UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
COMPUTER ENGINEERING

CONRADO PILOTTO

A Fault Injection Platform Based on
Dynamic Partial Reconfiguration

Graduation Project

Prof.Dr. Fernanda Lima Kastensmidt
Advisor

Porto Alegre, Jun 2012



CIP - CATALOGING-IN-PUBLICATION

Pilotto, Conrado

A Fault Injection Platform Based on Dynamic Partial Recon-
figuration / Conrado Pilotto. — Porto Alegre: PPGC da UFRGS,
2012.

84 f.:il.

Final Report (Master) — Universidade Federal do Rio Grande
do Sul. Computer Engineering, Porto Alegre, BR-RS, 2012. Ad-
visor: Fernanda Lima Kastensmidt.

1. Fault Injection. 2. Dynamic Partial Reconfiguration. 3. FP-
GA:s. I. Lima Kastensmidt, Fernanda. II. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pr6-Reitora de Graduagdo: Profa. Valquiria Link Bassani

Diretor do Instituto de Informatica: Prof. Flavio Rech Wagner

Coordenador do ECP: Prof. Sérgio Cechin

Bibliotecaria-Chefe do Instituto de Informatica: Beatriz Regina Bastos Haro



CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS . . . . ... .........

LIST OF FIGURES
LIST OF TABLES

ABSTRACT
RESUMO
1 INTRODUCTION

1.1
1.2
1.3

2 THE VIRTEX-4 FPGA

2.1
2.2
23

Motivation . . ... ..
WorkPlan. . . . . . ..
Outline . .. ... ...

Introduction . . . . . . .

Configurable LogicBlocks . . . . . . ... ... ... ... ........

Slice Architecture . . . .

3 CONFIGURATION OVERVIEW . . . .. ... it i i e

3.1
3.1.1
3.1.2
3.13
3.2
3.3
34
3.5
3.6

4 RELATED WORK

4.1

4.1.1
4.1.2
4.1.3
4.14
4.2

4.2.1

Configuration Interfaces
Serial Interface . . . .
Parallel Interface . . .
JTAG Interface . . . .

Configuration Process .

Operational Modes . . .

Dynamic Partial Reconfiguration . . . . . . . ... .. ... ... ...
Managing Dynamic Partial Reconfiguration . . . . . . .. .. ... ...

Configuration Data Files

General Board Fault Injection Platforms . . . . . . . ... ... ... ..
Reconfiguration Trough XHWIF Using JBITS . . . . . ... ... .. ..
Reconfiguration Trough ICAP . . . . . . ... ... ... ... ...
Reconfiguration Trough Boundary Scan . . . . . ... .. ... .....
Bitstream Corruption for Configuration Control Mechanism Evaluation . .

Custom Board Fault Injection Platforms . . . . . . . .. ... ... ...

The FLIPPER Platform



4272 The FI-UNSHADES-C Platform . . . . . . . . . .. ... ... ..... 35

5 PROPOSEDWORK. . . ... .. ittt et e e e 37
5.1 Proposed Architecture . . . . . ... ... Lo 37
5.1.1 Desktop PC . . . . . . . . . 37
5.1.2  Data Acquisition Module . . . . . ... ... oL 38
5.1.3  Configuration Controller . . . . .. ... ... ... ... ........ 39
5.14  DeviceUnderTest . . . . . . . . . . . . . . 41
6 IMPLEMENTATION . . . . . . . . . i it e e e e e e e e 42
6.1 DevelopmentBoard . .. ... ... ... ... ... .......... 42
6.2 Toolchain . . . . . ... ... ... ... ... .. 43
6.2.1 The Embedded Development Kit . . . . . . ... ... .......... 43
6.3 HardwareDesign . . . . . . . . ... ... 45
6.3.1 MICrOprocessOr . . . . . v v v vt e e e e e e e e e e e 45
6.3.2 BusConnections . . . . . . . . . . ... 46
6.3.3 ACEPlayer . . . . . . . . . .. 46
634 IPCoreLibrary . . . . . . . . . . .. . .. 50
6.3.5 Memory Layout . . . . .. ... 52
6.3.6  DesignSummary . . . . . . .. ... 52
6.4 SoftwareDesign . . . . ... .. ... ... ... 52
6.4.1 BSP . 52
6.4.2  Application . . . . . ... e 54
6.43  Bootstrap . . . . . ... 56
6.5 Design Integration . . . . ... ... ... ... ... ... 56
6.6 Platform Operation. . . . . . .. ... ... .. ... ... ........ 57
7 TEST PLAN . .. ..t et e e e e e s e e e as 62
71 CircuitUnder Test . . . . . . . ... ... ... ... ... ........ 62
7.2 DeviceUnder Test . . .. ... ... ... .. ... .. .......... 66
73 FaultModel . . . . . . . ... .. 67
7.4  FaultGeneration . . . . . .. . ... ... ... ... . ... ... 67
74.1  Back-EndChanges . . ... ... ... .. ... ... ... .. ... 68
7.4.2  Partial Bitstreams . . . . . .. ... 69
743  ACEfiles . . . . . . . e 71
7.5 TestProcedure . . . .. .. .. ... ... 71
8 TESTRESULTS .. .. ... .. ittt it et e e e e 72
81 TestEnvironment . . . . . . . . ... ... ... 72
8.2 GeneralOperation . . . . . . .. ... ... ... ... ...... 73
83 SingleFault . . . . ... ... ... ... ... .. 74
84 Fault Accumulation . ... ... .. ... ... .............. 75
8.5 FaultInjectionTimes. . . . . . . . ... ... ... ............ 75
9 CONCLUSION. . ... ... e e e e e e e e e e e 77
REFERENCES . . . . . . . . . . . e e e e e e e e e e 78
APPENDIX A SCRIPTS . . . . . . .. . et e e e e e e e e 82

APPENDIX B LOGIC ANALYZER SPECIFICATIONS ... ........ 84



ACE
API
ASIC
BRAM
CCLK
CE
CLB
CLK
COTS
CRC
CUT
DAQ
DCM
DDR
DMA
DPR
DUT
FF
FIFO
FPGA
FSM
FTP
HDL
HID
/0
ICAP

LIST OF ABBREVIATIONS AND ACRONYMS

Advanced Configuration Environment
Application Programming Interface
Application Specific Integrated Circuit
Block RAM

Configuration Clock

Clock Enable

Configurable Logic Block

Clock

Commercial Off-The-Shelf

Cyclic Redundancy Check

Circuit Under Test

Data Acquisition

Digital Clock Manager

Double Data Rate

Direct Memory Access

Dynamic Partial Reconfiguration
Device Under Test

Flip-Flop

First In, First Out

Field Programmable Gate Array
Finite State Machine

File Transfer Protocol

Hardware Description Language
Human Interface Device
Input/Output

Internal Controller Access Port



ID Identification

IEEE Institute of Electrical and Electronics Engineers
IOB I/0 Block

Ip Intellectual Property

ISP In System Programming

JTAG  Joint Test Access

LFSR  Linear Feedback Shift Register

LUT Look-Up Table

MSB  Most Significant Bit

N/A Not Applicable

PC Personal Computer

PCI Peripheral Component Interconnect

PHY  PHYsical layer

PLD Programmable Logic Device

PROM Programmable Read-Only Memory

RAM  Random Access Memory

ROM  Read-Only Memory

RTL Register-Transfer Level

SR Set/Reset

SRAM Static Random-Access Memory

TMR  Triple Modular Redundancy

UART  Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus

VHDL Very High Speed Integrated Circuit Hardware Description Language
XHWIF Xilinx HardWare InterFace



Figure 2.1:
Figure 2.2:
Figure 2.5:
Figure 2.3:
Figure 2.4:

Figure 3.1:
Figure 3.2:
Figure 3.3:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:

Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:
Figure 6.9:
Figure 6.10:

Figure 7.1:
Figure 7.2:
Figure 7.3:
Figure 7.4:
Figure 7.5:
Figure 7.6:
Figure 7.7:
Figure 7.8:

Figure 8.1:
Figure 8.2:
Figure 8.3:
Figure 8.4:

LIST OF FIGURES

Generic FPGA Structure . . . . . . .. .. .. Lo 15
Virtex-4 CLB Element . . . . . .. ... ... ... ......... 16
MUXFS5 and MUXFX Multiplexers . . . . ... ... ... ..... 19
Diagram of SLICEM . . . . . . .. .. ... .. .. ..., 20
Diagram of SLICEL . . . ... ... ... .. ... ... .... 21
ConfigurationFlow . . . . . . . ... ... .. ... ... 25
Regular FPGA OperationCycle . . . . . ... ... ... ... ... 26
Methods of Delivering a Partial BitFile . . . . . ... .. ... ... 28
Top-Level Architecture for Proposed Platform . . . . . . . ... ... 37
Minimal Configuration of Configuration Controller Board . . . . . . 39
Connection Between Configuration Manager and DUT . . . . . . .. 40
Configuration Controller Block Diagram . . . .. ... .. ... .. 40
Atly Configuration Interfaces . . . . . . ... ... ... .. .... 43
Embedded Development Kit (EDK) Tools Architecture . . . . . . . . 44
HDL Player Interface . . . . . . .. ... ... ... ... .. .... 47
AXITACEPlayerCore . . . ... ... .. ... ... .. ...... 48
AXI ACE Player Core Registers . . . . . .. ... .. ... ..... 49
Flowchart for ace_player_program . . . . . . ... ... .. ..... 58
Flowchart for ace_player_program (continued) . . .. ... ... .. 59
Flowchart for ace_player_get_error_code . . . . . .. ... .. ... 60
Flowchart for ace_player_get_error_str . . . . . ... ... .. ... 60
Flowchart For Application Running on Microblaze . . . . . . . . .. 61
Simulation Result for the Circuit Under Test . . . . . .. ... ... 63
RTL Schematic for LFSR . . . . . . ... .. ... ... ... 64
RTL Schematic for Parity Encoder . . . . . . .. ... ... ..... 64
RTL Schematic for TMR Voter . . . . . . .. ... ... .. ..... 64
RTL Schematic for CUT Top-Level Design . . . . . ... ... ... 65
DUT JTAG Chain Diagram . . . . ... ... ... ......... 66
Technology Schematic for Parity Encoder . . . . . . ... ... ... 68
Back-End Changes Process . . . . . . . ... ... ... ... .... 70
Test Environment . . . . . . . .. ... L L Lo 72
CUT Operation Under Normal Conditions . . . . . . . ... ... .. 73
CUT Operation Under Partial Reconfiguration . . . . ... ... .. 73
CUT Operation During DUT Internal Memory Update . . . . . . .. 73



Figure 8.5:
Figure 8.6:
Figure 8.7:
Figure 8.8:
Figure 8.9:
Figure 8.10:

Fault pattern #1 affecting Parity Encoder 1 . . . . . . ... ... .. 74
Fault pattern #2 affecting Parity Encoder 1 . . . . . . ... ... .. 74
Fault pattern #3 affecting Parity Encoder 1 . . . . . .. .. ... .. 74
Fault pattern #4 affecting Parity Encoder 1 . . . . . . ... .. ... 74
CUT Operating Under Two Latent Faults . . . . .. ... ... ... 75
CUT Operating Under Two Active Faults . . . . . ... ... .... 75



Table 2.1:
Table 2.2:

Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:

Table 5.1:

Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:
Table 6.6:
Table 6.7:
Table 6.8:
Table 6.9:

Table 7.1:
Table 7.2:
Table 7.3:
Table 7.4:
Table 7.5:

Table 8.1:
Table 8.2:

LIST OF TABLES

CLB LogicResources . . .. ... ... ... .. .......... 16
ROM Configuration . . . . . .. ... .. ... ... ... ... 18
Configuration Modes And Interfaces . . . . . ... ... ... .... 22
Serial Interface Signals Description . . . . . .. ... ... ..... 23
Parallel Interface Signals Description . . . . . .. ... ... .... 24
ICAP Signals Description . . . . . .. ... ... ... ....... 24
JTAG Interface Signals Description . . . . . . ... ... ... ... 24
Xilinx Configuration File Formats . . . . . . . ... ... ... ... 29
Streaming Rates of Common Data Acquisition Buses . . . . . . . .. 38
FIFO Status Register Description . . . . . . ... ... ... .... 49
Command Register Description . . . . . . ... .. ... ...... 49
Player Status Register Description . . . . . . .. ... ... ..... 50
IP Cores Used In The Configuration Controller . . . . . .. ... .. 50
Memory Map for Processor Microblaze_ 0 . . . . . ... .. .. ... 52
Configuration Controller Synthesis Summary . . . . ... ... ... 53
Configuration Controller Global Utilization Summary . . . . .. .. 53
Bootstrap Linker Attributes . . . . . . . ... ... ... 56
Application Linker Attributes . . . . . . ... ... ... ... ... 57
DUT IOB Properties . . . . . . . . ... ... ... 66
DUT Utilization Summary . . . . . . . .. ... ... ... ..... 66
Parity Encoder Truth Table . . . . . . . .. ... ... ... ..... 67
Parity Encoder Truth Table with Faults . . . . ... ... ... ... 68
CUT Bitstreams Size . . . . . . . . .. .. . vt 69
Time Required For Fault Injection . . . . . . ... ... ... .... 76

Minimum Time Between Consecutive Fault Injections . . . . . . .. 76



ABSTRACT

The use of SRAM-based Field Programmable Gate Arrays (FPGA) in aerospace ap-
plications is becoming more popular as the silicon industry delivers new products capable
of hosting entire digital systems inside a single device. The capability to perform remote
reconfiguration provides the possibility to extend the duration of the missions by updat-
ing the obsolete modules as required. Unfortunately, SRAM based FPGAs are extremely
sensitive to faults induced by radiation particles present in high-altitude environments.
Several techniques have been proposed to mitigate the effect of those particles, but in
order to successfully guarantee the correctness of a project, engineers must validate the
robustness of the design when in the presence of faults. One of the possible validation
methods is called fault injection.

Fault injection platforms developed in the past have significant drawbacks related to
intrusiveness, complexity and costs. This work focuses on defining a fault injection plat-
form based on high-speed, low cost and non-intrusive aspects, associating the hardware
prototyping performance with the partial reconfigurability of the Xilinx Virtex FPGAs.

Dynamic Partial Reconfiguration is explored as a way of inserting bit flips inside the
device configuration memory, thus inducing the same effect of a radiation particle hitting
the silicon substrate. Experimental results validate the proposed work using commercial
available prototyping boards.

Keywords: Fault Injection, Dynamic Partial Reconfiguration, FPGAs.



Uma Plataforma para Injecao de Falhas baseada em Reconfiguracio Dinimica
Parcial

RESUMO

O uso de FPGAs em projetos aeroespaciais tem se tornado uma pratica freqiiente,
em parte pelo crescente avanco tecnoldgico que possibilita a indudstria de semiconduto-
res a integrar um ndmero cada vez maior de funcionalidades em um unico dispositivo,
mas principalmente por sua capacidade de reprogramacgdo. A possibilidade de efetuar
reprogramacdo remota de dispositivos em 6rbita permite que o tempo das missdes seja
estendido através da atualizacdo de mddulos obsoletos. Contudo, FPGAs baseados em
células de memoria SRAM sdo extremamente sensiveis a falhas induzidas por particu-
las de radiag@o presentes no espaco. Vdrias técnicas foram desenvolvidas para atenuar o
efeito destas particulas, mas para garantir o funcionamento correto do projeto, os enge-
nheiros devem validar a robustez do circuito sob a presenca de falhas. Uma das formas
de validacdo é chamada de injecao de falhas.

Plataformas de injecdo de falhas desenvolvidas no passado t€m inconvenientes rela-
cionados a intrusividade, complexidade e custo. Este trabalho foca na definicio de uma
plataforma ndo intrusiva, de alta velocidade e baixo custo, que associa o alto desempenho
da prototipacdo em hardware com a capacidade de reconfiguracdo dinamica dos FPGAs
da familia Xilinx Virtex.

A técnica de reconfiguracdo dindmica parcial € usada para inverter o valor 16gico das
células de memoria dos dispositivos FPGAS, a fim de reproduzir o mesmo efeito causado
pela radiacdo. Resultados experimentais validam o trabalho proposto usando placas de
desenvolvimento disponiveis no mercado.

Palavras-chave: Injecdo de Falhas, Reconfiguragdo Dinamica Parcial, FPGAs.



12

1 INTRODUCTION

Since the last decade, the silicon industry has presented numerous advances in the fab-
rication processes of the semiconductor components. These technological improvements
have lead to a higher packing device density, allowing manufactures to integrate more
functionality in their products. One of the applications that has been directly favored by
this is the SRAM-based Field Programmable Gate Arrays (FPGAs). Since then, the use of
this kind of FPGAs in embedded applications became an uprising trend, not only for they
low cost and high flexible architecture, but mainly for they reprogrammability, which
represents reduced time-to-market and fast turnaround time. This characteristic allows
design changes and upgrades depending on variations off the mission requirements, thus
providing the possibility to test developed applications on remote systems with minimal
or no re-engineering cost.

However, the same technology that made feasible all this progress also brought some
new challenges to system designers. The transistor scaling, reduced voltage operation and
higher frequencies utilization have significantly reduced the reliability of integrated cir-
cuits by making them more susceptible to faults induced by sources of noise and crosstalk
(A. Johnston 2000). Other than that, the radiation present in the space environment,
and recently neutrons present in the high-altitude atmosphere, constitute an important
source of errors (E. Normand 1996). When an energized particle strikes the silicon, it
produces an ionization process that generates a transient current pulse that can either
be misinterpreted as a valid signal by the circuit, or change the value of a memory cell
(D. Alexandrescu et al 2002). Along with these, faults concerning nanometer technology
FPGAs can also originate from electromigration processes, from time-dependent dielec-
tric breakdown and from manufacturing precision variability. As a consequence, raises
the necessity of fault-tolerance techniques as a way to mitigate those faults for high de-
pendable systems under operation of hostile environments, such as space and avionics
(J. Ritter 1990).

In general, there are two ways to implement fault-tolerance in SRAM-based FPGAs
(F. Kastensmidt et al 2004). The first option is to design a new FPGA architecture with
elements that are capable of handling these faults. This approach, however, involves high
costs and demands a great design effort, which varies accordingly to the time spent, num-
ber of personnel required and foundry technology employed. The second possibility is to
add redundant logic in the high-level description of the circuit, mapped to the currently
FPGA architecture. This way, off-the-shelf devices may be used and custom strategies
may be implemented to fulfill the requirements of the project, such as the overhead in
area, performance and power dissipation. Currently, due to commercial constraints, the
last is the industry standard approach.



13

1.1 Motivation

Independently of the adopted fault-tolerant strategy, it is fundamental to define a
proper mechanism to assert the dependability degree of a particular design in the pres-
ence of faults. Fault injection is a well known and consolidated technique used to achieve
this (M. Hsueh et al 1997 ). It consists on reproducing the same effect a fault would pro-
duce, but in a controlled environment in which is possible to evaluate its consequences
and measure its impact on the systems robustness.

