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ABSTRACT

In the last years, we witnessed the rise of XQuery, a language natively designed to
query over XML documents. The Internet, as we know today, makes a massive use
of XML documents, but for data exchange, not as a storage technology. Relational
databases, in the other hand, are dominant in the industry, for storage. To provide an
integration between these two worlds, our work presents a tool capable of compile SQL
queries into XQuery operators ready to be processed by an XQuery engine. In this way,
we intend to give more flexibility to developers, offering language independence.

Keywords: XQuery, SQL, XML, database, storage, parser, relational, translation.





RESUMO

Nos últimos anos, nós presenciamos o crescimento da XQuery, uma linguagem nati-
vamente projetada para consultas em documentos XML. A Internet, como conhecemos
atualmente, faz um uso massivo de documentos XML, mas para intercâmbio de dados,
não como uma tecnologia de armazenamento. Bancos de dados relacionais, por outro
lado, são dominantes na indústria, para armazenamento. Para prover uma integração entre
esses dois mundos, nosso trabalho apresenta uma ferramenta capaz de compilar consul-
tas SQL em operadores XQuery, prontos para serem processados por um motor XQuery.
Dessa forma, nós pretendemos dar mais flexibilidade aos programadores, oferecendo in-
dependência de linguagem.

Palavras-chave: XQuery, SQL, XML, database, storage, parser, relational, translation.
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1 INTRODUCTION

1.1 Overview

Section 1.2 gives a quick introduction to the subject of the work. Section 1.3 talks
about the context, motivation and proposed goals of this work. Section 1.4 presents some
works related to the present graduation thesis, and section 1.5 depicts the structure fol-
lowed by the work.

1.2 Basis

XQuery has become known in the last years for being a language with the purpose
of querying XML documents. The XML format became widely spread in the last decade
and it is nowadays the standard format for electronic data interchange. Furthermore,
it is a standard that was born to drive content presentation on the web, hence being of
utmost importance in the modern web-based applications. However, XQuery is a pow-
erful data programming language, whose functionality goes beyond querying and ma-
nipulating XML data. XQuery provides mechanisms to query these XML-based docu-
ments and to construct them as well. It is basically a functional programming language,
with features like absence of side-effects, fully-composable expressions, variable bind-
ings, recursion, and higher-order functions. For querying, XQuery offers FLOWR ex-
pressions, a construct influenced by the SQL syntax, capable of performing the standard
SPJ operations—selection, projection, and join. Therefore, we can conclude that XQuery
actually subsumes basic SQL functionality.

emp_id emp_name

1 John

2 Paul

3 George

.

.

.

.

.

.

<employee>

</employee>

<emp_id>1</emp_id>
<emp_name>John</emp_name>

4 Ringo

<employee>

</employee>

<emp_id>2</emp_id>
<emp_name>Paul</emp_name>

<employee>

</employee>

<emp_id>3</emp_id>
<emp_name>George</emp_name>

<employee>

</employee>

<emp_id>4</emp_id>
<emp_name>Ringo</emp_name>

EMPLOYEES <employees>

</employees>

Figure 1.1: SQL Table Mapped to a Flat XML File
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The XQuery language incorporates the XML data model, in which data is modeled as
XML fragments. Unlike other data models, XML does not need to conform to a schema,
allowing a varied degree of structuredness, from well defined tabular data to deeply nested
hierarchies of arbitrary data items. Thus, this hierarchical data representation offers both
flexibility and extensibility, allowing us to represent a large range of data formats, such
as tables, documents, graphs, images, music notation, among others. For instance, Figure
1.1 shows how a relational table can be mapped to an XML document. In this example,
standard SQL operations on the table at the left side can be mapped to FLOWR expres-
sions on the document at the right side.

1.3 Motivation and goals

Despite all its advantages and widespread use on the web, XML is not heavily adopted
as storage technology, an area where relational databases and SQL still dominate. Native
XML databases (XDBMS) are well known and abundant as scientific prototypes, but re-
main exotic in enterprise applications. A possible reason for this is that the high flexibility
of the XML data model adds an additional layer of complexity to well-known database
techniques, such as optimization, isolation, recovery, storage, indexes, and so on. Hence,
an XDBMS product from major database vendors was not yet established on the market.

XQuery Interface SQL Interface

Query Processor

Native XML 
Storage

Relational 
Storage

Plain XML File

Language 
Independence

(Above)

Storage 
Independence

(Below)

Figure 1.2: System Architecture

Given these aspects, we can observe the lack of a mechanism that integrates both
XQuery and SQL, allowing syntax independence in addition to the data storage indepen-
dence. The predominance of XML as a data-interchange format and the dominance of
SQL as querying language, require a tool that allows us to handle both, by hiding expen-
sive conversions done internally. Most efforts in this direction use an SQL query engine
adapted to deal with XQuery, which involves encode the hierarchical model of XML in
tables. Since XQuery is a more powerful language than SQL, it is meaningful to use
an XQuery processor as base to create this mechanism. Aiming at more data manage-
ability, we present a framework capable of interpreting SQL using an XQuery engine.
The SQL processing infrastructure is migrated to XQuery, adding a parser to interpret the
SQL language, providing language independence in the layer “above” the processor. This
eliminates the need to rewrite code to XQuery. Furthermore, it allows the SQL developer
to keep working with the system without needing to learn a new query language.

The framework is able to map foreign data models to XML, allowing the XQuery
engine to process not only XML data, but also relational tables. This provides storage
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independence to the layer “below” the query processor. This scenario is depicted in Fig-
ure 1.2, which illustrates the architecture of our system. Here, a single query processor is
able to provide both XQuery and SQL interfaces, while seamlessly managing, at the stor-
age layer, XML stores together with relational data. A conversion is not necessary from
relational tuples to XML data. To develop our framework we use the Brackit1 engine as
base XQuery processor.

