ different policies to store and invalidate informa-
tion. Figure 2.12 shows a generic reuse buffer. The buffer is indexed using the
PC address. Reused instructions are sent to the writeback stage, without requiring
functional units or issue.
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Figure 2.12: Generic Reuse Buffer

The reuse buffer associativity determines how many instances of the same in-
struction may be stored at the same time. Each instance may be distinguished by
the instruction address and the input values. An increment in associativity also
increases the number of simultaneous reuse tests, having an impact in hardware
complexity. The issues involved in implementing reuse buffers are similar to the
ones found in cache associativity and size.

Sodani (2000) defined four variations of this scheme:

e S,, which verifies the input values for each instruction;
e S, which verifies the register names of inputs;

e S,.i4, extends the first scheme by adding tests of dependencies among instruc-
tions;

e 5,14, extends the second scheme, also by adding tests of dependencies among
instructions.

The last two variations present increased implementation complexity, as they
also include the determination and testing of dependencies among the instructions.

Another reuse technique, called Instruction Reuse by Register Integra-
tion (ROTH; SOHI, 2000), takes advantage of instructions squashed because of
mispredictions. It is simple to implement, and it basically needs modifications in
the register renaming stage. It recognizes the validity of squashed values, and then
the value stored in the register may be reused. It is only necessary to modify the
register table for the next instructions that use the logical register so they point to
the actual register. The drawback of this technique is the limitation to squashed
instructions, but it can easily be used in conjunction with other reuse and prediction
techniques.



2.4.4 Basic block reuse

An extension of dynamic instruction reuse is the Basic Block Reuse (HUANG;
LILJA, 1999). Basic blocks (dynamic instruction sequences with branches only as
the last instruction) are identified and stored with their inputs and live outputs,
which are the outputs used by other instructions. Dead outputs are results that
do not have consumers. The Block History Buffer (BHB) is used to store the basic
blocks and their inputs and outputs. Annotations are written in instructions by
compilers to determine live registers, modifying instruction format. Therefore, it
does not provide legacy compatibility (COSTA; FRANCA; CHAVES FILHO, 2000).

Huang and Lilja (1999; 2000b; 2000a) have detected that the behavior of
SPEC95int benchmarks presents basic blocks with tendency to show good or no
locality. Therefore, for these programs they determined that a history with depth
one is enough to identify and reuse most of the basic blocks. Their work also shows
that a 2048-entry BHB with four input registers, five output registers, four memory
inputs, and two memory outputs covers 90% of the possible reuses, with a 9% overall
performance improvement.

In the evolution of that work, Huang and Lilja (2000a) added limited compiler
support to further increase performance. The Sub-block Reuse (HUANG; LILJA,
2000b) allows the reuse of blocks smaller than basic blocks, breaking the blocks based
on constraints like the number of inputs and outputs. But still it is limited to the
constraints of basic blocks, and a basic block is ended by a branch instruction.

Loads and stores are not reused in most mechanisms because of the side ef-
fects they may present. Some works have studied this problem. Bodik, Gupta and
Soffa (1999) analyzed load-reuse,comparing the dynamic load-reuse with the amount
of reuse statically found. Onder and Gupta (2001) proposed the explicit manage-
ment of the physical register file contents as a level in the memory hierarchy. For
each value in the register file involved in a load or store, the associated informa-
tion, including the memory address, are stored. These stored values are used to
implement non-speculative optimizations.

Another approach uses instruction reuse to exploit both same instruction and
different instruction redundancy (YANG; GUPTA, 2000). This work focuses on
memory reuse, and uses three different tables to store and correlate loads. The load
reuse allowed the off-chip traffic to data cache to be reduced by 32%.

2.4.5 Trace reuse

A further step in value reuse is the Trace Reuse (GONZALEZ; TUBELLA;
MOLINA, 1998; COSTA; FRANCA, 1999; COSTA; FRANCA; CHAVES FILHO,
2000; COSTA, 2001). This family of techniques is based on the reuse of dynamic
sequences of instructions (traces). Each trace has an input and an output context,
composed by those registers that are read and written by the trace, respectively.

Trace instructions are not stored, and when a trace is reused, only the output
scope is written in the output registers. Trace reuse is not limited by the same
boundaries found in basic block reuse, and may even include multiple branches in a
single trace. It does not require compiler help (although it may benefit from it) and
supports legacy code without modifications.

One of these trace reuse techniques is the Dynamic Trace Memoiza-
tion (DTM) (COSTA; FRANCA; CHAVES FILHO, 2000; COSTA; FRANCA;



CHAVES FILHO, 2000; COSTA, 2001), where lie the roots of this work. DTM is a
trace reuse technique for instruction and, more importantly, trace memoization. The
reuse domain is composed of all integer instructions without side effects. Floating-
point instructions are not reused because they show little redundancy (COSTA,
2001). For loads and stores, the address calculation is split from the actual mem-
ory access, and DTM can reuse the address calculation. Memory aliasing creates
difficulties to reuse also the memory accesses, but Viana (2002) extended DTM by
increasing the reuse domain to include memory accesses.

System calls are not reused because they require a mode change in the processor
status, causing a pipeline flush.

2.5 Combined value reuse and prediction

In this Section, we present the works that come closer to our proposal, where
both value prediction and value reuse are used to exploit the redundancy and pre-
dictability present in most programs.

2.5.1 Result cache based mechanisms

Huang, Choid, and Lilja (1999) proposed an extension for the Result Cache
where entries can be speculatively reused, and called it Speculative Result
Cache (SRC). Instead of reusing values only when the inputs are known, this tech-
nique uses the current value to index the result cache and reuses the value produced
by the same instruction or any other instruction of the same type. Thus, it is not
constrained to only same-instruction reuse. Figure 2.13 shows a possible implemen-
tation of a SRC table (HUANG; CHOI; LILJA, 1999). The two possible operands
for an instruction (in the MIPS-IV instruction set) are hashed together and con-
catenated to the operand type to address the SRC table. Then, the operands are
compared to the actual values, and in case of a match, the result is reused. If there
are missing inputs, one of the instances for that specific type of instruction may be
speculatively reused if the confidence is above a given threshold (field conf).
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Figure 2.13: Implementation of a SRC table

Together with the Speculative Result Cache, they also proposed a mechanism
called Combined Dynamic Prediction (CDP) (HUANG; CHOI; LILJA, 1999).
It combines both SRC and a hybrid value predictor to exploit both value reuse and



value prediction. During execution, the chooser will pick a prediction from the value
predictor or a speculatively reusable value from SRC. With this approach, they have
achieved speedups of 10% in a 16-wide, 6-stage superscalar architecture and roughly
128 KB of storage for the CDP.

2.5.2 Region based mechanisms

Wu, Chen, and Fang (2001) proposed a speculative multi-threading scheme where
both reuse and prediction are combined. Their approach uses a Computation Re-
gion Buffer (CRB) to store instances of a computation region, determined by the
compiler, that have been recently executed. Each entry in the CRB has a set of
input and output registers, whose values may be different for each instance. The
Reuse Test is similar to what is done in trace-level reuse.

In the case of a region with unknown inputs by the time the reuse test is done,
one of the instances may be chosen and the outputs are considered to be predicted
values. The multi-threading hardware is used to execute both speculative and non-
speculative instructions in parallel, in order to reduce misprediction penalties. This
approach can increase performance of reuse from a speedup of 1.25 to 1.40 over
an [A-64 baseline architecture without reuse or value prediction.

2.5.3 Instruction reuse based mechanisms

Liao and Shieh (2002) combined single instruction reuse and value prediction to
achieve speculative reuse. Their architecture has two separate tables, a reuse buffer
and a value prediction table, which are accessed in parallel for each instruction. If
the operands are ready and there is a match in the reuse buffer, the instruction is
reused. If there are inputs that are not ready, a value prediction may be employed
in order to speculatively reuse the instruction. Instructions that have inputs in
a dependence chain from a predicted value are marked as speculative and are re-
executed in case of misprediction. This approach has the disadvantage of requiring
both value prediction and value reuse tables.

In a six-stage pipeline architecture and simulating 50 million instructions, they
achieved an average speedup of about 9% above their baseline architecture.



3 REUSE THROUGH SPECULATION ON
TRACES

“The last thing one knows in constructing a work is what to put first.”

Blaise Pascal

Reuse through Speculation on Traces (RST) (PILLA et al., 2001, 2002,
2003a,b) is a speculative trace reuse technique, integrating both trace reuse and
value prediction as a complexity-effective approach to increase the number of reused
traces.

In this Chapter, we present the concepts behind RST, leaving most of the
architecture-dependent details to the next Chapter, whenever possible. First, we
show the motivation for speculative reuse of traces in Section 3.1. After that, we
present RST in Section 3.2. Trace construction, regular reuse and speculative reuse
are explained in Section 3.3. In Section 3.4, we explain the main differences with
other reuse and prediction techniques. Finally, in Section 3.5 we state the contribu-
tions of this work.

3.1 Motivation

Value reuse is a non-speculative way of exploiting the redundancy observed in
the execution of most programs. After the input values of a set of instructions
are verified against stored values and a match is found, their results can be reused
without executing the instructions. Importantly, resources are not wasted due to
reuse and are available to other instructions. The main disadvantage is that reuse
must wait until all the input values are ready to be tested for reuse. Therefore,
many cycles that could be saved by reusing instructions may be spent waiting for
input values that were not ready at the time of the reuse test.

On the other hand, value prediction can hide the limits imposed by true data de-
pendencies (LIPASTI; SHEN, 1996; SAZEIDES; SMITH, 1997). Instructions with
true data dependencies may be executed in parallel when value prediction is em-
ployed. This technique may also hide latencies of instructions accessing memory
or that present high computational complexity, but its main disadvantage is that
mispredictions can incur a high recovery penalty. In fact, the misprediction penalty
increases as pipelines get deeper.

Another disadvantage is that, since value prediction increases concurrency and
demands for resources, instructions executing with mispredicted values may prevent



the execution of more useful instructions.

Many techniques for exploiting the redundancy and predictability are shown
in Chapter 2. Trace reuse (COSTA; FRANCA; CHAVES FILHO, 2000; COSTA;
FRANCA; CHAVES FILHO, 2000; COSTA, 2001) presents the capacity of skipping
sequences of redundant instructions, thus increasing performance. But much of its
potential is still unrevealed, as many traces are not reused only because some of
their input values are not ready to be compared to the stored values when the reuse
test is done.

Figure 3.1 shows the percent of traces reused and not reused because of not ready
inputs for DTM for a set of integer benchmarks from both SPEC 95 and 2000 in
a 6-stage superscalar architecture (PILLA et al., 2001). The black bars show the
percent of traces that are effectively reused of all possible traces with correct inputs;
the remaining traces are not reused because their sources were not ready at the reuse
test. In average, 69% of all reusable traces were not reused because trace reuse is
conservative and does not allow traces with undetermined inputs to be reused.
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Figure 3.1: Comparison of traces reused and not reused in D'TM

Even with most traces not being reused, DTM still can achieve speedups of
9.5% (PILLA et al., 2001). Based on this potential, RST was developed to reuse
traces even when it is not possible to determine some of their input values by the
time the reuse test is performed.

This situation tends to be even worse when deeper pipelines are considered.
Traces are going to demand more cycles to be created, and there is the possibility
that more inputs will not be available for the reuse test, as instructions will take

more cycles to execute.
Sodani and Sohi (SODANT; SOHI, 1998) compared the benefits and drawbacks



of instruction reuse and value prediction to make their case on promoting instruction
reuse. They verified that reuse can extract most of the existing redundancy in their
workload (from 84 to 97% of all redundancy in some benchmarks of SPEC 95 int, in a
six-stage pipeline architecture), showing that the characteristic of non-speculatively
validating inputs does not significantly restrict the reuse capacity to capture re-
dundancy. But their study does not count for other questions, like the new issues
involved in using deep pipelines as in modern processors. Do late validation and
speculation (value prediction) make any difference in performance when compared
to early validation (value reuse)? Does the impact of misspeculations make value
reuse a better alternative for these cases? Can only value reuse take advantage of
most of the redundancy to improve performance?

3.2 Reuse through Speculation on Traces

Reuse through Speculation on Traces (RST) is a novel approach to improve
trace reuse and hide true data dependencies. RST allows traces to be (i) regularly
reused, when all inputs are ready and match the values stored in the input context
of a trace; or (ii) speculatively reused, when there are unknown values in the
input context of a trace. Therefore, any traces that could not be reused in previous
approaches due to inputs not being ready for early validation may be reused in RST
to exploit their predictability, and not only their redundancy.

RST combines the advantages of both value prediction and reuse. Unavailable in-
puts for memoized traces are predicted by RST based on the values already read from
the input context of those traces. Thus, both late and early validation (SODANTI;
SOHI, 1998) are available to the architecture, with emphasis on early validation,
that is value reuse. When the inputs of a trace are all ready by the reuse test time,
then they are compared to the current values and, if they all match, the trace is
reused. On the other side, late validation can be employed when some of the input
values are not ready for early validation. Then, the value may be predicted, which
causes the trace to be speculatively reused, and the inputs that were not known in
the early validation are tested later.

One of the main advantages of RST over just combining a value prediction tech-
nique with an unrelated reuse technique is that RST does not require extra tables
to store values to be predicted. Applying reuse and value prediction in unrelated
mechanisms at the same time as in (LIAO; SHIEH, 2002) may require a prohibitive
amount of storage in tables. In RST, the values are already stored in the trace
memoization table (Memo Table T), and there is no extra cost in reading them if
compared with a non-speculative trace reuse technique. The input context of each
trace (the input values of all instructions in the trace) already stores the values for
the reuse test, which may also be used for prediction. Thus, our proposed tech-
nique minimally increases the hardware to implement speculative trace reuse when
compared to the hardware necessary for non-speculative trace reuse.

An important drawback of value prediction is the extra pressure on resources.
As a value is predicted, more instructions become ready to execute and demand
functional units, dispatch and issue bandwidth. Mispredictions cause instructions
to be executed with incorrect inputs, which may avoid that other instructions with
non-speculative inputs execute. When traces are speculatively reused in RST, the
output values are sent directly to the writeback stage, reaching the instructions



waiting for these values and the register file. Dispatch, issue, and execution are
bypassed for the entire trace in a single cycle after it has been determined to be
reusable. Therefore, speculative reuse does not increase but reduces the pressure
on valuable resources in many cases. Even when a misprediction occurs, many
instructions may be reused instead of executed again, also reducing this overhead
on the execution core.

RST does not increase the number of accesses to the memoization tables or to
the register file. These accesses are already done in trace reuse techniques such as
DTM, but the difference is that they are useless if some of the input values are not
ready to be tested. Hence, RST does not increase the accesses to the reuse tables in
order to obtain more reusable traces, but better exploits the traces that would be
read anyway by non-speculative reuse.

RST may reuse both instructions and traces, but only traces are speculatively
reused because they encapsulate more than one instruction and possibly critical
paths, thus allowing more performance improvement than single instructions. Be-
sides, allowing that only traces may be predicted also reduces the complexity of the
resulting architecture and the number of tests that will be needed at the writeback
stage, where mispredictions are detected.

Only same instruction reuse is treated by RST. The execution of the same in-
structions with the same inputs in a different PC address cannot be reused or spec-
ulatively reused in RST.

Another possibility for traces whose inputs are not ready is to postpone the
reuse test, but this solution is very difficult to implement because it would need an
exponential increase in the logic to compare the values for each extra cycle that a
trace would be held for tests. Another problem would be the increased snooping
in the result bus. Finally, most of the performance improvements could be lost by
waiting for the values. Thus, we think that the best possible solution is to predict
the inputs, and we developed RST in the present way.

3.3 Trace construction and reuse

In RST, traces are dynamically constructed from sequences of redun-
dant instructions, stored in hardware tables called Memo Table G and
Memo Table T like in DTM. In addition to including only reusable instructions
found in Memo_Table G or instructions whose inputs are produced by previous
instructions in a new trace in formation as in DTM, RST can also include instruc-
tions that are not in Memo Table G but are part of the reuse domain. Thus,
more traces can be created and reused later. The drawback of this approach is that
instructions already found in the Memo_Table G are more likely to be found again
with the same inputs, therefore in some cases some traces may be expelled before
they get the chance to be reused.

We will call the two ways of constructing traces as (i) reusable mode, for when
instructions not in Memo Table G can be inserted in a trace, and (i) reused-
only mode, when only instructions found in Memo Table G are allowed in a trace.
Anyway, it is easy to switch from one mode to the other, allowing the architecture
to be adapted to the characteristics of the program running on it.



3.3.1 Reuse domains and memoization tables

Besides reusable and reused-only modes, different reuse domains are possible for
RST, and they will determine different fields for the memoization tables. We will
consider that memory accesses are not allowed in the regular reuse domain for RST,
but in the cases that a reuse domain with memory accesses is considered, we will
call it RSTm (RST with memory reuse).

When an instruction in the reuse domain is committed, RST may start to build
a trace. The input context and output context are built with the values and register
indexes from instructions in the reuse domain. A trace is finished when:

(i) a non-redundant instruction is found and the mechanism is in reused-only
mode;

(71) an instruction which does not belong to the reuse domain occurs;
(7ii) a load/store instruction is found (in RST, but not in RSTm);

(iv) resource limits are reached (as the maximum number of inputs or outputs).

Figure 3.2 depicts an entry in the Memo Table G table for the case where
memory accesses are not in the reuse domain (COSTA, 2001). This table holds
reusable instructions, with their inputs and outputs.

bits 30 32 32 32 1 1 1
‘ pc ‘ SV, ‘ SV, ‘res/targ ‘jmp‘brc‘btk‘

Figure 3.2: Entry in Memo Table G, no memory accesses allowed
The fields are as follow:

e PC: the instruction address

svl and sv2: the source values for that instruction

res/targ: the result value or the target address (in case of a branch)
e jmp: unconditional branch instruction when set

brc: conditional branch instruction when set

btaken: if brc is set, then this field signals if the branch is taken or not

Figure 3.3 shows the same Memo Table G entry but for the case where memory
instructions can be fully reused (VIANA, 2002). It has two extra fields:

e maddr: the load or store address

e mval: used to mark the validity of a load value

Figure 3.4 shows the structure of an entry in the Memo Table T table for DTM
without memory reuse. Each entry is divided in the following fields:



bits 30 32 32

32

32

1 11 1

‘ pc ‘ SV, ‘ SV, ‘res/targ ‘maddr ‘mval‘jmp‘ brc‘btk‘

Figure 3.3: Entry in Memo Table G, memory accesses allowed

e pc: the address of the first instruction in the trace

e npc: the address of the next instruction after the trace

e icr: the register names for each entry in the input context

e icv: values for the registers in the input context

e ocr: the register names for each entry in the output context (live registers)

e ocv: values for the output registers

e bmsk: bitmap used to mark branches inside the trace

e btk: direction of branches inside the trace

The address of the first instruction of a trace is stored in pc, and the address
of the next instruction after the trace is stored in npc. The npc field is used to set
the PC and to skip the instructions belonging to the trace when it is reused. Fields
icv and scr store the input values and the register indexes, while ocv and ocr store
the output values and the corresponding register indexes. bmsk is a bitmap to mark
branches that occur inside the trace, while btk bits are set when branches are taken.
These two last fields are used to update the branch prediction as in DTM (COSTA,

2001).
bits 30 30 Sn 32n S5Sm 32m b b
‘ pc ‘ npc ‘icr‘ icv | ocr| ocv ‘bm‘btk‘
icr, icv, ocr, ocv,
1cr, 1cv, ocr, ocv,
icr, icv, Oérm oCv,,

Figure 3.4: Entry in Memo_Table T, no memory accesses allowed

There are some extra fields that are required when memory accesses are allowed
in traces. Figure 3.5 shows a Memo Table T entry for RSTm. Most of the fields
are the same as found in RST, with the following differences:

e For each ocv entry, there are more 3 fields:

— me, marking values from memory accesses;

— 1/s, marking if the access is a load or a store;

— siz, the size of the memory access (half, single, double).



bits 30 30 Sn 32n  Sm 35m 32k b b

‘ pc ‘ npc ‘icr‘ icv | ocr| ocv maddry_y ‘bm‘btk‘
icr, icv, ocr, ocv,
icr, icv, ocr, OCVy | me|l/s|siz
icr, icv, ocr, | OCVy
11 2

Figure 3.5: Entry in Memo_Table T, memory accesses allowed

e The fields maddr hold the addresses accessed by the memory instructions in
the order that they appear in the contexts.