There are two main paradigms to approach fault injection (P. Folkesson et al 1998):
hardware and software based. On the hardware side, faults can be generated by memory
corruption, heavy ion injection, power supply disturbances (J. Karlsson et al 1991) and
laser exposure (V. Pouget et al 2008). All these techniques, tough, make used of particu-
larly complex processes and expensive equipment. On the software side, this is achieved
early in the design process by injecting faults into the high level simulation models of
the circuit. Considering different levels of abstraction (M. Shokrolah-Shirazi et al 2008)
describe various techniques to perform such experiments. However, as mentioned in
(R. Leveugle 1999), the main drawback related to this last approach is the huge amount
of time required to run the simulation when large sets of faults need to be analyzed.

As a mean to overcome time limitations imposed by traditional simulation, it has been
proposed to take advantage of hardware prototyping to perform fault injection campaigns,
using FPGAs as fault emulators. (C. Lopez-Ongil et al 2007) showed that partial recon-
figuration is a effective approach to fault emulation in FPGA-based platforms. By trans-
ferring the simulation process of combinational circuits to actual hardware, a speed-up of
two orders of magnitude (A. Parreira et al 2004) has been indicated over software simula-
tion , while a three-order magnitude gain has been reported (P. Kenterlis et all 2006 ) for
sequential circuits.

Based on that, this work focuses on associating the hardware prototyping speed and
the partial reconfigurability of modern FPGAs to propose a fault injection platform based
on high speed, low cost and non-intrusive aspects to be used in future experiments con-
ducted by the Microelectronics Group at the Federal University of Rio Grande do Sul.

1.2 Work Plan

The proposed platform is based on FPGA-based fault emulation by means of dy-
namic partial reconfiguration (DPR). DPR is a feature present in Xilinx Virtex architec-
ture, which provides the flexibility to reconfigure portions of the circuit without having
to reset or interrupt the entire system. This way, fault injection can be accomplished by
reconfiguring only bits at a time, thus emulating the effect of bit flip in the device configu-
ration memory. As faults can be injected in the FPGA at any time during circuit operation,
it is possible to evaluate not only the effect of single faults, but also the effect of fault ac-
cumulation over time. Since DPR is an intrinsic capability of Virtex FPGAS, there is no
need for any kind of modification in the original circuit description, neither for complex
and expensive equipment. As a consequence, the overall cost required to achieve fault
injection is much lower if compared to other techniques.

The project has two main goals to achieve: design i) a system capable of performing
the dynamic partial reconfiguration on a ii) second designed system capable of being
dynamic partially reconfigured. These will be accomplished by means of two separated,
but interconnected prototyping boards, each one with its FPGA device.



14

There are many challenges involved when designing a complex project such as this.
From specification until the final prototype, a series of implementation steps must be
performed, along with validation and simulation. The following is a list of the major
project phases:

1. Understand the Virtex Family FPGA architecture and its configuration interfaces.
2. Understand the dynamic partial reconfiguration process, tool-chain and design flow.

3. Develop a configuration core responsible for performing the dynamic partial recon-
figuration of a device under test.

4. Design an embedded system comprised of a microprocessor, local memory and 1/0
interfaces in order to host the configuration core and act as a configuration master.

5. Code low level drivers to control the reconfiguration core from the embedded mi-
Croprocessor.

6. Design a dynamic partial reconfigurable system to serve as circuit under test.

7. Integrate the whole system, connecting the configuration master and device under
test, each residing on a different COTS board.

8. Validate the proposed platform architecture by means of experimental tests.

1.3 Outline

In order to present the concepts of this work in a organized and gradual way, this
document is organized in eight chapters. Chapter 2 introduces the concept of FPGAs
and presents the basic internal architecture of the Virtex family devices. Moreover, it
presents an explanation of the main logic resources used for implementing sequential and
combinatorial circuits, along with the different modules available to extend functionality
and increase performance.

In chapter 3 a detailed explanation of the configuration process is presented. All the
relevant aspects of the configuration mechanism are explained, such as interfaces, modes
and file formats. Also, in this chapter, the principles of dynamic partial reconfiguration
are presented, together with the available methodologies used to achieve a partial recon-
figurable design.

Chapter 4 contains an overview of the related work, and a comparison of the current
academic methods used to perform fault injection using FPGA reconfiguration.

Chapter 5 introduces the proposed fault injection platform, presents information re-
garding its architecture and explains the design of each module. After, chapter 6 details
the implementation process of the platform prototype. In chapter 7, a test plan composed
of a simple circuit hardened with a traditional fault tolerant technique is proposed as a
way to evaluate the platform’s functionality.

Chapter 8 contains the experimental data obtained during platform validation, together
with a discussion of the results. Chapter 9 presents the overall conclusions and proposes
future works that can be conducted in order to extend and improve the functionality of the
platform.



15

2 THE VIRTEX-4 FPGA

2.1 Introduction

The concept of FPGAs was first conceived back in the early 80’s with the intent to
design a new programmable logic device (PLD) focused on flexibility. At that time, the
other PLDs used a more rigid interconnection scheme, making then only suitable for glue-
logic in most of the cases. Even if the first FPGAs were relatively small, as the silicon
industry started to develop new techniques for high density devices, the upcoming FPGA
families were capable of implementing entire digital systems. Thus, the use of FPGAs for
rapid prototyping become quickly a world-class trend. Today, the industry is dominated
by two main vendors, Xilinx Inc. and Altera Corp., although there are a number of other
companies offering more niche-specific products (J. Edwards 2006).

All FPGA devices have a similar basic logical structure, formed by an array of logic
blocks and routing channels interconnected by a switch matrix, as show in figure 2.1.
Inside the routing channels is a set of wire segments, whose size vary accordingly to the
technology. By configuring the switch matrix, these wires are connected together to form
signal paths between logic blocks. The actual content of a logic block vary from vendor
to vendor, but all of them are based on a look-up table (LUT) and a memory element for
sequential logic. LUTs are programmable tables capable of implementing combinatorial
logic and are usually comprised of four inputs, although state-of-the art products already
use wider ones. This way, by grouping several logic blocks together using the switch
matrix, it is possible to define any combinatorial and sequential circuit, customizing the
device to behave as intended.

AT AT [

Switch —
matrix B

[TLTT

BN [TTT] [TTT]

Figure 2.1: Generic FPGA Structure



16

Customizing an FPGA involves, therefore, configuring the logic blocks and the appro-
priated interconnection between then with a series of commands and application-specific
data. This process is done through a configuration file, called bitstream, that contains all
information the device needs to be properly programmed. Inside the FPGA, this infor-
mation is stored using one of two different approaches: non-volatile or volatile. The first
one uses anti-fuse or flash memory technology to retain the bitstream information, even
when the device is unpowered. The second makes use of SRAM cells. While this means
that the customization is lost once the FPGA has been turned off, this also implies in the
intrinsic capability of reconfiguring it an unlimited number of times.

This work will focus on the Xilinx Virtex-4 family. This is a well established device
in the market, and was chose due to its low price, high performance and DPR capability,
though any device of the Virtex family may be used for the purpose.

2.2 Configurable Logic Blocks

In order to build combinatorial and sequential logic designs, the Virtex-4 architecture
is organized in array structure composed of configurable logic blocks (CLB). Each CLB
element is linked to the switch matrix in order to access the general routing matrix, and is
comprised of 4 similar slices, as shown in Figure 2.2.

Shift In Carry Out
A
[
SLICEL(3)

f

A
Y
A
Y

< » SLICEL(1) <€ >
Carry Out (1) Connect
Switch T
: CLB To
Matrix Y T .
Neighbors
Carry In
< »| SLICEM(2) <€ >
< »| SLICEM(0) [« >

A

Y
Shift Out  Carry In

Figure 2.2: Virtex-4 CLB Element

These slices are grouped together in pairs, and each one of these pairs is located in a
column. When the slice is in the left column, it is said to be SLICEM. Similarly, slices in
the right column are said to be SLICEL. Each pair in a given column has an independent
carry chain, and those in the left columns also have a shared shift chain (Xilinx DS112).
Table 2.1 summarizes the available logic resources in each CLB.

Slices | LUTs | Flip-Flops | Function Arithmetic | Distributed Shift
Multiplexers | Carry Chains | RAM(1) | Registers(1)
4 8 8 8 2 64 bits 64 bits

Notes: (1) SLICEM only

Table 2.1: CLB Logic Resources



17

2.3 Slice Architecture

As mentioned before, slices pairs of type SLICEM and SLICEL have both common
and unique resources. Each slice, regardless of its type, includes two four-input func-
tion generators, carry logic, arithmetic logic gates, function multiplexers and two storage
elements. These elements are used by both slice types to provide logic and arithmetic
functions, as well as ROM functionality. Other than this, slices of type SLICEM also
support two additional functions: storing data using distributed RAM and shifting data
using 16-bit shift registers.

A diagram of the SLICEM is shown in Figure 2.3 and represents the set of all elements
and connections found in a slice. SLICEL is shown in Figure 2.4.

2.3.0.1 Look-Up Table

Virtex-4 function generators are implemented as 4-input LUTs. Four independent in-
puts are provided to each one of the two function generators in a slice. These function
generators are capable, each, of implementing any arbitrarily defined boolean function
of four variables. Therefore, the propagation delay is independent of the function imple-
mented. Signals originating from the function generators can exit the slice, feed internal
arithmetic logic gates, feed the input carry-logic, feed the D input of the storage element
or go to the function multiplexers. These multiplexers are used to combine up to eight
LUTs to provide any function of five, six, seven, or eight inputs in a single CLB. Wide
multiplexers can combine LUTs within the same, or from different CLBs, making logic
functions with even more input variables.

2.3.0.2 Storage Elements

The storage elements in a Virtex-4 FPGA slice can be configured in two different
ways: either as edge-triggered D-type flip-flop, or as a level-sensitive latch. The D in-
put of each flip-flop can be driven by the output of a LUT, or directly by the slice input,
bypassing the logic function of the function generators. All control signals (CLK, CE
and SR) are common to both storage elements in the same slice. The initial state of each
storage element, following device configuration, is defined by an individual initialization
attribute. For each slice, the set and reset control signals can be synchronous or asyn-
chronous.

2.3.0.3 Distributed RAM

Multiple LUTs residing in SLICEMs can be combined together to store larger amounts
of data. This is possible since each function generators in a SLICEM can be arranged
to implemented a 16 x 1-bit synchronous RAM element called Distributed RAM. The
possible configurations of distributed RAM elements inside a CLB are:

e Single-Port 16 x 4-bit RAM
e Single-Port 32 x 2-bit RAM
e Single-Port 64 x 1-bit RAM
e Dual-Port 16 x 2-bit RAM

Distributed RAM modules have, by default, synchronous write and asynchronous read
signals. However, synchronous read operations can be achieved by connecting the RAM



18

output to the input of the storage element in the same slice. No additional control is
necessary since both share the same clock line.

2.3.0.4 Read Only Memory

Each function generator in SLICEM or SLICEL can implement a 16 x 1-bit ROM,
with contents being loaded at device initialization. These elements can be cascaded in
order to implement wider and/or deeper memories. Table 2.2 shows the number of LUTs
occupied by each possible configuration:

ROM | Number of LUTSs

16x1 1
32x1 2
64 x 1 4
128 x 1 8

256 x 1 16 (2 CLBs)

Table 2.2: ROM Configuration

2.3.0.5 Shift Registers

The function generator in a SLICEM can also be configured as a 16-bit shift register.
This way, each LUT can delay serial data from one up to 16 clock cycles. Moreover, the
SHIFTIN and SHIFTOUT lines can be used to connect other LUTs and form even deeper
shift registers. The four LUTSs in the SLICEM of a single CLB can be cascaded to produce
delays up to 64 clock cycles. It is also possible to combine shift registers across different
CLBs.

The configurable 16-bit shift register write operation is synchronous with a CLK input
and an optional CE, but the read operation is asynchronous by default. A storage element
can, however, be used to provide a synchronous read.

Applications developers can benefit from this feature in order to balance the timing of
data pipelines, or to implement synchronous FIFO designs.

2.3.0.6  Multiplexers

Each Virtex-4 FPGA slice has one MUXFS5 and one MUXFX multiplexer, where
MUXFX stands for MUXF6, MUXF7, or MUXFS, depending on the slice position. Each
CLB element has two MUXF6, one MUXF7 and one MUXF8 multiplexer, as shown in
Figure 2.5. These multiplexers are used to provide functions of five, six, seven, or eight
inputs, respectively, for each CLB.

Other than that, Virtex-4 FPGA function generators and associated multiplexers can
be combined to implement fully combinatorial, one-level logic wide input multiplexers.
The following configurations are possible:

e 4:1 multiplexer in one slice
e 8:1 multiplexer in two slices
e 16:1 multiplexer in one CLB element (4 slices)

e 32:1 multiplexer in two CLB elements (8 slices - 2 adjacent CLBs)



19

MUXF8 combines
the two MUXF7 outputs
(Two CLBs)

SLICE S3 F

MUXF6 combines the two MUXF5
outputs from slices S1 and S3

\_F6 /

SLICE S1 .

\_Ez/

MUXF7 combines the two MUXF6
m | SLICE S2 outputs from slices SO and S1
L
[0
3
LL
) MUXF6 combines the two MUXF5
D SLICE SO outputs from slices SO and S2
10 -
-1
CLB

v ug070_5_13_071504

Figure 2.5: MUXFS5 and MUXFX Multiplexers

2.3.0.7 Fast Lookahead Carry Logic

The Virtex-4 FPGA CLB has two separate carry chains, as shown in Figure 2.2. The
use of this dedicated carry logic provides fast addition and subtraction operations. The
dedicated carry path can also be used to cascade LUTs and implement wider logic func-
tions.

2.3.0.8 Arithmetic Logic

In order to improve the efficiency of arithmetic operations, one extra XOR gate is
included in each slice. This mechanism allows a 2-bit full adder to be implemented within
the slice boundary. On top of that, a dedicated AND (FAND or GAND) gate, to improve
the efficiency of multiplier implementation, is also included. Both elements can be seen
in Figure 2.3.



20

To/From Slice on Top

SHIETIN cour
ourusen To Fabric
1
YBUSED 8
YBMUX
CYMUXG
From 0 BYOUTUSED BYOUT
] BYINVOUTUSED BYINVOUT
FSMUX
FXINB
[ N FXUSED x
DFX\NA
YMUXUSED
N — YMUX
[ODUAL_PORT
[OSHIFT_REG YUSED
ol e’ = Y
= A4 B
G3 oLt Im
= (A3 D YMUX
&2 ORAM ‘
=G ﬁ OROM ] B: EE eIl E—— ]
oL, ]  DLATcH
[ ] ED 4 MC15 DYMUX
U SED o OINTL
11 xoiuszg OINITO
-] G1USE] Ws ol OSRHIGH
o
SHIFTIN F [ G s mev | Fev
ALTDIG ALTDIG
=
BY
DIG_MU; BY
1 Gz
[PROD
G1
| I —
GAND 1—-] [RICUSED o6
cvoe
BY
BY N
=* (:D D
BYINV
BYINV REVUSED
1 XBMUX
SLICEWEL SLICEWE1USED N N EUSED —
= SLICEWEOUSED CYMUXF 0 Il/ L4 xe
E0
WE £
CK WSE
WSGEN
F5MUX
o D F5SUSED 5
SHIFTIN L4
i XMUXUSED
JALTDIF FXOR p——————————>xmux
BX
XORF
FXMUX N XUSED
L —
DIF v 3 D X
F4 oI —)
33;3 Ad guut o e LG
2 A3 ORam e RULY -
Dcm A2 oRrom ] [E— ) D popr Q XQ
[ gi OLATCH
R e weis
(- WF3 OINITL
WF 2USED WF2 aINiTo
WE 1USED WF1 OSRHIGH
asrLOW
01 DUAL_PORT SR_REV. FFX
OSHIFT_REG |F
ﬁ [—=|BX
F2
PROI
L= F1
17— CYINIT
FAND o _»
CYOF BXCIN
BX
= (:D
BX B BXINV
CE
= (:D
CEB Feemv
CLK
=>CLK (:D RESET TYPE
CLK_B
o, Sty gsvne
0 OASYNC
=R ® D
sRE Ty SREFMUX -SYNC_ATTR
SHIFTOUTUSED CIN

SHIFTOUT

Figure 2.3: Diagram of SLICEM

To/From Slice on Bottom

UG070_5_02_071504



cout

-COUTUSED

21

1B > ve
-YBUSED
so \:CYMUXG
-F5MUX
FXINB
[
P FX
EXINA
= -FXUSED
> YMUX
-YMUXUSED
Y
e e ] ks v
:(33 A3 -YUSED
G2
I:Gl A2 D e Q YQ
= AL — E LATCH
-DYMUX
INITL
INITO
SRHIGH | -FFY_INIT_ATTR
SRLOW
SR REV | FFY_SR_ATTR
-CY0G FRY
G2
:l ) PROD.
G3|
L
-GAND L
o
-BYINV
BY S
= 2
BY.B -REVUSED
Ny
XB
YMUXF hd
/ _\ -XBUSED
s
-FSUSED
> 5
F5[ -F5MUX
-XMUXUSED
> XMUX
FXOR &, XUSED M
hd
e S — XB__-DXMUX
= ';3 A3 onr u.
= ﬁ ] - X DE o @ XQ
= BX, " OLATCH
oL
iNiTo
OSRHIGH -FEX_INIT_ATTR
OsrLow
R R -FFX_SR_ATTR
FFX
BX
1 2
= —
2
L — . BXCIN
1
-FAND o
-CYOF| |-cviNiT
BX BX
= BX_B
“BXINV
cE CE
= CEB $
TCEINV
CLK CLK
= CLK_E
-CLKINV RESET TYPE
SR SR osyne
SR B SRIN DOASYNC
-SYNC_ATTR

CIN

Figure 2.4: Diagram of SLICEL

ug070_5_03_071504



22

3 CONFIGURATION OVERVIEW

All user programmable aspects inside a Virtex-4 FPGA are stored in SRAM memory
cells, which due to their volatile characteristics, must be configured every time the device
is powered-up. These memory cells are known as the configuration memory, and they
define LUT equations, signal routing, voltage standards and all other aspects necessary to
customize the device in order for it to behave as expected. To program this memory space,
instructions, for the configuration control logic, and data, for the configuration memory,
are loaded from the bitstream through one of the configuration interfaces.

This chapter explores the interfaces, file formats and device connections used during
the Virtex-4 configuration process.

3.1 Configuration Interfaces

Configuration interface is a logical interface consisting of a subset of the device pins
used for loading the configuration data into the configuration memory (Xilinx UG070).
Each configuration interface is associated with one or more configuration modes, and each
configuration modes is targeted to specific application requirements. These modes are
selectable via external device pins, called Mode input pins. Table 3.1 shows the supported
modes and summarizes their characteristics.