1.4 Related work

The major efforts in this SQL and XQuery integration area have simply provided data
mapping and techniques to import (export) XML data into (from) relational databases.
The SQL/XML standard (Eisenberg e Melton 2004), for example, is an extension of SQL
that allows SQL queries to create XML structures with a few XML publishing functions.
Some well difunded relational database engines, such as PostgreSQL (PostgreSQL 2012),
implement this standard. Another tool that uses an relational engine as base to query
XML is the SQL Server from Microsoft (Garcia 2007). It presents an extension to deal
with XQuery in its engine, making possible to compose SQL and XQuery in the same
query.

Differently from the previously mentioned technologies, some approaches use a native
XQuery engine in the process. AquaLogic Data Services Platform (Jigyasu et al. 2006)
translates SQL queries into XQuery expressions to be processed by an XQuery engine.
Unlike our approach, the AquaLogic solution needs to reprocess the XQuery query af-
ter the translation, instead of generating XQuery operators directly from the SQL query.
Another relevant related work is the IBM project named ROX (Halverson et al. 2004), it
focuses on querying only over native XML documents and compare performance results.
However, the published text does not gives much explanation about the actual translation
process.

1.5 Work structure

This work is organized as follows. Chapter 2 describes the Brackit engine
(Sauer e Bächle 2011), the data-independent XQuery compiler which served as base for
our work. Chapter 3 presents the mechanism we used to map relational tuples into XML
nodes, which corresponds to the layer below the processor. In Chapter 4, we show the
implementation of the rules to translate SQL to XQuery, which allow the query engine to
recognize both languages, which corresponds to the layer above the processor. Chapter
5 presents some empirical results. Finally, Chapter 6 draws our conclusive remarks and
future work.

1http://www.brackit.org/
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2 THE BRACKIT XQUERY ENGINE

2.1 Overview

This chapter seeks to provide the basic concepts of this work. Section 2.2 explains the
fundamentals of XQuery and its basic mechanism to query data, the FLOWR expressions.
Section 2.3 shows how Brackit processes the FLOWR expressions, which will be widely
used in the translation of SQL queries.

2.2 XQuery semantics and FLOWR expressions

XQuery is a powerful functional programming and querying language, created to
manipulate XML-based data (Katz et al. 2003). It is based on the XPath language
(Query e Groups 2010), that was designed for addressing parts of an XML document,
using a compact navigation syntax. XQuery offers a large variety of expressions, such as
primary, sequence, path —through XPath—, comparison, arithmetic, among other expres-
sions as well as recursive functions. All of them have no side-effects, which means that
there are no assignments, and can be generally composed. When it comes to the querying
capabilities, some authors evaluate the expressiveness of XQuery as comparable to the
“relational completeness” criterion (Codd 1972), which means that XQuery achieves the
basic relational expressiveness. XQuery is defined as a transformation on the XQuery
Data Model (XDM) (W3C 2010).

According to XQuery, each expression evaluates to a sequence, which is composed by
zero or more items that can be an atomic value or a node. An atomic value has a simple
type —defined in the XML Schema standard (W3C 2004)—, which includes the special
“untyped” type, whereas a node is one of the seven kinds of node defined by XPath stan-
dard (Query e Groups 2010): document, element, attribute, text, comment, processing
instruction, and namespace. Sequences containing a single item (singletons) are defined
to have the same semantics as the item alone. The integer value “4”, for instance, repre-
sents the same entity as the sequence “(4)”. In XDM, documents are abstracted as nodes
of type “document”. This data abstraction allow us to work with XML and a large range
of others file formats as long as mapping mechanisms are provided. Figure 2.1 shows the
summarized XDM structure.

An important aspect in the XQuery semantics is the expression context, which con-
tains all the information that can affect an expression in some way, e.g., variable bind-
ings, type information, available functions, etc. The expression context can be divided
into static and dynamic, where the former is used in the compilation phase and the latter
is used in the execution phase. The dynamic context is essential for the XQuery FLOWR
expressions, and it consists of the values of the variables. When a expression is evaluated,
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Item

Atomic 
Value

Document

Item

XML 
Node

Element

Attribute

Comment

Text

Namespace

Instruction

Untyped

Integer

Boolean

Date

Float

.

.

.

..., ,
.
.
.

Figure 2.1: XDM Sequence-Based Structure

its dynamic context is a tuple which contains the values of each variable. In a loop, the
dynamic context changes at each iteration, by walking over the tuple stream.

The basic tool for querying data in XQuery is the FLOWR expression
(Katz et al. 2003), that is very similar to the well-known relational clauses. FLOWR is a
short for the basic XQuery querying clauses: for, let, order by, where, return, and, addi-
tionally the group by clause, which was introduced in later revisions of the standard. The
basis of a FLOWR expression is the for and let clauses, because they initiate the dynamic
context, by binding the first variable. Therefore, a FLOWR expression needs at least one
for clause or let clause, to generate a combined sequence of bound variables, called tu-
ple stream, which will be the input to be modified by the other optional clauses, such as
where, order by, group by, or even by others for and let clauses. Finally, the return clause
processes it, to produce an outcome based on the dynamic context.

The for clause is responsible for iterating over a data sequence and binding a unique
variable to each value of the sequence, creating a tuple stream, that can be referenced by
the bound variable. Nested for clauses generate combined tuples, where each one of the
tuples from the lower for clause is associated to each value from the higher for clause,
generating a combined tuple stream (as in a Cartesian product).

The second letter from the abbreviation represents the let clause, that binds an entire
expression result to a variable, producing one single tuple, unlike the for clause, which
produces one tuple for each element of the sequence. The tuple generated by the let clause
is concatenated to the tuples generated by the previous for clause, if they exist.

The where clause filters the tuples according to a predicate, an expression that can
be evaluated to true or false — eliminating the tuples that do not satisfy the specified
condition. The order by clause sorts the tuples by some key, which results from the
evaluation of a given expression into a single atomic value. These keys are contained in
order-specs, each order-spec can define sort aspects like ascending or descending, how
empty evaluated sequences will be sorted, etc. We also have the group by clause, which
groups the tuples by a key, that must be a variable or a set of variables, merging the values
of the others (non-key) variables.