Those fields are slightly different from the ones determined by Viana (VIANA,

2002), because he used a different ISA (SPARC v9, while we use the MIPS-IV-like
PISA architecture).

Every instruction in the reuse domain is searched in both tables. If an entry is
found in Memo Table T and its input scope matches the present register values,
the trace beginning with that instruction is reused; if an entry is not found in
Memo_Table T but in Memo_ Table G, the instruction is reused. Trace reuse
may cross branch boundaries and collapse true data dependencies in a single cycle,
increasing performance. A trace will be speculatively reused if:

(i) There is no trace with all inputs known and correct;

(7i) There is at least a trace with unknown input values whose known input values
match the current values; and

(77i) The confidence mechanism allows the prediction of the trace.

Therefore, the precedence of speculative trace reuse is above instruction reuse,
but below trace reuse (Figure 3.6).

highest

Trace Reuse
2
S | Speculative Trace Reuse
=
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Instruction Reuse
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Figure 3.6: Precedence of different reuse types in RST



il:add rl, 2, 13
i2:sub r4, 13, r5
b3: beq 14, 15, i7
i4: mul 12, 13, r4
i5:swr2, (120)

i6: add r3, r4, 15

i7: div r4, 15, 17

b8: bne r4, 18, il1
i9: sub 5, 17, r8
i10: fadd s 19, rl, 16

111 xor 13, r4, r5
i12: Iw r7, r3(100)
il3: sub 18, 17, r6

Figure 3.7: Code snippet

3.3.2 Trace construction and reuse for DTM

The next figures depict the trace formation process for the assembly code of
Figure 3.7. For instructions with three operands, the first one is the destination
register, and the other two are the input registers.

First, we will present how traces are created in DTM, allowing only redun-
dant instructions (already in Memo Table G) in the traces. Figure 3.8 shows
instructions in the reuse domain being identified (gray circles) and stored in
Memo Table G. The black circle represents a load instruction, which has a dif-
ferent treatment as memory accesses are not being considered as part of the reuse
domain.

il

111
112
113

(a)

Figure 3.8: Storing reusable instructions

In the next execution shown in Figure 3.9(b), these instructions are reused,
marked as redundant, and a trace is formed, until an instruction that does not belong



to the reuse domain or is not redundant is found. In this case, instruction ¢7 termi-
nates the trace construction as b8 is not redundant (not found in Memo_ Table_G).
This trace is then memoized and stored in Memo_Table T.

111
112
113

(b)

Figure 3.9: Trace formation

Figure 3.10(c) shows the next time execution reaches the beginning of this trace
with the same inputs. At this point, the memoized trace is reused; i.e., the previous
values are written in the output registers. In this example, the compared input
registers are r2, r3, r5, r7 and r8. If the inputs match the current values, the output
context containing 1 and r/ is loaded into these registers as the outputs of the trace.
Thus, all instructions inside the trace are essentially collapsed into the checking of
the inputs and storing of the outputs. The instruction fetch is redirected to the next
address after the trace.

213|517
il .
mput
context
ill output
112 context
13 rl |4

Figure 3.10: Trace construction, reusing a trace



3.3.3 Trace construction and reuse for RST

Figure 3.11 shows the process of trace creation using RST’s policy of allowing
even instructions that have not been reused yet to be included in a trace in formation.
Instructions are included in the trace until an instruction that does not belong to
the reuse domain is found. In this case, a load instruction (black circle) terminates
trace construction, as memory accesses do not belong to the reuse domain. In this
case, only the address calculation is kept in the trace, and the memory access will
be issued as a regular load if the trace is reused. This trace is then memoized and
stored in Memo_Table T.

(a)

Figure 3.11: Storing reusable instructions

Figure 3.12(b) shows the next time execution reaches the beginning of this trace
with the same inputs, when the memoized trace is reused; i.e., the previous values
in the output context are written into the output registers. In this example, the
compared input registers are r2, r3, r5, r7and r8. If (i) the inputs match the actual
registers, or if (ii) there are inputs that are not ready and the known inputs match
the registers and the confidence mechanism allows the prediction, then the values
stored for r1, r4 and r3 are loaded into these registers as the outputs of the trace.
Thus, all instructions inside the trace are essentially collapsed into the checking of
the inputs and storing of the outputs. Instruction fetch is redirected to the next
address after the trace, obtained from the field npec.

The main differences to DTM’s policy and their consequences are:

e A trace is formed faster in RST than in DTM, because instructions do not
need to be marked as redundant to be included in a trace, therefore they do
not need to be included first in Memo Table G before making their way into
a trace;

e Potentially, more traces are created in RST, as there are more candidate in-
structions;

e Traces may be less redundant than in DTM, as the included instructions are
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Figure 3.12: Trace construction, reusing a trace

not necessarily going to show redundancy (they may never occur again with
the same inputs);

e On the other hand, instructions that show redundancy may be included earlier
in a trace, and RST may benefit from traces that would not be formed in DTM;

e Memo_ Table T is accessed more often to store traces and it may become
more polluted due to traces with small redundancy being stored.

3.3.4 Misprediction detection and recovery

The late tests are similar to those used for other value prediction mechanisms.
When a trace is speculatively reused, the predicted value and information about
the producers of predicted values are stored. When the producers finish executing,
the predicted values and the actual outputs are compared. If they match, the
commit stage is informed. The outputs of the speculatively reused trace can then
be committed, and executed instructions following the trace can also be committed.
If any of them does not match, then the recovery mechanism (the same used for
branch mispredictions) is activated, instructions after the trace and trace outputs
are discarded, and fetch is redirected.

The late test needs comparison hardware in the writeback stage to test for mis-
predictions. For each input that can be predicted in a trace, the mechanism will
need a comparator after each functional unit that can produce a value of the same
type of those that are predicted.

3.4 Comparison with related techniques

Compared with instruction reuse techniques (SODANI; SOHI, 1998), RST has all
the benefits of trace reuse as detailed by Costa (COSTA, 2001), such as the potential
for collapsing critical paths into a single cycle, improving branch predictions, and
reducing the dispatch bandwidth. It also does not need to verify chains of dependent
instructions during reuse times, as this information is encapsulated by the structure



adopted to store traces. Consequently, the reuse test tends to be simpler than
instruction reuse with dependence checking.

Alternative schemes that just combine two unrelated mechanisms in a single ar-
chitecture (LTAO; SHIEH, 2002) suffer from the increased table sizes required to
provide low misprediction rates. Our approach does not waste resources on addi-
tional prediction tables, as it uses the values already stored in the memoization
table.

RST also has the advantage of not being dependent on the compiler or ISA mod-
ifications such as needed in block and sub-block reuse (HUANG; LILJA, 1999; WU;
CHEN; FANG, 2001), allowing the execution of legacy code without modifications.

Compared to the Combined Dynamic Predictor (HUANG; CHOI; LILJA, 1999),
our approach has the advantage of having a more flexible reuse unit, the trace, thus
being able to obtain benefits not only from long-latency instructions.

Unlike other trace reuse mechanisms (COSTA; FRANCA; CHAVES FILHO,
2000; GONZALEZ; TUBELLA; MOLINA, 1999), RST can speculatively reuse
traces even when inputs are not ready, allowing the exploration of a large amount
of redundancy that would not be reusable otherwise. Correctly prediction of values
also exposes more instruction level parallelism for the architecture, allowing to invest
against the limits imposed by true data dependencies with increased efficiency.

Previous value prediction techniques like those developed by (GABBAY;
MENDELSON, 1996; LIPASTT; SHEN, 1996; WANG; FRANKLIN, 1997a; SAZEI-
DES; SMITH, 1997) may increase resource contention problems as even misspecu-
lations will need functional units and issue width, while RST is more conservative:
predicted traces are not executed, but speculatively reused. Instructions inside a
trace will not occupy dispatch bandwidth, issue bandwidth nor functional units.

RST does not require elaborated techniques to deal with mispredictions, as an ad-
ditional core to compute a non-speculative version of the predicted code (NAKRA;
GUPTA; SOFFA, 1999; WU; CHEN; FANG, 2001; KOUSHIRO; SATO; ARITA,
2003), or detecting the chains of dependent instructions to be re-executed as pro-
posed by Reinman and Calder (REINMAN; CALDER, 1998), although these mecha-
nisms could improve performance in the case of mispredictions. All our experiments
considered a simple squash scheme where all instructions after a misspeculation
are discarded, and the fetch is redirected to the first instruction that used a mis-
speculated value. This is the same way that branch misprediction is dealt in most
processors. Hence, the additional cost for RST in terms of misprediction recovery
is only the extra comparisons in the writeback stage to verify the predicted values
against the computed ones.

The cost of extra hardware for RST in relation to DTM (COSTA, 2001) is
composed by the extra tables for the confidence mechanism and the late tests in
the writeback stage to verify the speculations. The confidence mechanism is a small
addition in terms of hardware area for the configurations that we considered, less
than 2% of additional hardware than necessary for DTM in most of the analyzed
configurations.

3.5 Contributions

This Section briefly summarizes the main contributions of this thesis as follows:

1. A speculative trace reuse framework that can be modified to fit different ar-



chitectures and requires minimal extra hardware compared to regular trace
reuse;

2. Experimental results for an instance of RST implemented in a 19-stage, su-
perscalar architecture;

3. Characterization of traces and the predictability of their inputs;
4. Analysis of speculative trace reuse limits; and

5. Implementation details and constraints that were not fully explored in previous
trace reuse works.

Besides these aspects, we detail in Chapter 5 all the improvements in the simu-
lator that we implemented in order to develop this work but that can be used for
other measurements.






4 A RST ARCHITECTURE

Person who say it cannot be done should not interrupt person doing it.

Chinese Proverb

DTM satisfies a number of requirements for reuse through speculation on traces,
and previous studies have shown that it achieves good performance and presents
advantages over other reuse techniques (COSTA; FRANCA; CHAVES FILHO, 2000;
COSTA, 2001). Hence, we have chose DTM as a framework to implement RST, and
extended it to include trace speculation, among other features to improve frequency
and size of reused traces.

In this Chapter, we present an implementation of RST over DTM in a superscalar
architecture. First, we show the pipeline for a DTM implementation in Section 4.1,
then we compare our RST’s pipeline to it in Section 4.2, pointing out the mod-
ifications that are required to add speculative trace reuse. Each stage necessary
for RST is discussed, and details like how register renaming is performed and how
mispredictions are detected and recovered are discussed.

4.1 DTM’s pipeline

Figure 4.1 presents DTM’s pipeline for a superscalar architecture. The fetch
stage sends the program counter (PC) for the next instruction to both the memory
hierarchy and the first DTM stage, called DS1 (DTM Stage 1). This address is
used to access Memo_Table G and Memo_Table T in parallel. Reuse candidates
are sent to DS2, where their inputs are read. In this same stage, the actual values
are compared with the candidates’ inputs, and if there is a match, DTM can reuse
an instruction or a trace. Traces have precedence over instructions, as they may
provide better performance improvements than isolated instructions. Stage DS3
is responsible for identifying instructions to be stored in Memo Table G and to
create new traces from the reused instructions.

DTM’s pipeline is parallel to the instruction pipeline, thus it does not add extra
stages to the path that instructions must complete in order to be committed. The
implementation of DTM does not significantly impart performance for instructions
that are not reused, and improve performance for those that can be reused by
skipping pipeline stages.
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Figure 4.1: Pipeline for a DTM architecture

4.2 RST’s pipeline

Figure 4.2 shows RST’s pipeline based on a superscalar architecture (PILLA
et al., 2002), built over the DTM architecture. There are four stages in RST, and
they are parallel to the main instruction pipeline just like DTM’s stages. Thus, the
delay of the RST stages is not added to the main pipeline, and there is no increase
in the number of cycles to execute an instruction neither decrease on the clock rate.

For RST, the main modifications occur in stages RS2 and RS4. There is also
an extra intermediate stage, RS3, in parallel with the writeback stage designed to
identify mispredictions. The stages divide the work of speculative reuse as follow:

Stage RS1 works like DS1;

Stage RS2 is based on DS2, but with some differences in the reuse test;

Stage RS3 handles the misprediction test (and does not have equilavent in
DTM); and

Stage RS4 is the equivalent of DS3.

In the next subsections, each stage is described, and in Subsection 4.2.5 the
integration of all stages is depicted in an overview picture.
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Figure 4.2: Pipeline for a RST architecture

4.2.1 Stage RS1

Stage RS1 works just like DS1, fetching reuse candidates from both
Memo Table G and Memo Table T. The PC address of the current instruction
is sent to RS1 and the tables are accessed. Figure 4.3 shows the input (PC) and the
outputs (candidates for reuse) of stage RS1. The outputs 1 and 2 are directly sent
to the next RST stage, RS2, for the reuse test.

Inputs 5 and 8 provide updates on traces and instructions that were non-
speculatively reused in stage RS2, or whose predictions were confirmed in stage RS3.
This stage also receives reusable instructions and trace candidates to be stored from
stage RS4 (inputs 11 and 12), and they are stored after the tables are searched and
the entry is not found there. The search and comparison that are necessary to store
a new trace or instruction are not detailed in Figure 4.3 as the operation is not
different from what is required for other tables.

4.2.2 Stage RS2

Stage RS2 is different from DS2, as the reuse test in RST allows that traces with
unknown input values may be speculatively reused, using the previous values stored
in the input context. In RS2, if one or more values in the input context are not
ready (there is a true data dependency on an instruction which has not been finished
yet) but the remaining values match the current values, then a confidence mecha-



Memo_Table T

in: trace candidate

RS1
(to store) @—
in: LRU update @ ) )
(Memo_Table T) | i_—>@ out: trace candidates

(for reuse)
in:PC

Fetch

Memo_Table G

in: LRU update .—
(Memo_Table_G) :]—_>@ out-insn
in: insn candidat candidates

(to store) 11 (for reuse)

Figure 4.3: Details of stage RS1

nism (CALDER; REINMAN; TULLSEN, 1999) is accessed to verify if the value
should be predicted or not. This mechanism is important to reduce misprediction
and the associated penalties, as we show in Chapter 7.

If a confidence mechanism is to be used in RST, one of the stages RS1 or RS2
is modified to include it. The confidence tables may be accessed in parallel with
the trace access (in RS1) or the access may be left for the case where the need
for the confidence lookup is assured (in RS2). The implementation will depend on
the pipeline depth that is being considered, and how many cycles are necessary to
access the confidence mechanism and to update it. In this work, we assume that
there is enough time to access the confidence mechanism in RS2, and therefore it is
consulted only when strictly necessary.

Figure 4.4 depicts the structure of stage RS2. For traces, the registers to be
accessed are indicated in the Memo Table T entry, but for instructions it uses the
values that are decoded by the instruction pipeline in order to save circuit area. After
consulting the register file for register values, they are compared with the instances
from Memo Table T and Memo_Table G. Trace inputs will be predicted only if
the confidence allows it. The possible outputs are:

1. A reused trace — output values (output 7), LRU update to stage RS1 (out-
put 5), and eventually a new PC (output 6);

2. A speculatively reused trace and its predicted inputs (outputs 3, 4, 6, 7);

3. A reused instruction — output value (output 7), LRU update to stage RS1
(output 8), and eventually a new PC (output 7).

If the architecture does not use register renaming to deal with data dependencies,
then each value in the output context (whether it is speculatively reused or not) will
occupy one entry in the Reorder Buffer (ROB) and another one in a reservation
station. Subsequent instructions do not need to access intermediate values created
inside a trace (and they would not be able, as they are not kept in Memo_Table T,
just the final value for each entry in the output context). For example, if a trace en-
closes 10 instructions but only two logical registers are written, then only two ROBs
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Figure 4.4: Details of stage RS2

and reservation stations will be necessary to hold all results. Therefore, 8 entries
can be saved for other instructions in this case.

But if there is a register renaming stage (as in most modern architectures as
Pentium 4, Alpha 21264, PowerPC and so on (HENNESSY; PATTERSON, 2003)),
then there is an issue to be treated by RST. While the RS2 stage is testing trace
candidates for reuse opportunities, the rename stage continues its register renaming.
By the time that RST can decide if a trace is going to be reused or not, the tables
that map logical registers onto physical registers and keep the active list will be in
an inconsistent state.

For example, if some instructions enter rename in the following order and write
the logical output registers (Table 4.1):

Table 4.1: Sequence of instructions in the rename stage

Order | Instruction | Logical register

1 il r3
2 i2 r2
3 i3 r3
4 i4 r2
5 5 r2
6 6 rb
7 i7 rl2

Then, if a register renaming mechanism is used, the following mapping from
logical to physical registers may occur (Table 4.2):

For each instruction writing a logical register, a free physical register is assigned
to hold the value, preventing speculative update of the architecture state. Instruc-
tions after a mapping that read registers will always use the last assignment. Now,
assume that instructions 2 to 75 are going to be part of a reused trace. To cope with
the assignments that are not necessary because of trace reuse, a list of all mappings



Table 4.2: Mappings from register renaming

Order ‘ Instruction ‘ Logical register ‘ Physical register

1 il r3 po4
2 i2 r2 pH6
3 i3 r3 po7
4 i4 r2 pH9
5 ib r2 p70
6 i6 rH p72
7 i7 rl2 p75

done in the rename stages (similar to Table 4.2) can be analyzed just after the re-
name stage, and unnecessary bindings can be freed and rolled back to the previous
mapping. Instructions after the trace are not affected.

For the current example, the list would be analyzed from the last instruction in
the trace up to the first instruction in the trace. Logic registers r2 and r3 are written
by the trace. Thus, we must search for the last write for each of these registers in
the list (Table 4.3, where instructions belonging to the trace are marked with gray,
and darker gray is used for instructions with the last mapping to the registers in the
output context):

Table 4.3: Discovering mappings to be freed

Order | Instruction | Logical register | Physical register

From this point, the processor knows that it can free the mappings for registers
p56 and pb9, and that p57 and p70 provide the last values inside the trace for
instructions after it. After freeing unnecessary mappings, we would have (Table 4.4):

The mappings from reused instructions are freed but for the last assignments,
which will be used to write the output scope of the reused trace. Instructions before
the trace are not affected, and the mapping for instruction 7 is kept as it appears
before the trace.

Another possible case is that the trace takes a different way than the one that
was originally fetched by the processor. In this case, mappings after the trace will
be removed, as these instructions are not going to be executed anyway.

RST and other reuse techniques that need to read register values to test against
previously stored values may potentially increase the pressure on the register file,
needing more read ports than architectures without reuse. In a previous study for



Table 4.4: State after freeing unnecessary mappings

Order ‘ Instruction ‘ Logical register ‘ Physical register

7 17 rl2 p7o

regular trace reuse (COSTA, 2001), DTM did not present an increase on demand for
read ports, and even if RST presents an increased number of register reads per cycle,
their access can be divided by the cycles before the reuse test. As RS2 is defined
later in parallel to decode/rename with 4 stages, reading registers for RST could be
divided among the stages before the reuse test without stalling the pipeline.

4.2.3 Stage RS3

Stage RS3 handles the misprediction test. It looks for the results of predicted
instructions from the writeback stage and compares the actual values with the pre-
dicted values. If a misprediction is found, then fetch is redirected to the beginning
of the trace, and all instructions after the trace are squashed. This mechanism is
the same used for branch mispredictions, which is already found in superscalar ar-
chitectures. Instructions after the producer of a mispredicted value and before the
mispeculated trace are not discarded, because they do not use the value predicted.

Figure 4.5 details the structure of stage RS3. The inputs that come from the
previous stage RS2 are the recovery PC (3) and the predicted inputs (4) from a
predicted trace. The predicted inputs are formed by the instruction id of the pro-
ducer (the index of that instruction in the ROB or in the Register Update Unit RUU,
depending on the architecture design), the register index and the value. The instruc-
tion id is used to index a table where recovery information is stored (the Recovery
Table, discussed below). A trace with more than one predicted value will have
multiple entries in this table.

in: recovery PC @ RS3
RUUid . .
in: predicted @ & (reg &val) ?ﬂékﬁ%zgﬂ:ﬁ% Commit
inputs - - ?
RUU ‘ g
id =? out: spec mode
(reg & val) g
o S
in: result values @ out: new PC
Writeback

Fetch

Figure 4.5: Details of stage RS3



Besides storing new predictions and recovery information, this stage is also re-
sponsible for testing the values provided by the writeback stage to detect mispredic-
tions. The same instruction id is used to index the recovery table, and the values
are compared to the predicted ones (stored in the table). The outputs of RS3 are
the speculative mode for that trace (if it was mispredicted or not, output 9), which
is sent to the commit stage; a possible LRU update to stage RS1 (output 5); and
a possible new PC (output 10), to be sent to the fetch stage if a misprediction is
found.