Regardless of the mode pin settings, the JTAG/Boundary-Scan configuration interface
is always available, since it can be used also for debug purposes. However, when selected
explicitly, it disables all other interfaces to prevent pin conflicts.

Configuration Configuration Mode Pins CCLK Data
Interface Mode M2 Ml MO | Direction | Width
Serial Master Serial 0 0 0 Out 1
Serial Slave Serial 1 1 1 In 1
Parallel Master Select-Map | 0 1 1 Out 8
Parallel Slave Select-Map8 1 1 0 In 8
Parallel Slave Select-Map32 | 0 0 1 In 32
JTAG Boundary-Scan 1 0 1 N/A(1) 1

Notes: (1) JTAG mode uses the JTAG TCK pin instead of the CCLK.
Table 3.1: Configuration Modes And Interfaces
For serial and parallel interfaces, the configuration clock (CCLK) direction depends

on the configuration mode selected. Thus, the terms Master and Slave represent the fol-
lowing convention:



23

e [f the Master Mode is selected, the configuration clock is an output pin driven by
an internal Virtex-4 oscillator.

e If the Slave Mode is selected, the configuration clock is an input pin driven by
external configuration controllers.

While some of the configuration pins are dedicated to the interface and retain their
functionality even after the configuration is completed, others are general-purpose 1/0
pins and can be reused by user-logic after device initialization. This behavior can be
controlled by design constrains set during the implementation phase.

3.1.1 Serial Interface

Programming trough the serial interface can be done using master and slave modes.
The Slave Serial configuration mode allows for FPGAs to be configured from other logic
devices (e.g. microprocessors) or in daisy-chain fashion, while the Master Serial mode
makes possible to configure the FPGA from an external serial PROM. Data is loaded at
one bit per CCLK cycle in both modes, and the MSB of each data byte is always written
to the DIN pin first. Table 3.2 shows the signals involved in Serial Modes.

Signal Direction Description
CCLK Input/Output Configuration clock source.
PROGRAM_B | Input/Output Active-Low asynchronous full-chip reset.
INIT_B Input/Output | Input to delay configuration, output to set CRC error.
DONE Input/Output Input to delay device start-up.
M[2:0] Input Mode Pins — determine configuration mode.
D_IN Input Serial configuration data input.
DOUT_BUSY Output Data output for downstream daisy-chained devices.

Table 3.2: Serial Interface Signals Description

3.1.2 Parallel Interface

The SelectMAP configuration interface provides an 8-bit or 32-bit bidirectional data
bus interface to the Virtex-4 configuration control logic that can be used for both config-
uration and readback. Readback is an operation that allows the user to read the configu-
ration data back from the device, in case it must be checked for integrity purposes.

This configuration mode is used when speed is an important factor. It’s target applica-
tions are the same as serial modes, but due to its handshake signals, it involves a slightly
more complex protocol. Table 3.3 shows the signals involved in Parallel Interface.

ICAP

The Internal Configuration Access Port (ICAP) provides a configuration interface
from within the FPGA fabric allowing users to modify the device functionality at run-
time. The ICAP is a subset of the SelectMAP interface, implementing some of its signals
and a separated data bus for read and write operations. Following the example of Se-
lectMAP, the ICAP can also be configured to use both 8-bits or 32-bits data bus widths.
Table 3.4 shows the ICAP interface signals.

There are two ICAP modules in the Virtex-4 devices sharing the same underlying
logic: TOP and BOTTOM. The only difference between them is their physical location



24

Signal Direction Description
CCLK Input/Output Configuration clock source.
PROGRAM_B | Input/Output Active-Low asynchronous full-chip reset.
INIT_B Input/Output | Input to delay configuration, output to set CRC error.
DONE Input/Output Input to delay device start-up.
M[2:0] Input Mode Pins — determine configuration mode.
Data Input/Output | Configuration data input and readback data output.
CS_B Input Active-Low chip select to enable the data bus.
RDWR_B Input Determines the direction of the SelectMAP data bus.
DOUT_BUSY Output Handshaking to indicate successful data transfer.

Table 3.3: Parallel Interface Signals Description

on the chip. Since the same resources are used for both instances, the two interfaces can
never be active at the same time. If both sites are required to be present in the user design,
the TOP site must be activated before switching to the BOTTOM site.

Signal Direction Description
CLK | Input/Output Configuration clock source.
WRITE Input Determines the direction of the SelectMAP data bus.
CE Input Active-Low chip select to enable the data bus.
BUSY Output Handshaking to indicate successful data transfer.
1[31:0] Input Configuration data input.
O[31:0] Output Readback data output.

Table 3.4: ICAP Signals Description

3.1.3 JTAG Interface

Boundary-Scan mode is based on an industry standard serial programming inter-
face(IEEE 1149.1). The IEEE 1149.1 Test Access Port and Boundary-Scan Architecture
is commonly referred to as JTAG. JTAG is an acronym that stands for Joint Test Action
Group, in reference to the the technical committee responsible for its development. This
interface provides the capability of testing individual components and its interconnections
by sending standard-defined instructions and application-data trough the I/O pins of the
interface. Other than testing, JTAG provides the possibility for a device to have its cus-
tom set of instructions, such as configure and verify. This flexibility and standardization
makes possible to program FPGAs, PLDs, and PROMs through the same pins. For this
reason, Boundary-Scan has became the most popular mode of configuration. Table 3.5
shows the signals involved in JTAG interface.

Signal | Name Description
TCK | Input | Test Data Clock
TDI Input Test Data IN
TDO | Output | Test Data OUT
TMS | Input | Test Mode Select

Table 3.5: JTAG Interface Signals Description



25

3.2 Configuration Process

The configuration process for the Virtex-4 device is independent of the configuration
interface used. This means that even though each interface has different modes of op-
eration, the device configuration follows the same basic procedure regardless of the way
configuration data is being loaded into the device.

The overall process is divided in eight phases, as shown by figure 3.1. Following is a
brief explanation of each phase.

Bitstream

—_ am
Loading
. Clear Sample Device Load
ng?/‘n/alr(ii Configuration Mode Sync ID Configuration C;ZSk Ssetal:te-:ge
P Memory Pins Check Data q
: >
Time
Start End

Figure 3.1: Configuration Flow

Device Power-up

This is the first stage of the device initialization, and it occurs when power is first
applied to the FPGA. The device remains in this stage until power requirements across all
voltage banks are met. During power-up all internal state machines are forced to be reset,
and PROGRAM and INIT pins are both driven low by the device.

Clear Configuration Memory

During the second stage, while PROGRAM is still being driven low, the configuration
memory is cleared sequentially. All I/O pins are placed in a high impedance state, except
for the dedicated configuration interface and JTAG pins. After the configuration memory
is cleared, PROGRAM goes high.

Sample Mode Pins

At the third stage, after INIT_B transitions to high, the device samples the mode pins.
If the mode pins indicate that a Master Serial or Master SelectMap interface is in use,
the FPGA starts to drive the CCLK. At this point, the device also begins to sample the
configuration data input pins.

At this time, device configuration can be delayed by externally holding low, either
INIT_B (to avoid sampling mode pins), or PROG (to keep clearing the configuration
memory).

Synchronization

Before the configuration process can proceed, a special 32-bit synchronization word
(0xAA995566) must be sent to the device. The purpose of the fourth stage is to align the
start of the configuration data together with the internal configuration logic. Any data sent
prior to the synchronization is ignored by the device.



26

Check Device ID

In order to prevent potential damages to the device caused by incompatible bitstreams,
after device synchronization, a special device ID check is issued to assure the correctness
of the configuration data. At the fifth stage, the device ID present in the bitstream is
compared to the ID register in the internal configuration logic. Upon a detected mismatch,
an ID Error signal is generated and the configuration process is aborted.

Load Configuration Data Frames

Sixth stage begins after the internal configuration logic is synchronized, and after the
bitstream is validated by means of the ID check. At this point the configuration data is
ready to be loaded through one of the configuration interfaces. The bitstream content is
then feed to the device sequentially, following the interface protocol.

Cyclic Redundancy Check

As the configuration data is loaded, a cyclic redundancy check (CRC) value is calcu-
lated from the received data packets. After this process is finished, the bitstream can issue
a Check CRC instruction to the device, along with the expected value. If the calculated
value does not match the expected, the device drives INIT_B low and aborts configura-
tion. If this happens, the device must be resynchronized and the configuration process has
to be restarted.

Start-up

After the device receives all the configuration data, the start-up sequence begins. This
sequence is controlled by an eight phase sequential state machine responsible for han-
dling the last events in the configuration process, including when the global internal reset
signals are toggled and when the DONE pin goes high, indicating the end of the process.

3.3 Operational Modes

When the configuration process finishes, and the DONE pin is driven high, the device
transitions from configuration to user mode. From this point forward it operates according
to the design that was programmed until power-off is applied, or until it is brought back
to configuration mode. This can happens if power is cycled, PROGRAM_B is driven
low, or the JPROGRAM instruction is sent to the JTAG interface. Every time the de-
vice enters configuration mode its internal configuration memory is cleared, and all prior
programmed data is lost. Figure 3.1 shows a regular operation cycle.

\ Configuration User
Mode Mode

Device ) . Start-up Operation According to Device
Configuration Process .
Power-up Sequence Programmed Design Power-down
L A
I >
Time

Figure 3.2: Regular FPGA Operation Cycle



27

3.4 Dynamic Partial Reconfiguration

The term Dynamic Partial Reconfiguration describes the process of reprogramming
a device while still in user mode. This advanced feature extends the inherent flexibility
of SDRAM FPGAs by allowing only specific regions of the device to be reconfigured
while the remainder of the design is still operational. This capability allows the designers
to reduce the overall cost associated with board space, to update the design remotely
and even to reduce power consumption. Other than this, the possibility to dynamically
change the hardware functionality of only a small portion of the device offers real-time
flexibility to choose the most adequate algorithms and protocols to handle the tasks at
hand (Xilinx WP374).

Regarding implementation flows, there are two main styles of partial reconfigura-
tion: Partition-based (Xilinx UG702) and Difference-based (Xilinx XAPP290). Partition-
based dynamic partial reconfiguration is used when the reconfigurable portions of the de-
sign are complete self-contained partitions. The reconfigurable regions on the device can
then be used to time-multiplex modules similarly to the way a microprocessor switches
tasks. On the contrary, difference-based DPR is targeted to small reconfigurations, such
as LUT equations, user-memory values and I/O standards. This way, on-the-fly updates
of hardware-based algorithm parameters can be performed.

Despite of the reconfiguration method used, implementing a reconfigurable design is
very much alike to implementing multiple regular designs that share common resources.
After all designs have been implemented, and an initial configuration is selected, partial
bitstreams can be derived. Partial bitstreams are configuration files that contain only
the data associated with the difference between two regular bitstreams. Switching the
configuration of a design from one implementation to the other is very fast, as the partial
bitstream sizes tend to be significantly smaller. Thus, the reconfiguration process can be
performed in fractions of the time required for a full configuration cycle.

Designs modifications can be performed at two different levels. The first one, at
the front-end; and the second, at the back-end. For front-end changes, the design must
be modified in the HDL or schematic file. This process requires the design to be re-
synthesized and re-implemented in order to generate a new placed and routed netlist.
For back-end changes, the original placed and routed netlist is directly modified. This
process, however, requires a much more in-depth knowledge of the device internal archi-
tecture and toolchain. While there are a vast amount of possible changes to be made in
the back-end, it is only recommended to modify I/O standards, BRAM contents and LUT
functions. Other modifications, such as routing, may induce resource contention during
the reconfiguration process, which can produce a system failure.

In comparison to the back-end, front-end changes are usually much more intuitive,
since they take place at a more familiar and comfortable level. On the other hand, opti-
mizations in the synthesis, mapping and routing process can lead to changes in the design
that were not initially considered. Although functionally speaking the same result can be
achieved regardless of the technique employed, there is a trade-off between abstraction
level versus control over the affected resources. Usually, back-end changes are associ-
ated with difference-based reconfiguration, while front-end changes are associated with
partition-based.



28

3.5 Managing Dynamic Partial Reconfiguration

Partial bitstreams already contain all the information required by the FPGA internal
configuration logic. Thus, managing dynamic partial reconfiguration does not require
any knowledge of the affected resources, nor any pre-processing of the configuration file
before it is loaded in the device. Generally speaking, managing dynamic partial reconfig-
uration means retrieving the partial bitstream from a external repository and transferring
it to the device via one of the configuration interfaces.

Loading a partial bitstream can be done in the same way as a regular one, although not
all configuration modes are available. Specifically, only Slave SelectMAP, Slave Serial,
JTAG and ICAP can be used for this purpose. Moreover, if Slave SelectMAP needs to
be used, special constraints are required during the design implementation phase in order
to prevent non-dedicated interface pins to be released after initial device configuration.
Another difference is that the partial bitstream contains, essentially, only configuration
data, so it does not have the commands to trigger the device start-up sequence. This
means, among other things, that after all the information in a partial bitstream file has been
transferred to the FPGA, the DONE pin is not asserted. In this case, the configuration
controller must monitor the data being sent in order to know when the operation has
finished.

Usually, INIT and PROG pins are driven low to start a full device configuration. How-
ever, before uploading a partial configuration file this must not be done, as it would clear
all the FPGA internal memory. Any indication required by the active design before the
partial reconfiguration starts, such as toggling enable signals and disabling clock regions,
must be performed by its own logic. Generally, as soon as file transfer is completed, the
reconfigured region can be released for active use.

Although a wide variety of methods can be used to implement the configuration con-
troller, the two techniques in Figure 3.3 are most commonly used.

External Memory External Memory
2 2 4
Master Slave
Interface ICAP < WP Interface <
FPGA FPGA uP
Y Y Y Y
RR RR RR RR
Self-Reconfigurable Externally Reconfigurable

Figure 3.3: Methods of Delivering a Partial Bit File

The first technique, shown at the left of Figure 3.3, uses a self-reconfigurable ap-
proach. The FPGA-embedded microprocessor is responsible for loading the partial bit-
stream files from an external repository and sending them to the ICAP interface. This



29

solution benefits itself from the internal configuration port to implement both the recon-
figuration controller and reconfigurable design in the same device. This leads to a compact
and cost efficient design. On the other hand, due to the static requirements of the config-
uration controller, fewer resources are available to implement the reconfigurable module.
Moreover, initial device configuration must be accomplished by other means, such as by
using a master mode interface connected to a non-volatile memory.

On the right side of Figure 3.3 the second technique is presented. This solution is very
similar to the first, but instead of implementing the configuration controller internally to
the device, everything is moved off-chip. Here, an external microprocessor is connected
to an outside configuration port. The advantage of this approach lies on the fact that the
whole device can be used to implement the reconfigurable design. Other than this, the
same controller that performs the reconfiguration can be used for the initial bitstream up-
loading. The drawback of this solution is the associated cost of one extra system module.

3.6 Configuration Data Files

In order to provide system designers with more flexibility, Xilinx tools can gener-
ate different formats of bitstreams. Each one is formatted in a different way, so system
constraints must be analyzed to determine which format is more appropriated. Table 3.6
shows the different formats of the configuration files.

File Extension Description

.bit Binary file containing header information that should not be
downloaded to the FPGA.

bt ASCII file containing a text header and ASCII 1s and Os.

.bin A binary file containing no header information.

.mcs, .exo, .tek ASCII PROM formats containing address as well as checksum
information.

.hex ASCII PROM format only containing data.

Table 3.6: Xilinx Configuration File Formats



30

4 RELATED WORK

Several fault injection platforms based on dynamic partial reconfiguration have been
proposed in the past. This section presents an overview of the usually employed methods
and some of the latest publications on the subject.

4.1 General Board Fault Injection Platforms

General board platforms are generic fault injection platforms that can be implemented
on any commercial FPGA development board, provided that it contains the same re-
sources as the one in which the platform was initially developed in. That is not particu-
larly difficult, since most vendors tend to offer similar solutions with equivalent embedded
memory size, communication peripherals and configuration options. In other words, this
platforms do not require a unique proprietary board design manufactured only for the fault
injection system.

4.1.1 Reconfiguration Trough XHWIF Using JBITS

The JBits software (S. Guccione et al 1999) is a set of Java classes which provide an
Application Programming Interface to access the Xilinx FPGA bitstream. The interface
operates on either bitstreams generated by Xilinx design tools, or on bitstreams retrieved
from the actual devices by readback operations. This allows all configurable resources
like Look-up tables, routing and the flip-flops in the FPGA to be individually configured
and modified under software control in real time operations.

The work proposed by (P. Kenterlis et all 2006 ) is based on a mixed hardware/soft-
ware platform for fault injection in both sequential and combinational circuits using the
JBits API. The platform is composed by a workstation and a single FPGA board. The
FPGA board used was a XESS XSV800 equipped with a Virtex device (XCV800). To
connect the board with the workstation, and special USB controller was developed in an
Atmel AVR chip. This controller provides a USB connection to the host and a modified
8bit bidirectional port connecting to the FPGA’s logic XHWIF port, a interface for pro-
gramming Xilinx FPGAs from Java code. The FPGA device is responsible for hosting the
XHWTIF port, the circuit under test, the test pattern generator, possible embedded mem-
ory and a comparator. Implementations details on the placement and implementation flow
were not provided.

The software running on a workstation is primarily responsible for analyzing the de-
vices bitstream and retrieve a list of LUTs input usage. In synthesized circuits, it is possi-
ble that some of the LUT inputs are not used for logic implementation, and faults affect-
ing those inputs would not manifest themselves in the LUT’s output. Although in a real



31

scenario faults can affect those inputs, in the paper the authors choose to conduct their
experiment only on used LUT bits. After this, a list of the fault location is compiled, and
bitstream modification can be performed in order to flip bits in the CUT’s frame space.
All software routines make use of the JBITS API to access bitstream information.

Fault injection is performed by dynamically partial reconfiguring the device. Results
are retrieved after each fault injection to perform fault classification based on location
and effect. Experimental results presented by the authors show that the platform obtained
a speed gain of 221.14x over estimated simulation-based fault injection time. Although
this theoretical speed-up has been achieved, the mechanism of fault classification may
constitute a bottleneck, since after each fault injection data must be transmitted back to
the workstation.

4.1.2 Reconfiguration Trough ICAP

The fault-injection platform developed by (L. Sterpone et al 2007 ) is composed of
two modules: a host computer and a general FPGA board equipped with a Virtex-II Pro
device. To connect the FPGA device and the host computer, a serial communication cable
over a RS-232 line is used.

The host computer is used for configuring the Virtex-1I Pro and for generating the fault
location list. During the execution of the fault injection experiment, it’s only purpose is
to provide a user interface to the fault-injection experiments and to collect the results in
terms of fault effect classification.