Finally, the return clause generates the query outcome, it is comparable to the SQL
select, where we can specify expressions to produce the desired result. However, the re-
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f o r $e i n c o l l e c t i o n ( ‘ ‘ emps ’ ’ )
where $e / e m p _ s a l a r y > 10000
l e t $ d e p a r t m e n t := $e / d e p a r t m e n t
group by $ d e p a r t m e n t
l e t $ s a l a r y := avg ( $e / e m p _ s a l a r y )
order by $ d e p a r t m e n t
re turn < r e c o r d >

{ $depa r tmen t ,
$ s a l a r y }

</ r e c o r d >

$e in collection("emps")
Iterates each item of the sequence of 
employees and create a tuple to each one. 
All tuples are bound to the variable "e".

$e/emp_salary > 10000Where
(Optional)

Iterates the tuple stream bound to the 
variable "e" and remove the ones where the 
salary is lower than "10000".

$department := 
$e/department

Binds all the departments to the variable 
"department" creating a unique tuple and 
combines this tuple with all tuples not 
eliminated by the where.

For

Let
(Optional)

$department Groups all the tuples with same department, 
merging the other sequences, such as salary.

Group By
(Optional)

$salary := avg
($e/emp_salary)

Calculates the average salary for each tuple 
(some of them may have more than one 
salary) and binds them to the variable 
"salary".

Let
(Optional)

$department Sorts all the tuples by its department.Order By
(Optional)

<record> 
       {$department,
       $salary}
</record>

From the resulting tuple stream, generates 
nodes containing the department and its 
average salary as result.

Return

Figure 2.2: FLOWR Expression

turn clause is more flexible, offering dynamic node construction expressions, which can
be arbitrary nested and deal with untyped values. The outcome is a result sequence of
the whole FLOWR expression, where is generated one value for each tuple in the stream,
flattening the nested sequences. Figure 2.2 presents a query with a simple FLOWR ex-
pression and its clauses. This query iterates over a collection of employees whose salary
is greater than 10000 and groups them by their departments, returning a document con-
taining the departments and their average salaries.

2.3 Brackit pipelines

The Brackit engine processes the FLOWR expressions in a simple and clear way,
executing them as close as possible to the semantical description (W3C 2010). Every
FLOWR expression consists of a sequence of clauses, which are evaluated to a sequence
of items, as defined in the XDM. In practical terms, Brackit creates a pipeline from the
FLOWR semantical tree, where a tuple stream is passed step by step through this pipeline.

The FLOWR clauses are represented in the pipeline by relational-style operators
(Sauer e Bächle 2011). A especial operator named Start begins the pipeline by passing
an empty context (single tuple) to the next operator which can be a ForBind or a LetBind,
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that represent, respectively, the for clause and let clause. These two operators generate
the tuples that are going to be sorted, filtered and grouped by the following operators.
The where clause is performed by the Select operator, which filters the tuple stream by
removing the tuples that do not satisfy the attached boolean expression.

The OrderBy operator sorts the tuple stream received by the previous operator, ac-
cording to an expression. Is important to remember that order by expressions have to be
evaluated to a singleton, otherwise it is not viable to sort the tuples, because is not possible
to define which value is going to be compared. Unlike the others, the GroupBy operator
works different in SQL and XQuery, where concepts of grouping and aggregation are
separated. As we can see in the Figure 2.3, the group by just merges the tuples containing
the same key into a single one, with no need for aggregation in the merged values. At the
end, the pipeline is connected with the return clause by a special pipe operator.

emp_id emp_name

1 $15000

2 $20000

3 $50000

4 $20000

5 $50000

emp_salary

John

Paul

George

Ringo

Yoko

emp_id emp_name

1 $15000

(2, 4) $20000

(3, 5) $50000

emp_salary

John

(Paul, Ringo)

(George, 
Yoko)

Group By 
emp_salary

Figure 2.3: XQuery Group By Mechanism

The Brackit compilation process includes further optimizations, which are not rele-
vant for this work, such as lifting, rewriting, and joins. Nested ForBinds followed by a
Select operator are replaced by a Join operation, avoiding unnecessary large data amounts
caused by Cartesian products. Nested FLOWR operations also can be undone, by us-
ing the Brackit pipe lifting mechanism. The pipelines are compiled from the Start to the
pipe operator in a bottom-up process. The Brackit operators, as described above, work
in a relational way, handling tuple streams in a way similar to how relational operators
manipulate tables.
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3 MAPPING RELATIONAL MODEL TO XML

3.1 Overview

This chapter concerns about the layer “below” the query processor, introduced in sec-
tion 1.3 and demonstrated in Figure 1.2. Here we explain the process of mapping rela-
tional tuples to an XML abstraction, making it readable to the query processor. Section
3.2 gives the fundaments used in sections 3.3 and 3.4 to explain the mapping of relational
tables. Section 3.5 shows how schemas are composed to be used by the SQL interpreter.

3.2 Node abstraction

The data handled by the Brackit engine is modeled by the XDM. External data sources
are accessed by retrieving nodes from documents and collections thereof, by using the
functions “doc()” and “collection()”. The interaction between processor and nodes is
given by an interface that provides a range of navigation primitives. This mechanism is
very similar to the DOM API (Wood 1999), where functions that allow the navigation
between nodes, such as “getChildren()”, “getFirstChild()”, and comparisons, like “is-
Root()”, “isParentOf()”, “isSibling()”, etc, are given. This interface implementation will
better detailed in the next subsection.

The process of retrieving and mapping data to feed the processor can be divided in
two different parts. The first is responsible to make the binary translation, deserializing
tuples from container files. The second makes the logical abstraction, by interpreting
the tuples read in the first step and creating the nodes, which can be understood by the
query processor. Since these both steps are completely independent from each other,
with a well-defined interface between them, the second step is not concerned with the file
formats deserialized in the first one. Therefore, the deserialization can support a large
range of file formats, offering a series of specific deserializers.