When more than one input can be predicted by trace, the table must handle
multiple tests for the same trace. A counter can be added to the entries and decre-
mented each time a correct value prediction is detected. When all the necessary
tests for a trace were completed, the speculative mode of the instructions following
the trace would be set accordingly.

In the case of a misprediction, the table should be searched to squash all entries
that are related to traces predicted after the mispredicted one, and the mispredicted
trace itself. This can be solved by using a ROB-like table, where information about
predictions are store in order, which is called Recovery Table (RT). Each entry on
this recovery table has the following fields (Figure 4.6):

e prid is the instruction of the producer for that value (size depends on the
number of ROB or RUU entries, and it is loga(n) bits);

e crid is the instruction id of the consumer (first ROB or RUU entry occupied
by the trace), where other recovery information may be found;

e valis the predicted value, to be checked against the calculated value;

e [ru is a pointer for the trace entry in Memo Table T to be updated in the
case of correct prediction (it may be unnecessary if LRU is updated in RS2);

e cid is a pointer for the confidence table entry to be updated (it may be unnec-
essary depending on the confidence mechanism);

e np is the number of predictions made for the current trace minus one (the size
will be logs(n — 1) bits, where n is the maximum number of predictions for a
trace);

e valis a bit that marks if the entry is valid or not.

bits a a 32 b ¢ d 1
prid | crid val Iru | cid | np |Vl

Figure 4.6: Recovery Table entry

The crid field can be used not only to find the PC to recover in case of mispre-
diction or the point in the ROB from where instructions should be squashed, but
also to group entries in RT that are related to the same trace.

For example, if there is a speculatively reused trace with one predicted input,
then the table may look like Figure 4.7. In this figure, the result of the operation in



prid crid val Iru cid np vl
0| 4 |5 0x8888 |55 | 120 0 | 1

0
0
0

Figure 4.7: RT with one entry

the 4" ROB entry will be predicted as 0x8888 for the trace stored in the #55 entry
in Memo_Table T.

If another trace, but now with two predicted inputs, is stored in RT, it may look
like Figure 4.8. Note that the field np is 1 for the two new entries, which is the
number of predicted values for that trace minus 1.

prid crid val Iru cid np vl
0| 4 |5 0x8888 |55 120 0 | 1

21| 30, 0x0076 46 | 033 | 1 1
9 30/ 0x8899 |46 (001 1 | 1
0

Figure 4.8: RT with three entries

Now, if the value of the first trace is mispredicted, then all entries in RT will be
squashed, fetch will be redirected to the PC of the 5* ROB entry, all the entries in
the ROB after the misprediction and the misprediction itself will be squashed, and
the confidence entry #120 (cid field) will be updated with a misprediction.

On the other hand, if the predicted value matches the actual, then the confidence
will be updated with a correct prediction, the consumer will be marked as non-
speculative and may be committed from that point, LRU for trace #55 will be
updated, and the RT entry will be released.

Figure 4.9 depicts another possible situation, where entry #1 in RT is resolved
as correctly predicted. Then, the valid bit ol is reset, and the other entries for that
specific trace (entry #2) will have the number of predicted values decreased. When
the last prediction is confirmed (in the case of no mispredictions), then the LRU
for the speculatively reused trace is updated, and all the rest of the treatment for
correctly predicted traces is applied. If one of the predictions is incorrect, then
the treatment is the same as specified before for a mispredicted trace with a single
prediction.

The Recovery Table may also assume other configurations, such as a two-level
structure to avoid multiple searchs for the same trace id in a given cycle. However,
this is not very significant as the RT is very small (less than 8 entries are necessary
for prediction of two values per trace).



prid crid val Iru cid np vl
0| 4 |5 0x8888 |55 | 120 0 | 1

21| 30, 0x0076 |46 | 033 | 1
9 | 30, 0x8899 |46 | 001]| O

S| =] O

Figure 4.9: Resolving a RT entry

4.2.4 Stage RS4

Stage RS4 is the equivalent of DS3 in DTM. It detects and stores redundant
instructions and traces. Depending on the policy, only reused instructions (as in
DTM) may form traces, or instructions from the reuse domain that were not reused
may also be included. All instructions after a mispredicted trace are squashed here,
and the fetch is redirected to the address where the trace started. Figure 4.10 shows
the structure of stage RS4, with two buffers dedicated to create the input and the
output scopes, and a buffer to store branch bitmaps for the trace in construction.

output context RS 4

outputs

input context

in:committed
insns

] branch info

Commit

@ out: insn candidate @ out: trace candidate

Figure 4.10: Details of stage RS4

The inputs received from commit are divided in: (i) inputs form the input con-
text, (ii) outputs form the output context, and when the instruction is a branch, it
will also be used to construct (7ii) the branch mask. Trace construction is described
in Chapter 3.

The output 11 is comprised by information about all the reusable instructions
that were not reused but that are in the reuse domain. Stage RS1 will search for



them and, if they are not in Memo_ Table G yet, they will be included there.
The same is valid for output 12, which is a finished trace. It will be searched in
Memo Table T and stored there, if necessary.

Depending on the policy for entry allocation on Memo Table G and
Memo Table T, this stage may also send information to RS1 about which in-
structions and traces should have their position on the LRU list updated.

4.2.5 Integrating all stages

Figure 4.11 shows how all the RST stages are connected. Some labels have been
removed to better present the overall picture of RST. For details of each stage, refeer
to the previous subsections.
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5 EXPERIMENTAL ENVIRONMENT

All programmers are optimists. Perhaps this modern sorcery especially attracts those
who believe in happy endings and fairy godmothers. Perhaps the hundreds of nitty
frustrations drive away all but those who habitually focus on the end goal. Perhaps

it is merely that computers are young, programmers are younger, and the young are
always optimists. But however the selection process works, the result is indisputable:
“This time it will surely run,” or “I just found the last bug.”

Frederick Brooks, “The Mythical Man Month"

In this Chapter, we present the characteristics of the simulation environment
used to obtain the results for our work. First, we introduce the simulator that
we developed in Section 5.1. Then, we present the chosen workload in Section 5.2.
Finally, the configurations for the simulated architectures are depicted in Section 5.3.

5.1 Simulator

Our RST simulator, called sim-rst, was developed on the sim-outorder simulator
from the SimpleScalar Tool Set (BURGER; AUSTIN, 1997; AUSTIN; LARSON;
ERNST, 2002), version 3.0b, using parts from the original DTM simulator imple-
mented on the version 2.0 of the same tool set. It simulates in the instruction
level, with most details of a superscalar processor such as out-of-order execution
and in-order committing, memory hierarchy, and modeling of resources.

Besides the additional functions and modifications to allow the speculative reuse
of traces, our simulator also extends the original six-stage pipeline from sim-outorder
to deeper pipelines with arbitrary number of stages to better resemble modern,
deeply pipelined processors. The extra stages are simulated by adding counters to
some structures, as the instruction fetch queue. When an instruction is inserted
there, the counter for that entry is set with the value of the current simulation
cycle plus the number of stages until the next “real” stage, the decode stage; then,
the decode stage will only pop instructions from the fetch queue when the current
simulation cycle is greater than the stored value in the entries. The same process is
used for the other stages.

We also divided the dispatch stage, where originally was simulated register re-
naming and dispatch, to allow reused instructions writing their results before the
issue stage.

Reused traces write their outputs in the next cycle; therefore, they do not affect
the reuse tests being done in the same cycle, and there is no chaining of reused



instructions nor traces. This is done in order to conform with a real pipeline im-
plementation, where these local writebacks could increase hardware complexity and
reduce clock rates.

Another modification was the extra third level of cache, also intended to simulate
with more details the characteristics seen in state-of-art superscalar processors.

5.2 Workload

The benchmarks simulated in this work is composed by programs and input sets
from the SPEC CPU 95 (SPEC — Standard Performance Evaluation Corporation,
1995) and SPEC CPU 2000 (HENNING, 2000), which have been developed to test
processor and memory performance. The programs that we simulated are shown in
Tables 5.1 and 5.2. The first column presents the name of the benchmark, the second
column has a short summary of what the benchmark does, the third column shows
the input set used in the simulations, and the last column presents the number of
instructions that were simulated each time that specific benchmark was run.

The number of committed instructions refer to non-speculative instructions
which have been retired normally in the commit stage. Each simulation was ex-
ecuted with a maximum of 500 million committed instructions or to its completion.

Table 5.1: Simulated workloads — SPEC95int

Benchmark ‘ Description ‘ Input ‘ Committed
ccl GNU C compiler expr.i (ref) 225.7 millions
compress95 | Compression and decompression | test.in (train) 35.5 millions
go Plays the game of GO 9stone2l (ref) | 131.8 millions
ijpeg Image compression vigo.ppm (train) | 244.3 millions
li LISP interpreter deriv.Isp (ref) 500 millions
m88ksim processor simulator ctl.raw (ref) 244.7 millions
perl Perl interpreter primes.in (ref) 500 millions
vortex Object-oriented database vortex.in (ref) 500 millions

Table 5.2: Simulated workloads — SPEC2000int

Benchmark ‘ Description ‘ Input ‘ Committed
ccl GNU C compiler cp-decl.i (train) | 500 millions
gzip Compression lgred (random) | 500 millions
parser Word processing lgred 500 millions
vortex Object-oriented database lgred 500 millions

Previous studied with regular trace reuse (COSTA, 2001) showed that floating-
point benchmarks also benefit from the reuse of integer instructions, but programs
based on integer operations are more suitable for trace reuse. In the present simu-
lations, we decided to focus on the integer benchmarks.



All the benchmarks from SPEC95int were simulated, but only a subset of the
SPEC2000int was chosen because (i) the current tools could not cleanly compile
them for the target architecture, or (i) there is no suitable input set for architecture
simulation for the benchmark. Simulating the same number of instructions that
are executed in the evaluation of real processors is not feasible with the current
computing power, and as the benchmarks increase in complexity in the same pace
as computing power, it is not likely to be feasible in a near future. On the other
hand, simulating just a small number of instructions from those same benchmarks
would also present meaningless results that could not resemble at all the targets
being simulated. Hence our decision of not running some benchmarks because their
results would not represent the characteristics that we wanted to test.

The chosen ISA was the PISA (Portable Instruction Set Architecture), a super-
set from the MIPS-IV ISA, due to the support in the SimpleScalar Tool Set, the
possibility of running on many host architectures, and the compatibility of the tools
with the x86 computers where they would be simulated. All benchmarks were com-
piled with GCC cross-compiler version 2.7.2.3 (CHONG, 1999) and binutils 2.5.2,
little-endiam for x86 architectures.

Different computers with different versions of libraries or environment variables
could lead to some degree of variation in the execution of our simulations. To increase
the reliability of results, I/O traces were created for each workload, decreasing the
difference among simulations in those heterogeneous computers.

For the simulations, we used three different PC clusters: an IBM Pentium III
cluster with 12 nodes in the University of Pittsburgh (thanks to Dr. Mossé), an
Itautec dual Pentium III cluster with 16 nodes in our laboratory (UFRGS) and the
LabTeC/Dell dual Pentium III cluster with 20 nodes, also in our laboratory. We
also used a dual Athlon workstation at the University of Pittsburgh to study some
issues for very large tables(thanks to Dr. Soffa and Dr. Childers).

5.3 Baseline configuration

Our baseline architecture for most experiments is a 19-stage superscalar proces-
sor with a memory hierarchy of 3 levels, configured likewise a current commercial
processor (INTEL, 2001). The configuration settings are described in the next ta-
bles, which are divided in four tables.

Table 5.3 presents the general parameters for all configurations, as the pipeline
width, number of entries in the fetch queue, number of ROB entries, and branch
prediction.

Table 5.4 describes the memory hierarchy for the baseline architecture, with
three cache levels, latencies, and other parameters.



Table 5.3: Main parameters for baseline architecture

Parameter

Value

Pipeline width

4 instructions

Inst. Fetch Queue (IFQ)

16 instructions

Branch prediction
First level
Second level

two-level (gshare)

13-bit register (xored with PC)

8192 entries

Branch target buffer (BTB)

4096 entries, 2-associative

Return Address Stack (RAS) none
RUU 128 entries
Load/Store queue (LSQ) 64 entries

Table 5.4: Memory hierarchy for baseline architecture

Hierarchy level ‘ Parameter ‘ Value
hit latency 1 cycle
First associativity 4
Level Sets 128
Instruction line length 64 bytes
replacement policy LRU
Total size 32KB
hit latency 1 cycle
First associativity 4
Level sets 64
Data line length 128 bytes
replacement policy LRU
Total size 32KB
hit latency 5 cycles
Second associativity 8
Level sets 256
Unified line length 256 bytes
replacement policy LRU
Total size 512 KB
hit latency 10 cycles
Third associativity 8
Level sets 1024
Unified line length 256 bytes
replacement policy LRU
Total size 2 MB
Main hit latency (first chunk) | 100 cycles
Memory Hit latency (next chunks) | 10 cycles
Access width 16 bytes




Table 5.5 presents the configuration of functional units, with latency and number
of instances. Please note that the latencies of the functional units are not the same as
in the original sim-outorder simulator, in order to present the characteristics found
in deeply-pipelined processors.

Table 5.5: Functional units for baseline architecture

Type | Parameter | Value
Integer ALUs units 2
(add/sub) latency 1 cycle
Integer ALUs units 1
(div/mul) latency 14 cycles
Memory read ports 1
Access write ports 1

Figure 5.1 depicts the division of stages for the superpipelined processor that we
simulated, with 19 stages. The pipeline stages for RST are also shown, parallel to
the instruction pipeline.

DECODE/RENAME

DISPATCH ISSUE EXECUTE WRITEBACK COMMIT

2 5 1 2
@) | ®) > ()‘ @)

Memo_Table ¢ Ii

RS1 RS2

Figure 5.1: Superpipeline for baseline architecture

Table 5.6 presents the values used for Memo_Table T and Memo Table G in
both DTM and RST architectures for most simulations. These table sizes were
determined based on two main restrictions: (i) the chip area should be similar to
the cache sizes; and (i) the number of entries should be a power of 2, to allow the
simulation of associative tables.



Table 5.6: Memoization tables

Type |  Parameter | Value
entry size 129 bits
Memo Table G | number of entries | 2048
associativity 4
Total Size 32 KB
entry size 388 bits
Memo Table T | number of entries 512
associativity 4
Total Size 24 KB

For the trace construction policy, we employ two different algorithms in many
simulations:

e DTC policy: the DTM Trace Construction policy is the same as the
one originally employed by DTM, where only instructions already in
Memo Table G can be inserted in a trace. This is the default for DTM’s
simulations in the rest of this work, but it will always be pointed out when
used for RST.

e RTC policy: the RST Trace Construction policy allows that any instructions
in the reuse domain, present or not in Memo_Table G, to be part of a trace
in construction. The RTC policy is the default for RST’s simulation.



6 LIMITS OF SPECULATIVE TRACE REUSE

“If we knew what it was we were doing,
it would not be called research, would it?”

Albert Einstein

With this set of experiments, we want to verify the limits of performance that
a speculative trace reuse architecture could achieve while constrained by other ar-
chitecture features such as caches, number of functional units, pipeline width, and
others. We start with 4K entries in the Memo_Table T (about 1.22 MB) and
16K entries in the Memo_Table G (about 256 KB), which represented tables with
8 times more entries than the ones that we use for the baseline results in the next
Chapter. Both tables are fully associative unless stated otherwise, therefore there
is no limit to the number of instances of a single instruction or trace for each table
but for the number of entries in each table.

For these studies, we must restrict table sizes due to the time necessary for
simulation. For each configuration, we have to simulate 12 benchmarks, and for
this specific table sizes each simulation can take as long as 45 hours. Therefore,
simulating larger tables is not practical with our current resources, but we think
that these table sizes are more than enough to point out the desired performance
trends.

Our first concern is to determine how changes in Memo_Table T characteristics
affect performance. In Section 6.1, we present results for the maximum simulated
table sizes as the upper bounds for RST. After that, we restrict Memo _Table T as-
sociativity in Section 6.2. Section 6.3 presents results obtained by constraining
Memo Table T size. In Section 6.4, we vary the number of inputs and outputs
in the trace contexts and analyze how they affect performance of speculative trace
reuse. Then, we limit the number of values that can be predicted by trace in Sec-
tion 6.5.

After testing multiple variations on the Memo Table T parameters, we start to
vary other architecture configurations. Section 6.6 presents a study of how changes
on the number of stages affect performance. Section 6.7 shows performance vari-
ations when the pipeline width is varied. In Section 6.8, we vary the number of
functional units. In Section 6.9, we modify the memory hierarchy. Results for stride
prediction are shown in Section 6.10. Section 6.11 presents results for different reuse
domains (including memory reuse in RST). Finally, we summarize our experiments
in Section 6.12.



6.1 RST with maximum table sizes

In this first study, we want to determine the upper bound speedups for RST
when very large memoization tables are employed. Besides the number of entries,
in this first experiment we do not restrict the number of registers in the input and
output contexts, and the memoization tables are fully associative (FA). LRU policy
is used to select a victim among all traces when the tables are full and a new entry
is going to be inserted.

Table 6.1 presents the configuration for both Memo Table T and
Memo_Table G for the experiments featured in this Section.

Table 6.1: Configuration for maximum table size

Table ‘ Parameter ‘ Value

Entries 4096

Memo_ Table T Associativity fully
Size 1.22 MB

Entries 16834

Memo Table G Associativity fully
Size 256 KB

6.1.1 Speedup for DTM (DTC an RTC)

In this experiment, we compare performance of DTM with both trace creation
policies, DTC and RTC, to choose one as a comparison standard for RST results.
As our focus is RST and not DTM, we will present results for only one of the policies
in the DTM case for the rest of this work.

Figure 6.1 shows a performance comparison of DTM (RTC) against DTM (DTC)
using the speedups over the baseline architecture (defined in Chapter 5) without
reuse. The vertical axis presents speedup, while the horizontal axis depicts the
benchmarks we run. For each benchmark, the first bar is the speedup of DTM (RTC)
over the baseline architecture, and the second bar is the speedup of DTM (DTC).
The last set of bars presents the harmonic mean of all speedups for each case.

For almost all benchmarks, DTC does better than RTC for DTM, only in the case
of compress. 95 and m88ksim. 95 there is a small advantage for RTC. In average (HM),
results with DTC are slightly better than RTC. Thus, we choose DTM with the DTC
policy as a comparison standard of trace reuse to compare with RST in the rest of
this work.

6.1.2 Speedup

Figure 6.2 presents the speedups for both D'TM and RST over the baseline archi-
tecture for the memoization resources presented in Table 6.1. For each benchmark,
the first bar depicts the speedup for DTM, the second bar presents the speedup
for RST using the same trace construction policy as DTM (DTC), and the last bar
presents the speedup for RST for the more speculative RST trace construction pol-
icy (RTC). The last set of bars presents the harmonic mean of all speedups for each
architecture (HM).
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Figure 6.1: Speedups over baseline for DTM (RTC and DTC), Memo_Table T 4096

entries (31 inputs/31 outputs) fully associative, Memo _Table G 16384 entries fully
associative
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Figure 6.2: Speedup over baseline, Memo_Table T 4096 entries (31 inputs/31 out-
puts) fully associative, Memo Table G 16384 entries fully associative



RST using the DTC policy shows a speedup of 1.66 over the baseline architec-
ture, while the RTC policy presents a speedup of 1.85 (harmonic means). The more
speculative nature of RTC can provide more trace instances for the same PC ad-
dresses, and thus more choices for the reuse test. For 9 of the 12 benchmarks, this
policy achieves improved performance over the DTC policy, with a speedup of 1.11
for RT'C over DTC.