The architecture of the proposed fault-injection system is completely implemented
on the FPGA device. Four components are mapped on FPGA and interconnected by an
On-chip Peripheral Bus (OPB). They are:

e Timing Unit: Drives the CUT clock and reset. The clock of the CUT has the same
frequency of the FPGA device.

e Circuit Under Test (CUT): The circuit under test. Both it’s input and output pins
are connected to the OPB Bus, while the reset and clock signals are connected to
the Timing Unit.

e ICAP: The reconfiguration interface.

e PowerPC microprocessor: Hardcore microprocessor. Executes the partial reconfig-
uration for fault injection and reports the fault injection results to the host computer
trough the serial line.

The fault impact analysis is performed in three steps. First, in the pre-running phase,
the test patterns that will be applied to the CUT are loaded within the PowerPC memory.
If the CUT has its own memory (i.e. a microprocessor), it is initialized as well. Secondly,
the CUT is executed in order to record the correct output vectors. At the end of this
execution, the total number of clock cycles need by the CUT and the correct outputs are
stored within a memory block connected to the PowerPC trough the PLB bus. Finally, the
fault is injected in the CUT.

The fault injection process is performed by reading back the configuration memory
frames corresponding to the fault location, flipping a random value and writing back the
modified frame in the ICAP interface. Then, after the correct amount of clock cycles,
the output of modified CUT is compared to the initial run corresponding to the correct



32

outputs. At last, the PowerPC updates a fault classification list with the results obtained
by the fault-injection and classifies each injected fault according to it’s effect. Faults
can be classified as silent, if the output produced by the DUT are equal to the golden
outputs; wrong answer, if a mismatch was detected; or time-out in the case the DUT
IP core is blocked. Experimental data presented by the authors show that the average
reconfiguration time and fault analysis is 6ms/fault.

Similar work was proposed by (L. Katka 2008) using a Microblaze softcore as the
microprocessor unit. Other than the fault injection platform, the author also presented
improvements on the original ICAP device drivers in order to speed-up the reconfiguration
process. Results shown indicate a speed gain of eight times over the Xilinx available
solution.

Although the ICAP provides a high-speed interface for device reconfiguration, it’s
use implies in a restricted placement for the circuit under test. Since the ICAP physical
resources are in the bottom right corner of the Virtex-II Pro Devices, this column space
cannot be used for hosting the reconfigurable modules (i.e, the CUT). Since in each side
border of this device there is an IOB Column, the use of ICAP prevents the CUT to be
placed in configuration range of one of this columns, and prevents one entire border of
I/0 pins of being used for inter-chip communication. Other than that, since the same
device is used to implement the entire fault injection platform, the overall left area for
CUT implementation is significantly reduced.

4.1.3 Reconfiguration Trough Boundary Scan

The work proposed by (N. Battezzati et all 2008) is fault injection platform formed by
a software application, running on a PC; and a general FPGA board, hosting the Device
Under Test. The hardware is not designed to support the test, as many platforms suggest;
instead, the same device to be used during the mission is used to perform the fault injec-
tion. This characteristic provides the possibility to evaluate faults affecting the exactly
same circuit routing to be used during mission time.

The software platform, in order to perform the injection campaign, uses a list of faults,
a set of input vectors and the information describing the boundary scan architecture that
provides access to the DUT. The communication is handled through the JTAG protocol,
either by the PC’s parallel port or the USB interface.

The fault injection process is based on dynamic partial reconfiguration using the dif-
ference based flow. Faults are injected reconfiguring the device with partial bitstreams
that differ from the original by only one bit. Partial bitstreams are generated on the fly
based on the original bitstream and a list of fault locations. After a fault is injected, the
software platform uploads the entire list of input vectors through the JTAG interface and
reads back the resulting state of the circuit for comparison with expected values. If any
difference is found, the fault is labeled as detected and the application is stopped, in order
to save time. A report file is updated with the details about the fault location and received
outputs. Otherwise, if no differences are found, the fault is classified as not detected. The
device is configured again to remove the bit flip introduced by the last fault injection, and
the procedure restarts for another fault location until the list is over.

This platform has some important characteristics that differs itself from the others.
First, due to the use of boundary scan architecture, the implementation does not depend
on the device family, model or package. Secondly, it is completely non intrusive, and
does not require any modification in the circuit to be tested. Finally, by being a purely
software solution, it does not require additional hardware to perform the fault injection.



33

However, the low cost and the non intrusiveness come at a cost. The boundary scan
approach implies in a serial configuration interface that leads to reduced performance
during reconfiguration. Other that that, the great amount of data exchanged between the
PC and the DUT create a bottleneck for speed-up. For this reason, long run times are
expected for this platform.

The experiments used a general board with a Virtex 4(XC2VP4) device for the DUT
and a Xilinx Parallel Cable III at 200 kHz to connect it to the PC. Accordingly to the tests
performed, in the best case scenario, the fault injection time was 268ms/fault, while the
worst case produced a 862ms/fault time. The variation is produced by the number of I/O
pins used in the DUT, which represent more shifts through the JTAG registers. While in
the best case there were only 17 I/O pins used, in the worst there were 99 1I/O pins.

4.1.4 Bitstream Corruption for Configuration Control Mechanism Evaluation

So far, the works proposed in the literature were only interested in faults affecting the
circuit implemented in the FPGA device, but none was concerned with faults affecting
the device’s internal mechanisms. The work presented by (M. Alderighi et al 2003) intro-
duces a different approach for evaluating the effect of faults in Xilinx Virtex FPGAs. The
work focuses on the structure that performs the device configuration, called configuration
control mechanism, and targets designs that performs reconfigurations for fault-mitigation
or adaptive routines as part of a normal operation cycle. The more often a design recon-
figures itself, the more likely a fault affecting the configuration mechanism will manifest
itself.The configuration control block is comprised of SRAM memory cells and is prone
to faults the same way as the configuration memory.

Based on that, the paper presents a tool for injection faults in the configuration control
mechanism of Virtex devices. A specific device (XQV100) is used, but the methodology
can be generally applied to other devices of the Virtex and Virtex II families. Fault In-
jection is performed by modifying the bitstream while it is loaded into the device. The
instructions for the configuration control mechanism are corrupted and fed to the device.
Results show that faults affecting the configuration control block can provoke complete
device failure caused by erroneous bitstream loading. Although there was no fault sce-
nario in which the device was able to complete the configuration process, error signals
were always set by the device. Details regarding implementation processes were not pro-
vided.

4.2 Custom Board Fault Injection Platforms

Custom board platforms are dedicated fault injection platforms designed specially
for one system architecture. They comprise software applications running on high-end
workstations and custom-made FPGA boards. Multiple FPGA devices are used in order
to isolate the configuration controller from the circuit under test.

The main examples of such systems found in the literature are the FLIPPER and the
FT-UNSHADES-C Platforms.

4.2.1 The FLIPPER Platform

The FLIPPER Platform (M. Alderighi et al 2007) is a tool for fault injection target-
ing the FPGA’s internal memory. It’s development was funded by the European Space
Agency with the purpose of evaluating the single-bit and multiple-bit upset effects in Xil-
inx SRAM-based FPGAs. FLIPPER is used to evaluate fault sensitivity by collecting a



34

probability distribution of the number of randomly injected faults necessary to cause a
functional error. The platform is comprised of three main parts: a control board, a device
under test and a workstation computer.

The control board manages the overall fault injection procedure by means of a Virtex-
IT Pro (XC2VP20) device. This board also contains 128Mbytes of SDRAM and 16Mbytes
of Flash memory, and communicates to the workstation via a USB 2.0 port controlled by
a dedicated microcontroller. Furthermore, it also has two 240 pin connectors plus one 60
pin connector for the test data and control communication with the Device Under Test.

The Device Under Test board contains a Virtex II (XQR2V6000) device for fault in-
jection tests. The entire device is intended for the DUT implementation, so no modifi-
cations are required. Even so, designs must constrain to the device’s pin-out, so proper
communication can be established with the control board. The DUT board is connected
to the control board trough a piggy-back style connector, and share with it up to 416 sig-
nals. Additionally, a temperature sensor is included on the board to monitor the device’s
temperature during the experiments.

The workstation is responsible for hosting a software application that was specifically
developed for the FLIPPER system. Trough this application it is possible to set up the
experiment options such as I) the target of injection, II) the test mode (internal memory bit
may be randomly addressed and faults may accumulate until a functional failure occurs,
or the bits may be addressed sequentially, one at a time), III) the fault type (either single
bit flip or multiple bit flip), IV) the DUT clock rate, and V) the address range of memory
bits that are involved in the current experiment. Other than that, it is possible to import
input and output vectors from a ModelSim simulation at every clock edge. These vectors
are used as reference values and test stimuli during the fault injection process, and are
150bit and 120bit wide respectively. This data is stored on the control board memory
prior to the fault injection session.

Fault injection is achieved using frame modification and dynamic partial reconfigu-
ration from the control board over the DUT board trough an unspecified configuration
interface. The DUT is partially reconfigured to inject single or multiple bit flips, and then
exercised with the whole set of test vectors to verify the functional influence of such a
fault on the device. Outputs from the DUT are compared with golden values stores in the
control board’s memory. When a mismatch is detected, a fault packet including all the
information relevant to the system behavior is sent to the workstation. Once the test is
started it proceeds until the stop condition, configurable by software, is met.

For the fault injection campaign, the DUT device is initially configured and, after
checking the configuration signals (INIT, BUSY and DONE), the whole set of stimuli is
applied for verifying the experimental set up and the correct design behavior. FLIPPER
then injects a fault by dynamic partial reconfiguration into a random configuration mem-
ory location and applies the stimuli. This procedure iterates, accumulating bit flips in the
configuration memory, until one or more output signals deviate from the reference ones.
The fault is logged to the workstation.

Experiments using the FLIPPER platform took a execution time of 17 hours over two
XTMR design variants and the plain version of a particular design. During this time
there were injected 3,3 million faults, corresponding to a injection time of 18ms/fault. No
operation frequency was provided for comparison.



35

4.2.2 The FT-UNSHADES-C Platform

The FT-UNSHADES-C (J. Tombs et al 2004) (Fault Tolerant - UNiversity of Sevilla
HArdware DEbugging System) platform is a mixed hardware/software platform that fo-
cuses in producing a functional design test over the circuit’s Flip-Flops. The main objec-
tive is to perform a study about the circuit robustness targeting latter ASIC fabrication.
The system generates a fault dictionary, where every pair {fault,instant} is classified to
obtain the following information: sensitive FF, time of fault injection, outputs modified
and time of output discrepancy. According to the FI-UNSHADES-C, faults can be clas-
sified as damage, if it produces abnormal behavior on the CUT outputs; and latent, if no
discrepancy can be found. The platform is comprised of three main parts: a control device
(C-FPGA), a core emulation device (S-FPGA) and a workstation computer.

The S-FPGA device is a Virtex FPGA (XC2V8000) used to hold two versions of
the CUT. The first is dedicated to produce the right outputs (GOLD), while the second
is used for fault emulation (FAULTY). Fault injection is achieved using dynamic partial
reconfiguration over the Faulty module FFs. By definition, when a partial reconfigurable
module is reconfigured, it’s internal storage elements are not modified, so in order to
modify bits in the a CLB Flip-Flop, an additional scheme is required. One important
issue inside this scheme is time. Time is controlled in terms of clock cycles applied
to both, faulty and gold circuits, which is represented by a counter. In the same way,
time is the way to address input vectors stored in the SRAM memory banks. When the
fault injection time is achieved or a fault is detected, the circuit has to be frozen in order
to perform the necessary internal manipulations in the configuration memory of the S-
FPGA. In other words, clock has to be carefully stopped at a precise cycle and continued
when the accesses are completed to assure the clock counter integrity. To handle this task,
the two circuits are wrapped in what is called a test shell.

A test shell is a set of hardware resources used to control the fault injection procedure
and fault classification. It is comprised of three blocks: the time counter, the clock handler
and the vector addressing.

e The Time Counter block maintains a log of the relative clock cycles that drive the
Golden and Faulty circuits.

e The Clock Handler is responsible for stopping the circuits before the fault injection,
relaunching the circuits after the fault was injected, producing the necessary signals
to indicate fault detection by comparing both circuits outputs, and, finally, handling
the debug signals for single-stepping analysis.

e The Vector Addressing is responsible for generating an address derived from the
Time Counter that points to the corresponding input vector stored in the on-board
memories.

The test shell uses about 300 system gates, and doesn’t introduce any delay penalty over
the system behavior, since it only operates over the golden and faulty circuits clock.

To perform the fault injection process and control the aspects of the test shell, a control
device is used. The C-FPGA is a Xilinx Spartan 1I-50 device connected to the S-FPGA
through a SelectMap link, and to the workstation computer through a parallel or USB
port. The C-FPGA is also responsible for gathering the data from the S-FPGA and report
them back to the workstation.

All parameters regarding the fault injection process are defined by the software run-
ning in the workstation. The application was developed to generate the test vectors and



36

download them to the C-FPGA memory along with a list of the FFs where faults need
to be injected. Also, the application provide analysis tools to elaborate single-stepping
analysis and fault classification based on the results gathered by the C-FPGA.

Experimental results show that a single fault injection takes approximately 41,6ms at a
frequency of SOMHz. For designs with a small number of flip-flops, the FI-UNSHADES-
C Platform is not valid. Accordingly to the authors, only designs with more that 500 FFs
and 200K+ test vectors can beneficiate from this platform.



37

5 PROPOSED WORK

The proposed fault injection platform aims at low cost and modularity, which allows
it to be implemented on most of the commercially available FPGA development Kkits.
This feature opens the possibility for future design updates without the necessity of re-
engineering and manufacturing custom boards. Other than this, the proposed architecture
is focused on non intrusive techniques. Thus, no reallocation of the circuit under test
is required during the fault injection campaign. This way, tests can be conducted on
the original system implementation, and the fault impact analysis can be performed over
the same device that will be deployed. In order to assure compatibility with most target
boards, faults are injected using an industry standard interface.

5.1 Proposed Architecture

The proposed platform is divided in four different modules: desktop PC, configuration
controller, data acquisition module and device under test. The top-level architecture is
shown in figure 5.1.

r
Desktop PC _ N COTS FPGA Dev-Kit Device Under Test
"~ Ethemet ) ) >
Configuration JTAG
< > Controller
RS232 Circui
Host Injection ircuit
o Under
Application Event Test
COTS DAQ Module

Digital 1/0
D
Analog 1/0 Data

A
A

PCle

Figure 5.1: Top-Level Architecture for Proposed Platform

5.1.1 Desktop PC

The desktop computer is responsible for hosting the applications used to operate the
fault injection platform. The whole set is composed of four different software items.

The first application, called fault manager, is responsible for analyzing the netlist of
the circuit under test and determining to which resources of the DUT it is mapped to. After
this, the fault manager creates a set of partial bitstreams that reconfigure only the resources
occupied by the CUT. These partial bitstreams are created using the difference-based DPR
flow and contain, each, modifications targeting only one CLB at a time. Thus, each partial
bitstream can be considered a different fault to be injected. It is important, though, that



38

for each generated configuration file, another one is created with the intention of reverting
the changes caused by the first. On the contrary, after n injections, the circuit under test
would have n different faults accumulated. Although sometimes it can be interesting to
evaluate the effect of multiple faults accumulating over time, that’s not always the case.
Other than the bitstreams, the fault manager also creates a scheduler for the configuration
manager. This binary file determines the order in which the faults will be injected, and
for how much time each fault will be active.

In order to evaluate the effect of the injected faults, another application, called data
processing interface, is required. This application is responsible for acquiring all infor-
mation transmitted from the data acquisition module and comparing it in real-time to
pre-compiled results obtained from simulation. Faults and their impacts on the system
can be correlated using the configuration scheduler generated by the fault manager.

The other two applications do not require any development effort, since they are util-
ities commonly found under free/open source licenses. However, they are still important
for the platform management. One of them is a FTP server, and the other, a serial port
terminal. The FTP server provides the configuration controller all the files required during
the fault injection process. The serial terminal, on the other hand, receives and transmits
data from/to the configuration controller. This data is used to monitor the status of the
current fault injection campaign and control the overall process, allowing it to be started,
paused, resumed and aborted.

5.1.2 Data Acquisition Module

The data acquisition module is the platform component responsible for acquiring all
relevant output signals from the device under test and transmitting them to the desktop
computer. Usually, only the computation result is analyzed, but it is also possible to
monitor other variables such as voltage levels, current consumption and core temperature.
There are several commercially available solutions that provide variable number of input
pins, sampling rates, measurement resolutions and bus connections. According to the
monitoring requirements of the fault injection study, different devices can be employed.

For example, suppose the platforms requires 8-bit resolution DAQ sampling at 4 MS/s
on 32 different channels. The required bus bandwidth between the desktop computer and
the DAQ would be of:

lbyte " LM Samples  32M B
Sample second  second

32 x

So, in order to support this data rate, a bus of at least 128MB should be used. Table 5.1
shows the maximum theoretical data streaming rates of common data acquisition buses.
Values are according to the following specifications: PCI, PCI Express 1.0, USB 2.0,
Gigabit Ethernet and Wi-Fi 802.11g.

Bus Streaming Rates
PCI 132 MB/s (shared)
PCI Express 250 MB/s (per lane)
USB 60 MB/s
Ethernet 125 MB/s (shared)
Wi-Fi 6.75 MB/s (per 802.11g channel)

Table 5.1: Streaming Rates of Common Data Acquisition Buses



39

It is important to note that the actual bus bandwidth is always lower than the theoretical
limit. Observed values vary according to the number of devices sharing the same bus and
host system performance. For this reason, in order to provide the maximum data rate
between the DAQ and the desktop computer, one or more PCI-Express data acquisition
cards are suggested.

5.1.3 Configuration Controller

The configuration controller is responsible for managing the dynamic partial recon-
figuration of the device under test. It is composed, essentially, by an application running
on a FPGA embedded microprocessor.

In order to host the configuration controller, a FPGA board must meet a few require-
ments. It should have, at least: an Ethernet PHY transceiver and a RS232 UART port, to
communicate with the desktop computer; flash memory, to store the FPGA configuration
file and the embedded application; DDR memory, to store all partial bitstreams and host
the application; and available I/O pins, to connect the DUT; The block diagram for the
minimal configuration controller board configuration is shown in figure 5.2.

Configuration Controller Board

: |
| |
! |
: Ethernet | ~ L, ~ Power :
! PHY [~ 7 7| Regulator !
| |
|
' DDR < 3 < 3 ; :
I < > < » Oscillator
: Memory I
: FPGA |
| |
Flash I
| < »
'l Memory | ” < »| Debug Port i
I i
! |
I
| | RS232 Port [€——> <« 0 |
| Connector I
|

Figure 5.2: Minimal Configuration of Configuration Controller Board

Upon power-up, the FPGA reads from the flash memory it’s associated bitstream using
a master mode configuration interface. This configuration file contains an small bootstrap
allocated to the microprocessor local memory. After device start-up, it begins to load the
embedded application from the user section of the flash memory into RAM.

