ON THE TIME DECAY OF DIFFUSION WAVES FOR
A CLASS OF PARABOLIC SYSTEMS OF
CONSERVATION LAWS
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Ahstract

We derive time decay rates in LZ-norm for solutions to the Cauchy
problem of the parabolic system

u, + (we(ul)), = (Blu)u,),

and its N-dimengional analoguc
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provided only that the initial state «(.,0) is in 7' 1 L2 but otherwise
arbitrary, llere, w = (@, .., ) s the vector of unknowns, @, @, ... V2
ate given scalar functions, and B, Bm, g B are uniformly positive def-
inite matrices of order m whose off-diagonal elements b;;(w) are bounded
in terms of w;. The method ig based on energy estimatles and can be
adapled to other problems. The decay rates oblained are oplimal.

Resumo

Sao derivadas taxas de decaimento na norma £.% para as solugies do
problema de Cauchy do sistema parabdlico

w, + (weollu))), = (Blu)u,),
¢ do problema correspondente em N dimensoes

&

X } . =
w+ Y S (up () = 3
k=1 Yk =1

(] du
(B - P )
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assumindo-sc que o estado inicial (-, 0) pertence ao espago L1 L2 sendo
possivelmente grande. Nas equagtes acima, @ = (%, ..., Um ), 2. @15 - @,
sao [ungoes cscalares dadas, ¢ 13, B y eey B denotam matrizes definidas
posilivas de ordem m cujos clementos 4y, (u) lora da diagonal sio limi-
tados cm termos de #;. O método é bascado em cstimativas de energia
¢ pode ser adaptado para outros problemas. As taxas de decaimento
obtidas sio optimais.

1. Introduction

We will establish in this article the time-asymptotic decay in L norm of solu-

tions to the initial-value problem

u, + (up(lu))), = (Blu)u, ), (la)

u(-,0) € L'(R) N L*(R) (1b)

and some of its generalizations, where u(x.¢) = (u, (v, ). ..., (v, 1) ) stands
for the vector of unknown quantities, |w| is the Kuclidean norm of u, ¢ is

a continmously differentiable scalar function and B{a) s an moxm uniformly

posilive definite maltrix, i.c.,

(¢, Buw)E) > pl&| ¥ &eR" (2)

for all w concerned, where g is a positive constant and (-, -) denotes the standard
immer product in R™ We also assume Lhal the oll-diagonal enirvies b (u) of B(ju)

sabisly, for all @ = (ny, ..., %) concerned,
|0 ()| < Cuy ¥odg = 1, .0, 0 (3)

for some constant ' > 0. For basic properties of (1), we refer the reader to
[11] and references therein. One example is given by the class of rotationally

invariant systems considered in [6], [13]. namely

w, + (wlul’) = pu, (4)

@

where g 1s a positive constant. T'he inviscid form of equation (4) was considered

m 1979 by Keylitz and Kranzer in conmection with the elastic string problem in
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elasticity [9]. 'L'his system has also been studied in one-dimensional multiphase
flow [7]. [12], magnetohydrodynamics (1], [3] and more generally in continuum
mechanics ag a basic model for the propagation of plane waves in isotropic,
multidimensional systems [1], [2]. For these and all systems of the form {1)-(3),

we will show in Seclion 2 thal

—1/4

ot 1) [y < €14 1) (5)

for all ¢ > 0. where the constant ¢ depends on the magnitude of || (-, 0) || )

the dimension m and g > 0 given n (2) above. Thus,

and || (-, 0) HL?(R]’
the solution & = 0 of (1)-(3) is asymptotically stable under arbitrarily large
disturbances, provided only that they belong to L'(R) N L*(R). The same
decay hehavior in the IZnorm has been shown Lo hold Tor genetral syslems ol

conservation laws

u, + flu), = (Blu)u, ), (6)
with an arbilrary viscosity matrix B{wu) and (lux function f(w) such that the
Jacobian matrix f'(0) is completely hyperbolic [3], [4], [8], under the further

assumplion thal w(-,0) is small enough to satisly
+20 _
f|(lo\(1+|x| dw+/ (lu(z,0)" + |u,(2,0)) de < & (7)

for & <« 1. In the particular case of systems verifying (1)-(3), condition (7) is
not necessary and we will show in Section 2 using a very simple argument that
the estimate (3) holds for any initial state w(-,0) in £'(R) N L*(R), however

large. Il one replaces [1a) by the slightly more general equation

then we can still derive (5) provided that ||w(-,0) ”Tl(B) is sufficiently small,
see Section 2. Finally, in Section 3 we will use a similar argunment to investigate

the corresponding behavior for the n-dimensional analogue of (1),

Y i Nooo@ [k] du
%+§M(uwklul) > g ( )di) (9)
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. 1 s . .
where @, ..., @, are scalar funclions and Bl J(u)? s Al J(u) arc positive dofi-

nite maltrices ol order v such that
(g,B““](u)g) > uleé Y E€R™, E=1,..5 (10
and whose elements satisfy, for each £ =1,.... 5,
Bl )| < Clu| Y = L,m. i) (11)

for all values of w in the region concerned, where u, (' are positive constants.
It is then shown that