Figure 6.3 shows the speedup obtained for RST over DTM for the same config-
uration as for the previous graph. All benchmarks show performance gains when
compared to DTM. The smallest speedups are observed for the benchmark gzip.2K,
with speedups of 1.01 (RST with DTC) and 1.06 (RST with RTC). In average,

RST is able to achieve speedups of 1.28 (DTC) and 1.42 (RTC) over DTM for this
configuration.
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Figure 6.3: Speedup over DTM, Memo_Table T 4096 entries (31 inputs/31 out-
puts) fully associative, Memo Table G 16384 entries fully associative

From these results, we can infer that RST has a large potential for speedups
over non-speculative reuse for most benchmarks, as only gzip.2K presents a speedup
smaller than 1.15 over DTM. For this almost unconstrained configuration for the
RST pipeline, but with a realistic instruction pipeline and memory hierarchy, we
show the upper bound limits for performance of RST in deep pipeline processors.

In the next subsections, we analyze how RST improves performance by observing
characteristics from the speculatively reused traces and comparing them to the traces
reused in non-speculative trace reuse techniques (DTM).

6.1.3 Contribution to committed instructions

For this measurement, we want to determine how many instructions speculative
trace reuse can reuse or skip by reusing traces when compared to regular trace reuse,



and then we correlate these results with the performance measured by the speedups
of the previous subsection.

Figure 6.4 shows how instructions that are isolatedly reused, bypassed by traces
or by speculatively reused traces contribute to the total number of committed in-
structions for the same configuration of Table 6.1. For each benchmark, the first
column presents results for DTM, the second one presents the results for RST with
the DTC policy, and the last column presents the results for RST with the RTC pol-
icy. Each column is divided in percentage of reused instructions, instructions reused
inside traces, instructions speculatively reused inside traces (not shown in the DTM
case), and finally the percentage of committed instructions that are not reused. The
last set of columns presents the arithmetic means (AM) for each category.
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Figure 6.4: Contribution to committed instructions, Memo Table T 4096 entries

(31 inputs/31 outputs) fully associative, Memo Table G 16384 entries fully asso-
ciative

In average (arithmetic mean), RST (DTC) can reuse 53% of all instructions by
means of either trace or instruction reuse, while RST (RTC) reuses 48% and DTM
reuses 37% of all instructions. This measurement is not directly proportional to
performance, as the number of reused instructions has different impacts on different
benchmarks. Comparing this graph with the speedup on Figure 6.2, we can clearly
see that, in some cases, other characteristics that not the number of bypassed in-
structions affect performance. For example, the benchmark m&88ksim.95 has many
more committed instructions coming from reuse using the D'TC policy than for RT'C
(69% against 52% of all committed instructions). However, the speedup of RTC over
DTC in this case is 1.47.

In almost all cases, RST reuses or bypasses more instructions than DTM with
both DTC and RTC policies. Only for ijpeg. 95 and gzip.2K RST (RTC) presents a
smaller number of reused instructions than DTM, but even reusing a smaller amount



of the total number of instructions RST still achieves better performance, as it can
be seen in Figure 6.3.

From this, we can infer that not only the number of reused traces and instructions
determines the achievable speedups, but also the quality of reused traces can interfere
in the results. For example, if traces that are outside the global critical path are
reused, they may not have the same impact in performance than a smaller number
of reused traces that produce the inputs for other instructions and traces. Therefore,
the number of reused and skipped instructions is an interesting metric but it cannot
be used alone to justify one or another modification in the technique.

Another interesting trend is the reduction of reused instructions from
Memo Table G for RST with the RTC policy. Many benchmarks present this
trend, such as ijpeg. 95, 1i.95, perl.95, cc1.2K, gzip.2K, parser.2K, and vortex.2K,
where perl.95 is the only benchmark that could recover the number of isolatedly
reused instructions by reusing more instructions inside traces. In average, 17% of
all committed instructions are reused by instruction reuse in RST (DTC), while
RST (RTC) can only reuse 14% by instruction reuse.

6.1.4 Trace length

For the current measurements, our objective is to verify how trace lengths corre-
late with performance for both RST and DTM. For DTM, we considered the average
trace length for all reused traces, not only those whose instructions are committed
later. For RST, both reused and speculatively reused traces are considered.

Figure 6.5 shows the average number of reused and speculatively reused trace
sizes for DTM and RST (arithmetic mean). The graph shows a trend towards longer
traces for speculatively reused traces. However, the greatest difference appears be-
tween the two trace construction policies. While the average trace length for traces
that are not speculatively reused is almost the same for RST (DTC) and DTM (2.32
instructions), the average number of instructions increases to 3.57 for RST (RTC).
For the benchmark m88ksim.95, trace length grows from 2.4 to 7.5 instructions per
trace when the RTC policy is used. Speculatively reused traces are longer than their
non-speculative counter parts too.

From the current results, we can conclude that the RTC policy is able to provide
longer traces that can be reused later, and that speculatively reused traces are likely
to be longer.

6.1.5 Branches per trace

An important capability of trace reuse is to encapsulate control dependencies
and resolve multiple branches per cycle. Figure 6.6 shows the average number of
branches per trace for DTM and RST for both speculatively and regularly reused
traces (AM).

Again, the trace construction policy determines characteristics of traces. There
is not much difference between DTM and RST (DTC) in terms of average number
of branches in reused traces, but traces for the RTC policy have about 58% more
branches than the DTC policy. The benchmark m&88ksim.95 presents a very strong
increase in the number of branches from DTC to RTC, with non-speculatively reused
traces growing from an average of 0.8 to 2.6 branches per trace. This and the longer
traces seen for m&8ksim.95 in the previous subsection result in better performance
for the benchmark as the previously shown speedups confirm.
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Figure 6.5: Average trace length for RST and DTM, Memo_ Table T 4096 en-
tries (31 inputs/31 outputs) fully associative, Memo Table G 16384 entries fully
associative
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inputs/31 outputs) fully associative, Memo Table G 16384 entries fully associative



6.1.6 Input and output scope sizes

Another interesting measurement is the determination of the number of inputs
and outputs in reused traces. Figure 6.7 depicts the averages (AM) for DTM and
RST of the number of inputs of reused traces, speculatively reused or not.
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Figure 6.7: Average number of trace inputs, Memo Table T 4096 entries (31 in-
puts, 31 outputs) fully associative, Memo Table G 16384 entries fully associative

This is another measurement where trace construction policy plays an important
role, but in this case all benchmarks experienced an uniform increase in the number
of registers in the input scopes. The increase in trace length and number of inputs
for reused traces occurs due to the more speculative nature of RTC; on the other
hand, this more speculative nature produces traces with less redundancy than DTC,
thus speculative trace reuse is even more important for RTC.

Figure 6.8 shows the average number of registers in the output context of reused
traces. As for the previous graph where the input scope sizes was discussed, the trace
construction policy also makes the difference here. Again, traces for the RTC policy
have more outputs than for the DTC policy. If we consider that RTC produces
traces with both more inputs and outputs in average, there is an increase in the
likelihood of these traces being in critical paths.

6.1.7 Critical paths

As we stated before, traces can encapsulate true data dependencies and reuse
them in a single cycle. In this measurement, we calculate the average critical path
collapsed by reused traces, that is the maximum chain of instructions with true data
dependencies in a trace.

Figure 6.9 shows the average critical path for DTM and RST. Speculatively
reused traces present longer critical paths, about 61% longer for DTC and 72% longer
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Figure 6.8: Average number of trace outputs, Memo Table T 4096 entries (31 in-
puts, 31 outputs) fully associative, Memo Table G 16384 entries fully associative

for RTC than the non-speculatively reused traces, and RTC traces have critical paths
about 73% longer than DTC traces.
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Figure 6.9: Average critical paths for reused traces, Memo Table T 4096 entries (31
inputs/31 outputs) fully associative, Memo_Table G 16384 entries fully associative



Therefore, we conclude that the RST policy for trace creation (RTC) is capable of
building traces that encapsulate longer critical paths than the DTM policy (DTC).

6.1.8 Reason for finishing trace formation

Figure 6.10 shows the average (AM) reason for finishing trace formation. The
average for each reason was obtained by adding up the rates for each reason for all
benchmarks, and then dividing it by the number of benchmarks. The number of
traces per benchmark was not used as weight. These statistics include all traces in
creation, whether they are included in Memo Table T or just discarded because
there was already an equal trace in Memo _Table T or there was only one instruc-

tion on it (traces must have at least two instructions to be considered by RST and
DTM).
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Figure 6.10: Average reason for finishing traces, Memo Table T 4096 entries (31 in-
puts, 31 outputs) fully associative, Memo Table G 16384 entries fully associative

The main difference that can be observed is not between RST and DTM, but
between trace construction policies again. The number of traces that are finished
by memory accesses increases and the number of traces finished by system calls
decreases for RST when the RTC policy is employed.

The “other reasons"option also includes instructions that are not redundant
(which does not affect RTC) and instructions that does not belong to the reuse
domain and are not system calls.

Figure 6.11 shows the average (AM) reason for finishing traces that were stored
in Memo_Table T. For stored traces, there is a modification in the distribution
of reasons to terminate traces. Memory accesses become the main issue for trace
termination on RST (RTC), with system calls having a very small importance there.
Even for RST (DTC) and DTM, memory accesses answer for 2/3 of all finished traces



that are stored. This can be explained by non-redundant instructions finishing traces
in the DTC case, and by RTC producing more traces as it is not compromised by
including only instructions reused from Memo Table G.
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Figure 6.11: Average reason for finishing stored traces, Memo Table T 4096 en-
tries (31 inputs, 31 outputs) fully associative, Memo Table G 16384 entries fully
associative

From these reasons to finish traces, we conclude that memory accesses and system
calls are the two main issues to be approached in order to build longer traces. The
former factor will be treated in the last Section of this Chapter, where we vary reuse
domains.

6.1.9 Remarks for this Section

From the current results, we conclude that varying the trace creation policy cre-
ates traces with diverse characteristics, and this variation can change performance
in ways that not only by increasing or reducing the percentage of committed in-
structions that belong to reused traces.

Although RTC presents speedups much better for RST over the baseline archi-
tecture (1.85 against 1.66 for the DTC policy), the same does not happen with
DTM. Therefore, we infer that the RTC policy depends on being able to anticipate
trace inputs in order to be effective. The increase in the number of entries in the
input contexts also points out this direction; increasing the number of inputs also
increases the likelihood that some of these inputs will not be available for the reuse
test, hence prediction plays an important role here.

We also show that not only the number of reused instructions but also traces char-
acteristics like trace lengths, encapsulated dependencies, and number of branches are
very important for the final performance.



6.2 Memoization table associativity

For this experiment, we want to verify the impact of different
Memo Table T associativities in performance. Until now, all experiments
used a fully associative Memo_Table T, thus the entire table could be used to hold
different instances of traces starting by the same instruction. This configuration has
two problems: (i) a set of instructions with low redundancy but heavily executed
could greedily take many Memo Table T entries, avoiding that more useful
traces could be stored and reused; and (7i) the maximum number of traces to be
tested is directly proportional to the associativity of Memo Table T thus, a fully
associative table would hardly be feasible in a real processor. Then, in the next
experiments we vary Memo Table T associativity from fully associative (FA) to
16, 8, 4, 2, and 1 (direct-mapped), and then we analyze the variation of performance
among the different configurations.

6.2.1 Speedup

Figure 6.12 presents the speedups for RST over the baseline architecture when
Memo Table T associativity is varied. For most benchmarks, performance de-
creases when associativity is decreased, as expected. A smaller number of instances
of traces determines a smaller number of reuse possibilities, thus decreasing perfor-
mance. The benchmark m&88ksim. 95 experienced a very strong performance decrease
from a 4-way to a 2-way Memo Table T, decreasing speedups from 3.47 to 2.27.
The benchmark perl.95 also has a strong reduction on speedups, as can be seen in
the graph. All benchmarks present reductions on speedups, and the average speedup
(harmonic mean) depicted by the line with chess-squares decreases from 1.85 (for
fully-associative Memo_Table T) to 1.32 (for direct-mapped Memo Table T).
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Figure 6.12: Speedup for RST over baseline, varying Memo Table T associativity



Figure 6.13 depicts speedups over baseline for RST with the DTC policy for
trace construction. For this trace construction policy, m88ksim.95 presents almost
constant performance for the different associativities tested. But as for RTC, all
benchmarks are affected by the reduction on associativity of Memo Table T. In
average (harmonic mean), speedup decreased from 1.67 to 1.43 for RST (DTC).
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Figure 6.13: Speedup for RST (DTC) over baseline, varying Memo Table T asso-
ciativity

Figure 6.14 presents the speedups for DTM over the baseline architecture. DTM
results show a different tendency when the associativity is reduced. Performance
does not suffer much from fully associative tables to direct-mapped tables. This
points out that many trace instances for the same PC address do not help increasing
performance when speculative reuse is not allowed.

From these results, we conclude that the associativity of Memo Table T is
important for RST’s performance, but the same is not true for DTM in the simulated
configurations. We also show that some issues like entry aliasing can also affect
performance by evicting key traces from Memo Table T, sometimes making a
larger associativity to produce a smaller performance for some benchmarks.

6.3 Memoization table size

After experimenting on the Memo_Table T associativity, in this experiment we
wish to verify the impact of different Memo Table T sizes on performance. We
start with the original number of entries in Memo Table T (4096), and then we
reduce it to 2048, 1024, and finally 512 entries, which is the size that will be used
later in the next Chapter for the constrained architecture configuration.
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Figure 6.14: Speedup for DTM over baseline, varying Memo_Table T associativity

6.3.1 Speedup

Figure 6.15 shows the variation on average (HM) speedup over the baseline ar-
chitecture for RST and DTM when the number of entries in Memo Table T is
varied.

All architectures have performance reductions when the number of entries are
reduced as expected. The fall on performance is stronger for RST (DTC) from
4096 to 2048 entries. For the other cases, the speedups are reduced in an almost
linear way.

Therefore, we conclude that Memo Table T size is very important to define
the speedups that can be achieved by trace reuse in general, and speculative trace
reuse in particular.

6.4 Number of inputs and outputs

In the following measurements, we want to study how the maximum number of
inputs and outputs in trace contexts may affect performance. Reducing the number
of inputs in a trace may cause shorter traces to be created; on the other hand,
shorter traces with less inputs are more likely to be reused more times than longer
traces, as they depend on less inputs to be redundant. In terms of hardware area
and complexity, reducing the number of inputs that must be tested for trace reuse
also reduces Memo _Table T size and the number of comparisons that are done at
the RS2 stage for the reuse test, resulting in potentially less registers being read at
each cycle. Therefore, the smaller the number of inputs, more traces can be stored
and the smaller the hardware complexity for the reuse test.

As presented in Chapter 4, each entry in the input or the output context requires
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Figure 6.15: Speedup over baseline architecture varying Memo Table T size,
Memo_Table T in31 out31 FA, Memo Table G 16384 entries FA

32 bits for the value (icv or ocv) plus 5 bits for the register name (icr or ocr). For the
input context, it also changes the number of comparison circuits in the RS2 stage.

The simulations are done varying the number of inputs or outputs from 31 to
8, 6, 5,4, 3, 2 and 1 inputs. While a parameter was varied, the other one was
fixed as the maximum possible (31) to avoid influence on results. For the confidence
mechanism, RST was simulated with oracle confidence, and the maximum number
of predicted inputs was always equal to the input scope size.

From this point, we reduce table size and associativity in order to reduce sim-
ulation time. Table 6.2 presents the configuration for both Memo Table T and
Memo Table G for the next experiments.

Table 6.2: Configuration for Memo Table T and Memo_ Table G, experiments
with number of inputs, outputs, predicted inputs

Table ‘ Parameter ‘ Value
Entries 512
Memo_ Table T Associativity 4
Size 155 KB
Entries 2048
Memo Table G Associativity 4
Size 32 KB




6.4.1 Speedup

Figure 6.16 presents the average speedups (harmonic mean) over the baseline
architecture for DTM and RST with perfect confidence estimation. The maximum
number of outputs is fixed at 31 outputs, while the number of inputs is varied from
31 to only 1 input, as well as the number of inputs that RST may predict.
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Figure 6.16: Speedup over the baseline architecture, Memo Table T 512 entries
(31 outputs) 4-way, Memo_Table G 2048 entries 4-way, varying number of inputs

DTM does not present much difference on performance when the number of in-
puts is reduced, while RST presents its better average performance (harmonic mean)
between 3 and 1 inputs. For the DTC policy, performance decreased significantly
from 3 to 1 inputs, while for the more speculative RTC policy allows RST to achieve
similar inputs with 1, 2, or 3 inputs.

Figure 6.17 also shows the speedups for DTM and RST, but when the number of
inputs is kept fixed at 31 inputs and the number of outputs is varied. Again, DTM
presents an almost constant behavior regardless of the number of outputs, with a
small decrease performance from 4 to 1 outputs. RST (DTC) achieves its peak
performance at 3 outputs, while RST (RTC) can do even better with 2 outputs.

These speedups point that traces with less inputs and outputs can be very im-
portant for performance. A trace may have a small number of inputs or outputs,
hence being “narrow", but even then it can encapsulate as many instructions as a
“wider"trace with more inputs and outputs. Even more than the horizontal dimen-
sion of these traces (number of live inputs and outputs), participation on critical
paths and high reusabilitity may be the most important factors for performance
improvements in RST.
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Figure 6.17: Speedup over the baseline architecture, Memo Table T 512 entries
(31 inputs) 4-way, Memo_Table G 2048 entries 4-way, varying number of outputs

6.5 Number of predicted inputs

For this experiment, we want to verify the impact of the number of predicted
inputs in RST’s performance. We start predicting at most 31 inputs (the maximum
number of available registers, as r0 is the constant zero), after what we reduce it
to 8, 4, 2, and 1 predicted inputs. The remaining parameters are kept the same
throughout the experiment.

6.5.1 Speedup

Figure 6.18 depicts the speedup of RST (RTC) over the baseline architecture for
the simulated benchmarks. The vertical axis shows the speedup, while the horizontal
axis presents the variation of the maximum number of predicted inputs.

As can be seen in the graph, the best results for RST (RTC) are obtained
when at most 3 inputs may be predicted (VP3). The benchmark perl.95 presents
a small increase in performance above the other points for VP3, and the bench-
mark m&88ksim.95 has a drop in performance from VP2 to VP1, but the average
speedup (HM) is very similar in all points until VP2.

Figure 6.19 depicts the speedup of RST (RTC) over the baseline architecture for
the simulated benchmarks. The vertical axis shows the speedup, while the horizontal
axis presents the variation of the maximum number of predicted inputs.

Again, the performance peak for perl.95 is situated at VP3 (prediction of at
most 3 values), but now m88ksim.95 shows a peak on VP2, thus moving the best
average speedup to VP2. Performance on VP1 is also less than in the other points, as
expected. Another benchmark that benefits for more than one value being predicted
is parser.2K, whose performance drops from VP2 to VP1, although it is almost
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Figure 6.18: Speedup of RST (RTC) over the baseline architec-
ture, Memo Table T 512 entries (31 inputs, 31 outputs) 4-way,
Memo Table G 2048 entries 4-way, varying the number of predictable inputs
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constant for the other points.

Figure 6.20 presents the speedup of RST over DTM for the best RST case
(RTC and two predicted inputs at most) for reference.
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Figure 6.20: Speedup of RST (RTC, VP3) over DTM, Memo_Table T 512 entries
(31 inputs, 31 outputs) 4-way, Memo _Table G 2048 entries 4-way

This setup is able to achieve a slightly better performance than predicting 31 in-
puts, with an average speedup (HM) of 1.1861 against 1.1838 (both over DTM).
Although the difference is minimal, it shows that there is no need for predicting
many inputs to achieve good performance in RST, thus simplifying the hardware
required for misprediction tests.

6.6 Varying pipeline depth

Until now, we have simulated a pipeline with 19 stages. In this set of experiments,
we vary pipeline depth in different stages as to see how it affects RST’s performance.
In each experiment, we change the number of stages of fetch, dispatch, issue or
writeback, and then we compare performance to the baseline architecture. In the
last experiment, we reduce the superpipeline to a regular pipeline with 6 stages.
The graphs present the average speedup (harmonic mean) for each architecture.