Once loaded, the configuration manager application attempts to connect to the desktop
computer through the Ethernet interface. If the connection is established, it requests from
the FTP server all files required during the active fault injection campaign. This includes
the full bitstream to be initially configured at the DUT, the configuration scheduler and
the set of partial bitstreams generated by the fault manager. All data received is allocated
in RAM for latter use.

After receiving all requested files, the configuration manager application configures
the DUT with it’s initial bitstream and sleeps until start command is received through the
serial port. This stand-by period can be used to perform a basic sanity check on the DUT
system board in order to verify cable connections and power lines. When commanded,
the configuration manager starts to upload the partial bitstreams to the DUT, following
the configuration scheduler definitions until the cycle has been completed.



40

In order to synchronize each fault injection with the data sampled by the data acquisi-
tion module, a event signal is asserted by the configuration controller each time a partial
bitstream is uploaded. This signal is captured by the DAQ in the same clock as the output
signals from the DUT, so the data processing interface can correlate each fault and it’s
impact.

The configuration manager is connected with the DUT by a JTAG bus, as shown
in figure 5.3. The use of a industry standard interface assures compatibility with most
system boards, eliminating the need for custom layouts to expose less used configuration
interfaces. Moreover, it allows the configuration manager to reconfigure multiple devices
connected to the boundary-scan using the same connection.

| Configuration B DUT |
I Controller B !
| | |
| FPGA TDO [« : i TDO |
| ¥ 1 |
! 0 I
! I I
i DI —> DI TDI TDO TDI TDO TDI TDO i
I
! I I
! I I
i [
! T™S ! Ly TMS —— TMS ™S L T™s !
! 0 I
! I I
| | |
! TOK [ Ltp| TCK | ——& TCK TCK TCK !
! I I
i | | JTAG Header Device 0 Device 1 Device n |

Figure 5.3: Connection Between Configuration Manager and DUT

Figure 5.4 shows the configuration controller FPGA block diagram.

i
i FPGA I
! D-Cache PDR I-CACHE I
| Controller !
I |
| |
! I
: [
i I
Interrupt Memory . Debug I

|
I'| Controller DCM Controller Timer Module i
l | | I I !
' |

|
! :
: uProc I
! I
| |
! I

|
! :
' UART Ethernet JTAG Flash DMA ||
: Controller TAP Master Controller Controller I
| |
I

e

Figure 5.4: Configuration Controller Block Diagram



41

5.1.4 Device Under Test

One key aspect of the proposed fault injection platform is its non intrusiveness aspect.
This is accomplished by three different premises:

e No modifications are required in the CUT.
e No extra logic is added around the CUT.

e Device under test hosting the CUT is reconfigured using an industry standard inter-
face.

Since no extra logic is added around the CUT, even large designs occupying the entire
FPGA logic are assured to be tested in their original target devices. Moreover, since no
modifications are required in the CUT, the fault coverage analysis can be conducted on the
same FPGA resources mapped to the original design. Finally, by using industry standard
interface for reconfiguration, faults can be injected on the same board used in the deployed
system.

The benefit of using the same board of the deployed system for performing the fault
injection campaign is reflected on several aspects of the design validation process. First
aspect is the ease of operation. Once no additional modification is required at any level of
the system design, the platform is plug-n-play. The second aspect concerns the hardware
used for testing. Since the actual system board is used for fault injection, stimuli can
be performed through the same communication interfaces used during the device mis-
sion. This feature enables the analysis of faults targeting the device 1/O pins. This is
particularly good to understand faults affecting the electric characteristics of the different
interfaces connected to the DUT. Third aspect is related to results reliability. Evaluating
fault mitigation techniques over the original system design provides results prone to less
error than the ones obtained with extra instrumentation logic.



42

6 IMPLEMENTATION

In order to evaluate the feasibility of the proposed fault injection platform, a prototype
of the configuration controller was developed. The implementation was based on the ar-
chitecture presented in chapter 5 and comprises both the FPGA design and the embedded
application. The resulting work is a fully operational module capable of performing fault
injections on any DUT connected over the JTAG bus. The following sections describe the
development process and the implementation details.

6.1 Development Board

The development board used for implementing the configuration controller of the
proposed fault injection platform should fulfill the requirements presented in figure 5.2.
Based on these constraints, and the available options at the microelectronics group in
UFRGS, the chosen board was the Digilent Atlys.

The Atlys circuit board is a complete, ready-to-use digital circuit development plat-
form based on a Xilinx Spartan-6 LX45 FPGA, speed grade -3 (502-178). The large
FPGA device and variety of on-board peripherals make this an ideal host for a wide range
of digital systems. Not only that, but this development platform is fully compatible with
all Xilinx CAD tools, including ISE and EDK.

Features

Although there is a great amount of features on the board, the ones relevant to this
work are:

e Xilinx Spartan-6 LX45 FPGA

128 MByte DDR2 with 16-bit wide data

USB-UART

10/100/1000 Ethernet PHY

116M Byte x4 SPI Flash for configuration and data storage

100MHz CMOS oscillator

JTAG debug port

48 1/0O’s routed to expansion connectors



43

Board Configuration

The Atlys board can be configured through three different interfaces: JTAG, Serial
and SPI.

An on-board jumper, JP11, selects between JTAG/Serial and SPI. If JP11 is not placed,
the FPGA will automatically load a bitstream from the flash memory at power-up. If
JP11 is placed, the FPGA will remain in configuration mode until a bitstream is received
through the JTAG or the Serial interface. The JTAG interface can be operated either from
a desktop PC USB connection, or direct from it’s board header; the serial interface can be
accessed from a memory drive attached to the USB HID port of the board.

Another on-board jumper, JP12, selects the voltage level of the FPGA bank 2 pins
(either on 3.3V or 2.5V). If JP12 is not placed, the pull-ups for CCLK, DONE, PRO-
GRAM_B and INIT_B are not provided. If this happens, the FPGA is held in the reset
state and cannot be programmed.

Figure 6.1 shows the available configuration interfaces for the Digilent Atlys board.

, |
! |
! |
| _ o usB |4 | JTAG SPI | «| Flash !
| USB =72 controller [ | Interface Interface | 1 Memory ||
'l Port > |
: |
! |
! |
|

I |JTAG :
| < -

: Port [€ Spartan-6 LX45 :
| |
. |
i USB |
! HD | _ Micro > w| Serial |
! Port |™ 7| controller | ”|Interface |
| |

Figure 6.1: Atly Configuration Interfaces

6.2 Toolchain

Xilinx offers several tools to assist in the embedded system design process. These
tools are collectively called the Integrated Software Environment (ISE) Design Suite. ISE
is composed of the following modules:

e Integrated Software Environment components
e PlanAhead design analysis software

e ChipScope Pro on-chip debugging software

e Embedded Development Kit

6.2.1 The Embedded Development Kit

The Embedded Development Kit (EDK) is a suite of tools and IPs used to design a
complete embedded microprocessor system targeting Xilinx FPGA devices. It was con-
ceived to assist in all the development phases of the embedded design process. EDK



44

depends on ISE components to synthesize the microprocessor hardware design, to map it
to a specific FPGA device, and to generate and download the resulting bitstream. EDK,
however, does not require the use of the ChipScope Pro and PlanAhead softwares. These
act only as supporting tools to help simplify the design flow and verification process.

In EDK, the Development process is split in two separate and independent flows:
the hardware and the software platform. The hardware platform typically consists of
one or more microprocessors, device controllers and memory blocks, interconnected via
microprocessor buses. On top of that, it also contains port connections to communicate
with off-chip modules. The software platform consists of a collection of device drivers
and embedded applications that run over the hardware platform. Figure 6.2 provides an
overview of the EDK structure and development flow.

| CompXLib

Processor Software
Platform (MSS)

Processor Hardware
Platform (MHS)

Simulation

IP Library or User Repository
EDK Software
Libraries
(BSP, MLD...)

Library
Generator

Platform

¢ Drivers,
Generator ——-| Generator

Libraries,

(Ca) OS, MLD

MPD, PAO B —

PCore
o System and / Behavioral
" ( ) .HDL Model
Wrapper HDL system.BMM

ISE Tools

.e
o
o

Application Source
.c,.h, s

Compiler (GCC)

Implementation
Constraint File
(UCF)

Simulation |
Generator

Structural
HDL Model

\

Linker
(65

ELF Bitstream Initializer

»-| Simulation |
Generator

Timing HDL/
SDF Model,

1

\

Simulation

Debugger

)
A

JTAG Cable \ '

FPGA
Device

Figure 6.2: Embedded Development Kit (EDK) Tools Architecture

X10310



45

6.2.1.1 Xilinx Platform Studio

The Xilinx Platform Studio (XPS) is the development environment used for designing
the hardware portion of the embedded processor system. It can be run either in batch
mode, or using the GUIL. Among the features provided by XPS, the main ones are:

e Ability to add processor and peripheral cores, edit core parameters and assign bus
connections to generate a Microprocessor Hardware Specification (MHS) file.

e Ability to manage the tool flow dependency.
e Ability to generate and view a system block diagram and/or design report.

e Ability to export hardware specification files for SDK use.

6.2.1.2 Software Development Kit

The Software Development Kit (SDK) is an integrated development environment,
complementary to XPS, that is used for C/C++ embedded software application devel-
opment and verification. It is built on the Eclipse open-source framework. The SDK has
the following built-in features:

¢ Independent installation from ISE and XPS.

Integrated environment for debugging and profiling of embedded targets.

Built-in interface to generate linker scripts for software applications.

Support for single and multi-processor systems.

Automatic make file generation.

6.3 Hardware Design

In order to create the EDK base-level project for the configuration controller, the first
thing that was required was to download the Base System Builder (BSB) support files for
the Atlys development board (DSD-0000332). The BSB is a wizard in the Xilinx Platform
Studio that provides a graphical interface to create a new embedded system project based
on the available board resources.

Once the support files were installed in the development environment, the hardware
design proceeded based on the block diagram presented in figure 5.4.

6.3.1 Microprocessor

The XPS provides an automated flow to integrate the MicroBlaze processor in the
user design. The MicroBlaze is a soft-core reduced instruction set computer (RISC)
embedded processor optimized for implementation in Xilinx FPGAs. It has over 70
user-configurable options, providing enough flexibility to support virtually any system,
regardless if it requires a very small footprint microcontroller, or a high performance
compute-intensive platform (Xilinx UG081).

For the configuration controller implementation, the default configurations were used.
This architecture provides the best compromise between area and performance.



46

6.3.2 Bus Connections

The MicroBlaze processor is based on the Harvard architecture, with separate bus
interface units for data and instruction accesses. It supports four different memory inter-
faces: Local Memory Bus (LMB), the AMBA AXI4 interface (AXI4), the IBM Proces-
sor Local Bus (PLB) and the Xilinx CacheLink (XCL). The LMB provides single-cycle
access to on-chip dual-port block RAM. The AXI4 and PLB interfaces provide a connec-
tion to both on-chip and off-chip peripherals and memory. The CacheLink interface is
intended for use with specialized external memory controllers.

Although both AXI4 and PLB interfaces can be used to connect peripherals and mem-
ory, the PLB interface is being discontinued by Xilinx in future FPGA families. For this
reason, it is not recommended for designs that might be ported to newer devices. Based
on this note, only AXI4 compliant cores were used during the implementation of the
configuration controller.

AXI is part of ARM AMBA, an open standard specification for the connection and
management of different cores in an embedded platform. AMBA 4 is the last release of
this family, and it includes the specification for the AXI4 protocol. There are three types
of AXI4 interfaces:

e AXI4-Lite, for simple, low-throughput memory-mapped communications.
e AXIA4, for high-performance memory-mapped requirements.

e AXI4-Stream—for high-speed streaming data.

6.3.2.1 AXI4

The AXI4 specification describe an interface between a single master and a single
slave, connected together using a structure called an Interconnect Block. The communi-
cation between master and slave can occur simultaneously, since different channels for
read/write operations and address/data transactions are defined. Typically, data transfer
sizes can vary according to the operation, but are always limited by the maximum burst
size of 256 data beats.

6.3.2.2 AXI4-Lite

AXI4-Lite is very similar to AXI4 in various aspects, but it has some limitations; the
most significant is not supporting burst mode. Memory access is performed 1 data transfer
per transaction.

6.3.2.3 AXI4-Stream

The AXI4-Stream interface defines a single channel for streaming data, modeled after
the write data channel of the AXI4. IPs using this interface are optimized for performance
and target applications that are data end-points.

6.3.3 ACE Player

In order to drive the device under test reconfiguration from within the configuration
controller, the bitstreams should be decoded into JTAG operations, and these operations,
into JTAG bus signals. Often, this is a vendor-specific process with proprietary algo-
rithms, so this task can become quite complex.



47

6.3.3.1 SVF Format

In an effort to standardize this process in a compact and portable fashion, the industry
has developed a standard file format called Serial Vector Format (SVF). This human-
readable ASCII file is used to describe the JTAG chain operations required to shift the
configuration data into the device chain. Xilinx provides software that can directly gen-
erate SVF files for in-system programming solutions, such as this platform. Information
regarding this process and the tool used to generate this files are described in details in
the application note (Xilinx XAPP503).

6.3.3.2 ACE Format

Although SVF is a powerful language for managing configuration through the JTAG
interface, due to its large size it is not recommended for embedded systems with memory
and performance constraints. For this reason, Xilinx has developed the Advanced Con-
figuration Environment (ACE) format. This format is generated from complex algorithms
that translate the SVF file into a binary structure already containing the required JTAG bus
signaling. This optimization greatly reduces the processing and memory requirements of
the embedded system, while still preserving compatibility with the industry standards for
the SVF format and JTAG interface. The complete definition of this format is presented
in the application note (Xilinx XAPP424).

6.3.3.3 HDL Player

Also in (Xilinx XAPP424), Xilinx offers a VHDL IP to parse the ACE file structure.
This IP can be integrated in any design in order to provide a synchronous interface for a
JTAG in-system programming (ISP) solution. The user design, however, is still respon-
sible for driving all control signals of this core. The HDL Player interface is shown on
figure 6.3.

—=1 DATA [8] HDL

—| CLK PLAYER

<— ERROR

< EOF

<—{ PROG-CNT TCK -
-— RDY ™S
—{ LoAD DI |~
—={ RST TDO |+

X424_04_110906

Figure 6.3: HDL Player Interface

6.3.3.4 AXI ACE Player

In order to integrate the HDL Player provided by Xilinx in the configuration controller
platform, an AXI4 compliant core was developed. This core provides the necessary sig-
nals in order to properly drive the HDL Player signals, at the same time that it provides an
interface to allow its management from the embedded processor. Other than that, it also
contains data buffers used to avoiding player idle states, maximizing the output data rate.
Figure 6.4 shows the block diagram for the developed AXI ACE Player core.



48

AXI ACE PLAYER
32 Bytes x 512 Metastability [€ TDO
FIFO Filter
q) . {
S )| Write Port | | Read Port |——) > TMS
© HDL
]
= ACE Player » TCK
AX14 E=inp L= Control

Interconnect 2 | | > TDI
-
3 i A
x
<

> Player Controller FSM
¢ v
Register Bank
FIFO_STATUS Register
Q PLAYER_STATUS Register
AXl4-Lite e g .

Interconnect g CMD Register
o
-
=
é e Bus Control

Reset
> Module

Figure 6.4: AXI ACE Player Core

As it can be seen from the block diagram, the AXI ACE Player has two AXI interfaces:
one AXI4 and one AXI4-Lite. This distinguishment comes from the limitation imposed
by normal AXI4-Lite connections, in which only 1 data word can be transferred in each
transaction. This way, by separating data and control interfaces, ACE file data can be
transferred to the player using a high-performance channel, while control sequences can
be operated in a familiar register-based fashion.

As a mean to maximize the data transfer rate between the configuration manager and
the DUT, a FIFO was placed together with the HDL player. This aims to eliminate pos-
sible idle states of the player caused by the latency of processor bus transactions. This
FIFO is a synchronous dual-port 32-byte wide x 512 in depth memory that is capable of
storing twice the data that can be transmitted in a single AXI-4 data beat. Thus, while the
player is consuming data from the FIFO, the processor can already start a new transfer
cycle. In other words, the FIFO serves as a data buffer to avoid the player starvation.

In order to manage the FIFO and the player, a finite state machine (FSM) was included
in the design. This FSM is responsible for taking data out from the FIFO and sending it to
the HDL player. To accomplish this, it monitors both entities signals to determine if the
player is requesting data, and if it is possible to take data from the buffer. It is designed in
a way to avoid any illegal states, such as FIFO underrrun and player overrun.



49

All player and FIFO statuses can be monitored from the register bank provided from
the AXI4-Lite interface. This registers contain information about the FIFO vacancy and
the player current cycle. From this interface, the microprocessor application can deter-
mine if there is space in the buffer to start a new data transfer, or if the player was halted
from an error during DUT configuration. A full detailed description of the register bank
content can be seen in figure 6.5 and tables 6.1, 6.2 and 6.3;

Additionally, to eliminate problems related to metastable signals received from differ-
ent clock domains, a metastability filter was added to the input JTAG TDO signal. This
filter was constructed by cascading two D-type flip-flops.

31 FIFO Status Register (Read Only) - Offset 0x0000
Reserved 15(14[13[12(11{10 9-0
31 Command Register (Write Only) - Offset 0x0004
Reserved 110
31 Player Status Register (Read Only) - Offset 0x0008
Reserved 9187 6-0

Figure 6.5: AXI ACE Player Core Registers

Bits Field Name | Description

0-9 DATA_CNT| Number of bytes available at the FIFO.

10 EMPTY FIFO is empty.

11 FULL FIFO is full.

12 OVERF FIFO was overrun. This is a sticky bit.

13 UNDERF | FIFO was underrun. This is a sticky bit.

14 VLD Data at FIFO output is ready and valid.

15 HALF FIFO has only half of its capacity, or less.
16-31 Reserved This bits are reserved and should not be used.

Table 6.1: FIFO Status Register Description

Bits Field Name | Description
0 RESET Active low global core Reset.
1 TRIGGER | Sets the trigger for the fault event signal. The following

condition must be valid for the fault event signal to be set:
TRIGGER and (not EOF) and (not ERROR).
2-31 Reserved This bits are reserved and should not be used.

Table 6.2: Command Register Description



50

Bits Field Name | Description

0-6 PPC Current ACE Player FSM state.

7 EOF ACE Player finished to transfer file. This is a sticky bit.
8 ERROR ACE Player error indication. This is a sticky bit.

9 READY ACE Player ready to receive data.

10-31 Reserved This bits are reserved and should not be used.