— /4

Fee( D1l oy < CC1F1) (12)

whenever “u,[:-, 0) € Ll(:RN) N LQ(_R‘\'), where (7 ig a positive conslant which de-

pends on the magnitude of || w(-,0) || ) and || (-, 0) HIF(RN)’ the dimension
paramelers m, & and g > 0 given in (10). Tor all these problems, the decay
rates given above arc optimal, so that the method discussed here, in spite of its
simplicity, gives sharp results. Moreover, it can be applied to other problems,

see e.g. [14], [15].

As 1o the nolation used, boldlace characters will always denote veclor quan-
tities, while capital letiers will be usually reserved lor malrices, with the excep-
Lion of letters ' and K, which will be used lor scalar constants. A symbol like
', represents a constant whose value depends on a set of paramcters specified
by A; we note that distinct references to the same constant symbol will not
necessarily mean the same numerical value, so that we will write 2 |, again as
¢ T and so on. Also, we will often use subscripted variables to indicate differen-
tialion, as in u, = % Jlu), = a%f(’r.f.{;r; 1)), and so forth. All other notation,

when not standard, will be explained right aller its livsl occurrence in the lext.

2. One-dimensional systems

We will consider in this section the £* decay of solutions u{z,t) of the Cauchy

problem {1)-(3) described above. The initial state (- 0) is any Lebesgne mea-
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surable pulse with finite mass and energy, i.e.. u(-,0) € L'(R)N L*(R), and we
let K > 0 be sufficiently large so that

||u("0)HLl(R) S [( 5 ||u(‘!0) ”LE(B.) S B‘, (13)

Under these conditions, we will show below thal there exists a positive constant.

C,.. depending on the set of parameters K = {m, K, u }. such that

L/4

el )]l am < Cp(14+1) vV i>0 (14)

I2(R)

We will prove this estimale in the following way., First, we note that the solution

operator of (1) is L'-contractive, i.e., we have

|l )| || 2l 0) || Yol 0 (15)

vy S L'(R)

where

Hu(1t) HLI(_R._) = Hluﬂ(.?t)HLI(R.) + 22 + ||Hm(,t) ||JT;I(_R‘)

and similarly for || w(-, 0) In fact, more is true: one has, for each individ-

ual component w;(+, £) ol the solution vector (-, 1), 1 = 1,...,m, the estimate

< | el . 0 ¥ =10 (15)

[

) ||L1(R ) ||L1[R)

This can be proved in a standard way as in [10], but for convenience of the reader
we will briefly review the argument. Taking a regularized sign function L; (see
e.g. [10], [14]). we multiply the i component of equation (1a) by [.;[:'ti,:,-(.'!:; 1)

and inlegrale the result over Rx[0,7] to gel, alter a lew integrations by parts,

- T [ i .- 2
./—-:, La(‘rl.«;(m;‘T):)dJ: - /U /_; [;’(‘rf..;(;rrpt))F).;,i(u(:r:,t)) (?):;) dadt —
&
:‘/_‘ ( (;LU dl-|—// Luuﬁl'll) (l‘i)dl; (‘U(Ifﬂ)dl'dt

. du; D
+Z/[L ) byule, ) 0 da

£
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Since L’:(u?) and b;;(w) are nonnegative, we then obtain, using (3) above,

+ou Fo
L iw(z.T))de < f L (uix,0)) de +

— — X3

T o g
- [ /j_Lg(u,;(J:,t))uf;(w,t)a o |w(z,t)|) dedt

-I-(Z]/ Ll ui{z.1)) u3t|‘

J;ﬁa

du;

de dt

‘()m

where €' is the constant given in (3). Letting & — 0. we get (15)) since

/ f ISRRTEE f)(;m el |ulet)|) dedt — 0

/[ T” (s, 1)) | s Jf!'|‘dub

by Lebesgue’s Dominated Convergence Theorem. Another property which can

and

dedl — 0

be easily derived is the lollowing energy estimate,

+ouf | Dut, dt < a0 (16)

L (R) L*(R)

(- 1)

LA(R)

where

w7, z T,

and
L YT 5

I.(R Z || Al’ l

LZ(RJ

| Dul-,

t}!