The node interface provides an object abstraction, thus allowing the processor to work
with several kinds of nodes, such as memory nodes (pointers), DB Nodes (XDBMS),
among others. It provides the storage independence to the engine. As we are going to
see in the next section, this mechanism permits to represent relational tuples coming from
SQL tables by using the node abstraction.

3.3 Mapping tuples to nodes

An essential part of our work is to map the relational model to an XML structure,
linking it to the Brackit engine. This subsection details the logical translation from tuples,
that is the second part of the data mapping. Serialized files are read into tuples that are
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mapped to nodes, which can be understood by the Brackit engine. This mechanism allow
us to logically map a variety of different data models to the XDM. The structure used
in this process is the RowNode, which is a class that wraps a record containing atomic
values. As we saw previously, the first step, made by the scanners, deserializes container
files, creating an object that represents an array of atomic values. These objects are used
to construct instances of a RowNode, that simulates an XML node.

The RowNode structure provides navigation primitives to access its fields. Despite it
simulates an XML node, which is a tree, internally the accesses are performed as array
accesses, performing a similar efficiency than a native relational engine. Is important to
note that this infrastructure simulates the XML behavior without need to actually phys-
ically convert the data. With this approach, is possible to achieve a good performance
while reading data from heterogeneous sources and formats.

3.4 Mapping tables

The deserializers produce arrays of atomic values (tuples), from the container files,
which can be interpreted as simple rows. In our approach, mapping from relational data
model, the association is trivial: the deserializer generates one tuple for each relational
table row. Each resulting tuple is converted, thus, in a RowNode. At the end, a relational
table is logically mapped to a set of RowNodes. Since we are dealing with a database
engine, the process of mapping an entire table is just logical; to read a relational table, a
RowNode stream is created and each row is read at a time.

CSV Scanner RowNode

2Paul

<employee>
       <id>2</id>
       <name>Paul</name>
</employee>

id, name;
1, John;
2, Paul;
3, George;
4, Ringo;

employees.csv

Figure 3.1: Mapping a Relational Table to a Logical Node

Figure 3.1 shows the process with a simple example, in which we are mapping a row
to a logical node. The example scans a CSV file, but it could be any file format with a
specific scanner associated to it. In our file, the scanner knows that each row is separated
by a semicolon, and the columns of each row are separated by commas. Is also defined
that the first line is used as embedded schema, so the scanner starts from the second line
of the file. Since the stream pointer is on the second logical row of the represented table,
the scanner reads it to the tuple {2,Paul}, which is wrapped by the RowNode simulating
an XML node.
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3.5 Schema’s

To query relational data, it is necessary to define a schema, which is responsible to
specify the organization of the stored data. Table and column names, types, lengths and
etc. are essential to make possible to the engine to run queries and iterate over the data.
An XML document does not requires a schema, but relational tables must be structured.
Given this need, we provide an interface to connect different meta-data sources with the
SQL interpreter.

In our solution, have been developed specific classes to implement the schema struc-
ture, depicted in Figure 3.2. Three main classes store all the required information. The
ColumnInfo stores specific column informations, such as name, type, length, etc. The
TableInfo class has all the table information, like stored physical location, name, and an
array containing the ColumnInfo objects of all the columns belonging to the table. Finally,
the RelationalSchema class makes the bridge between the meta-data sources and the en-
gine. This class contains all the tables respective TableInfo objects, providing methods to
access the necessary schema information for each table.

Schema 
Serialized 

File RelationalSchema

TableInfos

ColumnInfos

Schema 
Serialized 

File

Schema 
Serialized 

File

.

.

.

SQL Interpreter

Figure 3.2: Schema Structure

Auxiliary classes help to build the TableInfo structure. Similarly to the data scanners,
approached previously, the schema makes use of specific reader classes to deserialize the
meta-data from distinct data sources, importing this information to the mentioned classes,
which are connected to the SQL interpreter. To process a relational query, the tables meta-
data is needed, thereby, unlike the data scanners, the schema readers read all the schema
information before the query execution, instead of open a stream in the container file.
Two different schema readers were implemented in this work:

• Embedded: Reads the schema information from the same CSV file containing the
table data.

• XML: Reads the schema information from an specific XML file.

This provided infrastructure allows to generate schemas from a large range of file formats
and structures. Each reader is specific, having to understand both the binary codifica-
tion and the meta-data structure, to correctly generate TableInfo objects. Therefore, the
SQL interpreter can disregard how the schema data is physically stored/organized, just
concerning to communicate with the interface provided by the RelationalSchema.
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4 TRANSLATION

4.1 Overview

This chapter concerns about the layer “above” the query processor, introduced in sec-
tion 1.3 and demonstrated in Figure 1.2. Here the SQL interpreter will be detailed, the
query translation process is composed by three steps:

1. Parser

2. Analyzer

3. Translator

These steps are explained in sections 4.3, 4.4 and 4.5, while section 4.2 explains the basic
mechanisms used by the translation steps. Figure 4.1 elucidates the operation of this
pipeline structure.

Parser

Analyzer

Translator

Query
(String)

Analyzed Tree

Parsed Tree

Translated Tree

Query Processor

Relational 
Schema

Figure 4.1: SQL Interpreter Pipeline
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4.2 Tree grammars and rewrite rules

Aiming to interpret SQL in the Brackit engine, we implemented a tool which parses
SQL queries, generating an abstract syntax tree (AST). The tree is read and some analysis
are performed, such as table name resolving, aggregation functions detection, columns
and tables association, and so on. Finally, it is translated to an XQuery AST, which can
be executed by the Brackit engine. As mentioned, the work is divided into three phases,
and all of them require manipulation of ASTs. To generate and manipulate these trees a
framework called ANTLR is used. ANTLR is “Another Tool for Language Recognition”,
it offers a range of mechanisms to create interpreters and compilers from grammatical
descriptions (Parr 2007). The target code of these recognizers can be generated in a large
variety of programming languages. In our case the target language is Java.