Table 6.3: Player Status Register Description

6.3.4 IP Core Library

Aside from the MicroBlaze embedded processor and the AXI ACE Player core, sev-
eral other cores from the EDK IP Library were instantiated to provide the necessary mi-
croprocessor buses, local memory controllers, RAM blocks and off-chip peripheral con-
nections. Table 6.4 summarizes the cores utilized in the configuration controller FPGA

design.
Instance IP Core Version
proc_sys_reset_0 proc_sys_reset 3.00.a
microblaze_0_intc axi_intc 1.01.a
microblaze_0_ilmb Imb_v10 2.00.b
microblaze 0 _i_bram_ctrl | Imb_bram_if cntlr | 3.00.b
microblaze_0_dlmb Imb_v10 2.00.b
microblaze_0_d_bram_ctrl | Imb_bram_if cntlr | 3.00.b
microblaze_0_bram_block bram_block 1.00.a
microblaze 0 microblaze 8.20.b
debug_module mdm 2.00.b
clock_generator_0 clock_generator 4.03.a
axidlite_0 axi_interconnect 1.05.a
axi4 0O axi_interconnect 1.05.a
RS232_Uart_1 axi_uartlite 1.02.a
MCB_DDR2 axi_s6_ddrx 1.05.a
Ethernet_Lite axi_ethernetlite 1.01.b
Digilent_QuadSPI_Chntrl d_gspi_axi 1.00.a
axi_timer_0 axi_timer 1.03.a
axi_cdma_0 axi_cdma 3.02.a
axi_ace_player_0 axi_ace_player 2.00.a
Table 6.4: IP Cores Used In The Configuration Controller
axi_intc

The AXI INTC core provides an AXI4-Lite interface-based interrupt controller of up
to 32 signals to be connected to the single MicroBlaze interrupt port.

Imb_vI10

The LMB V10 module is used as the LMB interconnect for the MicroBlaze processor.
It provides the processor with a LMB interface.



51

Imb_bram_if _cntlr

The LMB BRAM Interface Controller is the interface between the LMB module and
the bram_block peripheral.

bram_block

The BRAM Block is a configurable dual-port memory module used to provide Mi-
croBlaze a local memory to host a embedded application, and also to cache data and
instructions from the DDR memory.

mdm

The MicroBlaze Debug Module (MDM) provides a JTAG-based debugging interface
compliant with the AXI4-Lite protocol.

clock_generator

The Clock Generator core is used to generate the required clock tree for the entire
design.

axi_interconnect

The AXI Interconnect core is used to connect one or more AXI memory-mapped
master devices to one or more memory-mapped slave devices.

axi_uartlite

The Universal Asynchronous Receiver Transmitter (UART) Lite provides a AXI4-
Lite compliant interface for asynchronous serial data transfer, with configurable baud
rate, number of data bits and parity information.

axi_s6_ddrx

The S6 DDRx core provides an AXI4 compliant interface for high-performance con-
nections to DDR3 and DDR2 SDRAMs.

axi_ethernetlite

The AXI Ethernet Lite core is used to provide a AXI4-Lite compliant Ethernet PHY
controller to the platform.
d_gspi_axi

The Digilent Quad SPI controller provides access to the on-board SPI flash memory
through the AXI4-Lite interface.
axi_timer

The AXI Timer/Counter is a 32/64-bit timer module that attaches to the AXI4-Lite
interface in order to provide the platform with timer functions. This is used to overcome
the MicroBlaze lack of internal time registers.



52

axi_cdma

The AXI CDMA provides high-speed direct memory access (DMA) transactions be-
tween a memory-mapped source and destination addresses mapped in the AXI4 intercon-
nection.

6.3.5 Memory Layout

In order to communicate with memory-mapped peripherals on the processor buses,
the MicroBlaze uses a 32-bit word to address any memory position in the range between
0x00000000 and OxFFFFFFFF. Table 6.5 shows the memory layout used in the configu-
ration controller hardware platform specification.

Instance Base Address Size Bus Interface
microblaze_0_d_bram_ctrl | 0x00000000 64KB | microblaze _0_dlmb
microblaze _0_i_bram_ctrl | 0x00000000 | 64KB | microblaze_0_ilmb

RS232 Uart_1 0x40600000 | 64KB axidlite_0
Ethernet_Lite 0x40E00000 | 64KB axidlite_0
microblaze 0_intc 0x41200000 64KB axidlite_0
debug_module 0x41400000 64KB axidlite_0
axi_timer O 0x41C00000 | 64KB axi4lite O
axi_ace_player_0 0x7D000000 | 64KB axidlite_0
axi_cdma_0 0x7E200000 | 64KB axidlite_0
Digilent_QuadSPI_Cntlr | 0x7E400000 | 64KB axidlite_0
axi_ace_player_0 0xC4000000 | 64KB axi4 0
MCB_DDR2 0xC8000000 | 128MB axi4_0

Table 6.5: Memory Map for Processor Microblaze_0

6.3.6 Design Summary

Table 6.6 summarizes the synthesis results for each IP core in the hardware platform.

Table 6.7 provides an simplified overview of the logic utilization. From this table it
can be noticed that the configuration controller design requires approximately only half
of the device slices, and only one third of the available IOBs. This demonstrates that even
smaller FPGAs could be used to implement this platform, or that the remaining logic of
the device could be used to extend the platform’s functionality.

6.4 Software Design

Once the hardware platform has been defined, its definitions can be exported to the
SDK in order to begin the software design. There are three major aspects of the soft-
ware design process: configuring the BSP, writing the software application and creating a
bootloader.

6.4.1 BSP

The Board Support Package (BSP) is a generic name that refers to the software com-
ponents required to support a given operating system, and its programming environment,
in a specific hardware design. The BSP provides upper software layers the abstraction



53

Instance Logic Utilization
Flip-Flops | LUTs | BRAMs
axi_ace_player_0_wrapper 304 525 -
clock_generator_0_wrapper - 1 -
axi4_0_wrapper 1625 1720 -
axi_cdma_0_wrapper 1507 1446 5
axi_timer_Q_wrapper 217 312 -
digilent_quadspi_cntlr_wrapper 432 574 1
ethernet_lite_wrapper 607 726 2
mcb_ddr2_wrapper 823 1309 -
rs232_uart_1_wrapper 90 123 -
axidlite_0_wrapper 180 392 -
debug_module_wrapper 131 142
microblaze_0_wrapper 2202 2403 3
microblaze_0_bram_block_wrapper - - 32
microblaze_0_d_bram_ctrl_wrapper 2 6 -
microblaze_0_dlmb_wrapper 1 - -
microblaze_0_i_bram_ctrl_wrapper 2 6 -
microblaze_0_ilmb_wrapper 1 - -
microblaze_0_intc_wrapper 48 74 -
proc_sys_reset_0_wrapper 69 55 -
total 8241 9814 43
Table 6.6: Configuration Controller Synthesis Summary
Logic Utilization Used | Available | Utilization
Number of Slice Registers | 7,119 | 54,576 13%
Number of Slice LUTs 8,125 27,288 29%
Number of occupied Slices | 3,368 6,822 49%
Number of bonded IOBs 79 218 36%

Table 6.7: Configuration Controller Global Utilization Summary

level necessary to mask the low-level device drivers used to perform direct hardware ac-
cesses.

Since FPGA-based architectures are intrinsically reconfigurable, fixed board support
packages cannot be provided. Therefore, a custom board support package must be gener-
ated for each different hardware design that is created.

The Xilinx SDK provides the option to generate a BSP based on the architecture
definition imported from XPS. Xilinx already provides device drivers for all IP cores in
its library, so user only needs to implement the ones related to proprietary cores. On top
of that, two different kernel modules are offered: Standalone and Xilkernel.

Standalone is a simple, low-level software layer. It provides direct access to basic
processor features such a cache management, interrupt control and exception handling.
Also, it provides basic features of a hosted environment, such as standard input/output
and code profiling. On the other hands, Xilkernel is a lightweight kernel based on POSIX
services. It includes libraries to support threads, synchronization mechanisms, message
passing and scheduling policies.

For the development of the configuration controller prototype the standalone kernel



54

was chosen primarily because the services of the xilkernel were not going to be used.

6.4.1.1 ACE Player Driver

In order to complement the standalone kernel with functions to manage the ACE
Player IP, a custom driver was developed and integrated with the BSP. This driver provides
the necessary API for the embedded application running on the Microblaze processor to
start and monitor the reconfiguration process of the DUT. Three functions are provided,
as shown in listing 6.1, 6.2 and 6.3.

Listing 6.1: ACE Player Driver API

NAME
ace_player_program () — Programs DUT with an ACE file

SYNOPSIS

t_status ace_player_program

(
Xuint32 baseAddress, /x Base Address of ACE Player x/
Xuint32* pAceFile, /* Pointer to ACE file x/
Xuint32 length /* Length of file in bytes x/

)5

DESCRIPTION

This function is used to transfer an ACE file through the
ACE Player core residing in <baseAddress >.
The ACE file pointed by <pAceFile> must be 64—bit aligned.

RETURNS
OK if file was successfully transferred , otherwise ERROR.

ERRCODE

INVALID_FILE_ERR — Invalid file format.

TDO_CHECK_ERR — Mismatch between expected and actual JTAG
TDO response.

The first function, ace_player_program(), is the main function of the driver. It is called
every time the application wants to transmit a new bitstream to the DUT. Its flowchart is
shown on figure 6.6 and 6.7.

In case a problem happens during the transmission, and error code is set on the driver.
To recover this error code, the application can call ace_player_get_error_code(). If the
purpose is only to log the code, this should be sufficient, but in case an error message
needs to follow, ace_player_get error_str() can be also called. The flowchart for these
functions are showed in figures 6.8 and 6.9, respectively.

6.4.2 Application

The main application running on the MicroBlaze processor is the responsible for co-
ordinating the DUT reconfiguration through the ACE player. Although in the proposed
platform description this application contains features such as downloading the partial




Listing 6.2: ACE Player Driver API (Continued)

55

NAME

t_status ace_player_get_error_code () — Gets the ACE Player
Error Code

SYNOPSIS

t_status ace_player_get_error_code

(
Xuint32 baseAddress, /« Base Address of ACE Player =x/
Xuint32* errCode /+ Returned error code x/

)5

DESCRIPTION

This function is used to retrieve the ERRCODE set by

ace_player_program () in case of problems during the ACE
file programming .

RETURNS
OK if error code was successfully retrieved , otherwise
ERROR.
Listing 6.3: ACE Player Driver API (Continued)
NAME
ace_player_get_error_str () — Gets a string representation
of ERRCODE
SYNOPSIS
charx ace_player_get_error_str
(
Xuint32* errCode /+ Error code to translate x/
)
DESCRIPTION

This function is used to get a string representation of
ERRCODE.

RETURNS
String representation of the ERRCODE.




56

bitstreams from a remote FTP server and managing time using hardware timers, the pro-
totype contains only the basic set of functionalities required to perform a fault injection
test campaign.

Since the bitstreams cannot be retrieved through Ethernet, they have to be embedded
directly on the application binary file to emulate a remote transmission. To accomplish
this, the ACE files were converted to MicroBlaze ELF32 objects, and linked together with
the application executable. Appendix A.1 shows how to operate the GNU objcopy utility
in order to produce these objects. Appendix A.2 and A.3 shows how to operate the GNU
objdump utility in order to retrieve the entry point for the data section in each object, so
they can be referenced in the application configuration scheduler.

In order to communicate directly with the hardware platform, this application makes
use of the ACE Player driver, and other low-level primitives of the standalone kernel.
Figure 6.10 shows the application flowchart.

6.4.3 Bootstrap

The Xilinx SDK provides a simple SREC bootloader example that can be used for
loading software images from a non volatile memory. This is an industry-standard format
developed by Motorola, used for transmitting binary files to target systems, and composed
by a single ASCII hexadecimal text file.

The provided example, however, does not provide any support for SPI flash memories,
as the one found in the Atlys board. In order to overcome this problem, the QUAD SPI
flash driver developed by Digilent (DSD-0000332) was integrated to the example source
code. At the end, a fully functional bootloader for the configuration controller board was
obtained.

This bootloader assumes that the target SREC image is fit for the MicroBlaze archi-
tecture, and that it does not overlap any bootloader sections in memory. This way, the
application and the bootloader had to assigned to separate physical memories in the hard-
ware. While the first resides in the DDR, the second runs from the embedded block RAM.
Tables 6.8 and 6.9 shows the linker attributes of each software item.

Section Size Allocated
text 0x00004502 | microblaze_0_i_bram_ctrl _microblaze 0_d_bram_ctrl
.data 0x00000138 | microblaze 0 _i_bram_ctrl microblaze 0_d_bram_ctrl
.bss 0x000005DE | microblaze_0_i_bram_ctrl microblaze 0_d_bram_ctrl
.stack | 0x00000400 | microblaze_0_i_bram_ctrl_microblaze 0_d_bram_ctrl
.heap | 0x00000000 | microblaze_0_i_bram_ctrl_microblaze_0_d_bram_ctrl

Total 0x00004C18 bytes

Table 6.8: Bootstrap Linker Attributes

6.5 Design Integration

Once the hardware and software designs were completed, the system integration could
be performed. The bitstream generated from the hardware design was merged with the
bootstrap image to form a new bitstream. This new configuration file was generated
using the Data2MEM tool from within the SDK environment. This tool performs data
translation between multiple blocks of BRAMs to create a contiguous logical address
space for the embedded application image. This way, the microprocessor can jump to



57

Section Size Allocated
text | 0xO0005AAA | MCB_DDR2_S0_AXI_BASEADDR
.data 0x00000574 | MCB_DDR2_S0_AXI_BASEADDR
.bss 0x01FOO1EE | MCB_DDR2_S0_AXI_BASEADDR
.stack | 0x00100000 | MCB_DDR2_S0_AXI_BASEADDR
.heap 0x01E00000 | MCB_DDR2_S0_AXI_BASEADDR
Total 0x01F0620C bytes

Table 6.9: Application Linker Attributes

the start of the executable code and start to run soon as the FPGA is configured. Then,
in order to generate a PROM file and program the on-board SPI flash, application note
(Xilinx XAPP951) was used as reference.

After, the application SREC file was created from the compiled ELF binary. To ac-
complish this, the GNU objcpy utility was manually invoked, as shown in appendix A.4.
This SREC file was also programmed in the flash, so the bootloader could read it.

6.6 Platform Operation

At system initialization, after FPGA power-up, it is configured automatically from
the SPI Flash containing the bitstream that was programmed previously. Once the device
enters user-mode, the microprocessor jumps to the reset vector and starts to execute the
bootloader. The bootloader copies the application from flash to DDR memory, and at the
end, jumps to its entry point. The application, then, runs until returning from the main()
function.



58

Read EOF bit in
PLAYER_STATUS_REG

Read ERR bit in
PLAYER_STATUS_REG

Check if <length>

is different from zero.

Check if there is room in ACE FIFO
EMPTY or HALF_CAPACITY bits in
FIFO_PLAYER_STATUS_REG is set

Verify if <length> is greather than,
or equal to, maximum AXI4 burst size
(256 bytes;

)
No

Yes

Initiate DMA transfer using maximum
AXI14 burst size

Is it set?

Y

Verify <pAceFile>
parameter

Is it NULL?

Reset ACE player:
Write RST_PATTERN to RST_REG

v

Initialize ACE Player:
Write 0x3 to CMD_REG

v

Check if ACE Player has finished:
Read EOF bit in
PLAYER_STATUS_REG

Is it set?

L

Read EOF bit in
PLAYER_STATUS_REG

Return ERROR

Initiate DMA transfer using
remaining number of bytes

[ 1 }4

Increment data pointer and
decrement length accordingly

Figure 6.6:

Return OK

Flowchart for ace_player_program



Look-up DMA engine hardware
configuration

Is DCACHE
enabled?

v

Initialize the DMA driver

v

Disable DMA interrupts
(work in pooling mode)

Flush source buffer address

v

Invalidate destination buffer address

Initialize timeout counter with 10;

imeout countel

equals zero?

no

Try to start DMA transfer
in simple mode

Yes

Success?

Pools DMA engine status

Decrement timeout counter —

Read error code associated
with DMA engine

Initialize timeout counter with 10;

Error
indication?

imeout countel

equals zero?
Return OK

Reset DMA engine

v

Pools DMA engine status

Return ERROR

Reset done?

Decrement timeout counter —

Figure 6.7: Flowchart for ace_player_program (continued)

59



60

Verify <errCode>
parameter

Read PLAYER_STATUS_REG No
and mask PROG_CNT bits

Yes

Y

Copy masked bits to

<errCode> parameter Return ERROR

Return OK

Figure 6.8: Flowchart for ace_player_get_error_code

Verify <errCode>
parameter

errCode equals

errStr = "invalid ace file"

INVALID_FILE_ERR?

errCode equals

TDO CHECK ERR? errStr = "invalid jtag tdo sequence”

Yes

Default:
errStr = "unknown error code"

Return errStr j‘

Figure 6.9: Flowchart for ace_player_get_error_str




Entry Point

Program DUT with initial

\ 4

Enable
data cache

!

Enable
instruction cache

v

For each entry in the
scheduler table

!

Allocate 64-bit aligned
memory block

No

Copy ACE file data to
aligned buffer

!

Update scheduler with
pointer to aligned data

!

Y

bitstream

Success?

Wait for user input on
STDIN

User input
received? No

For each ACE file
in the scheduler table

v

Program DUT with ACE file

—

Flush, invalidate and
disable data cache

v

Invalidate and disable
instruction cache

Return OK

No

61

Get and print error code

Print error

> Return ERROR

Figure 6.10: Flowchart For Application Running on Microblaze



62

7 TEST PLAN

In order to validate the configuration controller implementation, a simple design was
developed to act as circuit under test. This design was kept as simple as possible, so each
signal could be easily traced from its VHDL description until the implemented netlist.
Furthermore, specific synthesis constraints were used to prevent optimizations that might
interfere in the implementation hierarchy. This approach enabled back-end changes to be
performed manually, targeting precise CUT elements in order to emulate the desired fault
scenarios.

7.1 Circuit Under Test

The circuit under test is composed by four different modules:
e Digital Clock Manager (DCM)

e Linear Feedback Shift Register (LFSR)

e Parity Encoder

e Triple Modular Redundancy (TMR) Majority Voter

Digital Clock Manager

The digital clock manager is a IP generated from the Xilinx Coregen Library used to
regulate the clock tree of the rest of the circuit. It was configured to provide an output
clock that is 1/32 the value of the input source. Thus, for a standard 100 MHz board
clock, the CUT would operate at 3.125 MHz. This mechanism was used to reduce the
bandwidth of the CUT output signals, so they could be more easily monitored.

Linear Feedback Shift Register

The purpose of the LFSR is to serve as an on-board data pattern generator. The feed-
back taps were selected to provide the maximum sequence length using 2-bits. The se-
quence generated by this configuration is (3-1-2-0). The RTL schematic for the LFSR
module is shown on figure 7.2

Parity Encoder

The parity encoder is a simple block responsible for calculating the associated parity
bit (even) of the 2-bit input data word. In the CUT, three parity encoders are used in a
triple modular redundancy scheme. The RTL schematic for the parity encoder module is
shown on figure 7.3



63

Majority Voter

The majority voter is a standard NAND-based majority voter used in TMR designs.
Its purpose is to vote the output of the three different parity encoders. The RTL schematic
for the majority voter module is shown on figure 7.4.