6.6.1 Speedup varying fetch depth

Figure 6.21 depicts the performance effects of reducing the number of fetch stages
from 4 to 3, and then to 1 stage.
For all the architectures, decreasing the number of stages for fetching instructions

and for branch prediction increased the average IPC (Instructions Per Cycle) in a
similar way.
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6.6.2 Speedup varying dispatch depth

Figure 6.22 depicts the speedups over the baseline architecture with 19 stages
when the number of dispatch stages is changed from 3 to 1 stage.

Again, all the average speedups increase when the number of dispatch stages are
reduced from 3 to only 1. However, the effect of reducing 2 stages in dispatch is
smaller than reducing only 1 stage in the fetch. For RST, speedup increases from
1.40 to 1.47 when 3 fetch stages are considered, but only to 1.41 when 1 dispatch
stage is used.

6.6.3 Speedup varying issue depth

In Figure 6.23, we present the speedup over the baseline architecture when the
number of stages involved in instruction issue is reduced from 5 to 3, and then
to 1 stage.

The difference between RST (DTC) and DTM decreases when the number of
stages decrease from 3 to only 1. This result points to a tendency of inputs getting
ready early enough for the reuse test, thus reducing the number of cases where
prediction is necessary. But even in this case, RST provides speedups over DTM for
both DTC and RTC policies.

6.6.4 Speedup varying writeback depth

Figure 6.24 shows the effect on performance of reducing the number of writeback
stages from 2 to only 1 stage.
All speedups increase from 2 to 1 writeback stage, but RST (DTC) increases are
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lagging a little when compared to the other architectures.

6.6.5 Speedup without superpipeline

For the following simulations, we change the pipeline to a configuration similar to
the original sim-outorder’s pipeline (BURGER; AUSTIN, 1997), with only 6 stages,
each one representing a major pipeline function. In this pipeline, dispatch and
decode are combined to better resemble the original sim-outorder.

Figure 6.25 presents the speedups over the baseline architecture with the same
pipeline configuration for RST predicting at most two inputs (VP2) and DTM.

As for the 19-pipelined architecture, the results for the original sim-outorder’s
pipeline also present significant speedups over the baseline architecture without reuse
and over trace reuse (DTM). RST (RTC) presents the best results for most bench-
marks, and clearly it is the best choice for both m&88ksim.95 and perl. 95.

6.6.6 Remarks for this Section

In this Section, we show that RST can provide potential speedups over both
regular trace reuse and architectures without reuse when different pipeline depths
are considered. For some cases, the trace policy DTC limits the gains, but RTC
performs well in all cases.

We also learn that reducing issue or the writeback depth are the most effective
ways to improve performance for RST in all the tested pipeline depth decreases.
Reducing from 5 to 3 issue stages allows RST (RTC) to increase speedups over
the baseline from 1.40 to 1.64, and reducing from 2 to 1 writeback stage increases
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pipeline, VP2 Memo Table T 512 entries (31 inputs, 31 outputs) 4-way,
Memo Table G 2048 entries 4-way

speedups from 1.40 to 1.54, while reducing from 3 to 1 dispatch stage provides
speedups of 1.41, and reducing from 4 to 1 fetch stage allows speedups of 1.52. The
gains from less writeback stages were expected, because they decrease the number
of cycles that are necessary to make inputs to be ready. The gains from reducing
the number of issue stages were expected for the same reasons, although they could

also reduce the gains from trace reuse as issue stages are bypassed by both RST and
DTM.

6.7 Varying pipeline width

For this experiment, our objective is to verify the effects of varying the pipeline
width in RST’s performance. As pipeline width we mean the number of instructions
that can be fetched, decoded, dispatched, issued, and committed by cycle on each
stage.

We first simulate a pipeline of width 2, then 4 and 8. After that, we correlate
results by calculating the speedup over the baseline architecture with pipeline of
width 2. The choice of these values is determined by the simulator limitation that

the pipeline width must be a power of two. The other parameters, as the number
of functional units, are kept the same for this study.

6.7.1 Speedup

Figure 6.26 presents the harmonic mean speedups for the baseline architecture,
DTM, RST (DTC) and RST (RTC) varying the pipeline width over the baseline
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architecture with a 2-wide pipeline. The horizontal axis shows the pipeline width,
while the vertical axis depicts speedup.
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Figure 6.26: Speedup over baseline with 2-wide pipeline, Memo_Table T 512 en-
tries (31 inputs, 31 outputs) 4-way, Memo_Table G 2048 entries 4-way

The performance improvements are more pronounced when the pipeline width
is increased from 2 to 4; increasing the pipeline width to 8 does not increase per-
formance in the same way in any of the simulated processors. We suspect that this
is due, among other things, to the number of functional units, which has not been
raised accordingly to fit the wider pipeline. We study this aspect in the next Section.

6.8 Varying number of functional units

As in the previous experiment of Section 6.7 we verified that doubling pipeline
width does not increase performance in the same way from 2 to 4 and from 4 to 8
wide pipelines, we designed the following measurements to verify if this behavior
was caused mainly by the lack of functional units to execute.

We simulate the different processors with the same pipeline width but varying
the number of functional units. For the baseline, we use the same configuration
as before, 2 integer ALUs for add and subtract, and 1 integer ALU for multiply
and divide; then, we double these parameters, while keeping constant all the other
configuration aspects.

6.8.1 Speedup

Figure 6.27 depicts the average (harmonic mean) speedups over the baseline
architecture with the same with the number of functional units set in Chapter 5.
For each configuration, we present both the results for the previously set number
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of functional units and the results with twice as much functional units (labeled
as 2 z FUs).
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Figure 6.27: Speedup over baseline with original number of func-
tional units, Memo Table T 512 entries (31 inputs, 31 outputs) 4-way,
Memo Table G 2048 entries 4-way

The graph shows that RST (DTC) presents the larger difference in performance
when the number of functional units is increased. The speedup increases from
1.36 to 1.39 in this case (difference of 0.03), while for the baseline architecture this
increase is 0.025. The differences in the performance improvements are almost the
same for all the configurations, but increasing the number of functional units also
increases the complexity of issue and writeback, hence these small speedups hardly
would pay off in a real processor.

We conclude that the limitations previously seen in Section 6.7 when the pipeline
width was increased are not imposed by the lack of functional units but by all the
limitations on memory access, control dependencies and true data dependencies, and
increasing the number of functional units in this case would not solve the problem
of how to increase performance in the wider pipeline.

6.9 Varying cache configurations

In the following experiment, we study the effect of different cache configurations
in the performance of RST. We start with the baseline configuration specified in
Table 5.4; after that, we double the first-level cache sizes by increasing the number
of sets. In the next step, we also increase the second-level cache size in the same
way. Finally, we analyze the effects of running the same configuration without a
third level of cache. Other aspects such as latency are kept constant.
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6.9.1 Speedup

Figure 6.28 features the average speedup (harmonic mean) over the baseline
architecture. Bars with the caption 2 z LI depict speedups when the double-sized
first-level caches are used; the remaining bars are provided for comparison and use
the baseline cache configuration.
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Figure 6.28: Speedup over baseline varying first-level cache size,

VP31 Memo_ Table T 512 entries (31 inputs, 31 outputs) 4-way,
Memo Table G 2048 entries 4-way

All architectures with doubled first-level caches present improved performance
when compared to the same architecture with the original cache size. However, only
for RST (DTC) this increase in cache size resulted in a speedup of more than 1.015,
actually 1.037.

Doubling the second-level cache also frustrates our expectations of speedups,
with less than 1% of improvements in performance when compared to the doubled
first-level cache results. As results are almost the same, we do not present the graph
for doubled second-level caches. The same doubled second-level configuration, but
without the third-level cache, resulted in a performance reduced by around 1.01 for
all architectures.

From these results, we can conclude that variations on cache configuration affect
RST in the same way they affect DTM or the baseline architecture without reuse in
a deeply pipelined architecture.

6.10 Stride prediction

In the next experiment, we want to verify if stride prediction can be used to
improve RST’s performance. The primary definition of RST includes only last-
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value prediction, but it can be extended to detect strides among traces created on
sequence and then extrapolate these strides to dynamically create traces even with
values that have not been seen yet.

6.10.1 Speedup

Figure 6.29 presents the speedups over the baseline for RST (DTC), RST (RTC)
and RST (RTC) with stride and last-value prediction, predicting at most 1 in-
put (VP1). In this graph, we can see that RST with stride trace creation can further
improve performance when compared to RST (RTC), with an average speedup over
the baseline of 1.40, while RST (RTC) obtains only 1.36. The difference is even
larger when compared to RST (DTC), which can achieve only a speedup of 1.34 for
this configuration.
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Figure 6.29: Speedup over baseline architecture, RST with and without stride
prediction, VP1 Memo Table T 512 entries (31 inputs, 31 outputs) 4-way,
Memo Table G 2048 entries 4-way

Figure 6.30 presents the speedups over the baseline for RST (DTC), RST (RTC)
and RST (RTC) with stride and last-value prediction, predicting at most 2 in-
puts (VP2). For all benchmarks and predicting at most 2 inputs, RST with stride
trace creation does as well as or better than RST (RTC). In average (HM), the
speedup over the baseline is 1.44 for RST (STRIDE), against 1.42 for RST (RTC).
The difference is not large, thus the extra complexity for implementing the stride
trace creation may not pay off for VP2.

From these results, we conclude that stride trace creation has the potential for
further improving performance, but in the current implementation these gains are
not as high as expected, probably because there are many cycles between the be-
ginning of a stride sequence, the stride identification, and the stride reuse.
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Figure 6.30: Speedup over baseline architecture, RST with and without stride
prediction, VP2 Memo Table T 512 entries (31 inputs, 31 outputs) 4-way,
Memo Table G 2048 entries 4-way

6.11 Varying reuse domains

In the following experiments, we introduce memory access in the reuse domain
and then we analyze the resulting performance.

The configuration of memoization tables for these simulations uses smaller tables
than most of the other limits studies in this Chapter because of the extra computa-
tional effort needed to simulate memory reuse. Setups for both Memo Table T and
Memo Table G are depicted in Table 6.3. The number of loads and stores that
could be inserted into traces is limited to the maximum number of instructions in a
trace (64 instructions) because of memory footprint issues for our simulations.

Table 6.3: Configuration for Memo Table T and Memo Table G, experiments
with memory reuse

Table | Parameter | Value
Entries 1024
Memo Table T Associativity fully-associative
Size 822 KB
Entries 4096
Memo Table G Associativity fully-associative
Size 64 KB
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6.11.1 Speedup

Figure 6.31 shows the average speedups (harmonic means) over the baseline
architecture when the reuse domain is varied (with or without memory reuse).
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Figure 6.31: Speedups over baseline, VP31 Memo Table T 1024 entries (31 inputs,
31 outputs) FA, Memo_Table G 4096 entries FA

The average speedups show that DTM can benefit from memory reuse, but RST
does not show the same capability. For RST with the RTC policy, this is even clear:
average performance is much worse when memory accesses are reused, dropping from
a speedup of 1.66 over the baseline to only 1.28. Figure 6.32 shows the speedups over
the baseline for only RST (RTC) with and without memory reuse to demonstrate
it is a tendency not only of one or two, but all benchmarks.

In the next subsection, we will explain this behavior, but from the current results
we can say that RST has the potential for better speedups than DTM with memory
reuse. As memory reuse greatly increases hardware complexity, it is another point
in favor of RST.

6.11.2 Reuse contribution to committed instructions

In this measurement, we want to verify why memory reuse reduces performance
for RST, mainly for the RTC policy. Figure 6.33 shows the contribution to com-
mitted instructions of the different types of reuse (isolated instruction reuse, trace
reuse, speculative trace reuse). For each benchmark, the first bar presents statistics
for RST without memory access reuse, while the second bar depicts results for RST
with memory reuse.

From this graph, we can see that RST is having problems to speculatively
reuse traces. In some benchmarks, the number of committed instructions that
are bypassed by speculative trace reuse drops to almost none. This is due to
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the small redundancy presented by traces constructed with instructions not in
Memo Table G and that include memory accesses. While for other architectures
average trace length (AM) is around 2.5 instructions, in RSTm the average length
is 10.7 instructions. Therefore, including memory accesses reduce trace redundancy,
and therefore a less speculative trace construction technique as DTC should be used
if memory access reuse is considered important for a given architecture.

6.12 Summary

In this Chapter, we studied how many configuration aspects change performance
and the characteristics of reused traces in RST. We started with an almost uncon-
strained architecture, then we reduced some simulation parameters and analyzed
the effects on RST. Our main measurements and analysis can be summarized as
follows:

e A comparison of DTM with two different trace construction policies, where
we discovered that the DTC policy could provide better results (HM speedup
of 1.30 over the baseline);

e A study of performance and trace characteristics with very large memoization
and fully associative memoization tables, where we determined the speedup
upper bound for RST over the baseline as 1.85, and 1.41 over DTM;

e The measurement of contribution to committed instructions of the different
types of reuse;

e A study about the effects of RTC in trace length, critical path length, trace
inputs, trace outputs, and number of branches, where we found that this trace
construction policy increased all the studied aspects;

e A study of the reasons for terminating traces in constructions, where we
learned that system calls and memory accesses are the major impediments
for longer traces;

e Measurements of effects of Memo Table T associativity in performance, de-
termining that it is very important for performance in RST but not for DTM;

e A study of Memo Table T number of entries, where we showed that it is
important for both RST and DTM;

e A comparison of different input and output scopes, showing that small scopes
could reach performances even better than the larger scope sizes;

e A study of the number of inputs being predicted by trace, where we determined
that 2 or 3 predictions per trace achieved the best results;

e Studies of variations in pipeline depth, pipeline width, and number of func-
tional units;

e Different cache configurations, where we showed that RST could provide better
speedups than doubling first-level caches;
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e A study of stride-aware RST, showing that the technique can provide addi-
tional speedups over RST, with a speedup of 1.44 over the baseline against
1.42 for RST without stride trace creation;

e Variation on the reuse domain, showing that the current RST implementa-
tion did not achieve better performance by reusing memory accesses, but
even without them, it could provide better speedups than DTM with memory
reuse (DTMm).
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7 RESULTS FOR A RST ARCHITECTURE

“Have you guessed the riddle yet?” the Hatter said, turning to Alice again.
“No, I give it up,” Alice replied. “What's the answer?”
“I haven't the slightest idea,” said the Hatter.

Lewis Carrol, “Alice’s Adventure In Wonderland"

In this Chapter, we study the effects of many architecture parameters in RST.
We start without any confidence mechanisms in Section 7.1 to show that confidence
mechanisms are necessary to select traces to be speculatively reused for almost
all studied cases. Then, we run experiments with perfect (oracle) confidence to
determine the speedup upper bounds that may be obtained with RST with the
resource restrictions of Chapter 5, and then we present the results in Section 7.2.

After presenting both the top and the bottom in terms of confidence mechanisms,
we start trying very simple confidence heuristics based on information already avail-
able from traces to restrict mispredictions in Section 7.3. In the sections following
Section 7.3, we present results for different confidence mechanisms based on satu-
rated counters in Sections 7.4 and 7.5.

Section 7.6 discusses how confidence table sizes affect performance. In Sec-
tion 7.7, we present results for a stride trace construction version for RST. Section 7.8
shows another variation of confidence, based on counters stored on Memo Table T.

Finally, we briefly compare RST to other works that not DTM in Section 7.9.

For most configurations, we show only the comparison of performance against
the baseline or DTM architectures by using speedup graphs. But in some cases
where there are interesting trends to study we also present other measurements for
further discussion. Table 7.1 shows the configurations for the memoization tables
used in this Chapter. The Memo_ Table T table size is for 4 inputs and 4 outputs
in the trace contexts.

7.1 RST without confidence mechanisms

In this first experiment, we want to verify the results for RST without any
confidence mechanisms to determine whether there is a necessity for confidence
mechanisms to reduce mispredictions. We compare the results to DTM, as RST is
intended to improve performance of conventional trace reuse by speculatively reusing
traces. Hence, if RST presents worse performance than DTM even when using more
resources, there are no benefits of employing it.
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Table 7.1: Configuration for Memo Table T and Memo Table G for Chapter 7

Table ‘ Parameter ‘ Value
Entries 012
Memo_Table T Associativity 4
Size 23.5 KB
Entries 2048
Memo Table G Associativity 4
Size 32 KB

We start presenting a performance comparison against a regular trace reuse
technique (DTM). After that, we show how the misprediction rates and penalties

7.1.1 Speedup

Figure 7.1 shows the speedups over DTM for RST without confidence mecha-
nisms. A column lower than the 1.0 line means that a benchmark experiences a
performance decrease when compared to DTM. For each benchmark, the first two
bars present the results for RST using the DTM Trace Construction policy (DTC);
both prediction of one value (VP1) and two values (VP2) per speculatively reused
trace are presented for both trace construction policies (DTC and RTC).
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Figure 7.1: Speedup over DTM architecture, without confidence mechanisms

For most cases, there is a considerable decrease in performance when RST with-
out confidence is used. Increasing the number of predicted values per trace also
decreases performance, and in most cases, RTC policy presents worse results than
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DTC because it creates traces in a more speculative way. Therefore, traces are less
likely to be redundant, and more mispredictions occur. The notable exception is
m88ksim. 95, which presents large speedups even without any confidence mechanism
using the RTC policy (1.96 for VP1 and 2.24 for VP2). As Table 7.2 shows, this
benchmark has the smallest misprediction rates over all simulated benchmarks for
the RTC policy.

7.1.2 Misprediction rates

From the misprediction rates shown in Table 7.2, we can also point that there
is an overall decrease on misprediction rates when varying the trace creation policy.
For VP1, RTC provides a decrease from 61% to 55%, and for VP2 the misprediction
rates go from 63% to 60% when compared to the DTC policy. Therefore, in average
RST using the RTC policy is able to be correct more often than with the DTC
policy.

Table 7.2: Misprediction rates for RST

misprediction rate (%)

BENCHMARK DTC RTC
VP | VP2 VP | VP2
ccl (95) 55.0 56.8 54.2 61.0
compress95 (95) 78.0 82.4 7.7 83.2
go (95) 78.8 79.0 75.5 77.9
ijpeg (95) 88.2 88.1 83.3 89.6
li (95) 59.1 67.5 65.0 70.2
m88ksim (95) 45.5 25.3 13.2 20.6
perl (95) 46.4 49.0 34.0 40.0
vortex (95) 41.6 51.9 26.2 36.7
cel (2K) 55.0 09.4 03.4 61.7
gzip (2K) 84.8 85.4 85.4 86.0
parser (2K) 61.0 68.9 59.7 68.0
vortex (2K) 39.2 46.2 25.7 35.9
AM (ALL) | 611 | 633 | 545 | 60.9

For most cases, increasing the number of inputs also increases misprediction
rates, which can be explained by traces with more unknown inputs being less pre-
dictable. On the other hand, increasing the number of inputs that can be predicted
provides more speculative trace reuse opportunities, allowing further increases in
performance.

7.1.3 Mispeculation penalty

Measuring the misprediction penalty of speculative trace reuse in out-of-order,
superscalar architectures is a complex matter. It is hard to define where starts the
impact of a given mispeculation on the performance (it may be measured from the
cycle where the misprediction occurs, or from the cycle where it is detected, and
there is also the problem of defining where it ends).
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We chose to measure the number of cycles that RST takes to recover from a
mispeculation since the value is predicted until fetch is redirected to the recovery
address. Besides this, a mispredicted trace will also incur in filling the pipeline again
with instructions that would be available if it was not predicted, but we leave this
out of the mispeculation penalty calculation to reduce the complexity of the metric.

Figures 7.2 and 7.3 depict the misprediction penalties for RST using the differ-
ent trace creation policies. For each benchmark, the first bar depicts the average
misprediction penalty for VP1 (prediction of one value), and the second bar shows
the same results for VP2.
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Figure 7.2: Misprediction penalties, RST with DTC policy

The harmonic mean of all average misprediction penalties is around 10 cycles for
both trace construction policies. For most benchmarks, there is not a large difference
in misprediction penalties when varying the trace construction policy. On the other
hand, the benchmark m&88ksim.95 shows a very strong reduction on misprediction
penalties (from about 37, for DTC VP2, to 5 cycles). This, combined with the
low misprediction rate (20% for VP2), may explain in part the surprising speedups
observed for m88ksim.95 (2.24 over DTM). perl.95 also presents some of the lower
misprediction penalties, but the misprediction rates are more than twice as high as
m88ksim. 95, which impares RST capacity of increasing performance in this case.