In fact, multiplyving the :** component of equation (la) by u;(z,t), integrating

the result over Rx[0,1'| and summing from ¢ = 1 to m, we get, after a few

gimilar computalions,

+oc ) 3 T ptoo .
/ | w(x. T)| dr + 2/ / (w,. Blu)u, ) dedl =

:/_+| w(z, 0| dr+/f_+:> qut)l)adl il fir
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from which we immediately get (16), in view of assumption (2) and

Foo p d 2 s
[ ellute,n ) o lute, 0 de = 0 (17)
In order to obtain a decay rate for || w(-.¢) ”r — , however, we need to do a

LR component ol equalion

more carelul analysis. To {his end, we muliiply the ¢
(Ta) by (1 + ) w{x. 4) and integrale the result over Rx[0,7"], which gives,
surmming [rom 2 =1 Lo m,

+0

(14+7T) / |u(::.':1‘T) |2 dor +

o= O

+?]}T(1+t)/'+)_°(u Blw)u,) dedt =

— /+ | (., 0) +/ / w(x, f) |2 drdt +

+[ [ (|“(I=t)|)i|u(r,t)|2 de dt

so that, recalling (2) and (17}, we obtain

2 T )
(L+ Y ul 1) [ + 26 (1 + 01 Dut, )]

LR .
) (18)
2
< Nul 017, / oy

Using the elementary Soboley inequality
_—— . z/s aui 173 .
|| ”’?.( ’]L) ||T2(B) S 0 H ity TL) H H (’_)J: ( ,f) th(l—{) (1'})

we get, from (13), (15).
191 gy < Cone |l D11
w( ) gy & Cnrc P20 g

for each t > 0, where C - denotes a constant which depends on m, K. Hence,

(18) yields

T
o 2 )
(1 + TG T, g + 2,”,[ A+ 01 Dul 0[] o
' ' (20)
o - 2/3
< a0, + ok [ 1 I
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Since, by Holder's inequality, we have

& 214 N2/3 ] T 2 Lt
Lopuin < 2 ) [ puta

12 (1

we see Lhal, seliing

2

. . v T . P 2 i
RT) = (04 T w0 + [ =0l pa, I, (20)

we get, from (20},

.1/3
)

E(T) = €y {1 + (1 +T E(T)I/S}

for somc constant . which depends on K = {m, K, u}. This immediately gives
4 . 1/2 .
BT) < C (1 +T) (22)

for some suitable constant (7. which, again, depends on K = {m, K.} Re-

calling (21), we then have the lollowing resull.

Theorem 1. Let u(x,t) be the solution of (1)—(3) corresponding to an initial
profile m(-,0) tn L'(R) N L*(R). Then, there crists a constant C. (depending
on the set of parameters K = {m, K, p } given tn (2), (13)) such that

. , 2 T - . )2
L+ D)D)y + [ L+ 1DuCD] dt < G (14 T)

Jor every T = 0.

In particular, this shows (5). As mentioned in the previous section. we can

extend the above analysis to the slightly more general equation

u, + (wg(u]), = (Bluju, ), (23)

where B{w) satisfics (2), (3) and ¢ now depends more generally on the conserved
variables u instead of their magnitude |u | only. Observe that, changing the

variable = lo & = o — (0] il necessary, we may assume withoul any loss of



TIME DECAY OF DIFFUSION WAVES 307

generality that ¢(0) = 0. Thus, we will make the assumption that, for all «

concerned, we have

|e(u)| = @ |u| (24)

for some constant ® > 0. As before, the initial state (-, 0) is taken in the space

LHR)N LA(R), and we lel. K > 0 be large enough so that
||u(‘0) ”Iﬂ(l‘i.] S E’ (25)

Multiplying the it component of cquation (23) by (1+%)u,{x. 1) and integrating

the result over Rx [0, 7], we then obtain, summing from ¢ = 1 to m,

g 778

I
I7al ; P 7
(1 4+ THy||wu-.T) HIF(R-) f: 2;;/0 (1 + )| Pul-,4) ||L3(R) dl

) T . 9 .
. . 26
S L f[; [ 2] |y 2 (26)

. .
+‘2]ﬂ (1 Jr/')] (w,u, ) plu) dedl

—od

where we have used (2). Since, (or p, ® given in (2), (24) above, we have

+o0
/—m [(w,u, )| |e(u)|de <

2
o 4 It 2
< 1 Duf-,t _
< g el gy + 5 IDuC 0,

we see Lhal (26) yields

_ o . T : 2
1+ D)l 1) + 0 f (14 ) I DuCn I,
< (0| + /T| wl- ) t (26)
- s, 72(R) o (1) 12wy -
S
2 ' ) L
+ 2 [+ 0wl
Using the Sobolev inequality
", : ;i ) § 07
|| u( ?f) ||I.4(R) S ("nl || u( 't) ||LI(R) ” ‘Du( ?f) ||L2(R) ("“)
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we then obtain, from (26)’,