The process of parsing an expression begins with a lexer, which is a tokenizer. It
receives a character stream (the string to be parsed) and generates a token stream that
will be the parser input. These tokens are generated by matching character sequences of
the stream with a list of pre-defined strings (tokens) or regular expressions. The parser
is, essentially, constructed by rules. A rule can be defined as an arbitrary composition of
other rules or tokens. In this work, we define a set of rules that describe the SQL language.
For the beginning of the process, an initial rule is defined, which the input string will be
compared to. The tokens produced by the lexer are matched with the sub-rules or tokens,
and the parser keeps matching the tokens in a top-down process, until all the input tokens
find a match — or not, resulting in an parsing error. The rules return ASTs and can use
its sub-rule’s ASTs to compose its own one. In this way, composing ASTs, the initial rule
returns a unique AST as output that will be processed in other steps of our work.

Figure 4.2: Tree Generation Syntax

Figure 4.2 shows a simple example, with 3 simple rules in ANTLR we create an AST
correspondent to a simple select statement. The picture is a print of the ANTLR screen. In
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the upper part, the ANTLR code is shown. The first line of each rule contains its definition,
whereas the second line is responsible for generating its outcome AST. The first rule is
composed by the two following rules. In the lower part, is shown an interpreter with a
simple SQL command on the left and a graphical representation of the parsing process
generated by statement rule, on the right. Although it is similar, this representation do not
correspond to the output AST. The arrow indicates a tree construction and it is followed
by the nodes structure, represented by nested parenthesis. The nodes are represented by
their names and the symbol ˆ is used to start a new branch in the tree, where the first node
is the parent and the following nodes of the parenthesis scope are its children, Figure 4.2
elucidates this syntax.

After parsing the query and generating an AST, we still have to process the output
AST. ANTLR provides numerous mechanisms to manipulate them. The parser rules can
receive parameters and modify them. Additionally, code in the target language can be
embedded into the rules to help in the parsing process, making some more complex ma-
nipulations that can not be made with grammar rules alone. An important feature of
ANTLR is the possibility to create and manipulate trees, known as tree-parsing. It pro-
vides tools to recognize, remove, add and move nodes, making it possible to rewrite a
tree, for example.

4.3 Parser

The first step in our SQL query processing is to parse the query. Parsing is the pro-
cess of analyze a text, consisting in a sequence of tokens, to determine its grammatical
structure according to a given formal grammar. Our Parser respects the SQL grammar,
and produces a tree of tokens, conforming this grammar structure. It receives a string, as
input an returns an AST as output.

The most simple of the three query processing steps, but not less important, the parser
is responsible for the lexical and the syntactical analysis, producing an output ready to
be processed by the analyzer. To facilitate the analysis step, our parser executes a little
trick, putting in the outcome AST the from clause generated branch as the first one, while
the natural behavior would be to put the select clause branch as first. This action aims to
make it easier to the analyzer, because the tree is parsed from left to right. This trick makes
possible to read all the tables first and afterwards process the columns references knowing
from each tables they can be from. Besides, this artifice allows the early detection of
simple problems, such as inexistent table references. At last, the branch created for the
select clause is moved to the last position, since it will become the branch correspondent
to the XQuery return clause.

The main rule of the parser is the statement rule, which consists in the select_statement
rule, followed by a semicolon. The select_statement rule is composed by the sequence of
sub-rules listed below:

• select_clause: Accepts prefixed column references, asterisk (all the columns from
all specified tables), prefixed asterisks (all the columns from certain table), and
expressions, which can be column references, function calls and etc.

• from_clause: Accepts table references and alias assignment. Besides, allows sub-
queries, which are recursively defined as statement rules, but interpreted as table
references by the queries above it.
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• where_clause (optional): Accepts any predicate.

• groupby_clause (optional): Accepts column references that can be followed by an
optional having_clause.

• orderby_clause (optional): Accepts column references, each one can be followed
by the ASC or DESC optional modifiers.

The parser uses an auxiliar Java function “isAggregate(String functionName)”, which
identifies aggregation functions, generating thus, an aggregation function branch or a
scalar function branch, otherwise. This will be useful to the translation step, as we are
going to see afterwards. The rest of the work is made by the ANTLR tree generation
mechanism, using the defined main rules listed above and their auxiliar sub-rules. Figure
4.3 shows the parsing operation, presenting an input query example an its related output
AST after the parsing process. As shown, the parser essentially organizes the input string
in a grammatical tree. To demonstrate the evolution of the process, each step of the SQL
query processing is ilustrated with a figure, which shows the resulting AST for each one.
The query below is the pipeline input and reflects an SQL version of the query shown in
Figure 2.2.

SELECT depa r t men t ,
avg ( e m p _ s a l a r y ) AS s a l a r y

FROM emps
WHERE e m p _ s a l a r y > 10000
GROUP BY d e p a r t m e n t
ORDER BY d e p a r t m e n t ;

Figure 4.3: Parsed Tree

4.4 Analyzer

This step processes, in high-level words, the action of organize the relation between
column references, tables, sub-queries and aliases. Starting from a syntactical tree, the
analyzer is responsible for the semantical analysis, producing a tree with resolved refer-
ences to serve as input to the translation phase. This step makes a wide use of the provided
query schema, also making use of a reasonable amount of Java embedded code within the
ANTLR code.

In addiction to the query schema, is generated an “SQLAnalyzerState” object for each
statement, which means one for the original query, and one for each sub-query as well.
This object contains all the auxiliar statement structures, that are listed below:
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• tableAliases: Map containing the query tables and their respective aliases.

• subquerySchema: List containing a dynamically generated TableInfo object to each
sub-query, composing a schema.

• outputColumns: List of query column references.

• subqueryAlias: If the statement is a sub-query, indicate its alias.