7.1.4 Remarks about RST without confidence mechanisms

From these initial results for RST without confidence mechanisms, we verify
that for most benchmarks it is not possible to achieve acceptable performance by
means of speculative trace reuse without limiting in some way the misprediction
occurrences and the associated penalty. The only benchmark that presents a very
predictable sequence of traces is m88ksim.95, which achieves speedups of more than
2 over a non-speculative trace reuse technique without confidence mechanisms.
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Figure 7.3: Misprediction penalties, RST with RTC policy

Consequently, we conclude that RST requires a confidence method to avoid mis-
predictions, in order to get speedups over non-speculative trace reuse techniques,
or another technique that can either reduce misprediction rates or misprediction
penalties. As confidence mechanisms are well-tested and simple ways to reduce mis-
prediction rates, we study some confidence configurations designed to unleash the
potential performance of RST in the next Sections.

7.2 RST with oracle confidence

The experiments in this Section are designed to determine the speedup upper
bounds for RST when the number of inputs, outputs, predicted values, and mem-
oization table sizes are restricted to values that could be implemented in current
microprocessors. For these experiments, only the confidence is not configured as a
feasible mechanism, but perfect confidence is used.

In the following graphs, we present results for both RTC and DTC policies for
trace construction, as well as for VP1 (prediction of one value) and VP2 (prediction
of at most two values). The choice for not predicting more than two values is
related to the increasing complexity for testing more values at the writeback stage
and also because the limits study in the previous Chapter does not show significant
improvements for prediction of more than two inputs.

7.2.1 Speedup

Figure 7.4 shows the speedups over baseline for RST with perfect confidence
(oracle) and also for DTM.

For all benchmarks, RST and DTM are able to produce significant speedups over
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Figure 7.4: Speedup for RST over baseline with perfect confidence

the baseline architecture. The best average result (harmonic mean) is obtained by
RST with the RTC policy and prediction of two inputs, with a speedup of 1.42 over

the baseline. The other RST results are in the range of 1.34 to 1.36 over the baseline
architecture.

Figure 7.5 represents the speedups for RST over DTM when perfect confidence es-
timation (oracle) is employed. Again, RST VP2 produces the best average speedup,

1.19 over DTM. This clearly shows the potential for RST improving performance in
a constrained configuration.

From these results, we conclude that RST has a large potential for performance
improvements for this architecture configuration when mispredictions are avoided.
In the following Sections, we use different confidence mechanisms instead of perfect
confidence to measure performance for realistic processors.

7.3 RST with simple confidence mechanisms

For these experiments, we try to use thresholds on certain trace characteristics
to determine in which cases prediction is allowed. Different from counter-based
mechanisms, there is no need for extra tables or fields in Memo Table T, as the
information used to determine if the current trace is a good choice to be predicted
or not is already stored along with the trace candidate. The advantage of such
mechanisms is that there is almost no extra cost for their implementation, but the
disadvantage is that the determination of parameters that make a trace more likely
to be predictable or more likely to improve performance is a though task.
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Figure 7.5: Speedup for RST over DTM with perfect confidence

7.3.1 Speedup with limitation on the number of alternative traces

In the current experiment, we select prediction opportunities by the number of
alternative traces found for a given PC address. The rationale of this confidence
scheme is that PC addresses with less trace candidates for reuse are more likely to
be redundant and easier to choose.

Figure 7.6 shows the speedup over DTM for RST, predicting at most one input.
For almost all benchmarks but for perl.95 and m88ksim.95, pruning predictable
traces by the number of candidates does not reduce losses with mispeculations.
The results are the opposite of what was expected: performance decreases when the
number of maximum alternative traces is constrained, showing that most predictable
traces are found in the cases where there are more candidates. Results for RST with
the DTM trace construction policy are similar to the presented ones, thus we will
not present them.

As this policy does not produce a performance better than non-speculative trace

reuse, we conclude that it is not enough to be used alone as a confidence scheme for
RST.

7.3.2 Speedup with limitation on the minimal critical path

Another possibility is to use information about the critical path inside a trace to
determine whether it is worth predicting it or not. If a trace encloses a long critical
path, it may provide performance improvements that make prediction worth in the
average case, even when some mispredictions occur. On the other hand, as for the
study with limitation on the number of alternative traces, this policy may also limit
the prediction of desirable traces that do not achieve the minimum criteria.

Figure 7.7 presents the speedup for RST over DTM when prediction is restricted
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based on the critical path of trace candidates.
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Figure 7.7: Speedup over DTM, varying the minimum critical path

The benchmark md&8ksim.95 presents a decline on performance, showing that
even traces with small critical paths can have a large impact on performance. On
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the other hand, its performance starts to increase again when the threshold for
critical paths is set to 8 instructions. A similar lack of linearity in decrease or
increase of performance can be seen in perl.95, in different points of the graph.
This trend seems to be related to some specific traces that can be very important
to increase or decrease performance (key traces), and that are sensitive to this
parameter. Therefore, the tuning of this threshold can affect performance on an
unpredictable way for different values and for different benchmarks.

As it can be seen by the harmonic mean and by most of the benchmarks, increas-
ing the length of the critical path that allows a trace to be predicted reduces the
loses on performance from mispredictions, but it still does not help RST to achieve
performance better than non-speculative reuse techniques. Therefore, it cannot be
used alone as a solution for misprediction penalties imposed by RST.

7.3.3 Prediction rates with limitation on the minimal critical path

Figure 7.8 depicts the average (arithmetic mean) prediction and misprediction
rates over all traces reused, predicted or mispredicted. This graph shows how con-
straining predictions by the critical paths affects both predictions and mispredic-
tions.
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401 T T T T T T T

=& Predicted traces ,
D\'\ e Mispredicted traces

w
o

N
o

Percent of All Traces

=
o

ol | | | | | |
0 1 2 3 4 5 6 7 8

Minimum Critical Path

Figure 7.8: Traces predicted or mispredicted, varying the minimum critical path

As we can see, increasing the critical path threshold reduces misprediction rates
but at the same it reduces the number of correctly predicted traces. The amount
of predicted traces overcomes the number of mispredicted traces when the critical
path threshold reaches 5 instructions, but they are still very similar (5.4% and 4.2%
of all traces). By the time that the critical path threshold reaches 8, only 1.3% of
all traces are correctly predicted, and only 0.6% are mispredicted. Although the
misprediction rate is very low, the prediction rate is low too, reducing any potential
performance gains to a very small fraction of their upper bounds.
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7.3.4 Speedup with limitation by the number of ready sources

Traces with more ready input values may present more predictability than other
traces. In this experiment, we test this hypothesis by restricting predictions to
traces with a minimal number of ready sources. We vary the threshold from zero
(any trace may be predicted) to 3 (only traces with 4 inputs and 1 unknown input
may be predicted).

Figure 7.9 depicts the speedups of RST (DTC) over DTM. We do not present

results with RST with the RTC policy because they are similar to RST DTC, but
slightly lower.
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Figure 7.9: Speedup of RST (DTC) over DTM, restricting by number of ready
sources

The only benchmark that is able to achieve considerable performance improve-
ments over DTM is m88ksim.95, and only in the case of restricting prediction to
at least one ready input (RS1). As a matter of fact, this benchmark shows better
performance without any confidence mechanism than this confidence scheme, where
it obtains a speedup over DTM of 1.96 for the same VP1 configuration against the
1.38 in the current case.

Increasing the number of required input sources decreases the number of predic-
tions, which makes performance tends to the same as non-speculative trace reuse
(DTM).

Restricting prediction to the cases where 3 sources are ready reduces predicted
and mispredicted traces to less than 1% of all reused, predicted or mispredicted
traces (with exception of m88ksim.95, where RST can still contribute with 1% of
predictions or mispredictions). Therefore, this threshold does not only contributes
to reduction of mispredicted but also of many correctly predicted traces.

We conclude that restricting predictions by the number of ready sources is not
able to reduce mispredictions while keeping correct predictions to contribute for
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performance improvements, and the best results obtained with this technique barely
could reach the performance of non-speculative trace reuse.

7.3.5 Remarks for this Section

From the results with simple confidence thresholds, we can conclude that none
of the tested mechanisms is able to obtain reduction of mispredictions while keeping
correctly predicted traces to further improve performance. Constraining trace spec-
ulation by the number of ready sources, by the critical path found in the traces or by
the number of alternative traces are not enough to help RST improving performance.

Therefore, we assert that more complex and more powerful mechanisms must
be developed in order to unleash at least part of the performance improvements
that our experiments with oracle confidence have shown to be possible with RST.
In the next sections, we study confidence mechanisms based on saturated counters
to choose whether a speculation should be considered or not.

7.4 RST with confidence counter 4096 3 3 31 3

For the following set of experiments, we want to test a confidence mechanism
based on saturated counters that allows predictions when the counters reach cer-
tain thresholds. Correct predictions increase counters, while mispredictions incur in
counters being decreased.

The first configuration uses a confidence table with 4096 entries, each one being
a saturated counter with 2 bits (Table 7.3). Each counter starts with the maximum
value (3), and each correct prediction increases a counter by one. A misprediction
decreases a counter by 3. Predictions are only allowed after the counter achieved
the value 3, therefore 3 consecutive correct predictions will allow a trace to be
speculatively reused.

Table 7.3: Confidence configuration for counter 4096 3 3 3 1 3

Parameter | Value

Entries 4096
Bits per entry

Maximum value (saturation)
Threshold for prediction
Correct prediction increment
Misprediction decrement
Initial value

W W| =Wl Wb

The confidence table is indexed by the PC counter, and it does not uses tags to
ensure that a counter is used only for a certain PC address. Thus, there will be a
certain amount of aliasing for each counter.

We selected this configuration to start our analysis because it provides some
compromise between allowing predictions when it does not know about previous
history but at the same time, it avoids that successive misprediction for the same
entry occur. From this initial configuration, we explore the results, trying to (i) im-
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prove overall performance, and also (i) to reduce the variability among speedups of
different benchmarks.

7.4.1 Speedup

For the first measurement for this configuration, we verify how RST performance
changes in function of the confidence mechanism. Figure 7.10 shows the speedup for
RST over the baseline architecture for the configuration of Table 7.3. For each set,
the first bar presents the speedups for DTM for means of comparison; the next bar
shows results for RST when only one input value can be predicted per reused trace,
while the last bar depicts the speedups when at most two values can be predicted per
trace. The last columns show the harmonic mean for the speedup of all benchmarks
for each configuration.
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Figure 7.10: Speedup over baseline architecture, counter 4096 3 3 3 1 3

Both RST and DTM present performance improvements for all benchmarks, in
the range from 1.07 (m88ksim.95 running over DTM) to 2.30 (also m88ksim.95,
but for RST predicting two inputs per trace). From all the simulated benchmarks,
m88ksim. 95 from SPECI95int showed to be the most sensitive to different configu-
rations of RST. Predicting only one input provides a speedup of 2.29 for the same
benchmark, thus there is no significant improvement for this specific case for pre-
dicting two inputs. But for most benchmarks, excepting perl. 95, there is a small im-
provement for RST predicting at most two inputs over only one (a speedup of 1.287
for RST VP2 against 1.274 for RST VP1). For both cases, the achieved speedup is
greater than the obtained for DTM, of about 1.18 over the baseline architecture.

A better way to compare RST and DTM results is to calculate the speedups for
RST over DTM, shown in Figure 7.11 for the same configurations used in Figure 7.10.

RST provides a speedup of 1.07 over DTM when predicting one value, and 1.08
when predicting two values at most (harmonic means) for the small price in hardware
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Figure 7.11: Speedup over DTM, counter 4096 3 3 3 1 3

of adding the RS3 stage to verify predictions and the confidence table. For VP2,
all benchmarks present better results than DTM but for gzip.2K, and for VP1 only
the benchmarks ijpeg. 95 and gzip.2K show decreases in performance of less than 2%
when compared to DTM (these decreases will be analyzed in the next subsections).
For both cases, the performance is still much better than in the baseline architecture
(a speedup of 1.22 for ijpeg.95 and 1.16 for gzip.2K). The benchmark perl.95 does
not benefit from predicting more than one trace input, as the graph shows.

From these results, we verify that RST with the chosen confidence mechanism
provides considerably better performance than non-speculative trace reuse and than
the baseline architecture without reuse.

7.4.2 Reuse rate

Only showing the number of reused instructions without classifying them as
reused inside or outside traces does not allow the complete realization of how RST
increases performance. Reusing traces is usually better than reusing isolated instruc-
tions because critical paths may be collapsed, a wider virtual dispatch rate than the
pipeline width may be achieved, and traces may also correct several branch pre-
dictions in a single cycle. In the next graphs, we first present the total number of
instructions skipped by reuse, and after that we show the results for instructions
skipped by traces only.

Figure 7.12 presents the rate of instructions that were reused or bypassed by
trace reuse for DTM and RST. The total number of skipped instructions grows
from 17.19% in DTM to 19.30% in RST (VP1) and to 20.32% to RST (VP2).

Figure 7.13 depicts the rate between instructions bypassed by traces over all
simulated instructions, counting only committed instructions. In some cases, like for
the benchmarks compress. 95, go.95, and [i.95, the number of instructions bypassed
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Figure 7.12: Instructions reused (isolated or in traces), counter 4096 3 3 3 1 3

by traces is smaller than for DTM, but performance still experiences improvements,
what is more likely related to RST reusing traces in the critical path for these
benchmarks and for values being anticipated by value prediction. In other cases,
like for ijpeg. 95 and gzip. 2K, both performance and number of instructions bypassed
by trace reuse are reduced. But in average, the number of instructions bypassed
by traces increases from 11.68% in DTM to 14.43% in RST (VP1) and 15.61% in
RST (VP2) (arithmetic mean). From all benchmarks, m88ksim.95 obtains again the
most benefit from speculative trace reuse, with bypass rates around 47 to 49%. This
result explains the outstanding speedups that RST can achieve for this benchmark.

Figure 7.14 presents the contribution of instructions bypassed by traces, specula-
tively reused traces or by isolated instructions to the number of committed instruc-
tions of each benchmark. For each set of three vertical bars, the first one depicts
results for DTM, the second one for RST (VP1), and the third bar presents results
for RST (VP2).

The benchmarks ijpeg. 95 and gzip. 2K have less committed instructions originated
by reused traces in RST than in DTM, and this explains the performance reductions
observed in Figure 7.11 for them. All the other benchmarks present an increase in
performance regardless of whether they reuse more or less instructions from the
total of committed instructions. An important factor here is that RST uses the
RTC policy instead of DTC for these results, hence traces reused in RST are likely
to be different from the ones reused in DTM here. In average, RST is able to have
more committed instructions coming from trace reuse than DTM, and RST (VP2)
is able to reuse more instructions that are later committed than RST (VP1) too.

From the results discussed in this Section, we can say that RST bypasses more
instructions than non-speculative trace reuse with the current confidence mechanism
in average, and that it can improve performance even by reusing traces in the hot
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paths instead of bypassing more instructions.

7.4.3 Confidence reliability

In this analysis, we want to understand how the chosen confidence mechanism
behaves for the selected workload. The rate of correct confidence lookups over all
confidence lookups is shown in Figure 7.15. In this measurement, a confidence
lookup is considered correct if (i) the prediction was correct and the confidence
allowed speculative reuse; or (ii) it would be a misprediction, but the confidence
mechanism did not allow the speculative reuse.
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Figure 7.15: Percent of correct confidence lookups, counter 4096 3 3 3 1 3

In most cases, RST (VP1) presents a better confidence hit rate, and this is also
the case for the average rate (a small difference of 0.5% only). But as VP2 can
predict more traces than VP1, it still can achieve better performance even through
a reduced confidence reliability.

7.4.4 Misprediction rates and penalties

For the following measurements, we want to verify how mispredictions cause
penalties to RST when the current confidence mechanism is employed.

Table 7.4 shows the misprediction rates for RST VP1 and VP2 for the current
confidence mechanism. The misprediction rates are modest when compared to the
ones obtained without confidence mechanisms (Table 7.2). The misprediction rates
dropped from around 60% to 5%, therefore reducing the penality imposed by mis-
predictions.

Figure 7.16 shows the cumulative distribution of misprediction penalties for VP1.
Most benchmarks show very similar distributions, but the benchmark gzip. 2K shows
a distribution where more mispeculated traces have very large penalties, explaining
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Table 7.4: Misprediction rates for RST counter 4096 3 3 3 1 3

BENCHMARK | misprediction rate (%)
VPIT | VP2
ccl (95) 6.4 8.0
compress95 (95) 0.4 1.5
go (95) 15.7 16.1
ijpeg (95) 10.1 8.7
li (95) 3.6 8.5
m88ksim (95) 0.0 0.0
perl (95) 0.0 0.0
vortex (95) 2.0 3.4
cel (2K) 7.1 9.6
gzip (2K) 1.7 2.0
parser (2K) 5.0 7.3
vortex (2K) 1.9 3.1
AM (ALL) | 45 | 5.7

the bad performance observed for it even with the low misprediction rates.
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Figure 7.16: Cumulative distribution of misprediction penalties, RST (VP1) confid
4096 33313

Therefore, we can say that even if the misprediction rates are low, the mispecu-
lation penalties can be higher enough to dissipate the gains that are obtained from
correctly speculated traces, which is not the case for most benchmarks as shown in
the previous Sections.
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7.4.5 Adding path information to confidence

In the previous experiments, the confidence mechanism was accessed using only
the current PC address to compute the confidence table index. In the current
experiment, we use the outcome of the last 1, 2, and 4 branches xored with the
PC address.

Table 7.5 compares the average speedups (HM) over the baseline architecture
for the different branch history depths. The results differ only in the third or fourth
decimal row.

Table 7.5: Average speedups over baseline varying path depth, RST (VP2) confid
4096 33313

Branch history depth | Speedup
4 1.2855
2 1.2872
1 1.2843
no path 1.2874

We conclude that adding path information to the confidence mechanism does
not increase or improve performance for the current confidence configuration in a
significant way.

7.5 RST with confidence counter 4096 777 10

In the previous Section, we used a confidence mechanism with 2 bits per entry
and that easily reached the threshold to predict values. For the experiments of
this Section, we use a more conservative configuration (Table 7.6), where the satu-
rated counters have a higher threshold, a higher penalty for mispredictions, and a
lower initial value. With this parameters, we want to verify the effects of a more
restrictive confidence policy to RST. A more restrictive confidence mechanism may
avoid mispredictions, but at the same time it may also reduce the number of correct
predictions.

Table 7.6: Confidence configuration for counter 4096 77 7 1 0

Parameter | Value

Entries 4096
Bits per entry

Maximum value (saturation)
Threshold for prediction
Correct prediction increment
Misprediction decrement
Initial value

o~ |~ | w
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7.5.1 Speedup

Figure 7.17 presents speedups for RST over the baseline architecture.
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Figure 7.17: Speedup over baseline, counter 4096 777 1 0

The performance trends are similar as those for the 3 3 3 1 3 confidence config-
uration, but the overall performance is smaller. While the 3 3 3 1 3 configuration is
able to achieve speedups of 1.32 over the baseline architecture, the current configu-
ration can obtain only 1.28. This configuration is very conservative, as the counter
must reach the value 7 before a trace can be speculated, and a mispeculation resets
the counter to zero. This leads to a situation where in average only 8% of commit-
ted instructions come from speculatively reused traces, while in 3 3 3 1 3 they are
14% (for VP2).

As the 3 3 3 1 3 setup requires less bits for each counter and produces better
performance, we conclude it is better for the RST architecture with 19 stages.

7.6 Confidence table sizes

The objective of the current experiment is to verify the number of entries in the
confidence tables required for good performance in RST. We fixed the number of
bits and thresholds for the confidence in & 8 3 1 3 and varied the number of entries,
and then we present the variation in speedup for 8192, 4096, 1024, 512, 256, 128,
and 64 entries in the confidence table.