Top-Level

The top-level CUT architecture is composed of three parity encoder instances being
driven by the data coming from the LFSR. Their outputs are voted by the one majority
voter module. The RTL schematic for top-level module is shown on figure 7.5.

Design Constraints

During the synthesis process, the Xilix tool inferred that the three instances of the
original parity encoder module were identical. For this reason, the tool would remove two
instantiations and connect all inputs of the majority voter to the output of the remaining
one. In order to prevent this, a register had to be added inside each parity encoder.

Synthesis Constraints

In order to prevent the synthesis tool to interfere with the original design entities,
and force the final implementation to follow the same design architecture, the following
switches had to be modified:

Enable "Keep Hierarchy". This switch specifies whether or not the corresponding
design unit should be preserved from being merged with the rest of the design.

Disabled "Resource Sharing". This switch specifies whether or not the corresponding
design unit should share arithmetic operator resources.

Disabled "Register Duplication". This switch specifies whether or not the synthesis
tool should replicate registers to control the unit fanout.

Disabled "Equivalent Register Removal". This switch specifies whether or not to set
flip-flop optimization. Flip-flop optimization includes the removal of equivalent flip-flops
and of flip-flops with constant inputs.

Disabled "Slice Packing". This switch specifies whether or not the synthesis tool
should force components together in the same slice.

Simulation

Figure 7.1 shows the post-route simulation for the implemented CUT. Note that, once
a register has been included in the parity encoder, its output is one cycle delayed from the
data validity signal.

’0 us 2us 4us 6 us |
I I I I I I I I

clkdv_out

reset_pin L]

vald e e e e el e e e e e
data[1:0] (o0 X 11 X 01 X 10 X _00 X 11 ¥ _01 X 10 X 00 X 11 X 0L X 10 X 00
parityv_pin : L e e
parity1_pin } e e
parity2_pin : D D N e
parity3_pin I_—l—l—l—l—

Figure 7.1: Simulation Result for the Circuit Under Test



64

Clock

LFSR2_3:1
inv LPM_XOR2_1:1
{>O and2bl or2
Data(®) n n
. o . o Resuiy

Result_and0001_imp_Result_and00011 Result_imp_Resultl
fdr

o [o | and2bl
"

o
0

Reset

Result_and0000_imp_Result_and00001

Din(1:0)

Mxor_LFSR_0_xor0000

Dout(1:0)

LFSR

Figure 7.2: RTL Schematic for LFSR

ParityEncoder2:1

Parity

Clock

input_c

input_b

input_a

voutput_imp_voutputl

output_and0000_imp_voutput_and00001

n2_and0000_imp_n2_and00001

and2

o

i

10

nl_and0000_imp_nl_and00001

VOTER1

Figure 7.4: RTL Schematic for TMR Voter

LPM_XOR2_1:1 fd
and2b1 or2 = <
e - o - 0
) ) c
Result_and0001_imp_Result_and00011 Result_imp_Resultl
Parity

and2bl

Result_and0000_imp_Result_and00001
Mxor_Parity_xor0000
PAR_ENCODER_2
Figure 7.3: RTL Schematic for Parity Encoder
StandardTMRVoter:1
and2 and3b3 inv

8 ‘ . 2 | | {>O o voutput



deml
[Ciock> CLKIN_IN CLKDV_OUT [Vaiid>
| CLKIN_IBUFG_OUT
| CLKo_ouT
DCM1
LFSR2 3
Clock Dout(1:0) @
Reset |
LFSR
ParityEncoder2
Din(1:0) Parity @
Clock

PAR_ENCODER_1

ParityEncoder2
Din(1:0) Parity [Parity2_pin»
Clock

PAR_ENCODER_2

ParityEncoder2
Din(1:0) Parity @
Clock

PAR_ENCODER_3

StandardTMRVoter
input a voutput @
VOTER1

Figure 7.5: RTL Schematic for CUT Top-Level Design



66

7.2 Device Under Test

The circuit under test was synthesized and implemented on a Virtex-4 device (xc4vIx25-
10sf363), hosted on a Memec V4LX25LC development board. Table 7.1 shows the IOB
properties. Table 7.2 shows the device utilization summary.

IOB Name | Direction | 10 Standard | Drive Strength | Slew Rate | Resistor | LOC
Clock INPUT | LVCMOS25 - - None A8
Data<O0> | OUTPUT | LVCMOS25 12mA SLOW None uUl17
Data<l> | OUTPUT | LVCMOS25 12mA SLOW None V19
Parityl_pin | OUTPUT | LVCMOS25 12mA SLOW None Ul5s
Parity2_pin | OUTPUT | LVCMOS25 12mA SLOW None R18
Parity3_pin | OUTPUT | LVCMOS25 12mA SLOW None HI19
ParityV_pin | OUTPUT | LVCMOS25 12mA SLOW None T20
Reset INPUT | LVCMOS25 - - PULLUP | B4
Valid OUTPUT | LVCMOS25 12mA SLOW None T15
Table 7.1: DUT 10B Properties
Logic Utilization Used | Available | Utilization
Number of Slice Flip Flops 5 21,504 1%
Number of 4 input LUTs 6 21,504 1%
Number of occupied Slices 7 10,752 1%
Number of bonded IOBs 9 240 3%
Number of GCLKs 2 32 6%
Number of DCM ADVs 1 8 12%

Table 7.2: DUT Utilization Summary

Figure 7.6 shows the JTAG chain on the V4ALX25LC development board, in which
the FPGA device can be directly accessed from the JTAG port. Since the configuration
data does not have to be shifted through other devices (e.g PROMs), the time required for
partial reconfiguration is not affected.

|||||

TTTTTTTT

DDDDDD

vvvvv

EEEEEEEEEEE

o—

Figure 7.6: DUT JTAG Chain Diagram



67

7.3 Fault Model

In order to validate the proposed platform, and the correct operation of the configu-
ration controller, a fault injection campaign had to be designed for the circuit under test.
During this campaign, only faults affecting the function generators inside the parity en-
coder modules were considered. Even thought this scenario is oversimplified if compared
to real world applications, it is enough to demonstrate the correctness of the fault injection
process. Other than this, this model allows to prove two important properties of the fault
injection mechanism:

1. CUT operation is not disrupted during the fault injection process.

2. Faults targeting one element do not modify the computation of independent ele-
ments.

Both these properties can be demonstrated by showing that faults affecting one parity
encoder do not disrupt of modify the operation of the other two.

Another advantage of this model is that it can be used to demonstrate the effects of
faults accumulating over time, as well as faults being logically masked. Consider the
following case: a fault targeting parity encoder 1 is injected. This fault can be either
latent, or active; depending on input data. After it, without removing the previous one,
another fault targeting encoder 2 is injected. This fault, also, can be either latent or active.
If both faults are latent, or only one is active, the output of the voter will be correct.
However, if the two are active at the same time, the voted value will be incorrect.

7.4 Fault Generation

After the CUT implementation process, the parity encoder of figure 7.3 was mapped
to specific FPGA resources, as shown on figure 7.7. Basically, the logic gates present at
RTL level on block Mxor_Parity_xor0000 were implemented on a 4-input LUT, while the
storage element was mapped to a edge-triggered D-type flip-flop. In this specific case, the
schematic reports a lut2 component since only 2-bits are used to drive the associated logic
function. If it were not for the synthesis constraints used to prevent resource sharing, this
LUT could used to implement another 2-bit function of unrelated logic.

When inspected, the Mxor_Parity_xor0000_Result] LUT reveals the following logi-
cal function:

O = (=10 x I1) + (10 x —I1)) (7.1)

This function can be represented by the truth table shown on 7.3, which is in accor-
dance with the expected parity encoding function.

I1|{10|0O
000
0]1]1
110]1
11 11]0

Table 7.3: Parity Encoder Truth Table



68

ParityEncoder2:1

Vv N
lut2 fd
D Q Parity
11 ] C
Din(1:0) . {> 10
Parity
Mxor_Parity_xor0000_Resultl
Clock

PAR_ENCODER_1

Figure 7.7: Technology Schematic for Parity Encoder

In order to emulate faults affecting the parity encoders, the associated LUTs can be
modified to implement different logic functions. For this purpose, four different fault
patterns were defined, each one affecting one line of the truth table at a time. The resulting
fault patterns, named fp1 to fp4, are shown on table 7.4.

11 [ 10 | Ofpl | Ofp2 | Ofp3 | Ofp4d
00| 1 0 0 0
01| 1 0 1 1
10| 1 1 0 1
11| 0 0 0 1

Table 7.4: Parity Encoder Truth Table with Faults

From this table, the associated logic function for each fault pattern can be derived:

Ogpr = ((—10 x —I1) + (=10 x I1) + (10 x =I1)) (7.2)
Ogp = (—10 x I1) (7.3)

Ogps = (10 x —11) (7.4)

Otps = (=10 x 1) + (10 x =I1) + (10 x 1)) (7.5)

7.4.1 Back-End Changes

In order to alter the original parity encoder truth table with the defined fault patterns,
the CUT netlist had to be directed modified. The original netlist file was replicated 12
times, one for each fault pattern affecting a different parity encoder instance. Each file
was manually updated to change the value of the associated resources. To perform this
task, the Xilinx FPGA Editor tool was used. This tools allows each FPGA slice to be in-
dividually modified according to a series of equations describing the slice customization.

Due to the synthesis constraints, each instance of the parity encoder module was al-
located to a different slice, and no other logic was packed together with them. Thus, all
instances had the same slice customization equations. These set of equations determine



69

the slice resources utilization and configuration. The following are the equations for the
parity encoder module:

CLKINV : CLK (7.6)
DYMUX : Y (1.7)

FFY : #FF (7.8)
FFY_INIT_ATTR : INITO (7.9)
FFY_SR_ATTR : SRLOW (7.10)
G:#LUT : D = (A1QA3) (7.11)
SYNC_ATTR : ASYNC (7.12)

Analyzing the equation 7.11, two things can be noted: First, the G LUT is being used
for the parity encoder logic. This is the upper slice LUT, as shown in 2.4. Second, if
compared to the original LUT equation 7.1 obtained from the post-map model, this one is
different.

What happened was a variable mapping, as show in relationship 7.13.

10— AL Tl — A3 (7.13)

During the place and route process, different slice inputs were assigned to the LUT,
causing the formula discrepancy. However, both equations 7.11 and 7.1 are logically
equivalent, as shown in relationship 7.14. Note: the *@’ symbol stands for the logical
XOR.

(=10 x I1) + (I0 x —I1)) = Al ® A3 (7.14)

Thus, the back-end changes required for the parity encoders are limited to updating
the G LUT equation. The full process required to generate the modified netlists is show
on figure 7.8.

7.4.2 Partial Bitstreams

Partial bitstreams were created from the difference between the original and the mod-
ified netlists. In total, 24 files were created. One for each fault pattern, in each parity
encoder, to both for set and clear the fault. In order to create the bitstreams, the Xilinx
Bitgen tool was used. Appendix A, listing A.7 shows the script used to create each file.
Table 7.5 presents the bitstream sizes, both full and partial.

File Size (bytes)
Full DUT bitstream 977.579
Partial Bitstream (set) 1.430
Partial Bitstream (clear) 897

Table 7.5: CUT Bitstreams Size



Y

~ For each fault
pattern [fp1..fp4]

Y

For each parity

encoder instance [1..3]

Y

Open original CUT netlist
file in FPGA Editor

Y
Locate slice where
partity encoder instance
is mapped

Y

Update G LUT equation
according to fault pattern

Y

Save modified netlist
as a new file

last instance?

Yes

last pattern?

Yes
< End >

Figure 7.8: Back-End Changes Process




71

7.4.3 ACE files

In order for the configuration controller to be able to parse the partial bitstreams, the
configuration files had to be converted from the standard .bit format, to the ACE format.
This operation requires two steps: one to convert from the .bit file to the .svf file, and
another step to convert from the .svf file to the final .ace file.

The first step was performed using the Xilinx Impact software. A small script had to be
written for this purpose, as shown on Appendix A, listing A.5. The second step was per-
formed using the svf2ace utility that Xilinx provides for download in (Xilinx XAPP424),
as shown in Appendix A, listing A.6.

7.5 Test Procedure

The following tests are required to validate the configuration controller prototype:

General Operation

The purpose of this test is to evaluate the overall operation of the configuration con-
troller in order to verify that it operates according to the expected behavior. During this
test it shall be verified that CUT operation is not disrupted during the fault injection pro-
cess, and that faults targeting one element do not modify the computation of independent
elements.

Single Fault

The purpose of this test is to verify that each fault produces the expected impact over
the circuit under test. During this test, each one of the four different fault patterns must
be injected at any parity encoder. It shall be verified that each fault produces the expected
behavioral change in the CUT.

Fault Accumulation

The purpose of this test is to verify that multiple faults can be injected, and the effect of
fault accumulation can be analyzed. During this test, two faults must be injected, targeting
two different parity encoders. Faults should not be cleared in between injections. It shall
be verified that each fault produces the expected behavioral change in the CUT.

Fault Injection Times

The purpose of this test is to measure the configuration controller performance. All 24
files that were created should be injected sequentially. The times required for each fault
injection shall be annotated, as well as the time required by the configuration controller
to start a new injection.



72

8 TEST RESULTS

Experimental tests were conducted to evaluate the configuration controller implemen-
tation presented in chapter 6. These tests were conducted according to the test plan devel-
oped throughout chapter 7, and provide evidence to support the feasibility of the proposed
fault injection architecture.

8.1 Test Environment

The tests were performed following the proposed fault injection architecture shown
in figure 5.1. The configuration controller ACE player port was connected to the DUT
JTAG header; and its UART interface, to the host computer via USB. To replace the DAQ
module, a 8-bit USB logic analyzer was used to monitor both CUT outputs, and fault
event signal. Technical specifications of this product can be found in Appendix B. Figure
8.1 shows the test environment.

Figure 8.1: Test Environment



73

8.2 General Operation

Figure 8.2 shows the CUT operating under normal conditions. All three parity en-
coders have the same output, and the voter correctly generates the right value. The fault
event signal is low, meaning that no fault is being injected at that time frame.

|| me § 40 s L s T 18 0433 15 EBAR 15
valid Sy e Sy O S e ey S o A
Dat a[ 0: 1] D (0 N D I (S [N ) S [ (S LR N ([ (D (/D ) N ([N (1§
Faul t _I nj ection

Parityl I e e D b e B S B B b
Parity2 - 1 1 1
Parity3 N e s B e e B e B e
Vot er S e e ENS e HNS N e BN A B—

Figure 8.2: CUT Operation Under Normal Conditions

Figure 8.3 shows the CUT operating under the reconfiguration process. The fault
event signal is high, meaning that a fault is being injected. Configuration data is still
being transfered through the JTAG interface, and the device configuration memory was
not yet modified. During this time, all three parity encoders have the same output, and the
voter correctly generates the right value.

| | e TS T 8RB0 s LTS SRR 18

Valid | e Yy 1 S Yy Oy Oy B B
Data[0: 1] I )0 0L 100 J11 120 0L 100 )ik J10 0L 100 J1 J10 Jo1 J00 1
Faul t_I nj ection

Parityl

Parity2

Parity3 - 1L
Voter - 1 1 L

Figure 8.3: CUT Operation Under Partial Reconfiguration

Figure 8.4 shows the first instant in which a fault affecting partity encoder #2 is man-
ifested. At this time, the fault event signal is still high, meaning that the configuration
controller is still active. Although JTAG operations are still being sent to the DUT, the
device configuration memory has already been modified and updated.

|| ne 900 s ELT 8L & ELIC W &

Vali 1 N e ey e e e Y e Y O O Y 0 N
Dat af 0: 1] =00 it o it il JoT o Xt J10 )il 00 I T ()1 Joo (T (L] J0T )
Faul t _I nj ection=1

Parityl=1

I S e B S— | I 1
Paivyet | [ | [ 1 1 1 | 1
Voter=1 I e I s I e e AN e s EN A m |

Figure 8.4: CUT Operation During DUT Internal Memory Update

Even while the DUT updates its internal memory, no disruption on the CUT was ob-
served. Also, it was seen that faults affecting one element do not modify the computation
of unrelated modules. These results confirm the partial reconfiguration principles, and
validate its use for fault injection applications. Furthermore, they validate the correctness
of the configuration controller operation.



74

8.3 Single Fault

Figure 8.5 shows the effect of a partial bitstream generated by modifying the original
PAR_ENCODER_1 LUT content according to equation 7.2.

[ e

Valid

Dat a[ 0: 1]

Faul t _I njection
Parityl

Parity2

Parity3

Vot er

I L WL I I
S S S S S S ) S S S
W I )0 pr  J0 T 0 0T 0 I @0 0C 0 T 0 )

s I R S I S D S S
O I ) S I S R S S
e e s AN S

Figure 8.5: Fault pattern #1 affecting Parity Encoder 1

Figures 8.6, 8.7 and 8.8 show, respectively, the implications of PAR_ENCODER_1
LUT modifications due to equations 7.3, 7.4 and 7.5.

[ e

Valid

Dat a[ 0: 1]

Faul t _I njection
Parityl

Parity2

Parity3

Vot er

I e

Valid

Dat a[ 0: 1]

Faul t _I nj ection
Parityl

Parity2

Parity3

Vot er

I e

Valid

Dat a[ 0: 1]

Faul t _I nj ection
Parityl

Parity2

Parity3

Vot er

G [ AL BB A8
S S S ) [ ) ) [
0L 0 I 0 T 0 NI 0 pr 0 I i e 0 I )@

L L L L
A S ) o ) s O S S
- ... . 7t qg 1+
e L e s O S S

Figure 8.6: Fault pattern #2 affecting Parity Encoder 1

Figure 8.8: Fault pattern #4 affecting Parity Encoder 1

The observed patterns in the PAR_ENCODER 1 are in accordance with the expected
results. This fact validates the technique used to perform back-end changes directly on
the CUT netlist. More importantly, it validates the proposed approach of generating and
injecting faults targeting specific FPGA resources.



75

8.4 Fault Accumulation

Figure 8.9 shows the CUT output signals when operating under the presence of two
latent faults. Both PAR_ENCODER_2 and PAR_ENCODER_3 modules have a fault
causing their computations to be incorrect, but due to logical masking, one of them al-
ways has the right output. Since PAR_ENCODER 1 is unaffected, the majority voter can
always rule for the correct value.

| | e it s sl s e s Bt s 15

Val id Sy S ey Sy S e A R Y s I B
Dataf 0: 1] 1001 J00 Jiz 120 0L 100 J11 110 0L 100 Jiz J10 0L 100 JiL 10—

Faul t _I njection

Parityl

Parity2 [T ] [ 1 [ 1
Parity3 T 1 ] 1
Voter - 7 7T 1__

Figure 8.9: CUT Operating Under Two Latent Faults

Figure 8.10 shows the CUT output signals when operating under the presence of two
active faults. Both PAR_ ENCODER_2 and PAR_ ENCODER_3 modules have a fault that
causes their computations to be incorrect at the same time frame. In this case there is no
logical masking, and the majority voter is forced into ruling for the wrong value.

|| n’e 1o 15 B0 15 st s St s st 15
valid S S oy S e o S Sy e e O 1 0y 0 o S
Data[ 0: 1] 00T ] (N ) 0l (R Yo 000 it i ot JQ | (I
Faul t _I nj ection

Parityl - < - 1 < - 1
Parity2
Parity3
Vot er

1]
111
1]
1]

Figure 8.10: CUT Operating Under Two Active Faults

Both this cases illustrate the possibility to inject more than a single fault at any given
period of time, in different CUT locations. This validates the platform ability to evaluate
multiple faults accumulating over time.