The first action is to process the from clause, which has been passed as the first branch
by the parser. In this part, we just register all the tables that compose the clause, followed
or not by an alias, in the “tableAliases” map. In order to facilitate the work, all the tables
are required to have an alias, dummy aliases are created to tables which come without
aliases from the parser. So, from now on, every table reference is uniform, made by its
respective alias. Artificially generated, dummy aliases conform a Tn pattern, where n
is a sequential number starting from zero. All aliases, artificial or defined in the query,
are attached in the tree, as child nodes of their respective table references. Sub-queries
aliases are registered in a specific variable, because they are part of a special push and pop
behavior, better explained hereafter.

After storing all the query tables and aliases, we process the column references in all
the other clauses. To each column reference, a function that resolves from which table
it comes from is called, attaching the table alias to the column reference node in the
tree. This function, called “getAliasForColumn”, starts looking into the original schema
for a table containing the column. If none is found, it looks in the subquerySchemas
structure. After finding the table or dynamic table (sub-query) which contains the column,
the function returns its alias, otherwise, if no table was found, an error is raised.

Query Processment

Sub-Query Processment

PopPush

StackStackStack Stack

Subquery
State

Query
State

Query
State

Query
State

Subquery
State

TableInfo

Query
State

Figure 4.4: Handling Sub-Queries with Push and Pop Operations

To handle sub-queries the analyzer contains a stack of “SQLAnalyzerState‘s” and
manage this trough push and pop operations. The first “SQLAnalyzerState” refers to the
main query, while the subsequent refers to sub-queries. Push operations just create new
“SQLAnalyzerState‘s”, putting them over the stack. Each pop operation, in the other
hand, generate a TableInfo object, which is attached to the “subquerySchema” structure
of the parent “SQLAnalyzerState”. In this way, each query receives all its sub-queries
information when the translator finish to process each one, calling a pop operation. The
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sub-query “outputColumns” list serves to generate a list of ColumnInfo objects that com-
pose a TableInfo object, having the “subqueryAlias” as table name. Figure 4.4 shows the
functioning of the push and pop operations, while Figure 4.5 shows the AST after the
analyzing process.

Figure 4.5: Analyzed Tree

4.5 Translator

Taking advantage of the ANTLR tree-parsing mechanism, this step performs the last
and most complex part of the work, turning the analyzed tree into an XQuery AST. The
translator, similarly to the analyzer, contains state objects, aiming to manage sub-queries
by stacking them. Each query or sub-query has an associated “SQLTranslatorState”,
which contains the following structures:

• letBindings: List of Let branches that will be placed as children of the current
FLOWR branch, after the For branches.

• groupedColumns: map containing the column names of the group by clause and the
dummy variable generated to each one.

• aggregationLetBindings: List of Let branches, correspondent to the column refer-
ences of the select clause. They will be placed as children of the current FLOWR
node, after the group by node, because they may refer to aggregation functions,
which have to be processed after the grouping.

• implicitGroupBy, selectClause, groupBy: Booleans used to identify the need of
adding an artificial GroupBy branch.

This state object is also changed in push and pop operations to deal with sub-queries.
However, unlike the analyzer, the translator push/pop operations are very simple and do
not pass data from lower to upper states.

Initially, the main statement node and each sub-query statement node are replaced
by FLOWR nodes. Thereby, the select statements turn into FLOWR statements. The
descendant branches of each statement are translated as follows.

Clearly, we can make an association between the SQL from clause and the XQuery
for clause, because they have, essentially, the same functionality, i.e., they define a data
source to be processed by the other clauses. Therefore, in the translated tree, from clauses
become For branches, where the table references are children of a collection node, which
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is a special node referring to a function used to read from the serialized stored table files.
Sub-queries are not treated as collections, since the resulting data is generated dynami-
cally from another FLOWR statement and do not come from serialized files. Both tables
and sub-queries are bound to specific variables with the same name than their aliases.

The select clause returns the queried data as defined in the query text. Its correspon-
dent in XQuery is the return clause, that receives the resulting sequence of the pipeline
and writes it in the output XML, according with the specified in the query. To translate
the select clause, is created a Return branch with an ElementConstructor branch hav-
ing as children the string "result", that is the outer tag of the resulting XML node, and a
Sequence branch containing as children all trees corresponding to each select item.

Each type of expression generates a specific sub-tree. Column references without
aliases are directly replaced by PathExpression branches, using the column name and its
table source. Column references with aliases are replaced by variable references. When
the translator matches a column reference with alias, it calls a function that resolves the
path expression and binds it to a variable, by putting the expression in a Let branch. This
Let branch is stored in the “letBindings” list, that will be placed as a FLOWR branch
child, afterwards.

Another kind of expression are the function calls. Scalar function calls are just re-
placed by a similar one with XQuery syntax, as well as comparison and arithmetic ex-
pressions. Aggregation functions, such as sum, average, and so on, are treated in a dif-
ferent way by the translator. Aggregation functions operands must be processed before
the function call, since the function needs all the values to aggregate them. Thus, the
expression outcome values inside the aggregation function are bound to a variable, by
placing the Expression branch under a Let branch and storing in the “letBindings” list.
The FunctionCall branch just refers to the bound variable, whose dummy name is gen-
erated according to a Fn pattern, where n is a sequential number starting from zero, just
like the dummy table aliases in the analyzer.

Where branches remains, basically, the same, and their child nodes are processed as
expressions. GroupBy branches have a special behavior. Column references that are
going to be grouped must be processed previously and bound to variables, as are the
aggregation function operands. A Let branch is generated to each column in the GroupBy
branch, and its name is stored in the “groupedColumns” map, along with its dummy
variable name. The dummy variable names follow the Gn pattern, where n is a sequential
number starting from zero. The “groupedColumns” map is consulted in every column
reference, if the referred column matches a register in the structure, a variable reference is
used, instead of a PathExpression branch. A group by clause can be followed by a having
clause, in this case the Having branch is replaced by a Where branch containing the same
expression child. Therefore, each statement may contain two Where branches, the second
one simulating an SQL having clause.