7.6.1 Speedup

Figure 7.18 presents the average speedup (harmonic mean) for RST over the base-
line architecture when the number of entries in the confidence table is changed from
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8192 to 64 entries. The graph shows results for RST predicting at most one (VP1)
and two (VP2) inputs.
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Figure 7.18: Speedup over baseline architecture varying confidence table sizes,
RST 33313

The performance trends are similar for VP1 and VP2, with speedups decreas-
ing when the table sizes are reduced. This behavior for the confidence configura-
tion 3 3 8 1 3 shows that address aliasing deteriorates the reliability of confidence
estimation in this case. But in both cases speedups are better than DTM, which
could achieve a speedup of 1.18 over the baseline architecture (not shown in the
graph).

Another interesting trend here is that speedups for VP2 are more affected by
reducing confidence table size than VP1. There is a more significant decrease in
performance from 1024 to 512 entries for VP2, and then speedups for RST VP2 are
less than 1.01. The gain in speedup obtained from predicting two instead of one
input is just 0.003, while for larger tables this difference is around 0.010.

Therefore, reducing the number of entries in the confidence tables tends to reduce
the performance gains from predicting more than one input, and then the costs of
adding the hardware necessary for the test of an extra predicted value for some
traces may not be the best option.

7.6.2 Speedups for a 6-stage pipeline

In this measurement, we verify performance of RST when the pipeline config-
uration resembles the original sim-outorder’s pipeline for the sake of reference and
comparison to other works. The remaining configurations are not changed though.
Variations on the number of stages of the superpipeline are more discussed in the
previous Chapter.
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Figure 7.19 presents the speedups over the baseline architecture with six stages
for both RST and DTM. In the case of a shorter pipeline, less prune to large mis-
peculation penalties, RST is able to outperform or have the same performance as
DTM in all simulated benchmarks. The average speedup (HM) over the baseline is
1.21 for DTM and 1.28 for RST, similar to the ones found in deeper pipelines.
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Figure 7.19: Speedup over the baseline with 6-stage pipeline, Memo_Table T 512
in4d out4 4-assoc VP2, Memo Table G 2048 4-assoc

Thus, RST can also provide performance gains for shorter pipelines in a similar
way that it increases performance for superpipelined architectures.

7.7 RST with stride prediction and last-value prediction

In this experiment, we verify the effects of stride prediction (SAZEIDES; SMITH,
1997; WANG; FRANKLIN, 1997a) in RST. The mechanism detects strides between
consecutive traces and, if it is detected, then only the first trace is kept, but with
additional information about the stride. After that, the inputs for that trace may
be predicted as a function of the stride.

We simulated a hybrid of stride prediction and last-value prediction with two
different confidence mechanisms (Tables 7.3 and 7.6), but we present only results
with the 4096 3 3 & 1 3 configuration because they are very similar in all aspects
and the chosen configuration presents slightly better performance.

7.7.1 Speedup

Figure 7.20 presents the speedups for stride-aware RST over DTM. The bench-
mark md88ksim.95 once again presents the greatest performance improvements,
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reaching a speedup of 3.63 over DTM when predicting 2 inputs at most. The bench-
marks ijpeg. 95 and gzip.2K present performances slightly smaller than DTM (less
than 2%), what may be related to the type of workload these benchmarks represent
(compression of images or general data). In (WANG; FRANKLIN, 1997a), the com-
press benchmark from SPEC92int presented a large amount of mispredictions when

a hybrid of strided prediction and last-value prediction (similar to what is employed
in this experiment for RST) was used.
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Figure 7.20: Speedups of strided RST 4096 3 3 3 1 3 over DTM

In average (harmonic mean), RST is able to reach speedups of 1.08 (VP1) and
1.10 (VP2) over DTM. Comparing with the baseline architecture, RST achieves
speedups of 1.28 (VP1) and 1.32 (VP2) with the same configurations. Comparing to
non-strided speculative trace reuse, we have a small average increase in performance,
with an average (HM) speedup of 1.32 against 1.29 for RST VP2 over the baseline
architecture.

Stride prediction combined with last value prediction can be used to improve
performance in RST, but some benchmarks may not adapt well, presenting perfor-

mance losses. But as we show in these results, the average of all speedups still points
to RST for better performance than non-speculative trace reuse.

7.8 RST with confidence by trace

Another possible configuration of confidence is to add confidence bits to the
entries in Memo_Table T. In this setup, there is no separated confidence ta-
bles, and the confidence information is obtained together with the entries from
Memo Table T in the RS1 stage. This reduces the requirements for confidence in
terms of chip area to store the bits, as the Memo_ Table T size is usually smaller
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than the confidence tables we have simulated until now. On the other hand, it in-
creases the number of accesses to Memo Table T for the updates of the confidence
counters, and it completely separates the information for the same PC address in
different traces.

For the following results, we pick the best results for RST VP1 and RST VP2
among the simulated combinations (DTC or RTC with any of 77 71 0,8 8 31 3,

or 38 381 0). Most of the other results could not achieve performance better or
even equal to DTM.

7.8.1 Speedup

Figure 7.21 displays the speedups for RST (DTC) over DTM for the confidence
configured by trace with counters 3 & 8 1 3.
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Figure 7.21: Speedup over DTM, RST (DTC) VP1 and VP2, confidence by trace
33313

The graph shows that, for most benchmarks, this confidence configuration al-
lows RST to achieve better performance than DTM, with an average speedup of
1.03 for VP1 and 1.05 for VP2 (harmonic means). As for other confidence config-
urations, gzip.2K presents worse performance in RST than in DTM; on the other
hand, ijpeg.95 achieves at least small speedups over DTM, differently from other
confidence configurations where its performance is not better in RST than in DTM.

The benchmark compress. 95 also presents reduced performance for this configu-
ration, which points us to a trend of reduced performances in the case of programs
whose main task consists on some kind of data or image compression.

Even presenting speedups over DTM, this confidence setup produces performance

below what was achieved with separated counter tables, thus we do not suggest this
mechanism for this architecture configuration.
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7.9 Comparison to alternatives

In the following experiments, we directly compare our technique to two alterna-
tives: (i) doubling the first-level caches for a similar chip area use; and (%i) applying
only instruction reuse with twice as much entries in Memo Table G.

7.9.1 Speedups over a doubled first-level cache

Figure 7.22 compares speedups over the baseline architecture for DTM, RST VP2
with the counter 4096 3 3 3 1 3 confidence mechanism, and the alternative of using
twice as much first level cache as the baseline architecture for the same on-chip stor-
age area spent on memoization tables. As we have dimensioned Memo_Table T in
about 24 KB, and Memo_Table G in about 32 KB, they are together using roughly
the same as the increase in cache sizes (from 32 KB to 64 KB each one).
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Figure 7.22: Comparison of speedups over baseline for a doubled-11 cache architec-
ture and DTM/RST architectures

In this case, increasing the first-level caches (both data and instruction caches)
does not increase performance in a significant way, with a speedup of less than
1.01 over the baseline architecture (harmonic mean). On the other hand, RST is
able to obtain average speedups of 1.26 (DTC) and 1.29 (RTC). These results can be
explained by the small miss rates already observed for the benchmarks in the baseline
configuration. For the instruction cache, this rate is about 0.5% (arithmetic mean)
for baseline and 0.25% for the doubled-cache configuration; for the data cache, the
rates are 1.35% for the baseline and 0.95% for the doubled-cache configuration.

Besides the small gains obtained by increasing first-level caches, there is also the
related issue of increased access latencies for caches when their sizes are doubled.
Thus, RST stands as a very competitive way of expending on-chip resources to
increase performance.
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7.9.2 Speedups over an instruction reuse technique

The next experiment aims to show how RST compares to approximately the
same hardware in reuse tables against an instruction reuse technique. Figure 7.23
shows the speedups for RST and DTM over the instruction reuse technique with
twice as much entries in Memo Table G.
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Figure 7.23: Speedup over a instruction reuse architecture, RST VP2

Besides for the benchmark 1i.95 and RST (DTC), RST is able to obtain perfor-
mance improvements over instruction reuse in all cases. DTM provides speedups in
some cases and in average (HM) it produces a speedup of 1.005 over the instruction
reuse with doubled tables. Thus, for the deep pipeline and current table configu-
rations, DTM does not show much improvement over simple instruction reuse. On
the other hand, RST presents speedups of 1.08 over instruction reuse (HM), hence
showing a much better performance for a similar implementation cost.

7.9.3 Other comparisons

In this subsection, we briefly compare RST to results obtained by related works
where we do not have the ways for simulating the mechanisms for the same pipeline
and resource configurations. The reader should bear in mind that the configurations
are different, as well as the benchmarks. Therefore, these numbers must be taken
in account just as a gross comparison of capabilities for the different mechanisms.
The mechanisms are described in Chapter 2.

For the speculative multi-threading scheme described in (WU; CHEN; FANG,
2001), the performance improvements were calculated as a speedup from 1.25 (for
only reuse) to 1.40 over an IA-64 baseline architecture without reuse or value pre-
diction, but it has the additional problem of requiring compiler support to mark
regions to be reused. It requires also more hardware than RST and the baseline
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architecture is very different from our superscalar, superpipeline approach.

Combining instruction reuse and value prediction in a six-stage pipeline (LIAO;
SHIEH, 2002) provided a speedup of 5% over the baseline architecture. Another
approach implemented in a six-stage pipeline (HUANG; CHOI; LILJA, 1999) com-
bines both SRC and a hybrid value predictor to exploit both value reuse and value
prediction achieved speedups of 10% in a 16-wide, 6-stage superscalar architecture
and roughly 128 KB of storage for the CDP.

RST is able to achieve performance improvements of 28% over the baseline for a
six-stage pipeline configuration, therefore outperforming the former two techniques
at a first glance.

7.10 Summary

In the current Chapter, we presented and analyzed results for a feasible RST
architecture with different confidence policies to determine which predictions should
be pursued. Our results can be summarized as follows:

e Results for a RST architecture without confidence mechanisms, where we
showed the need for either confidence mechanisms or other ways to reduce
misprediction penalties and achieve speedups;

e Results for an oracle confidence mechanism, determining the speedup upper
bounds for RST in the constrained configuration as 1.42 over the baseline (for
VP2, RTC);

e Experiments with different confidence policies based on information already
available from Memo Table T, showing that they were not enough to provide
speedups over DTM;

e Results for three confidence mechanisms based on saturated counters, where
we determined that RST could achieve speedups of 1.29 over the baseline and
1.08 over DTM;

e A study showing that the inclusion of path information in the confidence mech-
anism did not help to improve performance;

e Experiments with different sizes of confidence tables, showing that a re-

duced number of entries reduced performance and also the difference between
VP1 and VP2,

e A study of stride-aware RST with realistic confidence, with small performance
improvements over RST, obtaining a speedup of 1.32 over the baseline against
1.29 for RST without stride trace creation;

e A comparison to alternatives of expending the same chip area, where RST
outperformed both doubling first-level caches and instruction reuse with more
than twice as much memoization table than RST.
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8 CONCLUSION AND FUTURE WORK

“At any rate I'll never go there again!”

Lewis Carrol, “Alice’s Adventure In Wonderland"

In this Chapter, we show our final remarks and future work for this thesis. Sec-
tion 8.1 presents the thesis summary. Conclusions for the limits study of Chapter 6
are discussed in Section 8.2. Section 8.3 presents the conclusions for the results
shown in Chapter 7. Our main contributions are presented in Section 8.4. Finally,
future work is discussed in Section 8.5.

8.1 Thesis summary

In this thesis, we presented a new approach to combine redundancy and pre-
dictability, called Reuse through Speculation on Traces (RST). We first in-
troduced the problem to be solved (traces that were not reused because of inputs
that are not ready), then our technique called RST (predicting inputs that are not
ready for those traces), an implementation for superscalar processors (over the DTM
infrastructure), detailed simulation in a deep pipeline architecture, and finally a com-
parison of our results against results obtained with alternative mechanisms (mainly
non-speculative trace reuse).

RST is a speculative trace reuse framework, and can be used in a variety of
processor architectures to increase performance by exploiting both redundancy and
predictability — value reuse and prediction — without requiring excessive extra hard-
ware when compared to non-speculative reuse techniques as DTM.

In this work, we proposed an implementation of RST over a superscalar, su-
perpipelined architecture, detailing how the pipeline stages for RST would interact
with the instruction pipeline. We studied implementation issues that might arise for
the current superscalar architectures when RST is employed, such as extra pressure
on the register file and how speculative reuse might affect the semantics of register
renaming, presenting possible solutions for these problems.

To validate our work, we implemented a detailed superscalar architecture simula-
tor to compare a set of benchmarks against both a superscalar baseline architecture
without reuse and an architecture with trace reuse and similar configuration. We
also test a scheme combining last-value prediction and stride prediction in a feasible
way to speculatively construct traces to be reused, based on the differences between
subsequent traces.
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From our simulations, we were able to characterize the behavior of speculative
trace reuse when many implementation issues are considered, as table associativity,
memory hierarchies, confidence table sizes, and pipeline configurations. As some of
those issues have not been studied before for trace reuse in deep pipelines, we also
presented them in this thesis.

In our experiments, RST reached average speedups (harmonic means) of 1.29 over
a baseline architecture without reuse or prediction, and 1.09 over an architecture
with non-speculative trace reuse when realistic configurations and confidence mech-
anisms are simulated. RST was able to outperform alternative schemes of doubling
the first-level caches and only reusing instructions for using the same on-chip area
that was necessary to implement the reuse tables of RST’s configuration.

8.2 Conclusions from the limits study

From our limits study presented on Chapter 6, we could draw many conclusions
about the dynamics and characteristics of speculative trace reuse.

In our simulations, RST presented average speedups (harmonic means) of
1.85 over an architecture without reuse and 1.42 over DTM when perfect confi-
dence and large memoization tables were considered. For this configuration, only
the benchmark gzip. 2K showed speedups of less than 1.15 over DTM, thus we expect
that benchmarks with the same characteristics (data compression) may show less
redundancy and predictability and will not have the same gains in RST than pro-
grams with other characteristics. In other experiments, the benchmark compress.95
also presented the same trend, confirming our observations.

For most benchmarks, RST could reuse more instructions than DTM, because of
its speculative trace reuse. However, we showed that the rate of reused instructions
did not directly present an accurate understanding of how performance is increased
by RST. In some cases, a smaller percent of reused instructions that were committed
resulted in a larger speedup. Therefore, not only the number of instructions con-
tained in the traces but also other characteristics have a weight on the performance
gains that can be obtained by reusing traces.

Our results showed that the RTC policy improved the average length of reused
traces, and that speculatively reused traces were longer than the regularly reused
traces in average. The same comparison for DTM between DTC and RTC policies
for trace construction taught us that the RTC policy depends on speculation of the
input scopes to provide performance gains.

Variations on the associativity of Memo Table T affected performance for RST,
but for DTM the difference between fully-associative and direct-mapped tables did
not produce much worse results. Aliasing of different entries might cause higher
associativities to perform worse for some benchmarks in some configurations. Vari-
ations on the number of entries reduced average performance for all architectures,
as expected.

RST presented its better average performance (harmonic mean) between 3 and
1 inputs in the input context. For the DTC policy, performance decreased signifi-
cantly from 3 to 1 inputs, while the more speculative RTC policy allowed RST to
achieve similar performance with 1, 2, or 3 inputs. For the output context, best
results were achieved for RST (RTC) when 2 outputs were used, and 3 outputs for
RST (DTC). As for the number of inputs that might be predicted, our study showed
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that 3 or 2 inputs presented the best results while simplifying the hardware for the
misprediction tests in RS3.

From our study of different pipeline depths, we discovered that reducing issue or
the writeback depth are the most effective way to improve performance for RST for
all the tested pipeline depth decreases. We also showed that RTC presented better
performance improvements than DTC for RST.

The limitations on performance for wider pipelines were not imposed by the lack
of functional units but by all the limitations on memory access, control dependencies
and true data dependencies. Increasing the number of functional units showed to
be a poor alternative to increase performance in our study.

Stride trace creation has the potential for further improving performance, with
speedups about 0.02 above RST without stride identification, but in the current
implementation these gains were not as high as expected because of the many cycles
between the beginning of a stride sequence, the stride identification, and the stride
reuse.

Our results with memory reuse showed that RST without memory reuse has the
potential for better speedups than DTM with memory reuse (DTMm). As memory
reuse greatly increases hardware complexity, this was another point in favor of RST.
If memory reuse is really important for a given architecture and workload, then we
suggest to use the less speculative trace creation policy, DTC.

We concluded that variations on cache configuration affect RST in the same way
they affect DTM or the baseline architecture without reuse.

Although DTM performed not as well as expected for some benchmarks in com-
parison to simple instruction reuse in our experiments, we believe that it is possible
to obtain more performance from it even in the current baseline architecture by
better balancing resources.

8.3 Conclusions from the RST architecture study

From the studies for RST without confidence mechanisms, we learned that RST
needs either a mechanism to reduce misprediction rates or a scheme to reduce mis-
peculation penalties in order to achieve significant speedups. Hence, we studied
confidence mechanisms as an easy to implement and tested way to control mispre-
diction rates.

Increasing the number of inputs that can be predicted in traces increased both
hardware complexity and misprediction rates. But when confidence mechanisms
were used, predicting at most 2 inputs allowed RST to obtain better performance
than when only 1 input could be predicted.

The average misprediction penalty for speculatively reused traces in RST without
confidence was about 10 cycles for the 19-stages pipeline configuration. For this
misprediction penalty and misprediction rates around 60%, the only benchmark in
the simulated workload that was able to obtain relevant speedups was m88ksim. 95.

For the constrained architecture with a perfect confidence mechanism, RST could
achieve speedups (harmonic means) of 1.19 over DTM and 1.42 over the baseline
architecture without reuse.

Our experiments with simple, stateless confidence mechanism depicted in Sec-
tion 7.3 did not present speedups over regular trace reuse, thus showing that more
complex confidence mechanisms were necessary in order to obtain considerable per-
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formance improvements from speculative trace reuse.

With a confidence mechanism based on saturated counters with 4096 entries
and only one level, RST provides a speedup of 1.07 over DTM when predicting one
value, and 1.09 when predicting two values at most (harmonic means) for the small
price in hardware of adding the RS3 stage to verify predictions and the confidence
table. For the case of RST VP2, the speedup over the baseline architecture without
reuse was 1.29 (harmonic mean). RST was able to have more committed instruc-
tions being part of reused traces in many cases, and even in some cases that it
reused a smaller part of the committed instructions it still could obtain performance
speedups, because of better trace characteristics.

We verified that even though confidence reliability is smaller for VP2 than for
VP1, RST still provided better performance improvements when it predicted more
inputs, as other speculative trace reuse opportunities existed for this setup.

Although we were able to achieve misprediction rates around 5% when confidence
was used, we still had some benchmarks that were not able to obtain speedups over
DTM. An example is the benchmark gzip.2K, which had misprediction rates of less
than 2% for VP1 but whose misprediction penalties were distributed towards larger
penalties than the other benchmarks: in 50% of the cases, it was 80 cycles or more,
thus each mispeculation having a large impact on performance.

When comparing stride trace creation to speculative trace reuse, we determined
that stride-aware RST was able to increase performance from 1.29 to 1.32 over the
baseline architecture when predicting 2 inputs at most. This was a small increase
in performance, and the extra hardware cost necessary to identify strides may not
pay off.

Comparing two different counter-based confidence configurations, we concluded
that the 4096 3 3 3 1 3 setup depicted in Table 7.3 was better than the 4096 7771 0
described in Table 7.6 both in terms of hardware and performance. We also showed
that adding path information to our confidence mechanism did not improve neither
decreased performance in a significant way.

Some benchmarks directed at data and image compression had performance is-
sues in RST depending on the confidence configurations, as for compress.95 in Sec-
tion 7.8 (confidence counters organized by trace in Memo Table T) or for ijpeg.95
and ¢zip.2K in Section 7.4.

8.4 Contributions

In this thesis, we presented Reuse through Speculation on Traces (RST),
a speculative trace reuse framework that can be adapted to different processor ar-
chitectures. RST provides a way for reusing traces with inputs that are not ready
during the reuse test, thus addressing the large percent of redundant traces not
reused by regular trace reuse.

Subsequent to the definition of RST as a framework for speculative trace reuse,
we developed the modifications necessary in a superscalar, superpipelined architec-
ture to accommodate RST and discuss implementation issues.

From the superscalar implementation, we extracted and discussed results for
both the performance limits when many configuration aspects are considered, and
an actual implementation with non-perfect confidence mechanisms.