8.5 Fault Injection Times

The time required for a fault injection was measured based on the DUT reconfig-
uration time; i.e., the time required by the configuration controller to transfer a partial
bitstream through the JTAG interface. The measurements were performed by calculat-
ing the width of the fault event signal over a period of 24 different fault injections. The
reported times are shown on table 8.1.

The time required by the configuration controller to start a new fault injection was
measured based on the average time between subsequent fault injections. The measure-
ments were performed by calculating the time difference between two adjacent rising
edges of the fault event signal over a period of 24 different fault injections. The reported
times are shown on table 8.2.

In order to estimate the maximum rate of fault injections per unit of time, the total
fault injection time was assumed to be given by equation 8.1.



76

Time (ms)
Instance Fault Pattern 1 Fault Pattern 2 Fault Pattern 3 Fault Pattern 4
Set Clear Set Clear Set Clear Set Clear
ENCODER_1 | 1,3666 | 0,9097 | 1,3667 | 0,9095 | 1,3670 | 0,9097 | 1,3668 | 0,9097
ENCODER_2 | 1,3667 | 0,9099 | 1,3675 | 0,9099 | 1,3671 | 0,9100 | 1,3674 | 0,9097
ENCODER_3 | 1,3667 | 0,9095 | 1,3667 | 0,9096 | 1,3670 | 0,9097 | 1,3668 | 0,9096
Average 1,3667 | 0,9097 | 1,3670 | 0,9097 | 1,3670 | 0,9098 | 1,3670 | 0,9097
Table 8.1: Time Required For Fault Injection
Fault # | Latency (us) | Fault# | Latency (us) | Fault # | Latency (us)

01 1,5000 09 1,4583 11 1,2917

02 1,5417 10 1,3333 12 1,3750

03 1,4583 11 1,4882 13 1,3333

04 1,3750 12 1,5000 14 1,2917

05 1,5000 13 1,3750 15 1,4167

06 1,4167 14 1,2917 16 1,3333

07 1,5417 15 1,4583 17 1,4583

08 1,3333 16 1,3333 18 1,4167

Table 8.2: Minimum Time Between Consecutive Fault Injections

ﬂotal = ,-Tlnjection + TRecovery + (2 X TLatency) (81)

Where T_Injection is the time required for a fault injection; T_Latency is the time
required to restore the system from that fault; and T_Between the time between two con-
secutive fault injections.

This way, equation 8.1 resolves to equation 8.2:

Thotal = 1,3667ms + 0,9097ms + (2 x 1,4167us) ~ 2,28ms (8.2)
Which leads to a rate of injection given by equation 8.3:
1 1 438 fault
Rat@injection = ~ fau i (83)

Tiotal - 0,00228s = second

Of course, this is the theoretical maximum value obtained from the experimental mea-
surements conducted. This rate does not take into consideration the time required for the
fault characterization. In other words, the time necessary for the fault to be present on the
CUT before being marked as active or latent. This time is directly involved with the size
of the test vector set and CUT sampling rate.



77

9 CONCLUSION

Throughout this work, many different aspects concerning fault injection and dynamic
partial reconfiguration were explored. First, an overall explanation of the architectural
support provided by Xilinx FPGAs was presented, followed by a comprehensive review
of the latest publications on the subject. After, a new fault injection platform was proposed
in order to overcome issues related to modularity, intrusiveness and cost. This platform
focused on a loosely coupled architecture and on a standard industry interface to provide
maximum compatibility with different systems, while eliminating the need for further
modifications on the circuit under test.

In order to evaluate the feasibility of the proposed solution, a prototype was devel-
oped and implemented on a commercial FPGA development board. Although some of
the planned functionalities were not completely integrated for this scope, the resulting
work contained all the required modules necessary for performing a fully functional fault
injection campaign. Furthermore, a complete test case was designed to help validate the
implementation and provide numbers to be used as performance indicators.

Experimental results conducted on the prototype showed that the platform responded
as expected to all test case stimuli, thus validating the proposed architecture and fault
injection methodology.

All goals set in the beginning of this work have been achieved, and for this reason,
the author considers this to be a successful project. Its result contributes to the general
understanding of fault injection architectures, and help future engineers progress towards
more efficient solutions.

Nonetheless, there are several improvements that can be performed in order to extend
the functionality of the proposed platform. Future works might focus on the following
items that were not covered in this work:

e Implementing the Fault Manager Application, so partial bitstreams can be generated
automatically based on a fault model defined by the user.

e Implementing the Data Interface Software, so fault impact analysis can be per-
formed automatically in accordance to results achieved from simulation.

e Implementing the scheduler manager for the configuration controller embedded
software, so the fault injection campaign can be customized by a application on
the desktop computer.

e Implementing the Ethernet communication library for the configuration controller
embedded software, to allow configuration data and scheduler information to be
downloaded from a remote FTP server.



78

REFERENCES

[A. Johnston 2000] A. H. Johnston. Scaling and technology issues for soft error rates.
In 4th Annual Research Conf. on Reliability, 2000.

[A. Parreira et al 2004] A. Parreira, J. P. Teixeira, M. B. Santos, Built-in self-test prepa-
ration in FPGAs, In Proc. Of the 7th IEEE Workshop on Design and Diagnostics
of Electronic Circuits and Systems, pp. 83-90, Apr 2004.

[C. Lopez-Ongil et al 2007] Lopez-Ongil, C.; Entrena, L.; Garcia-Valderas, M.; Portela,
M.; Aguirre, M.A.; Tombs, J.; Baena, V.; Munoz, F., A Unified Environment
for Fault Injection at Any Design Level Based on Emulation, Nuclear Science,
IEEE Transactions on , vol.54, no.4, pp.946-950, Aug. 2007

[D. Alexandrescu et al 2002] Alexandrescu, D., Anghel, L., and Nicolaidis, M. 2002.
New Methods for Evaluating the Impact of Single Event Transients in VDSM
ICs. In Proceedings of the 17th IEEE international Symposium on Defect and
Fault-Tolerance in VLSI Systems (November 06 - 08, 2002). DFT. IEEE Com-
puter Society, Washington, DC, 99-107.

[E. Normand 1996] Normand, E. Single event upset at ground level. IEEE Transactions
on Nuclear Science, New York, v.43, n.6, p. 2742-2750, Dec. 1996.

[F. Kastensmidt et al 2004] Kastensmidt, F. L., Neuberger, G., Carro, L., and Reis,
R.Designing and testing fault-tolerant techniques for SRAM-based FPGAs.
In Proceedings of the 1st Conference on Computing Frontiers (Ischia, Italy, April
14 - 16, 2004). CF *04. ACM, New York, NY, 419-432.

[J. Karlsson et al 1991] Karlsson, J., Gunneflo, U., Lidén, P., and Torin, J. Two Fault
Injection Techniques for Test of Fault Handling Mechanisms. In Proceedings

of the IEEE international Test Conference on Test: Faster, Better, Sooner (October
26 - 30, 1991). IEEE Computer Society, Washington, DC, 140-149.

[J. Ritter 1990] Ritter, J.C.Radiation Effects in Space Systems, Naval Research Re-
views, pp. 25-37, 1990.

[J. Tombs et al 2004] J. N. Tombs, F. Munoz, V. Baena-Lecuyer, A. Torralba, L.G. Fran-
quelo, A. Ferndndez-Leon, F. Tortosa-Lopez, D. Gutiérrez Gonzdlez, A Hard-
ware Approach for Seu Immunity Verification Using Xilinx Fpga’s, Proc. 19th
Conference on Design of Circuits and Integrated Systems, DCIS 2004. Bordeaux,
France. 2004. pp. 479-484.



79

[L. Kafka 2008] Kafka, L., Analysis of Applicability of Partial Runtime Reconfigura-
tion in Fault Emulator in Xilinx FPGAs, Design and Diagnostics of Electronic
Circuits and Systems, 2008. DDECS 2008. 11th IEEE Workshop on , vol., no.,
pp-1-4, 16-18 April 2008

[L. Sterpone et al 2007 ] Sterpone, L.; Violante, M., "A New Partial Reconfiguration-
Based Fault-Injection System to Evaluate SEU Effects in SRAM-Based FP-
GAs, Nuclear Science, IEEE Transactions on , vol.54, no.4, pp.965-970, Aug.
2007

[M. Alderighi et al 2003] Alderighi, M., Casini, F., D’ Angelo, S., Mancini, M., Marmo,
A., Pastore, S., and Sechi, G. R. 2003. A Tool for Injecting SEU-Like Faults into
the Configuration Control Mechanism of Xilinx Virtex FPGAs. In Proceedings
of the 18th IEEE international Symposium on Defect and Fault Tolerance in VLSI
Systems (November 03 - 05, 2003). DFT. IEEE Computer Society, Washington,
DC, 71.

[M. Alderighi et al 2007] Alderighi, M., Casini, F., D’Angelo, S., Pastore, S., Sechi,
G. R., and Weigand, R. 2007. Evaluation of Single Event Upset Mitigation
Schemes for SRAM based FPGAs using the FLIPPER Fault Injection Plat-
form. In Proceedings of the 22nd IEEE international Symposium on Defect and
Fault-Tolerance in VLSI Systems (September 26 - 28, 2007). DFT. IEEE Com-
puter Society, Washington, DC, 105-113.

[M. Hsueh et al 1997 | Hsueh, M., Tsai, T. K., and Iyer, R. K. 1997. Fault Injection
Techniques and Tools. Computer 30, 4 (Apr. 1997), 75-82.

[M. Hubner et al 2004] Huebner, M., Becker, T., and Becker, J. 2004. Real-time LUT-
based network topologies for dynamic and partial FPGA self-reconfiguration.
In Proceedings of the 17th Symposium on integrated Circuits and System Design
(Pernambuco, Brazil, September 07 - 11, 2004). SBCCI '04. ACM, New York,
NY, 28-32.

[M. Shokrolah-Shirazi et al 2008] Shokrolah-Shirazi, M. and Miremadi, S. G. FPGA-
Based Fault Injection into Synthesizable Verilog HDL Models. In Proceedings
of the 2008 Second international Conference on Secure System integration and
Reliability Improvement - Volume 00 (July 14 - 17, 2008). SSIRI. IEEE Computer
Society, Washington, DC, 143-149.

[N. Battezzati et all 2008] Battezzati, N.; Sterpone, L.; Violante, M., A new low-cost
non intrusive platform for injecting soft errors in SRAM-based FPGAs, In-
dustrial Electronics, 2008. ISIE 2008. IEEE International Symposium on , vol.,
no., pp.2282-2287, June 30 2008-July 2 2008

[P. Folkesson et al 1998] P. Folkesson, S. Sevensson, and J. Karlsson, A Comparsion
of Simulation Based and Scan Chain Implemented Fault Injection, Proc. of

the Annual International Symposium on Fault-Tolerant Computing, Jun. 1998, pp.
284-293.



80

[P. Kenterlis et all 2006 ] Kenterlis, P., Kranitis, N., Paschalis, A., Gizopoulos, D., and
Psarakis, M. 2006. A Low-Cost SEU Fault Emulation Platform for SRAM-
Based FPGAs. In Proceedings of the 12th IEEE international Symposium on on-
Line Testing (July 10 - 12, 2006). IOLTS. IEEE Computer Society, Washington,
DC, 235-241.

[R. Leveugle 1999] R. Leveugle, Towards modeling for dependability of complex in-
tegrated circuits, in 5th IEEE International On- Line Testing workshop, July
1999, pp. 194-198

[S. Guccione et al 1999] Guccione, S.,Levi, D.,Sundararajan, P. JBits: A Java-based in-
terface for reconfigurable computing 1999. In Proceedings of the Second An-
nual Military and Aerospace Applications. MAPLD, 1999

[V. Pouget et al 2008] Pouget, V., Douin, A., Foucard, G., Peronnard, P., Lewis, D.,
Fouillat, P., and Velazco, R. Dynamic Testing of an SRAM-Based FPGA by
Time-Resolved Laser Fault Injection. In Proceedings of the 2008 14th IEEE in-
ternational on-Line Testing Symposium - Volume 00 (July 07 - 09, 2008). IOLTS.
IEEE Computer Society, Washington, DC, 295-301.

[V. Pouget et al 2008] Heng Tan , Ronald F. Demara , Abdel Ejnioui , Jason D. Sattler
Complexity and Performance Evaluation of Two Partial Reconfiguration In-

terfaces on FPGAs: a Case Study. In Reconfigurable Architectures Workshop
(RAW), Greek, 2006.

[Xilinx XAPPO058] Xilinx, Inc. XAPP058: Xilinx In-System Programming Using an
Embedded Microcontroller. Xilinx Application Note XAPP058 v4.1 March 6,
2009.

[Xilinx XAPP290] Xilinx, Inc. XAPP290: Difference-Based Partial Reconfiguration.
Xilinx Application Note XAPP290 v2.0 December 3, 2007.

[Xilinx XAPP424] Xilinx, Inc. XAPP424: Embedded JTAG ACE Player. Xilinx Ap-
plication Note XAPP424 v1.0.2 April 7, 2008.

[Xilinx XAPP503] Xilinx, Inc. XAPP503: SVF and XSVF File Formats for Xilinx
Devices. Xilinx Application Note XAPP503 v2.1 August 17, 2009.

[Xilinx XAPP951] Xilinx, Inc. XAPP951: Configuring Xilinx FPGAs with SPI Serial
Flash. Xilinx Application Note XAPP951 v1.3 September 23, 2010.

[Xilinx UG071] Xilinx, Inc. UG071: Virtex-4 FPGA Configuration User Guide v1.11
June 9, 20009.

[Xilinx UG070] Xilinx, Inc. UG070: Xilinx Virtex-4 FPGA User Guide v2.6, Decem-
ber 1, 2008.

[Xilinx DS112] Xilinx, Inc. DS112: Virtex-4 Family Overview v3.1, August 30, 2010.

[Xilinx UG702] Xilinx, Inc. UG702: Partial Reconfiguration User Guide v14.1 April
24, 2012.



81

[Xilinx WP374] D. Dye WP374: Partial Reconfiguration of Xilinx FPGAs Using ISE
Design Suite. Xilinx White Paper WP374 v1.1 July 6, 2011.

[Xilinx UGO081] Xilinx, Inc. UG081: MicroBlaze Processor Reference Guide. v14.1
April 24, 2012.

[502-178] Digilent Inc. Attllys Board Refference Manual. Digilent Inc. Reference
Manual Rev C February 28, 2011.

[J. Edwards 2006] Digilent Inc. No room for Second Place: Xilinx and Altera slug it
out for supremacy in the changing PLLD market. EDN, retrieved May 11, 2012

[DSD-0000332] Digilent Inc. Atlys board support files for EDK BSB wizard. retrieved
March 16, 2012



N —

O 0O L A~ W

10
11
12
13
14
15

16

82

APPENDIX A SCRIPTS

Listing A.1: Script For Generating Microblaze Objects

mb—objcopy —I binary —O elf32 —microblaze file_name.ace
file_name .o

Listing A.2: Script For Dumping Microblaze Objects

mb—objdump —x file_name.o >> file_name .dmp

Listing A.3: Microblaze Object Dump

system_part_parityencoder_2_0100_clear.o: file format
elf32 —big

system_part_parityencoder_2_0100_clear.o

architecture : UNKNOWN!, flags 0x00000010:

HAS_SYMS

start address 0x00000000

Sections:
Idx Name Size VMA LMA File off
Algn
0 .data 00000b8c 00000000 00000000 00000034
2% %0

CONTENTS, ALLOC, LOAD, DATA
SYMBOL TABLE:
00000000 1 d .data 00000000 .data

00000000 g .data 00000000
_binary_system_part_parityencoder_2_0100_clear_ace_start
00000b8c g .data 00000000
_binary_system_part_parityencoder_2_0100_clear_ace_end
00000b8c ¢ *ABS+* 00000000

_binary_system_part_parityencoder_2_0100_clear_ace_size

Listing A.4: Script For Generating a SREC from a ELF file

mb—objcopy —O srec application.elf application.srec




NN DN R W

83

Listing A.5: Script For Generating a .SVF file from a .BIT file

impact —batch

setMode —bs

addDevice —p 1 —file file_name.bit
setCable —port svf —file file_name.svf
program —p 1

closeCable

quit

Listing A.6: Script For Generating a .ACE file from a .SVF file

svf2ace .exe —wtck —i1 file_name.svf —o file _name . ace

Listing A.7: Bitgen Options Used to Create Partial Bitstreams

bitgen —w —g ActiveReconfig:Yes —g Persist:yes —r
original_bitstream . bit modified_netlist.ncd
modified_netlist_partial_bitstream_fault_set.bit

bitgen —w —g ActiveReconfig:Yes —g Persist:yes
modified _netlist.ncd
modified netlist _full _bitstream_fault_set.bit

bitgen —w —g ActiveReconfig:Yes —g Persist:yes —r
modified_netlist_full_bitstream .bit original_ntelist.ncd
modified_netlist_partial_bitstream_fault_clear.bit




84

APPENDIX B LOGIC ANALYZER SPECIFICATIONS

Input Voltages and Thresholds
e Input voltage range: -0.5V to 5.25V

e Input Low Voltage: -0.5V to 0.8V
e Input High Voltage: 2.0V to 5.25V

e Works with 5V, 3.3V, 2.5V, 2.0V systems. May work with 1.8V but not recom-
mended.

e ESD protected per CE requirements

e Over-voltage protection to +/- 15V. Not meant for continuous operation outside
-0.5V to 5.25V.

e Input Impedance: 1Mohm Il 10pF (typical, approximate)
e Crystal: +/-20ppm, 24MHz
e Error/Accuracy: pulse-width measurement: +/- 42ns (at 24MHz).

Sample Rate & Depth

e 24MHz. 16MHz, 12MHz, 8MHz, 4MHz, 2MHz, IMHz, 500KHz, 250KHz, 200KHz,
100KHz, 50KHz, 25KHz;

e 10B samples. Absolute max depends on data compressibility, available RAM and
operating system. 10B samples assumes reasonably high compressibility.

Connectors

e 1x8 male IDE .1 in pitch (aperture size: .110 in x 1.840 in; .030in radiused corners)

e USB Mini-B