SQL presents a particular behavior when the select clause contains only aggregation
functions and there is no group by clause. All the resulting rows are grouped to one,
containing the aggregation functions results. We call this behavior “implicit group by”.
To handle this, boolean variables are used as flags to determine if there are only aggre-
gation functions in the select clause, and whether or not a group by clause exists in the
query. This mechanism is used to identify an implicit group by behavior, which is han-
dled by creating a dummy variable set to zero, and adding an artificial group by branch
in the structure, grouping by this dummy variable. In this way, each aggregation function
contained in the select clause returns a single value.
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Finally, the OrderBy branch, as well as the Where branch, does not have any special
peculiarity, being replaced by a branch with specific XQuery group by nodes. Figure 4.6
depicts the final result of the SQL query translation. It is possible to observe that the
process outcome reflects quite similarly the structure of the query presented in Figure 2.2,
which is an XQuery version of the SQL query used as example to the translation process.

Figure 4.6: Translated Tree
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5 EXPERIMENTS

5.1 Overview

Aiming to verify the correctness of our translation, six queries have been written,
which cover all the important constructions cited in this work. Consequently, they are
enough to verify the achievement of the proposed goals. The test is simple, consisting of
running each query in both the Brackit XQuery engine and a native SQL engine, check-
ing whether the same results are generated. Section 5.2 contextualizes the mechanisms
used for the experiments. Section 5.3 depicts the datamodel and the queries used for the
experiments, while section 5.4 shows the results and analyze them.

5.2 Environment, tools and functions

The native SQL engine used for tests is HSQLDB (HSQLDB 2012), which is an open
source embedded database, written in Java, offering portability and flexibility. It can be
totally integrated with the Java code, without need to install and pre-configure it, such as
the most relational databases around. HSQLDB is just a jar file, which is included into the
project libraries. It has a JDBC driver and supports a large subset of SQL-92 and fully the
SQL:2008 standards (HSQLDB 2012).

A database model, including six tables, has been generated to run the experiments.
The tables are stored in a folder, under CSV formated files, used as input for both engines.
Another folder contains all the queries in separated files, also including two special files
with commands needed by HSQLDB to create the tables and make the connection with
the CSV stored tables. The schema is an XML file assigned to a string within the code.

A function has been developed to compare the output rows for both engines. Since
XQuery queries without an order by clause produce results in an arbitrary order, when
there is no order by clause in the query, the XQuery and SQL engines output rows may
come in different order. Given this, the comparison function do not care about order,
and handle the resulting rows as a set comparison, just verifying if the XQuery result
set contains the same registers than the SQL result set, regardless of order. A similar
comparison function has been programmed to test queries having order by clause, where
the order of the resulting rows influences the correctness of the queries.

Finally, a function named “runAndCompare” is responsible for running the same
query in both engines and check the correctness, comparing the results using the appro-
priate comparison function, depending on whether the query has a order by clause. This
function receives, as parameters, the name of the file containing the query and the desired
number of execution repetitions. Although the performance is not the main concern in
this work, the average time of the executions is measured, as well as the compilation time
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of each one. This measurement aims to show that an acceptable performance is achieved
in comparison to a native relational engine.

5.3 Datamodel, datasets and queries

Figure 5.1 shows the database model constructed to test our SQL parser. The model
used is a simple sales business, involving persons, products and transactions. There are
three kinds of persons: clients, managers and salesman. Each salesman has a manager
associated and each manager is responsible for one different department of the store.
Every product has a price and a cost, from which is possible to calculate the gain in each
sold unit, by subtracting the cost from the price. A transaction is basically a sale of a
product from a salesman to some client, also including the quantity of units sold and a
possible discount, that have to be considered to calculate each transaction gain.

person_id
person_first_name
person_last_name
person_age

manager_id
manager_person_id
manager_department

salesman_id
salesman_person_id
salesman_manager_id

client_id
client_person_id
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product_description
product_price
product_cost

transaction_id
transaction_salesman_id
transaction_client_id
transaction_product_id
transaction_quantity
transaction_discount
transaction_month

person.tbl manager.tbl
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transaction.tbl product.tbl

salesman.tbl

1
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Figure 5.1: Test Database Model

Assuming that performance is not a concern in this work, a dataset of around 100 KB
was generated, to test the designed queries, which are shown below:

• Q1: Lists the first and last name of all the persons. Tests the basic clauses select and from.

SELECT p e r s o n _ f i r s t _ n a m e ,
p e r s o n _ l a s t _ n a m e

FROM p e r s o n ;



41

• Q2: Lists all the salesmen and their respective managers. Tests the where clause, as
well as comparison expressions. Also tests ambiguous tables, solved by prefixed columns
references.

SELECT p1 . p e r s o n _ f i r s t _ n a m e AS manager_name ,
p2 . p e r s o n _ f i r s t _ n a m e AS sa lesman_name

FROM sa lesman ,
manager ,
p e r s o n p1 ,
p e r s o n p2

WHERE s a l e sm a n_ m an ag e r_ i d = manager_ id
AND m a n a g e r _ p e r s o n _ i d = p1 . p e r s o n _ i d
AND s a l e s m a n _ p e r s o n _ i d = p2 . p e r s o n _ i d ;

• Q3: Returns the largest person age. Tests an aggregation function and the implicit group
by, that occurs when there are only aggregation functions in the select clause and no group
by clause.

SELECT max ( p e r s o n _ a g e ) AS max_age
FROM p e r s o n ;

• Q4: Lists the gains of each salesman, ordered from largest to smallest. Tests group by
clause, order by clause with DESC modifier, and arithmetic expressions.