Besides the characterization and study of speculative trace reuse, we designed
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simulation tools for superscalar, superpipelined architectures that can be also used
for other studies that not RST.
We published and presented the following papers in the subject of this thesis:

e PILLA, M. L.. NAVAUX, P. O. A.; COSTA, A. T. da; FRANCA, F.
M. G. Predicting Trace Inputs with Dynamic Trace Memoization: deter-
mining speedup upper bounds. IEEE TCCA Newsletter, [S.l.], Oct. 2001
(also presented in the Work in Progress Workshop, PACT’2001).

e PILLA, M. L.; NAVAUX, P. O. A.; COSTA, A. T. da; FRANCA, F. M. G;
CHILDERS, B. R.; SOFFA, M. L. Improving Performance through Spec-
ulative Trace Reuse. In: CADERNOS DE INFORMATICA —~ PROCESSA-
MENTO PARALELO E DISTRIBUIDO NA INFORMATICA /UFRGS, 2003,
Porto Alegre. Amnais... Porto Alegre: Instituto de Informética-UFRGS,
2003. v.3, n.1, p.139-144.

e PILLA, M. L.; NAVAUX, P. O. A.; FRANCA, F. M. G.; COSTA, A. T. da;
CHILDERS, B. R.; SOFFA, M. L. The Limits of Speculative Trace Reuse
on Deeply Pipelined Processors. In: SYMPOSIUM ON COMPUTER AR-
CHITECTURE AND HIGH PERFORMANCE COMPUTING, 15., 2003, Sao
Paulo. Proceedings... Sao Paulo: TEEE, 2003. p.36-44.

8.5 Future works

Even with all the studies that we did over RST’s characteristics and the detailed
simulation of many architectural issues, we still leave many details and improvements
for further research.

Compiler and profiler support could be added to help the architecture to identify
predictable traces or to better organize instructions to generate more redundant and
longer traces.

Many issues with memory reuse and variations of the technique are not ap-
proached by this work, thus they can be targeted by future studies. In the current
thesis, we only studied prediction of register inputs. Another possibility that can be
evaluated later is the prediction of load values when memory reuse is allowed.

More advanced confidence techniques and mechanisms to select predictable
traces among the ones present in Memo Table T can also be improved, as we only
touched the simple confidence mechanisms described by previous works (CALDER;
REINMAN; TULLSEN, 1999). Variations of parameters like table sizes, confidence
counter thresholds, ways of indexing the confidence tables, and multiple-level tables
may be used to tune confidence performance.

Another possible development is to speculatively reuse instructions from
Memo Table G, instead of only speculatively reusing traces from Memo Table T.
This approach has the same advantage of having the values to be predicted already
available. This feature can also be implemented by allowing traces with only one
instruction too.

System calls have proved to be a very important reason for traces being finished.
Research on how they could be included in the reuse domain, thus allowing for longer
traces, may further improve RST’s performance.
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There are still many interesting studies to be done for RST. For example, how
branch prediction affects RST’s performance, or how a Return Address Stack could
be integrated into the architecture.

Finally, RST could use a dual core or a multi-threaded design to reduce mispec-
ulation penalties by having a speculative and a non-speculative thread running in
parallel like other speculative reuse schemes (WU; CHEN; FANG, 2001).
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9 RESUMO DA TESE E SUAS CONTRIBUI-
COES

“De jeito nenhum voltarei 13!"

Lewis Carrol, “Aventuras de Alice na Terra das Maravilhas"

Neste Capitulo', o resumo da tese e suas principais contribuicoes sao apresen-
tados. O resumo da tese é apresentado na Secao 9.1. A andlise dos limites do
reuso especulativo de traces do Capitulo 6 é discutida na Secao 9.2. Por sua vez, a
Secao 9.3 apresenta o estudo de uma implementacao de RST em uma arquitetura
superescalar, a partir dos resultados do Capitulo 7. As principais contribuicoes desta
tese sao apresentadas na Secao 9.4. Finalmente, os trabalhos futuros que podem ser
derivados desta tese sao detalhados na Secao 9.5.

9.1 Resumo da Tese

Nesta tese,uma nova abordagem combinando redundancia e previsibilidade, cha-
mada Reuso através de Especulacdao de Traces (RST), é apresentada. Inici-
almente, foi apresentado o problema (fraces que nao eram reusados por causa de
entradas que ndo haviam sido calculadas ainda), depois a técnica RST (prevendo
entradas que ndo estavam prontas para aqueles traces), uma implementacao so-
bre processadores superescalares (utilizando a infra-estrutura de DTM), simulagoes
detalhadas em uma arquitetura com pipeline de instrucoes profundo, e finalmente
uma comparacao dos resultados com outros obtidos com mecanismos alternativos
(especialmente, reuso nao-especulativo de traces).

RST é uma infra-estrutura para reuso especulativo de traces e pode ser usada
em uma variedade de arquiteturas de processadores para aumentar desempenho pela
exploragao simultanea de previsibilidade e redundancia — sem necessitar de aumento
significativo de hardware quando comparado com técnicas de reuso nao-especulativo
de traces, como DTM.

Neste trabalho, propomos uma implementacao de RST sobre uma arquitetura
superescalar e superpipeline, detalhando como os estégios de RST se integrariam com
o pipeline de instrucoes. Estudamos as questoes de implementacao que poderiam
surgir para as arquiteturas superescalares da atualidade quando RST é utilizado,
como pressao extra no banco de registradores e como o reuso especulativo poderia

! This Chapter is written in Portuguese as required by the Graduate Program
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afetar a semantica de renomeagao de registradores, apresentando possiveis solucoes
para estes problemas.

Para validar este trabalho, foi implementado um simulador de arquitetura su-
perescalar detalhado para comparar um conjunto de benchmarks contra uma ar-
quitetura superescalar base sem reuso e uma arquitetura com reuso de traces com
configuragoes similares de recursos. Também foi testado um esquema combinando
previsao de valores baseado nos tultimos valores vistos e previsao de valores estimados
a partir de diferengas entre traces consecutivos (stride prediction).

A partir das simulacoes, o comportamento do reuso especulativo de traces foi ca-
racterizado quanto a diversas questoes de implementacao, tais como associatividade
de tabelas, hierarquias de memoria, tamanho de tabelas de confianca e configuragoes
do pipeline. Como algumas dessas questoes ainda nao haviam sido estudadas ante-
riormente para reuso de traces em pipelines profundos, os mesmos também foram
apresentados.

Nos experimentos realizados, RST apresentou speedups médios de 1.29 sobre a
arquitetura base sem reuso ou previsao, e 1.09 sobre uma arquitetura com reuso
de traces (médias harmonica) em simulag¢oes com configuracao e mecanismos de
confianca realistas. RST também obteve melhor desempenho que alternativas como
utilizar o dobro de caches de primeiro nivel e reuso de instrugoes com a mesma area
de chip usada para a implementagao da configuracao de RST.

9.2 Analise do estudo de limites

A partir do estudo de limites apresentado no Capitulo 6, foram obtidas as se-
guintes conclusoes a respeito da dinamica e caracteristicas do reuso especulativo de
traces.

Nas simulagoes, RST apresentou speedups médios de 1.85 sobre uma arquite-
tura sem reuso e 1.42 sobre DTM (médias harmoénicas) quando confianga perfeita
e grandes tabelas de reuso foram consideradas. Para essa configuragao, apenas o
benchmark gzip.2K apresentou speedups de menos que 1.15 sobre DTM, desta forma
esperamos que benchmarks com as mesmas caracteristicas (compressao de dados)
possam apresentar menos redundancia e previsibilidade e desta forma nao terao os
mesmos ganhos de desempenho que programas com outras caracteristicas. Em ou-
tros experimentos, o benchmark compress.95 também mostrou a mesma tendéncia,
confirmando nossas observacoes.

Para muitos benchmarks, RST reusou mais instrugoes que DTM por causa do
reuso especulativo de traces. No entanto, a taxa de instrugoes reusadas nao se traduz
diretamente em incrementos de desempenho devido ao uso de RST. Em alguns casos,
uma menor percentagem de instrucoes reusadas que foram graduadas resultou em
um maior aumento de desempenho. Assim, nao apenas o nimero de instrucoes
reusadas que foram graduadas em traces mas também as demais caracteristicas
apresentam um peso nos ganhos de desempenho que podem ser obtidos pelo reuso
de traces.

Os resultados também demostraram que a politica RTC melhorou o compri-
mento médio de traces reusados e que traces reusados especulativamente apresen-
taram maior comprimento em média que os traces reusados nao-especulativamente.
A mesma comparacao para DTM entre as politicas DTC e RTC para construcao
de traces mostraram que a politica RTC depende da especulagao nos contextos de
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entrada para prover ganhos de desempenho.

Variacoes na associatividade da Memo Table T afetaram o desempenho de
RST, mas para DTM a diferenca entre tabelas completamente associativas e dire-
tamente mapeadas nao produziu resultados muito diferentes. Em certas situagoes,
a colisao de diferentes traces para a mesma entrada podem causar piores resultados
para maior associatividade para determinados benchmarks em algumas configura-
¢oes. Variagoes no numero de entradas reduziu o desempenho médio para todas as
arquiteturas, como esperado.

RST apresentou melhores desempenhos (médias harmonicas) entre 3 e 1 entradas
no contexto de entrada. Para a politica DTC, o desempenho caiu significantemente
de 3 para 1 entradas, enquanto que a politica RTC, mais especulativa, permitiu que
RST obtivesse desempenhos semelhantes com 1, 2 ou 3 entradas. Quanto aos con-
textos de saida, os melhores resultados foram obtidos com 2 saidas para RST (RTC)
e 3 saidas para RST (DTC). Para o niimero de valores que podem ser previstos por
trace, nossos estudos mostraram que 3 ou 2 previsoes apresentam os melhores re-
sultados a0 mesmo tempo que simplificam o hardware para testes de previsoes no
estagio RS3.

O estudo de diferentes profundidades de pipelines mostrou que reduzindo o ni-
mero de estagios para a delegacao ou para a escrita de resultados sao as melhores
formas de melhorar o desempenho de RST de todas as configuracoes de pipeline
testadas. Também mostrou-se que RTC apresenta melhor desempenhos para RST
do que a politica DTC nestes casos.

As limitacoes de desempenho para pipelines mais largos nao foram impostas pela
falta de unidades funcionais mas pelo conjunto de limitacoes, incluindo ai acessos a
memoria, dependéncias de controle e dependéncias de dados verdadeiras. Aumentar
apenas o nimero de unidades funcionais neste caso nao resolveria o problema de
desempenho, de acordo com nossos estudos.

A criacao de traces a partir das diferencas entre traces criados consecutivamente
(stride trace creation) possui potencial para aumentar o desempenho, com incre-
mentos nos speedups de 0.02 sobre RST sem identificacao de strides; porém, na im-
plementacao atual esses ganhos nao sao tao altos como esperados devido ao grande
numero de ciclos entre identificacao e efetivo reuso desses traces.

Resultados com reuso de acessos a memoria demonstraram que RST sem reuso
de memoéria possui potencial para melhores resultados do que DTM com reuso de
memo6ria. Como reuso de memoria aumenta significantemente a complexidade do
hardware, esse é outro ponto a favor de RST. Se reuso de memoria é importante para
uma dada arquitetura e aplicacoes, entao sugerimos o uso da politica de criacao de
traces menos especulativa (DTC).

Conclui-se que as varia¢oes nas configuracoes de cache afetam RST da mesma
forma que afetam DTM ou a arquitetura base sem reuso.

Embora DTM nao obtivesse o desempenho esperado para alguns benchmarks em
comparagao com reuso de instrucoes em nossos experimentos, acreditamos que seja
possivel melhorar os resultados através do balanceamento dos recursos da arquite-
tura.
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9.3 Analise do estudo da arquitetura

A partir dos estudos com RST sem mecanismos de confianca, concluiu-se que
RST necessita de um mecanismo para reduzir as taxas de erros nas previsoes ou
algum mecanismo para reduzir as penalidades em casos de previsoes incorretas para
obter bons resultados. Assim, mecanismos de confianca foram estudados como sendo
uma forma simples e testada de controlar as taxas de erros nas previsoes.

Aumentar o nimero de entradas que podem ser previstas em traces aumentou
tanto a complexidade do hardware quanto as taxas de erros nas previsoes. Porém,
quando mecanismos de confianca foram utilizados, a previsao de até duas entradas
permitiu a RST obter melhor desempenho que prevendo apenas uma entrada.

A penalidade média quando ocorreram erros na previsao para traces reusados
especulativamente em RST sem confianca foi de aproximadamente 10 ciclos para a
configuracao com 19 estagios. Para essa penalidade e taxas de erros de cerca de
60%, o tnico benchmark que obteve bons speedups foi m88ksim. 95.

Para a arquitetura com recursos limitados mas confianca perfeita, RST obteve
speedups de 1.19 sobre DTM e 1.42 sobre a arquitetura base sem reuso (médias
harmonicas).

Os experimentos com mecanismos simples de confianca sem estado, apresentados
na Secao 7.3, nao atingiram speedups sobre reuso de traces, desta forma mostrando
que mecanismos mais complexos eram necessarios para obter aumentos de desem-
penho relevantes.

Com um mecanismo de confianca baseado em contadores saturados com 4096 en-
tradas e apenas um nivel, RST obteve speedup de 1.07 sobre DTM prevendo um valor
por trace, e 1.09 quando prevendo dois valores no maximo (médias harmonicas) pa-
gando apenas o custo adicional do estdgio RS3 para verificar previsoes e a tabela
de confianca. Para o caso de RST VP2, o speedup sobre a arquitetura base sem
reuso foi de 1.29 (média harmonica). RST conseguiu ter mais instrugoes graduadas
provenientes de traces em muitos casos, e mesmo em casos em que menos instrugoes
graduadas foram reusadas ainda conseguiu melhorar o desempenho, por causa de
melhores caracteristicas dos traces reusados.

Também mostrou-se que mesmo que o mecanismo de confianca possua melhores
taxas de acerto para VP1 que para VP2, ainda assim VP2 possui melhor desempe-
nho, ja que mais oportunidades de especulacao existem neste caso.

Apesar de obter-se taxas de erros nas previsoes de 5% quando mecanismos de
confianca foram usados, alguns benchmarks nao obtiveram speedups sobre DTM.
Um exemplo é gzip.2K, que teve taxas de erros de menos de 2% para VP1; porém,
esse benchmark possui maiores penalidades em casos de previsoes incorretas, com
80 ciclos ou mais em 50% dos casos. Desta forma, cada previsao incorreta produz
um grande impacto no desempenho.

A comparacao de criacao de traces a partir de strides com RST produziu uma
melhora no speedup sobre a arquitetura base de 1.29 para 1.32 quando até dois valores
eram previstos, uma pequena melhoria em desempenho que pode nao justificar o
aumento em complexidade do hardware devido ao reconhecimento dos strides.

Concluiu-se também que a configuracao 4096 3 3 3 1 3 descrita na Tabela 7.3
produziu melhores resultados que a configuracao 4096 7 7 7 1 0, descrita na Ta-
bela 7.6, tanto em termos de desempenho quanto em custos estimados do hardware.
A adicao de informacao sobre o fluxo de controle no mecanismo de confianca apre-
sentou resultados semelhantes aos mecanismos sem essa informagcao, sendo portanto
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desnecessaria.

Alguns benchmarks voltados a compressao de dados e imagens apresentaram
problemas em termos de desempenho, dependendo de configuragoes do mecanismo
de confianca, como nos casos do compress. 95 na Se¢ao 7.8 (contadores de confianca
organizados por trace em Memo Table T) ou para ijpeg.95 e gzip.2K na Segao 7.4.

9.4 Contribuicoes

Nesta tese, Reuso através de Especulacao em Traces (RST) foi apresentado,
uma infra-estrutura de reuso especulativo de traces que pode ser adaptada para
diferentes arquiteturas de processadores. RST prové a possibilidade de reusar traces
cujas entradas nao estao prontas para o teste de reuso, desta forma enderecando
a grande percentagem de traces redundantes que nao sao reusados por técnicas
anteriores de reuso de traces.

Apos definir RST como uma infra-estrutura para reuso especulativo de traces, as
modificacoes necessarias para acomodar RST na implementacao em uma arquitetura
superescalar e superpipelined foram desenvolvidas.

Da implementacao superescalar de RST, discutiu-se resultados para o estudo de
limites com diversas variacoes de configuragao, bem como para uma implementacao
com mecanismos de confianca realistas.

Além da caracterizacao e estudo do reuso especulativo de traces, ferramentas de
simulagao que podem ser usadas para outros estudos foram desenvolvidas.

Publicamos e apresentamos os seguintes artigos no assunto desta tese:

e PILLA, M. L.; NAVAUX, P. O. A.; COSTA, A. T. da; FRANCA, F. M. G.
Predicting Trace Inputs with Dynamic Trace Memoization: determining spe-
edup upper bounds. IEEE TCCA Newsletter, [S.1.|, Oct. 2001 (também
apresentado no Work in Progress Workshop, PACT’2001).

e PILLA, M. L.; NAVAUX, P. O. A.; COSTA, A. T. da; FRANCA, F. M. G;
CHILDERS, B. R.; SOFFA, M. L. Improving Performance through Specu-
lative Trace Reuse. In: CADERNOS DE INFORMATICA — PROCESSA-
MENTO PARALELO E DISTRIBUIDO NA INFORMATICA /UFRGS, 2003,
Porto Alegre. Amnais... Porto Alegre: Instituto de Informética-UFRGS,
2003. v.3, n.1, p.139-144.

e PILLA, M. L.; NAVAUX, P. O. A.; FRANCA, F. M. G.; COSTA, A. T. da;
CHILDERS, B. R.; SOFFA, M. L. The Limits of Speculative Trace Reuse
on Deeply Pipelined Processors. In: SYMPOSIUM ON COMPUTER AR-
CHITECTURE AND HIGH PERFORMANCE COMPUTING, 15., 2003, Sao
Paulo. Proceedings... Sao Paulo: TEEE, 2003. p.36-44.

9.5 Trabalhos futuros

Mesmo com todos os estudos sobre caracteristicas de RST e a simulagao de-
talhada de diversas questoes da arquitetura, ainda deixamos diversos detalhes e
melhoramentos para trabalhos posteriores.

Suporte de compiladores e analisadores de perfis pode ser adicionado para ajudar
na identificagao de traces previsiveis ou para melhor organizar as instrucoes e gerar
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traces mais longos e mais redundantes.

Diversas questoes com reuso de memoria e variagoes da técnica nao foram ata-
cadas nessa tese, podendo serem abordadas em estudos futuros. Neste trabalho,
apenas foi estudada a previsao de valores de registradores. Outra possibilidade se-
ria incluir a previsao de valores de acesso & memoria quando reuso de memoria é
utilizado.

Técnicas mais avancadas de confianca e mecanismos para selecionar traces pre-
visiveis entre todos os candidatos também podem ser melhorados, ji que apenas
utilizamos mecanismos simples descritos por trabalhos anteriores (CALDER; REIN-
MAN; TULLSEN;, 1999). Varia¢oes de parametros como tamanhos de tabelas, limi-
tes dos contadores, diferentes formas de enderecar a a tabela de confianca e tabelas
de multiplos niveis podem ser usadas para refinar a confianca.

Outro possivel desenvolvimento é reusar especulativamente instrucoes da
Memo Table @G, ao invés de apenas permitir o reuso especulativo de traces da
Memo Table T. Essa alternativa tem a mesma vantagem de ja possuir os valores
a serem previstos armazenados na tabela de reuso e pode também ser implementada
através de traces com apenas uma instrucao.

Chamadas ao sistema mostraram-se freqiientemente como o motivo para que
traces fosse terminados. Estudos em como estas chamadas poderiam ser incluidas
no dominio de reuso para aumentar os traces poderia levar a novas melhorias de
desempenho em RST.

H4 ainda muitos outros pontos interessantes a serem estudados, por exemplo a
forma como a previsao de desvios afeta o desempenho de RST ou como uma pilha
de enderecos de retorno poderia ser integrada na arquitetura.

Finalmente, RST poderia usar um outro core ou um projeto com miultiplas her-
das de execucao para reduzir as penalidades provenientes de erros de previsao, com
herdas especulativas e nao-especulativas executando em paralelo, como outros me-
canismos de reuso especulativo (WU; CHEN; FANG, 2001).
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