. T
U+TNMJW;M+H](+JHWLUH
< N0, + [ ol (28)

+ﬁ07(wuww¢w IDu]]
“ "o ’ LZ(R

Since (15) vemains valid lor equation (23), we ”’IH’I obtain, rom (13), (25). (28),

(4 TP g + [ O 1)) D)

I2(R)
2
; 2 (29)
<O {l+ / lu ) I,
provided we assume that [|«(-,0) ] - is small enough to satisfy

¢ |
— -0 < — :
J”: - H u( : ) ||I.1(RJ — 2 (30)

where g, @, > 0 are Lthe constants given in (2), (24), (27). Proceeding with

m

(29) as we did with (20) above, we then get the following result,

Theorem 2. Lel w(x,l) be the solulion of (23) corvesponding Lo an iniliol
profile w(-,0) in the space LY{R) N L*(R). Then, there exists § > 0 {depending
on . ®. O given in (2), (24). (27)) such thal, whenever || u(-,0) HIJ(R) < 4,
one has

),
LA(R)

T o2 , /2
+ [ O+ DIPut O, W< O+ T)

1+ 7T
(1 4+ THllul,T (R}

or every T > 0, where ¢! " is a posilive constand which depends on lhe sel of
() b ?

parameters X = {m, K, } given in (2), (25).

3. Multidimensional systeins

In this section, we will extend the analysis above 1o multidimensional systems

ol 1the [orn
d u id () L %] du o

k=1 r
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where ¢, ..., ¢, are given scalar functions, w(x,t) = (w, (@, ), ..., um(®,{)) is
the vector of unknowns, & = (z,, ..., z, ), and b’w(u), k=1,..., N, are positive

definite matrices of order m satisfying (10), (11) for all 2 concerned, i.e.,
K, - 2
(6;3 (u)f) > o€l vV £EcR™, k=1,..~5 (32)
and
\.!’)E-_F;](uﬂ < g ¥ 5 = licon®iz b5, B = 1 (33)

[or some posilive constauls g, €, where E},EJ-J (), i,j = 1,....m, denote the

elements ol B[k](u:), k=1,...,~ One then obtaim

H u(‘t) HL] (R.N:] g || u(?U) ||L1(R‘N) \V/ t > O (34)

which can be shown in the same way as (15) above. TIn fact. it is straight-
lorward 1o extend the one-dimensional analysis of the previous section to the
N-dimensional equalion (31), so that we will only give here a briel sketch ol the
argmnent in this case. To gel the appropriate decay rates, we mulliply the 7%
component of (31) by (1 + t)Nu,;(zc,t) and integrate the result over R¥x [0, 7]

to get, summing from = 1 to m,

: s g T N 2
1+ TV Nl D, e + 20 (L0 1 DuCDI],
40 ARY) .
) | (35)
2 . N— . 2
< w0, e + [ (LT D,
where
: B s 2
Du(-. 1} = Loyt
DR gy = 2 20 g e
Using (34) and the Sobolev incquality
‘, < (! LT : Ntz :
” u( t) ||L2(RW) == (‘ T, N || u( ’t)HL.I(R.M:] || D’U,( ‘t) HI-JZ(R.;\"') (%6)
we gel
el )l gy = Crne | P2l Ol 7

LA(RY)
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where ¢ denotes a conslant which depends on s, ~ and K > 0 such that

Hemnce, (33) gives

7 ; N ; 2 = T- N . 2
7Y Nl T, )+ ,3,1'/ SERS A Du(,J_)ﬂﬁ sy |
(38)
\+z
30 17, oy (*JO (14 1) Dul T
where (' .. denotes a constant which depends on m,~, K. Since
[T w0 put
0 ' Z(Iﬂ’
w (39)
< (2)™7 {1 +T)/T O Dal D], b
“ (\ /, ( ! w(-, ! s dl
we then get, from (38),
1+ 1) DI + [+ O || Du o | it
(. || u’( H | LA ](; ( ' || s ) HI‘E(RD’) (‘
(40)

SC AL+ (14T /U (L+2) [ DuC )], gy

where (/. is some positive constant which depends on the set of parameters
K ={m.~, K, pu}. Proceeding as in (20)-(22), we then immediately obtain the

lollowing resull.

Theorem 3. Lel w(x.l) be the solulion of equalion (31)=(33) corresponding
to an initial state w(-,0) in the space L'(RY) N L*(RY). Then, there czists a
positive constant C . (depending on K = {m,w, K, p } given in (32), (37)) such
that

2

LR

(1+T) lu-. 7)) P odt < ¢ (14T)

T <
1+ )" || Du(-.t
[T Dut <

Jor every T = 0.
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