SELECT p e r s o n _ f i r s t _ n a m e ,
sum ( ( p r o d u c t _ p r i c e − p r o d u c t _ c o s t ) ∗ t r a n s a c t i o n _ q u a n t i t y
∗ ( ( 1 0 0 − t r a n s a c t i o n _ d i s c o u n t ) ∗ 0 . 0 1 ) ) AS g a i n s

FROM t r a n s a c t i o n ,
p r o d u c t ,
sa lesman ,
p e r s o n

WHERE t r a n s a c t i o n _ p r o d u c t _ i d = p r o d u c t _ i d
AND t r a n s a c t i o n _ s a l e s m a n _ i d = s a l e s m a n _ i d
AND s a l e s m a n _ p e r s o n _ i d = p e r s o n _ i d

GROUP BY p e r s o n _ f i r s t _ n a m e
ORDER BY g a i n s DESC ;
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• Q5: Lists the gains of managers with gains above 15000, ordered from smallest to largest.
Tests having clause and order by clause with ASC modifier.

SELECT p e r s o n _ f i r s t _ n a m e ,
sum ( ( p r o d u c t _ p r i c e − p r o d u c t _ c o s t ) ∗ t r a n s a c t i o n _ q u a n t i t y
∗ ( ( 1 0 0 − t r a n s a c t i o n _ d i s c o u n t ) ∗ 0 . 0 1 ) ) AS g a i n s

FROM t r a n s a c t i o n ,
p r o d u c t ,
sa lesman ,
manager ,
p e r s o n

WHERE t r a n s a c t i o n _ p r o d u c t _ i d = p r o d u c t _ i d
AND t r a n s a c t i o n _ s a l e s m a n _ i d = s a l e s m a n _ i d
AND s a l e sm a n_ m an ag e r_ i d = manager_ id
AND m a n a g e r _ p e r s o n _ i d = p e r s o n _ i d

GROUP BY p e r s o n _ f i r s t _ n a m e
HAVING sum ( ( p r o d u c t _ p r i c e − p r o d u c t _ c o s t ) ∗ t r a n s a c t i o n _ q u a n t i t y

∗ ( ( 1 0 0 − t r a n s a c t i o n _ d i s c o u n t ) ∗ 0 . 0 1 ) ) > 15000
ORDER BY g a i n s ASC ;

• Q6: Return the gains of the most lucrative month. Tests sub-queries.

SELECT max ( g a i n s ) AS b e s t _ m o n t h l y _ g a i n
FROM

(SELECT t r a n s a c t i o n _ m o n t h AS MONTH,
sum ( ( p r o d u c t _ p r i c e − p r o d u c t _ c o s t ) ∗ t r a n s a c t i o n _ q u a n t i t y
∗ ( ( 1 0 0 − t r a n s a c t i o n _ d i s c o u n t ) ∗ 0 . 0 1 ) ) AS g a i n s

FROM t r a n s a c t i o n ,
p r o d u c t

WHERE t r a n s a c t i o n _ p r o d u c t _ i d = p r o d u c t _ i d
GROUP BY t r a n s a c t i o n _ m o n t h ) AS m o n t h l y _ g a i n s ;

5.4 Results

Each query is executed as a unit test, whith JUnit (Mentor 2012), using the “runAnd-
Compare” function. JUnit is an open source Java framework that facilitates the creation
of code for test automation with presentation of results. With it, we can see whether each
method of a class works as expected, showing possible errors or failures. Every test has
been executed fifteen times, to return the average execution time for XQuery and SQL.
The compilation time have been also measured, to calculate the time taken to process the
translation of the SQL query to XQuery operators.

Results show that all queries produced the exact same results, confirming the correct-
ness of all the tested constructions. Since the performance was not the focus of this study,
the tests were ran in small tables, resulting in a significant time slice being considered
by the compiler. However, when it comes to bigger storage files, the compilation time
is still the same, while the total execution time of each query grows, decreasing the im-
pact of the compilation time. Regardless of tables size and time taken to execute some
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Query Correct Compilation time XQ time SQL time
Q1 Yes 0.46ms 0.93ms 0.2ms
Q2 Yes 2.07ms 3.53ms 1.4ms
Q3 Yes 0.64ms 1.2ms 0.2ms
Q4 Yes 2.57ms 4ms 1.8ms
Q5 Yes 2.71ms 4.8ms 2.2ms
Q6 Yes 0.92ms 1.8ms 1.6ms

Table 5.1: Experiments Results

query, the translation process remains in the same time magnitude, being not noticeable
to the user eyes, thus not significantly affecting the engine performance. Nevertheless,
as future work, it is possible to carry out some code optimizations, improving the query
compilation time.
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6 CONCLUSION

We observed the diversity of data source formats being manipulated on the web
togheter with the growth of XQuery as a language to query a widely used kind of data:
XML. In addition to this, considering relational databases as a consolidated storage tech-
nology, a lack of an integrated mechanism to query different types of data sources offering
language independence was noted. Our work presented a solution to the mentioned prob-
lem, showing mechanisms to parse and translate an SQL query to XQuery expressions,
being able to connect them with an XQuery engine.

In our solution, an SQL parser has been developed. Attaching it to the top of the
Brackit engine, we are faced with a very flexible tool, which supports storage indepen-
dence in the layer “below” the query processor and language independence in the layer
“above”. In this way, we aimed to abstract as much as possible, in both ends, the process
of querying data from different data sources. To validade the developed solution, some
queries were run, aiming to check its correctness, which was confirmed with the obtained
results. Considering the unconcern with the performance, the proposed objective of this
work has been achieved.

Dividing the process into three different steps reduced the work complexity and in-
creased the organization. However, the translation step is still with some complicated
manipulation and workarounds, which can be better depicted as future work, enhancing
the code legibility and extensibility. Other related works are not as flexible as ours, but
some of them offer more SQL constructions, being more abrangent in the regard of SQL
coverage. In this way, it is interesting, as future work, to implement missing SQL con-
structions, such as count, outer join, union and others that are beyond the basic clauses,
often used in the queries.

An important topic to be improved as future work are the experiments. More solid
tests can be executed, and consolidated benchmarks, such as TPCH (TPC 2012), can be
used to verify the SQL standard coverage, correctness and performance of the developed
SQL interface. Also, queries optimizations can be performed, aiming to improve the
execution time.
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